JP2022025955A - Aluminum member and manufacturing method thereof - Google Patents

Aluminum member and manufacturing method thereof Download PDF

Info

Publication number
JP2022025955A
JP2022025955A JP2020129167A JP2020129167A JP2022025955A JP 2022025955 A JP2022025955 A JP 2022025955A JP 2020129167 A JP2020129167 A JP 2020129167A JP 2020129167 A JP2020129167 A JP 2020129167A JP 2022025955 A JP2022025955 A JP 2022025955A
Authority
JP
Japan
Prior art keywords
crystal grain
aluminum member
aluminum
region
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020129167A
Other languages
Japanese (ja)
Inventor
和博 伊藤
Kazuhiro Ito
啓 山本
Hajime Yamamoto
章 永田
Akira Nagata
浩介 星河
Kosuke Hoshikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Sumitomo Chemical Co Ltd
Original Assignee
Osaka University NUC
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Sumitomo Chemical Co Ltd filed Critical Osaka University NUC
Priority to JP2020129167A priority Critical patent/JP2022025955A/en
Priority to TW110127733A priority patent/TW202212586A/en
Priority to PCT/JP2021/028188 priority patent/WO2022025213A1/en
Priority to CN202180059555.1A priority patent/CN116134168A/en
Publication of JP2022025955A publication Critical patent/JP2022025955A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Physical Vapour Deposition (AREA)
  • Conductive Materials (AREA)

Abstract

To provide an aluminum member that has purity of 5 N or more and has sufficient strength in at least part of the same.SOLUTION: An aluminum member includes a fine crystal grain region having a crystal grain size of less than 20 μm, and has purity of 99.999 mass% or higher.SELECTED DRAWING: Figure 1

Description

本開示はアルミニウム部材およびその製造方法に関する。 The present disclosure relates to an aluminum member and a method for manufacturing the same.

純度が99.999質量%(5N)以上のアルミニウム(Al)は、極低温で極めて電気・熱伝導率が高いため、極低温デバイスの電気・熱伝導体などにしばしば利用される。
しかし、Alは高純度であるほど、強度が低下する傾向にあり、用途が限定される。強度が必要な用途では、5N以上のAlに、高強度材を貼り合わせたり、異元素を添加(合金化)する等の方法が用いられるが、これらの方法は高コストになる、及び5N以上のAlの優れた特性が損なわれる等の問題がある。
Aluminum (Al) having a purity of 99.999% by mass (5N) or more is often used as an electric / thermal conductor for ultra-low temperature devices because it has extremely high electrical / thermal conductivity at extremely low temperatures.
However, the higher the purity of Al, the lower the strength tends to be, which limits its use. For applications that require strength, methods such as laminating a high-strength material to Al of 5N or more or adding (alloying) a different element are used, but these methods are costly and 5N or more. There is a problem that the excellent characteristics of Al are impaired.

Al等の金属材料の強度を向上させる方法として、結晶粒径を微細化する方法が挙げられる。非特許文献1では、高圧巨大ひずみ加工により、純度が99.99質量%(4N)のAlの結晶粒径を2μm程度に微細化して、硬度40HVまで高強度化できることを開示している。非特許文献2では、4NのAlに対し、移動速度200mm/分、回転数300~1500rpmで摩擦攪拌プロセス(Friction Stir Processing:FSP)を行うことによって、結晶粒径を最小2μm以下にできることを開示している。 As a method for improving the strength of a metal material such as Al, a method for reducing the crystal grain size can be mentioned. Non-Patent Document 1 discloses that the crystal grain size of Al having a purity of 99.99% by mass (4N) can be reduced to about 2 μm and the strength can be increased to a hardness of 40 HV by high-pressure giant strain processing. Non-Patent Document 2 discloses that the crystal grain size can be reduced to a minimum of 2 μm or less by performing a friction stir processing (FSP) with a moving speed of 200 mm / min and a rotation speed of 300 to 1500 rpm for 4N Al. is doing.

堀田善治、「巨大ひずみ加工による超微細組織制御」、軽金属、一般社団法人軽金属学会、2010年、第60巻、第3号、p134-141Yoshiharu Hotta, "Ultrafine Structure Control by Giant Strain Machining", Japan Institute of Light Metals, Japan Institute of Light Metals, 2010, Vol. 60, No. 3, p134-141 森重大樹、「摩擦攪拌プロセスを用いた超微細粒アルミニウム材料の組織最適化」、大阪府立大学大学院博士学位論文、2011年Masaki Mori, "Structural Optimization of Ultrafine Aluminum Materials Using Friction Stirring Process", Osaka Prefecture University Graduate School Doctoral Dissertation, 2011

しかしながら、非特許文献1および2に開示されるような従来技術では、5N以上のAlの結晶粒径を十分に微細化できていない。非特許文献1は、Alの純度が高いと転位の交差すべり及び/又は回復が容易に進行して十分な転位の蓄積が起こらず、結晶粒径の微細化が生じない旨を開示している。非特許文献2は、4NのAlにおいて最小2μm以下にできた条件を5NのAlに適用しても、結晶粒径が30μm程度となることを開示しており、この結晶粒径の大きな差について、わずか100ppm程度の極微量の不純物元素が大きく影響を与える旨を開示している。
以上より、従来技術では、5N以上のAlの結晶粒径を十分に微細化するための方法が開示されているとはいえない。そのため、従来技術において、5N以上のAlは全体的に強度が不十分であり、強度が必要な用途への使用は困難であった。
However, in the prior art as disclosed in Non-Patent Documents 1 and 2, the crystal grain size of Al of 5N or more cannot be sufficiently refined. Non-Patent Document 1 discloses that when the purity of Al is high, cross-slip and / or recovery of dislocations easily proceeds, sufficient dislocation accumulation does not occur, and grain size miniaturization does not occur. .. Non-Patent Document 2 discloses that the crystal grain size is about 30 μm even if the condition that the minimum is 2 μm or less in 4N Al is applied to 5N Al, and the difference in the crystal grain size is large. It is disclosed that a very small amount of impurity elements of only about 100 ppm has a great influence.
From the above, it cannot be said that the prior art discloses a method for sufficiently refining the crystal grain size of Al of 5N or more. Therefore, in the prior art, Al of 5N or more has insufficient strength as a whole, and it is difficult to use it for applications requiring strength.

本発明はこのような状況を鑑みてなされたものであり、その目的の1つは、5N以上の純度を有し、且つ少なくとも一部において十分な強度を有するアルミニウム部材およびその製造方法を提供することである。 The present invention has been made in view of such a situation, and one of the objects thereof is to provide an aluminum member having a purity of 5N or more and having sufficient strength at least in a part thereof and a method for producing the same. That is.

本発明の態様1は、
結晶粒径が20μm未満である微細結晶粒領域を含み、
純度が99.999質量%以上であるアルミニウム部材である。
Aspect 1 of the present invention is
Includes fine grain regions with grain sizes less than 20 μm
It is an aluminum member having a purity of 99.999% by mass or more.

本発明の態様2は、
結晶粒径が20μm以上150μm未満の中間結晶粒領域と、
結晶粒径が150μm以上の粗大結晶粒領域と、をさらに含む態様1に記載のアルミニウム部材である。
Aspect 2 of the present invention is
Intermediate crystal grain regions with grain sizes of 20 μm or more and less than 150 μm,
The aluminum member according to aspect 1, further comprising a coarse crystal grain region having a crystal grain size of 150 μm or more.

本発明の態様3は、
前記微細結晶粒領域の平均結晶粒径が5μm以下である、態様1または2に記載のアルミニウム部材である。
Aspect 3 of the present invention is
The aluminum member according to aspect 1 or 2, wherein the average crystal grain size of the fine crystal grain region is 5 μm or less.

本発明の態様4は、
少なくとも1つの表面において、前記微細結晶粒領域が0.01mm以上の面積にわたって連続して存在している、態様1~3のいずれか1つに記載のアルミニウム部材である。
Aspect 4 of the present invention is
The aluminum member according to any one of aspects 1 to 3, wherein the fine crystal grain regions are continuously present over an area of 0.01 mm 2 or more on at least one surface.

