JP2022025737A - Method for manufacturing toner - Google Patents

Method for manufacturing toner Download PDF

Info

Publication number
JP2022025737A
JP2022025737A JP2020128788A JP2020128788A JP2022025737A JP 2022025737 A JP2022025737 A JP 2022025737A JP 2020128788 A JP2020128788 A JP 2020128788A JP 2020128788 A JP2020128788 A JP 2020128788A JP 2022025737 A JP2022025737 A JP 2022025737A
Authority
JP
Japan
Prior art keywords
powder
rotor
pipe
pulverization
coarsely
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020128788A
Other languages
Japanese (ja)
Other versions
JP7476022B2 (en
Inventor
裕樹 渡辺
Hiroki Watanabe
陽介 岩崎
Yosuke Iwasaki
大輔 山下
Daisuke Yamashita
黎 土川
Rei Tsuchikawa
竜次 岡村
Tatsuji Okamura
順一 田村
Junichi Tamura
正治 三浦
Masaharu Miura
智也 大浦
Tomoya Oura
昌弘 小林
Masahiro Kobayashi
祐一 溝尾
Yuichi Mizoo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2020128788A priority Critical patent/JP7476022B2/en
Publication of JP2022025737A publication Critical patent/JP2022025737A/en
Application granted granted Critical
Publication of JP7476022B2 publication Critical patent/JP7476022B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

To provide a method for manufacturing a toner with a smaller particle diameter, and a method for manufacturing a toner that prevents fusion in a device.SOLUTION: A method for manufacturing toner has the steps of: fusing and kneading a mixture containing a binder resin and a colorant; cooling the obtained kneaded material; roughly grinding the cooled material; and pulverizing the roughly ground material with pulverization means. The pulverization means has a powder supply port A101, a stator 104 that has a plurality of projections and recesses on an inner peripheral surface, a rotor 103 that is attached to a center rotation shaft and has a plurality of projections and recesses on an outer peripheral surface, and a powder discharge port 106. The stator includes the rotor, and the surface of the stator and the surface of the rotor are opposite to each other with a predetermined gap therebetween to form a processing part for performing pulverization. In the pulverization step, an air current including the roughly ground material is taken into the pulverization means from the powder supply port of the pulverization means, and pulverization is performed by the rotating rotor. The introduction of the roughly ground material is performed while changing an angle of introducing the roughly ground material to the air current flowing through piping from a powder introduction port.SELECTED DRAWING: Figure 1

Description

本発明は、電子写真、静電荷像を顕像化するための画像形成方法及びトナージェットに使用されるトナーの製造方法に関する。 The present invention relates to an electrograph, an image forming method for visualizing an electrostatic charge image, and a method for producing toner used in a toner jet.

電子写真、静電荷像を顕像化するための画像形成方法では、静電荷像を現像するためのトナーが使用される。トナーの製造法としては粉砕法および重合法に大別され、簡便な製造方法としては粉砕法が挙げられる。粉砕法の一般的な製造方法としては、結着樹脂と着色剤及び必要に応じて荷電制御剤、離型剤、流動性付与剤、磁性材料を加えて混合し、溶融混練し、冷却固化した後、混練物を粉砕手段により微細化する。その後、必要に応じて所望の粒度分布に分級する工程や流動化剤などを添加する工程を経て、画像形成に供するトナーとしている。また、二成分現像方法に用いるトナーの場合には、各種磁性キャリアと上記トナーを混合した後、画像形成に供する。
粉砕手段としては各種粉砕装置が用いられるが、特に近年、CO2排出量削減への対応から、装置の省エネルギー化が求められており、電力消費の少ない機械式粉砕機が用いられることが多い。例えば、被粉砕物の投入口および排出口を有するケーシング内に、中心回転軸に支持され、外周面に複数の凸部と凹部とを有する回転子と、この回転子の外側に、この回転子の外周面と所定の間隙を設けて配置され、その内周面に複数の凸部と凹部とを有する固定子とを備え、投入口から排出口を流れる気流にのって回転子と固定子とが対向する処理部を被粉砕物が通過する際に、回転子もしくは固定子の凸部もしくは凹部に衝突することで被粉砕物を粉砕する機械式粉砕機が知られている。
近年、高画質化の観点でトナーの小粒径化が求められている。トナーの小粒径化のためには、上記のような機械式粉砕機においては、回転子を高速回転させることや回転子と固定子の間隔を狭めることが有効になる。しかしながら、回転子を高速回転させた場合、粉砕時の摩擦熱等によって被粉砕物の温度や粉砕室内の空気等の温度が上昇し、機内融着が発生しやすくなる。また、回転子と固定子の間隔を狭めた場合も機内融着が発生しやすくなる。
より小粒径のトナー粒子の製造のため、固定子の溝の形状を工夫した機械式粉砕機が開示されている(特許文献1)。
In an image forming method for visualizing an electrophotographic or electrostatic charge image, a toner for developing the electrostatic charge image is used. The method for producing toner is roughly classified into a pulverization method and a polymerization method, and a simple production method includes a pulverization method. As a general manufacturing method of the pulverization method, a binder resin, a colorant, and if necessary, a charge control agent, a mold release agent, a fluidity imparting agent, and a magnetic material are added and mixed, melt-kneaded, and cooled and solidified. After that, the kneaded product is pulverized by a pulverizing means. After that, the toner is used for image formation through a step of classifying the toner into a desired particle size distribution and a step of adding a fluidizing agent as needed. Further, in the case of the toner used in the two-component developing method, various magnetic carriers and the above toner are mixed and then used for image formation.
Various crushing devices are used as the crushing means, but in recent years, in order to reduce CO 2 emissions, energy saving of the devices is required, and mechanical crushers with low power consumption are often used. For example, a rotor supported by a central rotation shaft and having a plurality of protrusions and recesses on an outer peripheral surface in a casing having an input port and a discharge port for an object to be crushed, and a rotor outside the rotor. A rotor and a stator are provided with a predetermined gap between the outer peripheral surface of the rotor and a stator having a plurality of convex portions and concave portions on the inner peripheral surface thereof, and the rotor and the stator are carried by the airflow flowing from the inlet to the outlet. There is known a mechanical crusher that crushes the object to be crushed by colliding with the convex portion or the concave portion of the rotor or the stator when the object to be crushed passes through the processing portion facing the object.
In recent years, there has been a demand for smaller toner particles from the viewpoint of improving image quality. In order to reduce the particle size of toner, it is effective to rotate the rotor at high speed and to narrow the distance between the rotor and the stator in the mechanical crusher as described above. However, when the rotor is rotated at high speed, the temperature of the object to be crushed and the temperature of the air in the crushing chamber rise due to frictional heat during crushing, and in-machine fusion is likely to occur. In-flight fusion is also likely to occur when the distance between the rotor and the stator is narrowed.
A mechanical crusher in which the shape of the groove of the stator is devised for the production of toner particles having a smaller particle size is disclosed (Patent Document 1).