本発明の態様5は、
態様1~4のいずれか1つに記載のアルミニウム部材を含む極低温用電気・熱伝達材である。
Aspect 5 of the present invention is
It is an electric / heat transfer material for ultra-low temperature including the aluminum member according to any one of aspects 1 to 4.

本発明の態様6は、
純度が99.999質量%以上のアルミニウム板表面上で、回転する円柱状治具を押し当てながら移動させる摩擦攪拌工程を含み、前記円柱状治具の移動速度が100mm/分以下である、態様1~4のいずれか1つに記載のアルミニウム部材を製造する方法である。
Aspect 6 of the present invention is
An embodiment comprising a friction stir step of moving a rotating columnar jig while pressing it on an aluminum plate surface having a purity of 99.999% by mass or more, wherein the moving speed of the columnar jig is 100 mm / min or less. The method for manufacturing an aluminum member according to any one of 1 to 4.

本発明の態様7は、
前記摩擦攪拌工程において、前記円柱状治具の回転軸を、前記アルミニウム板表面の垂線から、前記円柱状治具の移動方向とは反対方向に3°以上傾けて、前記円柱状治具を移動させる、態様6に記載の方法である。
Aspect 7 of the present invention is
In the friction stir welding step, the rotation axis of the columnar jig is tilted by 3 ° or more in a direction opposite to the movement direction of the columnar jig from the perpendicular line on the surface of the aluminum plate to move the columnar jig. 6 is the method according to aspect 6.

本発明の実施形態によれば、5N以上の純度を有し、且つ少なくとも一部において十分な強度を有するアルミニウム部材およびその製造方法を提供することが可能である。 According to the embodiment of the present invention, it is possible to provide an aluminum member having a purity of 5N or more and having sufficient strength at least in a part thereof and a method for producing the same.

図1は、実施例1のEBSD法による逆極点図(IPF)マップである。FIG. 1 is an inverse pole figure (IPF) map according to the EBSD method of Example 1. 図2は、図1の微細結晶粒領域1の拡大図である。FIG. 2 is an enlarged view of the fine crystal grain region 1 of FIG.

本発明者らは、5N以上の純度を有し、且つ少なくとも一部において十分な強度を有するアルミニウム部材を実現するべく、様々な角度から検討した。 The present inventors have studied from various angles in order to realize an aluminum member having a purity of 5N or more and having sufficient strength at least in a part.

本発明者らは、上記アルミニウム部材を実現するための方法として、摩擦攪拌プロセス(FSP)に着目した。FSPでは、回転する円柱状治具を被処理材に押し当てて移動させることにより、該被処理材に強ひずみを加えることができる。FSPに関する研究では、この強ひずみによって該被処理材に動的再結晶を引き起こし、微細な再結晶粒を形成させることができると考えられている。従来技術、特に非特許文献2によれば、FSPにおいて、円柱状治具の移動速度を比較的速い速度(具体的には200mm/分)で移動させることにより、加工熱を低くでき、結晶粒成長を抑制できると推測されている。
本発明者らは、鋭意検討の結果、従来の技術思想とは異なり、円柱状治具を比較的低い速度(100mm/分以下)で移動させることにより、5N以上の純度のAlにおいて、従来技術では達成し得なかった、結晶粒径が20μm未満である微細結晶粒領域を実現することができ、さらに、その微細結晶粒領域を含む部分は、十分な強度(ビッカース硬度)を有することを見出した。
The present inventors have focused on a friction stir welding process (FSP) as a method for realizing the above-mentioned aluminum member. In the FSP, a strong strain can be applied to the material to be treated by pressing a rotating columnar jig against the material to be treated and moving the jig. In the study on FSP, it is considered that this strong strain can cause dynamic recrystallization in the material to be treated to form fine recrystallized grains. According to the prior art, particularly Non-Patent Document 2, in FSP, by moving the moving speed of the columnar jig at a relatively high speed (specifically, 200 mm / min), the processing heat can be reduced and the crystal grains can be reduced. It is speculated that it can suppress growth.
As a result of diligent studies, the present inventors have conducted a conventional technique for Al having a purity of 5 N or more by moving a columnar jig at a relatively low speed (100 mm / min or less), unlike the conventional technical idea. It was found that a fine crystal grain region having a crystal grain size of less than 20 μm, which could not be achieved by the above, can be realized, and further, the portion including the fine crystal grain region has sufficient strength (Vickers hardness). rice field.

以下に、本発明の実施形態が規定する各要件の詳細を示す。なお、本発明の実施形態に係るアルミニウム部材(及びアルミニウム板)の「純度」とは、主要の不純物3成分(Si、FeおよびCu)の合計含有量(質量%)を100質量%から除いた値を指す。 The details of each requirement defined by the embodiment of the present invention are shown below. The "purity" of the aluminum member (and aluminum plate) according to the embodiment of the present invention is obtained by removing the total content (mass%) of the three main impurity components (Si, Fe and Cu) from 100% by mass. Point to a value.

本発明の実施形態に係るアルミニウム部材は、純度が99.999質量%以上である。これにより、アルミニウム部材の極低温伝導特性を高くすることができる。好ましくは、純度が99.9995質量%以上である。 The aluminum member according to the embodiment of the present invention has a purity of 99.999% by mass or more. This makes it possible to improve the cryogenic conduction characteristics of the aluminum member. Preferably, the purity is 99.9995% by mass or more.

本発明の実施形態に係るアルミニウム部材は、主要の不純物3成分(Si、FeおよびCu)以外に、その他の微量不純物10元素(Ti、Mn、Mg、B、Cr、Ga、Ni、V、Zn、Zr)を含んでいてもよい。その他の微量不純物10元素の含有量は、0.001質量%以下であることが好ましい。これにより、アルミニウム部材の極低温伝導特性を高くすることができる。 The aluminum member according to the embodiment of the present invention has 10 other trace impurities (Ti, Mn, Mg, B, Cr, Ga, Ni, V, Zn) in addition to the three main impurities (Si, Fe and Cu). , Zr) may be included. The content of the other trace impurities 10 elements is preferably 0.001% by mass or less. This makes it possible to improve the cryogenic conduction characteristics of the aluminum member.

本発明の実施形態に係るアルミニウム部材は、結晶粒径が20μm未満の微細結晶粒領域を含む。これにより、少なくとも一部(すなわち、微細結晶粒領域を含む部分)において、十分な強度を有するアルミニウム部材が得られる。 The aluminum member according to the embodiment of the present invention includes a fine crystal grain region having a crystal grain size of less than 20 μm. As a result, an aluminum member having sufficient strength can be obtained at least in a part (that is, a part including a fine crystal grain region).

上記微細結晶粒領域の、100μm□で測定される平均結晶粒径は20μm未満であり、好ましくは5μm以下であり、より好ましくは3μm以下である。これにより、さらに微細結晶粒領域の強度を向上させることができる。微細結晶粒領域における平均結晶粒径の下限は特に限定されないが、例えば0.1μm以上であり得る。 The average crystal grain size of the fine crystal grain region measured at 100 μm □ is less than 20 μm, preferably 5 μm or less, and more preferably 3 μm or less. Thereby, the strength of the fine crystal grain region can be further improved. The lower limit of the average crystal grain size in the fine crystal grain region is not particularly limited, but may be, for example, 0.1 μm or more.

上記微細結晶粒領域は、0.01mm以上の連続した部分を有することが好ましい。これにより強度を向上させることができる。 The fine crystal grain region preferably has a continuous portion of 0.01 mm 2 or more. This can improve the strength.