特開2005-21768号公報Japanese Unexamined Patent Publication No. 2005-21768

特許文献1に記載の機械式粉砕機は、固定子の溝の形状を工夫することにより、より小粒径のトナー粒子を製造することができる。
しかしながら、特許文献1に記載の機械式粉砕機は、より小粒径のトナー粒子を製造する際の機内融着の抑制という観点では改善の余地があることがわかった。
トナー粒子をより小粒径に粉砕し、微粉砕品を得るために回転子の回転数を増大させた場合や、生産性向上のための手段として、単位時間当たりの被粉砕物の投入量を増やした場合に、機内の温度及び被粉砕物の温度上昇がより顕著となるため、機内融着が発生しやすくなる。
また、機内の温度及び被粉砕物の温度上昇が顕著になると、被粉砕物の表面が部分的に溶け、被粉砕物同士が結合してしまい、微粉砕品の粒径が安定しない場合がある。
本発明は上述した課題を解決する為になされるものであり、より小粒径のトナー粒子を製造する際に、機内融着を抑制することができ、かつ、トナーの生産性の向上を達成するトナー粒子の製造方法を提供するものである。
The mechanical crusher described in Patent Document 1 can produce toner particles having a smaller particle size by devising the shape of the groove of the stator.
However, it has been found that the mechanical crusher described in Patent Document 1 has room for improvement in terms of suppressing in-machine fusion when producing toner particles having a smaller particle size.
When the number of revolutions of the rotor is increased in order to pulverize the toner particles to a smaller particle size and obtain a finely pulverized product, or as a means for improving productivity, the input amount of the object to be pulverized per unit time is set. When the number is increased, the temperature inside the machine and the temperature of the object to be crushed become more remarkable, so that in-machine fusion is likely to occur.
Further, if the temperature inside the machine and the temperature of the object to be crushed become remarkable, the surface of the object to be crushed may be partially melted and the objects to be crushed may be bonded to each other, and the particle size of the pulverized product may not be stable. ..
The present invention has been made to solve the above-mentioned problems, and when producing toner particles having a smaller particle size, it is possible to suppress in-machine fusion and achieve improvement in toner productivity. It provides a method for producing toner particles.

本発明は、結着樹脂および着色剤を含有する混合物を溶融混練する溶融混練工程、
得られた混練物を冷却する冷却工程、
冷却物を粗粉砕する粗粉砕工程、および粗粉砕物を微粉砕手段によって微粉砕する微粉砕工程を有するトナーの製造方法であって、
該粉砕手段は、該粗粉砕物を粉砕手段内に供給するための粉体供給口Aと、
内周面に複数の凸部と凹部とを有する固定子と、中心回転軸に取り付けられ、外周面に複数の凸部と凹部とを有する回転子と、粉砕された粉体を排出するための粉体排出口と、を有し、
該固定子は該回転子を内包しており、該固定子の表面と該回転子の表面とが所定の間隙を有して対向して、微粉砕を行う処理部が形成されており、
該粉体供給口Aには、内部を気流が流れる配管Aが接続されており、
該配管Aにおける該粉体供給口Aより上流側には、配管A内に該粗粉砕物を投入するための粉体投入口Bが設けられており、
該微粉砕工程においては、該配管Aを流れる気流に、該粉体投入口Bから該粗粉砕物が投入され、形成された粗粉砕物を含む気流を、該微粉砕手段の該粉体供給口Aから微粉砕手段内に取り込み、気流を維持したまま該処理部に該粗粉砕物を供給して、回転する回転子により微粉砕が行われるものであり、
該粉体投入口Bから該配管Aを流れる気流に該粗粉砕物を投入する角度を変化させながら該粗粉砕物の投入が行われることを特徴とするトナーの製造方法に関する。
The present invention is a melt-kneading step of melt-kneading a mixture containing a binder resin and a colorant.
Cooling process to cool the resulting kneaded product,
A method for producing a toner, which comprises a coarse pulverization step of coarsely pulverizing a cooled product and a fine pulverization step of pulverizing the coarsely pulverized material by a pulverizing means.
The crushing means includes a powder supply port A for supplying the coarsely crushed material into the crushing means, and
A stator having a plurality of protrusions and recesses on the inner peripheral surface, a rotor attached to the central rotation shaft and having a plurality of protrusions and recesses on the outer peripheral surface, and for discharging crushed powder. With a powder outlet,
The stator contains the rotor, and the surface of the stator and the surface of the rotor face each other with a predetermined gap to form a processing portion for fine pulverization.
A pipe A through which an air flow flows is connected to the powder supply port A.
On the upstream side of the powder supply port A in the pipe A, a powder input port B for charging the coarsely pulverized material into the pipe A is provided.
In the fine pulverization step, the coarse pulverized material is charged into the air flow flowing through the pipe A from the powder charging port B, and the air flow containing the formed coarse pulverized material is supplied to the powder of the fine pulverization means. The coarsely pulverized material is taken into the pulverizing means from the mouth A, the coarsely pulverized material is supplied to the processing portion while maintaining the air flow, and the pulverization is performed by a rotating rotor.
The present invention relates to a method for producing toner, which comprises charging the coarsely pulverized material from the powder charging port B into an air flow flowing through the pipe A while changing the angle at which the coarsely crushed material is charged.

本発明によれば、より小粒径のトナー粒子を製造する際に、機内融着を抑制することができ、かつ、トナーの生産性の向上を達成するトナー粒子の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for producing toner particles, which can suppress in-machine fusion when producing toner particles having a smaller particle size and achieve improvement in toner productivity. can.

本発明に用いられる機械式粉砕機の概略図である。It is a schematic diagram of the mechanical crusher used in this invention. 本発明に用いられる機械式粉砕機の粉体投入口近傍の概略図である。It is the schematic of the vicinity of the powder input port of the mechanical crusher used in this invention.

本発明において、数値範囲を表す「○○以上××以下」や「○○~××」の記載は、特に断りのない限り、端点である下限及び上限を含む数値範囲を意味する。 In the present invention, the description of "○○ or more and XX or less" and "○○ to XX" indicating a numerical range means a numerical range including a lower limit and an upper limit which are end points, unless otherwise specified.

本発明のトナー粒子の製造方法は、
結着樹脂および着色剤を含有する混合物を溶融混練する溶融混練工程、
得られた混練物を冷却する冷却工程、
冷却物を粗粉砕する粗粉砕工程、および
粗粉砕物を微粉砕手段によって微粉砕する微粉砕工程
を有するトナーの製造方法であって、
該粉砕手段は、該粗粉砕物を粉砕手段内に供給するための粉体供給口Aと、
内周面に複数の凸部と凹部とを有する固定子と、
中心回転軸に取り付けられ、外周面に複数の凸部と凹部とを有する回転子と、
粉砕された粉体を排出するための粉体排出口と、
を有し、
該固定子は該回転子を内包しており、該固定子の表面と該回転子の表面とが所定の間隙を有して対向して、微粉砕を行う処理部が形成されており、
該粉体供給口Aには、内部を気流が流れる配管Aが接続されており、
該配管Aにおける該粉体供給口Aより上流側には、配管A内に該粗粉砕物を投入するための粉体投入口Bが設けられており、
該微粉砕工程においては、該配管Aを流れる気流に、該粉体投入口Bから該粗粉砕物が投入され、形成された粗粉砕物を含む気流を、該微粉砕手段の該粉体供給口Aから微粉砕手段内に取り込み、気流を維持したまま該処理部に該粗粉砕物を供給して、回転する回転子により微粉砕が行われるものであり、
該粉体投入口Bから該配管Aを流れる気流に該粗粉砕物を投入する角度を変化させながら該粗粉砕物の投入が行われることを特徴とする。
The method for producing toner particles of the present invention is
A melt-kneading step of melt-kneading a mixture containing a binder resin and a colorant,
Cooling process to cool the resulting kneaded product,
A method for producing a toner, which comprises a coarse pulverization step of coarsely pulverizing a cooled product and a fine pulverization step of pulverizing the coarsely pulverized material by a pulverizing means.
The crushing means includes a powder supply port A for supplying the coarsely crushed material into the crushing means, and
A stator having a plurality of protrusions and recesses on the inner peripheral surface,
A rotor attached to the central rotation axis and having a plurality of protrusions and recesses on the outer peripheral surface,
A powder outlet for discharging crushed powder and
Have,
The stator contains the rotor, and the surface of the stator and the surface of the rotor face each other with a predetermined gap to form a processing portion for fine pulverization.
A pipe A through which an air flow flows is connected to the powder supply port A.
On the upstream side of the powder supply port A in the pipe A, a powder input port B for charging the coarsely pulverized material into the pipe A is provided.
In the fine pulverization step, the coarse pulverized material is charged into the air flow flowing through the pipe A from the powder charging port B, and the air flow containing the formed coarse pulverized material is supplied to the powder of the fine pulverization means. The coarsely pulverized material is taken into the pulverizing means from the mouth A, the coarsely pulverized material is supplied to the processing portion while maintaining the air flow, and the pulverization is performed by a rotating rotor.
It is characterized in that the coarsely crushed material is charged while changing the angle at which the coarsely crushed material is charged into the air flow flowing through the pipe A from the powder charging port B.