上記微細結晶粒領域は、アルミニウム部材の少なくとも1つの表面に露出した部分を有することが好ましい。これにより、外側からの外力に対する強度を向上させることができる。
また、アルミニウム部材の少なくとも1つの表面において、上記微細結晶粒領域が0.01mm以上の面積にわたって連続して存在していることが好ましく、より好ましくは1mm以上、さらに好ましくは10mm以上、さらにより好ましくは40mm以上の面積にわたって連続して存在していることである。これにより外側からの外力に対する強度を向上させることができる。上記面積について、上限は特に限定されないが、1.5m以下であってもよい。また、アルミニウム部材の少なくとも1つの表面において、上記微細結晶粒領域が0.001面積%以上にわたって連続して存在していることが好ましく、より好ましくは0.1面積%以上、さらに好ましくは1面積%以上、さらにより好ましくは4面積%以上の面積にわたって連続して存在していることである。上記面積比について、上限は特に限定されないが、100面積%以下であってもよい。なお、アルミニウム部材表面における微細結晶粒領域が連続している面積を測定する方法としては、例えば、当該表面に対して、後述するEBSD解析を行うことにより、測定してもよい。または、当該表面におけるアルミニウム部材の長手方向(または短手方向)と平行、且つ当該表面とは垂直の断面に対してEBSD解析を行って、これを短手方向(または長手方向)において一定間隔(例えば0.02mm)毎に繰り返すことで、アルミニウム部材表面における微細結晶粒領域が連続している面積を測定してもよい。
The fine crystal grain region preferably has an exposed portion on at least one surface of the aluminum member. This makes it possible to improve the strength against an external force from the outside.
Further, it is preferable that the fine crystal grain regions are continuously present over an area of 0.01 mm 2 or more on at least one surface of the aluminum member, more preferably 1 mm 2 or more, still more preferably 10 mm 2 or more. Even more preferably, it exists continuously over an area of 40 mm 2 or more. This makes it possible to improve the strength against an external force from the outside. The upper limit of the above area is not particularly limited, but may be 1.5 m 2 or less. Further, it is preferable that the fine crystal grain region is continuously present over 0.001 area% or more on at least one surface of the aluminum member, more preferably 0.1 area% or more, still more preferably 1 area. It is continuously present over an area of% or more, and even more preferably 4 area% or more. The upper limit of the area ratio is not particularly limited, but may be 100 area% or less. As a method for measuring the continuous area of the fine crystal grain regions on the surface of the aluminum member, for example, the surface may be measured by performing an EBSD analysis described later. Alternatively, EBSD analysis is performed on a cross section parallel to the longitudinal direction (or the lateral direction) of the aluminum member on the surface and perpendicular to the surface, and this is performed at regular intervals (or the longitudinal direction) in the lateral direction (or the longitudinal direction). For example, by repeating every 0.02 mm), the area where the fine crystal grain regions on the surface of the aluminum member are continuous may be measured.

上記微細結晶粒領域は、アルミニウム部材の少なくとも1つの表面から裏面に向かって測定される厚さが0.10mm以上である部分を有することが好ましい。より好ましくは厚さが0.20mm以上、さらに好ましくは厚さが0.30mm以上の部分を有することである。これにより外側からの外力に対する強度を向上させることができる。また、アルミニウム部材の当該表面から裏面までの長さに対する、微細結晶粒領域の厚さの比が、10%以上である部分を有することが好ましく、より好ましくは20%以上である部分を有することであり、さらに好ましくは30%以上である部分を有することである。これにより外側からの外力に対する強度を向上させることができる。 The fine crystal grain region preferably has a portion having a thickness of 0.10 mm or more measured from at least one front surface to the back surface of the aluminum member. It is more preferable to have a portion having a thickness of 0.20 mm or more, and further preferably a portion having a thickness of 0.30 mm or more. This makes it possible to improve the strength against an external force from the outside. Further, it is preferable to have a portion in which the ratio of the thickness of the fine crystal grain region to the length from the front surface to the back surface of the aluminum member is 10% or more, and more preferably 20% or more. It is more preferable to have a portion having a portion of 30% or more. This makes it possible to improve the strength against an external force from the outside.

本発明の実施形態に係るアルミニウム部材の少なくとも1つの表面から裏面に向かうに従って、微細結晶粒領域の面積は減少していてもよい。また微細結晶粒領域は、少なくとも1つの表面と裏面とで、面積が異なっていてもよい。 The area of the fine crystal grain region may decrease from the front surface to the back surface of at least one aluminum member according to the embodiment of the present invention. Further, the area of the fine crystal grain region may be different between at least one front surface and the back surface.

本発明の実施形態に係るアルミニウム部材は、微細結晶粒領域に加えて、結晶粒径が20μm以上の非微細結晶粒領域を含んでいてもよい。例えば、結晶粒径が20μm以上150μm未満の中間結晶粒領域と、結晶粒径が150μm以上の粗大結晶粒領域とをさらに含んでいてもよい。
強度を向上させる観点では、微細結晶粒領域を大きくすることが好ましく、中間結晶粒領域および粗大結晶粒領域を小さくすることが好ましく、そのうち粗大結晶粒領域を小さくすることがより好ましい。強度を向上させる観点で好ましい1つの実施形態は、アルミニウム部材が微細結晶粒領域および中間結晶粒領域からなることであり、強度を向上させる観点で最も好ましい実施形態は、アルミニウム部材が微細結晶粒領域からなることである。
一方で、粗大結晶粒領域(及び/又は中間結晶粒領域)を含むことで、結晶粒界の数が少なくなることに起因して、極低温伝導特性を高めることができる。強度と極低温伝導特性をバランスよく両立させる観点で好ましい実施形態としては、アルミニウム部材が、強度が必要な部分に微細結晶粒領域を含み、それ以外の部分には粗大結晶粒領域(及び/又は中間結晶粒領域)を含むことである。
The aluminum member according to the embodiment of the present invention may include a non-fine crystal grain region having a crystal grain size of 20 μm or more in addition to the fine crystal grain region. For example, an intermediate crystal grain region having a crystal grain size of 20 μm or more and less than 150 μm and a coarse crystal grain region having a crystal grain size of 150 μm or more may be further included.
From the viewpoint of improving the strength, it is preferable to increase the fine crystal grain region, it is preferable to reduce the intermediate crystal grain region and the coarse crystal grain region, and it is more preferable to reduce the coarse crystal grain region. One preferred embodiment from the viewpoint of improving the strength is that the aluminum member comprises a fine crystal grain region and an intermediate crystal grain region, and the most preferable embodiment from the viewpoint of improving the strength is that the aluminum member is a fine crystal grain region. It consists of.
On the other hand, by including the coarse crystal grain region (and / or the intermediate crystal grain region), the cryogenic conduction characteristics can be enhanced due to the reduction in the number of grain boundaries. In a preferred embodiment from the viewpoint of achieving both strength and cryogenic conduction characteristics in a well-balanced manner, the aluminum member includes a fine grain region in a portion where strength is required, and a coarse grain region (and / or / or) in other portions. Intermediate grain regions) are included.

本発明の実施形態において、結晶粒径とは、電子線後方散乱回折(Electron backscatter diffraction:EBSD)解析の結果、結晶方位差が5°以上の境界を結晶粒界として、その結晶粒界に囲まれた領域の面積を円に換算したときの直径、すなわち円相当直径を指し、平均結晶粒径とは、EBSD解析した面の所定の面積(例えば100μm□)における結晶粒径の平均値を指す。なお、粗大結晶粒領域については、平均結晶粒径の簡易的な求め方として、EBSD解析した面に直線を引き、該直線の長さを、該直線と交差する結晶粒界の数で除した値を粗大結晶粒領域の平均結晶粒径とすることもできる。 In the embodiment of the present invention, the crystal grain size is surrounded by the crystal grain boundary with a boundary having a crystal orientation difference of 5 ° or more as a crystal grain boundary as a result of electron backscatter diffraction (EBSD) analysis. The diameter when the area of the area is converted into a circle, that is, the diameter equivalent to the circle, and the average crystal grain size refers to the average value of the crystal grain size in a predetermined area (for example, 100 μm □) of the surface analyzed by EBSD. .. For the coarse crystal grain region, as a simple method for obtaining the average crystal grain size, a straight line was drawn on the surface analyzed by EBSD, and the length of the straight line was divided by the number of grain boundaries intersecting the straight line. The value can also be the average crystal grain size of the coarse crystal grain region.

本発明の実施形態に係るアルミニウム部材は、どのような形態でもよく、例えば板状、細線状または筒状であってもよい。 The aluminum member according to the embodiment of the present invention may have any form, for example, a plate shape, a fine wire shape, or a cylindrical shape.

本発明の実施形態に係る極低温用電気・熱伝達材は、上記アルミニウム部材を含み、本発明の目的が達成される範囲内で、上記アルミニウム部材に加えて他の部材を含んでいてもよい。 The ultra-low temperature electric / heat transfer material according to the embodiment of the present invention includes the above-mentioned aluminum member, and may contain other members in addition to the above-mentioned aluminum member within the range in which the object of the present invention is achieved. ..

本発明の実施形態に係るアルミニウム部材の製造方法は、純度が99.999質量%以上のアルミニウム板表面上で、回転する円柱状治具を押し当てながら移動させる摩擦攪拌工程を含み、前記円柱状治具の移動速度が100mm/分以下である。これにより、5N以上であって、円柱状治具によって強ひずみが加えられた箇所において、結晶粒径が20μm未満の微細結晶粒領域を形成することができる。 The method for manufacturing an aluminum member according to an embodiment of the present invention includes a friction stir step of moving a rotating columnar jig while pressing it on the surface of an aluminum plate having a purity of 99.999% by mass or more. The moving speed of the jig is 100 mm / min or less. As a result, it is possible to form a fine crystal grain region having a crystal grain size of less than 20 μm at a portion having a crystal grain size of 5 N or more and having a strong strain applied by a columnar jig.

上記摩擦攪拌工程において、被処理材となるアルミニウム板を1枚としてもよい。また、摩擦攪拌工程を、1枚のアルミニウム板表面上の同じ箇所に対して複数回行ってもよく、異なる箇所に対して1回ずつまたは複数回行ってもよい。なお、摩擦攪拌工程を、1枚のアルミニウム板表面(及び/又は裏面)全面に対して行うことにより、アルミニウム板の全領域に微細結晶粒領域を形成することもできる。 In the friction stir welding step, the number of aluminum plates to be treated may be one. Further, the friction stir welding step may be performed a plurality of times on the same portion on the surface of one aluminum plate, and may be performed once or a plurality of times on different portions. By performing the friction stir welding step on the entire surface (and / or back surface) of one aluminum plate, fine crystal grain regions can be formed in the entire region of the aluminum plate.

上記摩擦攪拌工程において、被処理材となるアルミニウム板を複数枚、例えば2枚としてもよい。この場合、2枚のアルミニウム板を同一平面上に置き、2枚のアルミニウム板の1つの端面同士を互いに接触させて、2枚のアルミニウム板表面の当該接触部分に対して、回転する円柱状治具を押し当てながら移動させる。これにより、2枚のアルミニウム板が接合され、接合部付近の強ひずみが加えられた箇所において、結晶粒径が20μm未満の微細結晶粒領域が形成された1つのアルミニウム部材を得ることができる。なお当該接合部に対して複数回の摩擦攪拌工程を行ってもよく、当該接合部以外に対して摩擦攪拌工程を行ってもよい。複数枚のアルミニウム板の板厚は同一であることが、円柱状治具を均一に押し当てることができるため好ましい。また、複数枚のアルミニウム板については、互いに隙間なく接触させられるように、少なくとも1つの平坦な端面を有することが好ましい。 In the friction stir welding step, the number of aluminum plates to be treated may be a plurality of, for example, two. In this case, two aluminum plates are placed on the same plane, one end faces of the two aluminum plates are brought into contact with each other, and a columnar jig that rotates with respect to the contact portion on the surface of the two aluminum plates. Move while pressing the tool. As a result, it is possible to obtain one aluminum member in which two aluminum plates are joined and a fine crystal grain region having a crystal grain size of less than 20 μm is formed at a portion near the joint where a strong strain is applied. It should be noted that the friction stir step may be performed a plurality of times on the joint portion, or the friction stirring step may be performed on a portion other than the joint portion. It is preferable that the thickness of the plurality of aluminum plates is the same because the columnar jig can be pressed uniformly. Further, it is preferable that the plurality of aluminum plates have at least one flat end face so that they can be brought into contact with each other without gaps.

上記摩擦攪拌工程において、円柱状治具の移動速度は、80mm/分以下が好ましく、20mm/分以下がより好ましく、8mm/分以下がさらに好ましい。これにより、微細結晶粒領域の平均結晶粒径をより小さくすることができる。 In the friction stir welding step, the moving speed of the columnar jig is preferably 80 mm / min or less, more preferably 20 mm / min or less, still more preferably 8 mm / min or less. As a result, the average crystal grain size of the fine crystal grain region can be made smaller.

上記摩擦攪拌工程において、円柱状治具の回転軸を、アルミニウム板表面の垂線から、円柱状治具の移動方向とは反対方向に3°以上傾けて、円柱状治具を移動させることが好ましい。これにより、円柱状治具から生じる回転力がアルミニウム板の表面から内部に向かいやすくなり、微細結晶粒領域を拡大させやすくなる。円柱状治具を傾ける角度の上限は、例えば85°である。 In the friction stir welding step, it is preferable to move the columnar jig by tilting the rotation axis of the columnar jig by 3 ° or more in the direction opposite to the moving direction of the columnar jig from the perpendicular line on the surface of the aluminum plate. .. As a result, the rotational force generated from the columnar jig tends to move from the surface of the aluminum plate toward the inside, and the fine crystal grain region tends to be expanded. The upper limit of the angle at which the columnar jig is tilted is, for example, 85 °.

上記摩擦攪拌工程において、円柱状治具の回転速度は、1500rpm超とすることが好ましく、より好ましくは2000rpm以上であり、さらに好ましくは3000rpm以上である。これにより、結晶粒が微細化されやすくなる。円柱状治具の回転速度の上限は特に限定されないが、例えば20000rpm以下である。 In the friction stir welding step, the rotation speed of the columnar jig is preferably more than 1500 rpm, more preferably 2000 rpm or more, and further preferably 3000 rpm or more. As a result, the crystal grains are easily refined. The upper limit of the rotation speed of the columnar jig is not particularly limited, but is, for example, 20000 rpm or less.

上記摩擦攪拌工程において、円柱状治具のアルミニウム板表面に対する押し込み深さは、0.3mm以上3mm以下にすることが好ましく、より好ましくは0.3mm以上0.5mm以下である。また、アルミニウム板の板厚に対する押し込み深さの比は、6%以上100%未満であることが好ましく、より好ましくは、37.5%以上62.5%以下である。これにより、適切な加工速度で摩擦攪拌工程を行うことができ、微細結晶粒領域を得やすくなる。摩擦攪拌工程後には、円柱状治具の押し込み深さに応じて、アルミニウム部材表面に凹部が形成され得る。 In the friction stir welding step, the pushing depth of the columnar jig with respect to the aluminum plate surface is preferably 0.3 mm or more and 3 mm or less, and more preferably 0.3 mm or more and 0.5 mm or less. The ratio of the pushing depth to the thickness of the aluminum plate is preferably 6% or more and less than 100%, and more preferably 37.5% or more and 62.5% or less. As a result, the friction stir step can be performed at an appropriate processing speed, and it becomes easy to obtain fine crystal grain regions. After the friction stir welding step, a recess may be formed on the surface of the aluminum member depending on the pushing depth of the columnar jig.

上記摩擦攪拌工程において、円柱状治具の材質は、アルミニウムよりも硬度が高い材料とすることができ、例えば工具鋼等であってもよい。円柱状治具の先端形状は、例えば、球面であってもよく、他の形状であってもよい。 In the friction stir welding step, the material of the columnar jig can be a material having a hardness higher than that of aluminum, and may be, for example, tool steel. The tip shape of the columnar jig may be, for example, a spherical surface or another shape.

上記摩擦攪拌工程において、被処理材となる、純度が99.999質量%以上のアルミニウム板は、公知の方法で用意することができる。例えば偏析法、三層電解法、帯溶融精製法、超高真空溶解精製法等、既知の方法またはその組み合わせにより、純度が99.999質量%以上のアルミニウム片を用意し、そのアルミニウム片を圧延することにより用意できる。 In the friction stir welding step, an aluminum plate having a purity of 99.999% by mass or more, which is a material to be treated, can be prepared by a known method. For example, an aluminum piece having a purity of 99.999% by mass or more is prepared by a known method such as a segregation method, a three-layer electrolysis method, a band melting purification method, an ultra-high vacuum melting purification method, or a combination thereof, and the aluminum piece is rolled. Can be prepared by doing.