本発明者らの検討によれば、上記製造方法により、より小粒径のトナー粒子を製造する際に、機内融着を抑制することができ、かつ、トナーの生産性の向上を達成するトナー粒子の製造方法を提供することができる。 According to the studies by the present inventors, the toner that can suppress in-machine fusion when producing toner particles having a smaller particle size by the above manufacturing method and achieves improvement in toner productivity. A method for producing particles can be provided.

該トナー粒子の製造方法が、従来にない優れた効果を得られる理由は以下のように考えている。 The reason why the method for producing the toner particles can obtain an unprecedented excellent effect is considered as follows.

図1に示した機械式粉砕機の粉体供給口101へ所定量の粗砕物が投入されると、粗砕物は、該粉体供給口に連通した渦巻室1201を通り、回転子103と固定子104との間隙である粉砕処理室(微粉砕を行う処理部)に導入される。そして、中心回転軸107に取り付けられ該粉砕処理室内で高速回転する外周面に複数の凸部と凹部が設けられている回転子103と、内周面に複数の凸部と凹部が設けられている固定子104との間に発生する衝撃によって瞬間的に粉砕される。その後、粉体排出口106を通り、排出される。 When a predetermined amount of coarse crushed material is charged into the powder supply port 101 of the mechanical crusher shown in FIG. 1, the crushed material passes through the spiral chamber 1201 communicating with the powder supply port and is fixed to the rotor 103. It is introduced into a pulverization processing chamber (a processing unit for pulverizing) which is a gap between the child 104 and the child 104. Then, the rotor 103, which is attached to the central rotation shaft 107 and has a plurality of convex portions and concave portions on the outer peripheral surface that rotates at high speed in the crushing processing chamber, and the plurality of convex portions and concave portions are provided on the inner peripheral surface. It is instantaneously crushed by the impact generated between the stator and the stator 104. After that, it is discharged through the powder discharge port 106.

ここで、粉体供給口から投入された被粉砕物は、粉体供給口から粉体排出口に向かう気流により中心回転軸と並行する力と回転子の凸部および凹部との衝突により回転子の外周の法線方向の力を受ける。その結果として被粉砕物は、粉体供給口近傍の回転子と固定子の間隙内を起点とし、粉体排出口近傍を終点とする、回転子の回転方向に向けた一筋の“螺旋軌道”をとって移動しながら粉砕されると考えられる。 Here, the material to be crushed charged from the powder supply port is a rotor due to a force parallel to the central rotation axis due to the airflow from the powder supply port to the powder discharge port and collision with the convex and concave portions of the rotor. Receives a force in the normal direction of the outer circumference of. As a result, the object to be crushed has a straight "spiral trajectory" in the direction of rotation of the rotor, starting from the gap between the rotor and the stator near the powder supply port and ending near the powder discharge port. It is thought that it will be crushed while moving.