上記摩擦攪拌工程において、被処理材となるアルミニウム板の板厚は、0.5mm以上であることが好ましく、0.7mm以上であることがより好ましい。これにより、摩擦攪拌工程におけるアルムニウム板の変形を抑制することができる。アルミニウム板の板厚の上限は特に制限されないが、例えば5mm以下である。また、アルミニウム板の面内形状は、特に限定されないが、例えば正方形又は長方形とすることができる。 In the friction stir welding step, the thickness of the aluminum plate to be treated is preferably 0.5 mm or more, more preferably 0.7 mm or more. As a result, deformation of the alumnium plate in the friction stir step can be suppressed. The upper limit of the plate thickness of the aluminum plate is not particularly limited, but is, for example, 5 mm or less. The in-plane shape of the aluminum plate is not particularly limited, but may be, for example, a square or a rectangle.

上記摩擦攪拌工程後に得られるアルミニウム部材では、円柱状治具を押し当てた表面から裏面に向かうに従って、微細結晶粒領域の面積が減少し得る。これは、円柱状治具を押し当てた表面から裏面に向かうに従って、円柱状治具により強ひずみが加えられる範囲が減少することによると考えられる。 In the aluminum member obtained after the friction stir welding step, the area of the fine crystal grain region can be reduced from the front surface to the back surface to which the columnar jig is pressed. It is considered that this is because the range in which the columnar jig applies strong strain decreases from the front surface to the back surface to which the columnar jig is pressed.

上記摩擦攪拌工程後に得られるアルミニウム部材では、円柱状治具を押し当てた表面から裏面に向かって連続して強ひずみが加えられ得るため、該表面から裏面に向かって微細結晶粒領域が連続し得、場合によっては該表面から裏面まで微細結晶粒領域が連続し得る。多くの場合、微細結晶粒領域の面積は円柱状治具を押し当てた表面と裏面とで異なっており、円柱状治具を押し当てた表面の方が裏面よりも、微細結晶粒領域の面積が広くなり得る。これは、円柱状治具を押し当てた表面の方が、より広範囲に強ひずみが加えられることによると考えられる。 In the aluminum member obtained after the friction stir welding step, strong strain can be continuously applied from the front surface to the back surface to which the columnar jig is pressed, so that the fine crystal grain regions are continuous from the front surface to the back surface. Obtained, and in some cases, the fine crystal grain region may be continuous from the front surface to the back surface. In many cases, the area of the fine crystal grain region is different between the front surface and the back surface to which the columnar jig is pressed, and the area of the fine crystal grain region on the front surface to which the columnar jig is pressed is larger than the back surface. Can be wide. It is considered that this is because the strong strain is applied to a wider range on the surface to which the columnar jig is pressed.

上記摩擦攪拌工程においてひずみがほとんど加えられてない箇所では、結晶粒微細化は起こらず、例えば、結晶粒径が150μm以上の粗大結晶粒領域となり得る。 In the place where almost no strain is applied in the friction stirring step, crystal grain refinement does not occur, and for example, a coarse crystal grain region having a crystal grain size of 150 μm or more can be formed.

上記摩擦攪拌工程後に得られるアルミニウム部材では、円柱状治具を押し当てた表面の方が裏面よりも、粗大結晶粒領域の面積が狭くなり得る。すなわち、上記摩擦攪拌工程後に得られるアルミニウム部材では、少なくとも1つの表面と裏面とで粗大結晶粒領域の面積が異なり得る。これは、円柱状治具を押し当てた表面の方が、より広範囲に強ひずみが加えられ、逆にひずみがほとんど加えられてない領域が狭くなるためであると考えられる。 In the aluminum member obtained after the friction stir welding step, the area of the coarse crystal grain region may be smaller on the front surface to which the columnar jig is pressed than on the back surface. That is, in the aluminum member obtained after the friction stir welding step, the area of the coarse crystal grain region may differ between at least one front surface and the back surface. It is considered that this is because the surface to which the columnar jig is pressed has a wider range of strong strain applied, and conversely, the region where almost no strain is applied becomes narrower.

上記摩擦攪拌工程によって、例えば、結晶粒径が20μm以上150μm未満の中間結晶粒領域も形成され得る。中間結晶粒領域は、例えば、微細結晶粒領域と粗大結晶粒領域との間に形成され得る。これは、微細結晶粒領域と粗大結晶粒領域との間では、円柱状治具による影響が微細結晶粒領域と比較して小さく、粗大結晶粒領域と比較して大きいことによるものと考えられる。 By the friction stir welding step, for example, an intermediate crystal grain region having a crystal grain size of 20 μm or more and less than 150 μm can be formed. The intermediate grain region can be formed, for example, between the fine grain region and the coarse grain region. It is considered that this is because the influence of the columnar jig is smaller than that of the fine crystal grain region and larger than that of the coarse crystal grain region between the fine crystal grain region and the coarse crystal grain region.

本発明の目的が達成される範囲内で、本発明の実施形態に係るアルミニウム部材の製造方法は、他の工程を含んでいてもよく、例えば、細線状等種々の形状に加工する工程、アルミニウム部材の表面を平坦にする工程及び/又は粗大結晶粒領域等を除去する工程を含んでいてもよい。 To the extent that the object of the present invention is achieved, the method for manufacturing an aluminum member according to an embodiment of the present invention may include other steps, for example, a step of processing into various shapes such as a fine line, aluminum. It may include a step of flattening the surface of the member and / or a step of removing coarse crystal grain regions and the like.

以下、実施例を挙げて本発明の実施形態をより具体的に説明する。本発明の実施形態は以下の実施例によって制限を受けるものではなく、前述および後述する趣旨に合致し得る範囲で、適宜変更を加えて実施することも可能であり、それらはいずれも本発明の実施形態の技術的範囲に包含される。 Hereinafter, embodiments of the present invention will be described in more detail with reference to examples. The embodiments of the present invention are not limited by the following examples, and can be appropriately modified and carried out within the range that can meet the above-mentioned and later-described intent, and all of them may be carried out by the present invention. It is included in the technical scope of the embodiment.

公知の方法で用意した純度が5Nのアルミニウム片(厚さ20mm)を室温で冷間圧延し、幅10mm、長さ100mm、厚さ0.8mmのアルミニウム板を得た。圧延方向は長さ方向であった。このアルミニウム板を2枚用意して同一平面上に置き、該2枚の長さ方向の端面(幅10mm×厚さ0.8mm)同士を接触させて、該2枚の表面の接触部分に対して、回転する円柱状治具を押し当てながら、速度を5mm/分、距離を10mmとして移動させた。この時、使用した円柱状治具は、工具鋼SKD61製、先端形状は直径5mmおよび曲率5.4mmの球面とし、円柱状治具の回転速度は3000rpmとし、円柱状治具の回転軸を、アルミニウム板表面の垂線から、円柱状治具の移動方向とは反対方向に3°以上傾けて移動させた。円柱状治具のアルミニウム板表面に対する押し込み深さは、0.35mmとした。
以上より、実施例1のアルミニウム部材を得た。さらに円柱状治具の移動速度およびアルミニウム板表面に対する押し込み深さを表1のように変更して実施例2および3のアルミニウム部材を得た。
An aluminum piece (thickness 20 mm) having a purity of 5 N prepared by a known method was cold-rolled at room temperature to obtain an aluminum plate having a width of 10 mm, a length of 100 mm, and a thickness of 0.8 mm. The rolling direction was the length direction. Two aluminum plates are prepared and placed on the same plane, and the end faces (width 10 mm × thickness 0.8 mm) in the length direction of the two plates are brought into contact with each other to the contact portion of the two surfaces. Then, while pressing the rotating columnar jig, the speed was set to 5 mm / min and the distance was set to 10 mm. At this time, the columnar jig used was made of tool steel SKD61, the tip shape was a spherical surface with a diameter of 5 mm and a curvature of 5.4 mm, the rotation speed of the columnar jig was 3000 rpm, and the rotation axis of the columnar jig was set. From the vertical line on the surface of the aluminum plate, the columnar jig was moved at an angle of 3 ° or more in the direction opposite to the moving direction. The pushing depth of the columnar jig with respect to the aluminum plate surface was set to 0.35 mm.
From the above, the aluminum member of Example 1 was obtained. Further, the moving speed of the columnar jig and the pushing depth with respect to the surface of the aluminum plate were changed as shown in Table 1 to obtain the aluminum members of Examples 2 and 3.

Figure 2022025955000002
Figure 2022025955000002

公知の方法で用意した純度が4N、5Nまたは6Nのアルミニウム片(厚さ20mm)を室温で冷間圧延し、比較例1~5のアルミニウム部材(アルミニウム板)を得た(比較例4のみ板厚が1.0mmであり、その他は板厚が0.8mm)。その後、比較例4~5については、窒素雰囲気下で500℃3時間の熱処理を施した。 Aluminum pieces (thickness 20 mm) having a purity of 4N, 5N or 6N prepared by a known method were cold-rolled at room temperature to obtain aluminum members (aluminum plates) of Comparative Examples 1 to 5 (only the plate of Comparative Example 4). The thickness is 1.0 mm, and the others have a plate thickness of 0.8 mm). Then, Comparative Examples 4 to 5 were heat-treated at 500 ° C. for 3 hours in a nitrogen atmosphere.

実施例1~3および比較例1~5を以下のように評価した。 Examples 1 to 3 and Comparative Examples 1 to 5 were evaluated as follows.

<不純物濃度測定>
不純物濃度測定方法として、グロー放電質量分析(GD-MS)または固体発光分光分析が挙げられる。実施例1~3ならびに比較例4および5についてはGD-MSにより不純物濃度測定を行い、比較例1~3については、固体発光分光分析により不純物濃度測定を行った。
主要元素Fe、Si及びCuの各含有量(質量%)およびその合計値、並びにその他の微量不純物10元素(Ti、Mn、Mg、B、Cr、Ga、Ni、V、Zn、Zr)の合計の含有量について測定した結果を表2に示す。
<Impurity concentration measurement>
Examples of the impurity concentration measuring method include glow discharge mass spectrometry (GD-MS) and solid-state emission spectroscopic analysis. The impurity concentration of Examples 1 to 3 and Comparative Examples 4 and 5 was measured by GD-MS, and the impurity concentration of Comparative Examples 1 to 3 was measured by solid-state emission spectroscopic analysis.
The total content (% by mass) of the main elements Fe, Si and Cu, and the total value thereof, as well as the total of 10 other trace impurities (Ti, Mn, Mg, B, Cr, Ga, Ni, V, Zn, Zr). Table 2 shows the results of measurement for the content of.

Figure 2022025955000003
Figure 2022025955000003

<平均結晶粒径測定>
実施例1~3では、コロイダルシリカを用いたバフ研磨によって、長さ方向(圧延方向)及び厚さ方向に平行な断面を鏡面仕上げした。その後、当該断面を電子線後方散乱回折(Electron backscatter diffraction:EBSD)法による結晶方位解析を行った。EBSD測定時のステップサイズは0.2μmとし、隣り合うピクセル間の方位差が5゜以上になる境界を結晶粒界とした。
<Measurement of average crystal grain size>
In Examples 1 to 3, a cross section parallel to the length direction (rolling direction) and the thickness direction was mirror-finished by buffing with colloidal silica. Then, the cross section was subjected to crystal orientation analysis by an electron backscatter diffraction (EBSD) method. The step size at the time of EBSD measurement was 0.2 μm, and the boundary where the directional difference between adjacent pixels was 5 ° or more was defined as the grain boundary.

一例として、図1に、実施例1の長さ方向(圧延方向)及び厚さ方向に平行な断面におけるEBSD法によるIPFマップを示す。なお、図1(および後述する図2)については、結晶面の違いをより詳細に理解できるように、色により結晶面の違いを識別できる原図を物件提出書として本願と同時に提出している。必要に応じてこの原図も参照されたい。
図1において、アルミニウム部材表面の円柱状治具を押し当てた領域(長さ方向において約4mm)に、微細結晶粒領域1が観察された。なお、微細結晶粒領域1は結晶粒が非常に細かく結晶粒界(黒線)が非常に多いために、拡大していない図1のIPFマップにおいては、ほぼ黒に見えている。またアルミニウム部材表面の円柱状治具を押し当てていない領域および微細結晶粒領域1から離れた領域等に粗大結晶粒領域3が観察され、微細結晶粒領域1と粗大結晶粒領域3との間に、中間結晶粒領域2が観察された。なお、実施例1において、アルミニウム部材表面の円柱状治具を押し当てた領域全面(約4mm×10mm)に微細結晶粒領域が形成されていた。
実施例2および3においても同様の構造であった。
As an example, FIG. 1 shows an IPF map by the EBSD method in a cross section parallel to the length direction (rolling direction) and the thickness direction of Example 1. Regarding FIG. 1 (and FIG. 2 described later), an original drawing capable of identifying the difference in crystal plane by color is submitted at the same time as the present application so that the difference in crystal plane can be understood in more detail. Please refer to this original drawing if necessary.
In FIG. 1, a fine crystal grain region 1 was observed in a region (about 4 mm in the length direction) on which a columnar jig was pressed on the surface of the aluminum member. Since the fine crystal grain region 1 has very fine crystal grains and a large number of grain boundaries (black lines), it looks almost black in the IPF map of FIG. 1, which is not enlarged. Further, a coarse crystal grain region 3 was observed in a region on the surface of the aluminum member where the columnar jig was not pressed and a region away from the fine crystal grain region 1, and between the fine crystal grain region 1 and the coarse crystal grain region 3. In addition, the intermediate grain region 2 was observed. In Example 1, a fine crystal grain region was formed on the entire surface (about 4 mm × 10 mm) of the region (about 4 mm × 10 mm) on which the columnar jig on the surface of the aluminum member was pressed.
The same structure was used in Examples 2 and 3.

図2は、図1の微細結晶粒領域1の拡大図(100μm×100μm)を示す。図2の平均結晶粒径を算出し、それを実施例1の微細結晶粒領域の平均結晶粒径とした。中間結晶粒領域については、図1内に含まれる中間結晶粒領域2の全てを抽出し、抽出した中間結晶粒領域内の平均結晶粒径を算出した。粗大結晶粒領域については、長さ方向(圧延方向)及び厚さ方向に平行な断面において、長さ方向に約15mmの長さの直線を引き、直線と交差する結晶粒界の数を計数した。直線の長さを結晶粒界の数で除し結晶粒径とした。結晶粒界の計数は当該断面の任意の2か所以上で行い、得られた結晶粒径の平均値を、粗大結晶粒領域の平均結晶粒径とした。
実施例2および3についても図1と同様に平均結晶粒径を測定した。
FIG. 2 shows an enlarged view (100 μm × 100 μm) of the fine crystal grain region 1 of FIG. The average crystal grain size of FIG. 2 was calculated and used as the average crystal grain size of the fine crystal grain region of Example 1. As for the intermediate crystal grain region, all of the intermediate crystal grain region 2 contained in FIG. 1 was extracted, and the average crystal grain size in the extracted intermediate crystal grain region was calculated. For the coarse grain region, a straight line with a length of about 15 mm was drawn in the length direction in a cross section parallel to the length direction (rolling direction) and the thickness direction, and the number of grain boundaries intersecting the straight line was counted. .. The length of the straight line was divided by the number of grain boundaries to obtain the crystal grain size. The crystal grain boundaries were counted at any two or more points in the cross section, and the average value of the obtained crystal grain sizes was taken as the average crystal grain size of the coarse crystal grain region.
For Examples 2 and 3, the average crystal grain size was measured in the same manner as in FIG.

比較例1~5では、圧延方向及び板厚方向に平行な断面を鏡面仕上げして、エッチングにてミクロ組織を現出させた。その後、圧延方向に約15mmの長さの直線を引き、直線と交差する結晶粒界の数を計数した。直線の長さを結晶粒界の数で除し結晶粒径とした。結晶粒界の計数は観察面の任意の2か所以上で行い、得られた結晶粒径の平均値を平均結晶粒径とした。 In Comparative Examples 1 to 5, the cross sections parallel to the rolling direction and the plate thickness direction were mirror-finished, and the microstructure was exposed by etching. Then, a straight line having a length of about 15 mm was drawn in the rolling direction, and the number of grain boundaries intersecting the straight line was counted. The length of the straight line was divided by the number of grain boundaries to obtain the crystal grain size. The crystal grain boundaries were counted at any two or more points on the observation surface, and the average value of the obtained crystal grain sizes was taken as the average crystal grain size.