上記知見に基づき、図2に示すように、本発明においては、粉体供給口A101には、内部を気流が流れる配管A201が接続され、該配管における該粉体供給口より上流側には、配管内に粗粉砕物を投入するための粉体投入口B202が設けられている。そして、本発明は、該粉体投入口から該配管を流れる気流に該粗粉砕物を投入する角度203を変化させながら該粗粉砕物の投入が行われることにより、より小粒径のトナー粒子を製造する際に、機内融着を抑制することができ、かつ、トナーの生産性の向上を達成するトナー粒子の製造方法を提供することができる。 Based on the above findings, as shown in FIG. 2, in the present invention, the pipe A201 through which the air flow flows is connected to the powder supply port A101, and the pipe A201 is connected to the upstream side of the powder supply port in the pipe. A powder charging port B202 for charging the coarsely pulverized material into the pipe is provided. Then, in the present invention, the coarsely pulverized material is charged while changing the angle 203 for charging the coarsely pulverized material into the airflow flowing through the pipe from the powder charging port, so that the toner particles having a smaller particle size are charged. It is possible to provide a method for producing toner particles, which can suppress in-machine fusion and achieve improvement in toner productivity.

粉体投入口から配管を流れる気流に粗粉砕物を投入する角度を変化させることにより、配管を流れる被粗粉砕物の軌道が変化する。該被粗粉砕物の軌道が変化すると、被粗粉砕物が粉砕処理室に入る際の回転子の回転方向の位置が変化する。これにより、粉体供給口近傍の回転子と固定子の間隙内を起点とし、粉体排出口近傍を終点とする、回転子の回転方向に向けた一筋の螺旋軌道が変化する。すなわち、粉体投入口から配管を流れる気流に粗粉砕物を投入する角度を変化させることにより、粉砕処理室内での被粗粉砕物の軌道を変化させることができる。そのため、被粗粉砕物が粉砕処理室内の固定子と回転子の面の多くの部分を通過し、局所的な通過を少なくすることができ、粉砕機の機内温度及び粗砕物の顕著な温度上昇を抑制させることができる。 By changing the angle at which the coarsely crushed material is charged into the airflow flowing through the pipe from the powder charging port, the trajectory of the coarsely crushed material flowing through the pipe is changed. When the trajectory of the coarsely crushed material changes, the position of the rotor in the rotation direction when the coarsely crushed material enters the crushing processing chamber changes. As a result, the spiral trajectory in the direction of rotation of the rotor changes, starting from the gap between the rotor and the stator in the vicinity of the powder supply port and ending in the vicinity of the powder discharge port. That is, by changing the angle at which the coarsely crushed material is charged into the air flow flowing through the pipe from the powder charging port, the trajectory of the coarsely crushed material in the crushing processing chamber can be changed. Therefore, the coarsely crushed material passes through many parts of the surface of the stator and rotor in the crushing processing chamber, and local passage can be reduced, and the temperature inside the crusher and the temperature of the coarsely crushed material rise significantly. Can be suppressed.

粉体投入口から配管を流れる気流に粗粉砕物を投入する角度を変化させない場合、被粗粉砕物の螺旋軌道が一定のまま変化せずに粉砕さるため、粉砕処理室内での被粗粉砕物の流れが局所的になる。そのため、粗砕物が粉砕されると、粉砕時の摩擦熱により、粉砕機の機内温度及び粗砕物の顕著な温度上昇が起こる場合がある。その結果、温度上昇部を起点にトナーの機内融着が発生する場合や、被粗粉砕物の表面が部分的に溶け、被粗粉砕物どうしが結合してしまい、微粉砕品の粒径が安定しない場合がある。 If the angle at which the coarsely crushed material is charged into the airflow flowing from the powder charging port to the pipe is not changed, the coarsely crushed material is crushed without changing the spiral trajectory of the coarsely crushed material. Flow becomes local. Therefore, when the coarsely crushed material is crushed, the temperature inside the crusher and the temperature of the coarsely crushed material may rise remarkably due to the frictional heat at the time of crushing. As a result, when toner is fused in the machine starting from the temperature rise part, or the surface of the coarsely crushed material is partially melted and the coarsely crushed material is bonded to each other, the particle size of the finely crushed product becomes large. It may not be stable.