<硬度測定>
得られたアルミニウム部材の少なくとも一部が十分な強度を有するかの指標として、マイクロビッカース硬度計を用いてビッカース硬度(HV)を測定した。
ビッカース硬度は、JIS Z2244:2009「ビッカース硬さ試験-試験方法」に従って測定される値である。ビッカース硬度の測定には、アルミニウム部材に正四角錐のダイヤモンド圧子を試験片の表面に押し込み、その試験力を解除した後、表面に残ったくぼみの対角線長さから算出する。
試験荷重は任意で調整すればよい。例えば、JIS Z2244:2009に記載のように、試験片厚みが圧痕の対角線長さの1.5倍以上となるように、試験片厚みと試験荷重を選定すればよい。試験荷重の好適な例としては、アルミニウム部材の厚みが300μm以上の場合は0.05kgf、それ以下の場合は0.005~0.01kgfが挙げられる。また、試験荷重は、試験片の硬度により圧痕サイズが適切になるよう調整するとよい。
<Hardness measurement>
The Vickers hardness (HV) was measured using a Micro Vickers hardness tester as an index of whether at least a part of the obtained aluminum member had sufficient strength.
The Vickers hardness is a value measured according to JIS Z2244: 2009 "Vickers hardness test-test method". To measure the Vickers hardness, a diamond indenter with a regular quadrangular pyramid is pushed into the surface of the test piece, the test force is released, and then the diagonal length of the dent remaining on the surface is calculated.
The test load may be adjusted arbitrarily. For example, as described in JIS Z2244: 2009, the test piece thickness and the test load may be selected so that the test piece thickness is 1.5 times or more the diagonal length of the indentation. Preferable examples of the test load include 0.05 kgf when the thickness of the aluminum member is 300 μm or more, and 0.005 to 0.01 kgf when the thickness is less than that. Further, the test load may be adjusted so that the indentation size becomes appropriate depending on the hardness of the test piece.

実施例1~3では、アルミニウム部材表面の円柱状治具を押し当てた領域(約4mm×10mm)について任意の4か所以上で硬度測定を行い、比較例1~3では特に測定箇所の指定はなく任意の4か所以上で硬度測定を行い、各測定位置の平均値を算出した。比較例4および5では、硬度を測定しなかった。
硬度が35(HV)以上であれば、十分な強度を有すると判断した。
In Examples 1 to 3, the hardness was measured at any four or more points in the region (about 4 mm × 10 mm) on which the columnar jig was pressed on the surface of the aluminum member, and in Comparative Examples 1 to 3, the measurement points were particularly designated. Hardness was measured at any 4 or more points, and the average value of each measurement position was calculated. In Comparative Examples 4 and 5, the hardness was not measured.
When the hardness was 35 (HV) or more, it was judged to have sufficient strength.

実施例1~3および比較例1~3の平均結晶粒径および硬度の測定結果を表3に示す。なお、実施例1~3では、「平均結晶粒径」の欄には微細結晶粒領域の平均結晶粒径を記載している。また、表3に記載していないが、実施例1~3の粗大結晶粒領域の平均結晶粒径は890μmであり、実施例1の中間結晶粒領域の平均結晶粒径は110μmであった。また、比較例1~5には結晶粒径が20μm未満の微細結晶粒領域は存在しなかった。 Table 3 shows the measurement results of the average crystal grain size and hardness of Examples 1 to 3 and Comparative Examples 1 to 3. In Examples 1 to 3, the average crystal grain size of the fine crystal grain region is described in the column of "average crystal grain size". Although not shown in Table 3, the average crystal grain size of the coarse crystal grain regions of Examples 1 to 3 was 890 μm, and the average crystal grain size of the intermediate crystal grain regions of Example 1 was 110 μm. Further, in Comparative Examples 1 to 5, there was no fine crystal grain region having a crystal grain size of less than 20 μm.

Figure 2022025955000004
Figure 2022025955000004

表3の結果より、次のように考察できる。表3の実施例1~3は、いずれも本発明の実施形態で規定する要件の全てを満足する例であり、純度が5N以上であるにも関わらず、十分な強度を有していた。特に実施例1~2は、実施例3とは異なり、円柱状治具の移動速度が80mm/分以下と好ましい範囲を満たしたため、微細結晶粒領域の平均結晶粒径が5μm以下となり、硬度が40(HV)以上とより優れた結果を示した。さらに実施例1では、実施例2および3とは異なり、円柱状治具の移動速度が20mm/分以下とより好ましい範囲を満たしたため、微細結晶粒領域の平均結晶粒径が3μm以下となり、硬度が60(HV)以上とさらに優れた結果を示した。
一方、比較例1のように純度を4Nまで低下させれば、十分な強度を示すものの、純度を5N以上とした比較例2および3では、結晶粒径が20μm未満の微細結晶粒領域を含まなかったため、強度が不十分であった。
From the results in Table 3, it can be considered as follows. Examples 1 to 3 in Table 3 are examples that satisfy all of the requirements specified in the embodiments of the present invention, and have sufficient strength even though the purity is 5N or more. In particular, in Examples 1 and 2, unlike Example 3, the moving speed of the columnar jig was 80 mm / min or less, which was a preferable range. Therefore, the average crystal grain size of the fine crystal grain region was 5 μm or less, and the hardness was high. It showed a better result of 40 (HV) or more. Further, in Example 1, unlike Examples 2 and 3, the moving speed of the columnar jig was 20 mm / min or less, which was more preferable, so that the average crystal grain size of the fine crystal grain region was 3 μm or less, and the hardness was increased. Showed an even better result of 60 (HV) or more.
On the other hand, if the purity is lowered to 4N as in Comparative Example 1, sufficient strength is exhibited, but in Comparative Examples 2 and 3 having a purity of 5N or more, a fine crystal grain region having a crystal grain size of less than 20 μm is included. Because it was not, the strength was insufficient.

<極低温伝導特性評価(残留抵抗比評価)>
四端子法にて電気抵抗測定を行った。試料を液体ヘリウムに浸漬した状態と23℃に制御された水に浸漬した状態のそれぞれで電気抵抗を測定し、23℃で測定した電気抵抗に対する液体ヘリウム浸漬状態での電気抵抗の比(残留抵抗比:RRR)を得た。残留抵抗比が1000以上を極低温伝導特性が優れていると判断した。なお、実施例1においては、アルミニウム部材表面の円柱状治具を押し当てた領域(約4mm×10mm)が端子間に含まれるように電気抵抗測定を行っている。
<Cryogenic conduction characteristic evaluation (residual resistivity evaluation)>
Electrical resistance was measured by the four-terminal method. The electrical resistance was measured in the state where the sample was immersed in liquid helium and in the state where it was immersed in water controlled at 23 ° C, and the ratio of the electrical resistance in the liquid helium immersion state (residual resistance) to the electrical resistance measured at 23 ° C. Ratio: RRR) was obtained. When the residual resistance ratio was 1000 or more, it was judged that the cryogenic conduction characteristics were excellent. In Example 1, the electric resistance is measured so that the region (about 4 mm × 10 mm) on which the columnar jig on the surface of the aluminum member is pressed is included between the terminals.

残留抵抗比の測定結果を表4に示す。なお、実施例1では、「平均結晶粒径」の欄に、微細結晶粒領域の平均結晶粒径を記載している。 Table 4 shows the measurement results of the residual resistance ratio. In Example 1, the average crystal grain size of the fine crystal grain region is described in the column of "average crystal grain size".

Figure 2022025955000005
Figure 2022025955000005

表4の結果より、次のように考察できる。実施例1は、本発明の実施形態で規定する要件の全てを満足する例であり、純度が5N以上であるため、極低温伝導特性が優れていた。
一方、比較例4では、純度が4Nであったため、極低温伝導特性が不十分であった。
なお、実施例1と比較例5は純度がどちらも5N以上であるが、実施例1では結晶粒界の数が多く、それに応じて極低温での抵抗値が高くなったため、比較例5よりも残留抵抗比が若干低くなったと考えられる。実施例2および3については、残留抵抗比を測定していないが、実施例1よりも微細結晶粒領域の平均結晶粒径が大きく、結晶粒界の数が少ないと考えられるため、実施例1よりも残留抵抗比が高いものと予想される。
From the results in Table 4, it can be considered as follows. Example 1 is an example that satisfies all of the requirements specified in the embodiment of the present invention, and since the purity is 5 N or more, the cryogenic conduction characteristics are excellent.
On the other hand, in Comparative Example 4, since the purity was 4N, the cryogenic conduction characteristics were insufficient.
Both Example 1 and Comparative Example 5 have a purity of 5 N or more, but in Example 1, the number of crystal grain boundaries was large, and the resistance value at an extremely low temperature was correspondingly increased. Therefore, compared to Comparative Example 5. However, it is considered that the residual resistance ratio became slightly lower. Although the residual resistivity ratio was not measured for Examples 2 and 3, it is considered that the average crystal grain size of the fine crystal grain region is larger and the number of crystal grain boundaries is smaller than that of Example 1. Therefore, Example 1 It is expected that the residual resistivity ratio will be higher than that.

本発明の実施形態に係るアルミニウム部材は、5N以上の純度を有し、且つ少なくとも一部において十分な強度を有するため、例えば極低温用電気・熱伝達材として好適である。 The aluminum member according to the embodiment of the present invention has a purity of 5N or more and has sufficient strength at least in a part thereof, and is therefore suitable as, for example, an electric / heat transfer material for cryogenic temperature.

1 微細結晶粒領域
2 中間結晶粒領域
3 粗大結晶粒領域
1 Fine grain region 2 Intermediate grain region 3 Coarse grain region

Claims (7)

結晶粒径が20μm未満である微細結晶粒領域を含み、
純度が99.999質量%以上であるアルミニウム部材。
Includes fine grain regions with grain sizes less than 20 μm
An aluminum member having a purity of 99.999% by mass or more.
結晶粒径が20μm以上150μm未満の中間結晶粒領域と、
結晶粒径が150μm以上の粗大結晶粒領域と、をさらに含む請求項1に記載のアルミニウム部材。
Intermediate crystal grain regions with grain sizes of 20 μm or more and less than 150 μm,
The aluminum member according to claim 1, further comprising a coarse crystal grain region having a crystal grain size of 150 μm or more.
前記微細結晶粒領域の平均結晶粒径が5μm以下である、請求項1または2に記載のアルミニウム部材。 The aluminum member according to claim 1 or 2, wherein the average crystal grain size of the fine crystal grain region is 5 μm or less. 少なくとも1つの表面において、前記微細結晶粒領域が0.01mm以上の面積にわたって連続して存在している、請求項1~3のいずれか一項に記載のアルミニウム部材。 The aluminum member according to any one of claims 1 to 3, wherein the fine crystal grain regions are continuously present over an area of 0.01 mm 2 or more on at least one surface. 請求項1~4のいずれか一項に記載のアルミニウム部材を含む極低温用電気・熱伝達材。 An ultra-low temperature electrical / heat transfer material comprising the aluminum member according to any one of claims 1 to 4. 純度が99.999質量%以上のアルミニウム板表面上で、回転する円柱状治具を押し当てながら移動させる摩擦攪拌工程を含み、前記円柱状治具の移動速度が100mm/分以下である、請求項1~4のいずれか一項に記載のアルミニウム部材を製造する方法。 A claim that includes a friction stir step of moving a rotating columnar jig while pressing it on the surface of an aluminum plate having a purity of 99.999% by mass or more, and the moving speed of the columnar jig is 100 mm / min or less. Item 8. The method for manufacturing an aluminum member according to any one of Items 1 to 4. 前記摩擦攪拌工程において、前記円柱状治具の回転軸を、前記アルミニウム板表面の垂線から、前記円柱状治具の移動方向とは反対方向に3°以上傾けて、前記円柱状治具を移動させる、請求項6に記載の方法。 In the friction stir welding step, the rotation axis of the columnar jig is tilted by 3 ° or more in a direction opposite to the movement direction of the columnar jig from the perpendicular line on the surface of the aluminum plate to move the columnar jig. The method according to claim 6.
JP2020129167A 2020-07-30 2020-07-30 Aluminum member and manufacturing method thereof Pending JP2022025955A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020129167A JP2022025955A (en) 2020-07-30 2020-07-30 Aluminum member and manufacturing method thereof
TW110127733A TW202212586A (en) 2020-07-30 2021-07-28 Aluminum member and manufacturing method thereof
PCT/JP2021/028188 WO2022025213A1 (en) 2020-07-30 2021-07-29 Aluminum member and manufacturing method thereof
CN202180059555.1A CN116134168A (en) 2020-07-30 2021-07-29 Aluminum member and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020129167A JP2022025955A (en) 2020-07-30 2020-07-30 Aluminum member and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2022025955A true JP2022025955A (en) 2022-02-10

Family

ID=80036371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020129167A Pending JP2022025955A (en) 2020-07-30 2020-07-30 Aluminum member and manufacturing method thereof

Country Status (4)

Country Link
JP (1) JP2022025955A (en)
CN (1) CN116134168A (en)
TW (1) TW202212586A (en)
WO (1) WO2022025213A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5573861A (en) * 1993-07-06 1996-11-12 Sumitomo Chemical Co., Ltd. High purity aluminum conductor used at ultra low temperature
JP4212641B1 (en) * 2008-08-05 2009-01-21 田中電子工業株式会社 Aluminum ribbon for ultrasonic bonding
JP2011084800A (en) * 2009-10-19 2011-04-28 Sumitomo Chemical Co Ltd High purity aluminum rolled sheet and method for producing the rolled sheet

Also Published As

Publication number Publication date
CN116134168A (en) 2023-05-16
WO2022025213A1 (en) 2022-02-03
TW202212586A (en) 2022-04-01

Similar Documents

Publication Publication Date Title
Li et al. Microstructure evolution and properties of a quaternary Cu–Ni–Co–Si alloy with high strength and conductivity
Fukuda et al. Processing of a low-carbon steel by equal-channel angular pressing
Zhao et al. Double-peak age strengthening of cold-worked 2024 aluminum alloy
Alizadeh et al. Effect of SiC particles on the microstructure evolution and mechanical properties of aluminum during ARB process
Kamikawa et al. Microstructure and texture through thickness of ultralow carbon IF steel sheet severely deformed by accumulative roll-bonding
Valiev et al. The art and science of tailoring materials by nanostructuring for advanced properties using SPD techniques
Durlu et al. Effect of swaging on microstructure and tensile properties of W–Ni–Fe alloys
KR101719889B1 (en) Copper-alloy wire rod and manufacturing method therefor
KR102590058B1 (en) Copper alloy sheet and its manufacturing method
Nguyen et al. Effect of Sn component on properties and microstructure Cu-Ni-Sn alloys
Yu et al. Effect of swaging on microstructure and mechanical properties of liquid-phase sintered 93W-4.9 (Ni, Co)-2.1 Fe alloy
TWI582249B (en) Copper alloy sheet and method of manufacturing the same
Khodabakhshi et al. Accumulative fold-forging (AFF) as a novel severe plastic deformation process to fabricate a high strength ultra-fine grained layered aluminum alloy structure
Kadiyan et al. Effects of severe plastic deformation by ECAP on the microstructure and mechanical properties of a commercial copper alloy
Valiev Producing bulk nanostructured metals and alloys by severe plastic deformation (SPD)
Shangina et al. Structure and properties of Cu alloys alloying with Cr and Hf after equal channel angular pressing
Sampath et al. Investigation of microstructure and mechanical properties of the Cu–3% Ti alloy processed by multiaxial cryo-forging
Rodak et al. Microstructure and properties of CuCr0. 6 and CuFe2 alloys after rolling with the cyclic movement of rolls
JP2007516352A (en) Method for forming a sputtering article by multi-directional deformation
WO2022025213A1 (en) Aluminum member and manufacturing method thereof
EP2189548B1 (en) Stress-buffering material
US8876990B2 (en) Thermo-mechanical process to enhance the quality of grain boundary networks
Choi Aging behavior and precipitate analysis of copper-rich Cu–Fe–Mn–P alloy
Hajizadeh et al. Microstructure and mechanical properties of 1050 aluminum after the combined processes of constrained groove pressing and cold rolling
Kim et al. Formation of textures and microstructures in asymmetrically cold rolled and subsequently annealed aluminum alloy 1100 sheets

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240829