本発明において、粉体投入口から配管を流れる気流に該粗粉砕物を投入する角度を、連続的に変化させても良いし、非連続的に変化させても良い。 In the present invention, the angle at which the coarsely pulverized material is charged into the airflow flowing through the pipe from the powder charging port may be continuously changed or discontinuously changed.

本発明において、粉体投入口Bから配管Aを流れる気流に粗粉砕物を投入する角度(図2中の203)が20°以上160°以下(但し、該配管Aの長手方向の角度を0°とする。)であることが好ましい。 In the present invention, the angle at which the coarsely pulverized material is charged into the air flow flowing through the pipe A from the powder charging port B (203 in FIG. 2) is 20 ° or more and 160 ° or less (however, the angle in the longitudinal direction of the pipe A is 0). °.) Is preferable.

該角度を上記範囲に制御することで、被粗砕物が粉砕処理室内の固定子と回転子の面の多くの部分を通過することができる。そのため、より小粒径のトナー粒子を製造する際に、機内融着を抑制することができ、かつ、トナーの生産性の向上を達成するトナー粒子の製造方法を提供することができる。 By controlling the angle within the above range, the roughened object can pass through many parts of the surfaces of the stator and rotor in the pulverization processing chamber. Therefore, when producing toner particles having a smaller particle size, it is possible to provide a method for producing toner particles that can suppress in-machine fusion and achieve improvement in toner productivity.

本発明において、粉体投入口Bから配管Aを流れる気流に粗粉砕物を投入する角度を20°以上変化させながら粗粉砕物の投入が行われることが好ましく、70°以上変化させながら粗粉砕物の投入が行われることがより好ましく、140°以上変化させながら粗粉砕物の投入が行われることが更に好ましい。 In the present invention, it is preferable that the coarsely crushed material is charged while changing the angle at which the coarsely crushed material is charged into the airflow flowing through the pipe A from the powder charging port B by 20 ° or more, and the coarsely pulverized material is charged while changing by 70 ° or more. It is more preferable that the material is charged, and it is more preferable that the coarsely pulverized material is charged while changing the temperature by 140 ° or more.

該角度を上記範囲に制御することで、粗砕物が粉砕処理室内の固定子と回転子の面の多くの部分を通過することができる。そのため、より小粒径のトナー粒子を製造する際に、機内融着を抑制することができ、かつ、トナーの生産性の向上を達成するトナー粒子の製造方法を提供することができる。 By controlling the angle within the above range, the coarse crushed material can pass through many parts of the surface of the stator and rotor in the pulverization processing chamber. Therefore, when producing toner particles having a smaller particle size, it is possible to provide a method for producing toner particles that can suppress in-machine fusion and achieve improvement in toner productivity.

本発明において、粉体投入口と回転子の中心回転軸との距離(図2中の204)が2m以下であることが好ましい。該粉体投入口と該回転子の中心回転軸との距離を上記範囲に制御することで、粗砕物が粉砕処理室内の固定子と回転子の面の多くの部分を通過することができる。そのため、より小粒径のトナー粒子を製造する際に、機内融着を抑制することができ、かつ、トナーの生産性の向上を達成するトナー粒子の製造方法を提供することができる。 In the present invention, the distance between the powder charging port and the central rotation axis of the rotor (204 in FIG. 2) is preferably 2 m or less. By controlling the distance between the powder charging port and the central rotation axis of the rotor within the above range, the coarse material can pass through many parts of the stator and rotor surfaces in the pulverization processing chamber. Therefore, when producing toner particles having a smaller particle size, it is possible to provide a method for producing toner particles that can suppress in-machine fusion and achieve improvement in toner productivity.

本発明において、粗粉砕物の体積平均粒径が65μm以下であることが好ましい。粗粉砕物の体積平均粒径を65μm以下にすることにより、被粉砕物の温度上昇を抑えることができる。そのため、より小粒径のトナー粒子を製造する際に、機内融着を抑制することができ、かつ、トナーの生産性の向上を達成するトナー粒子の製造方法を提供することができる。 In the present invention, the volume average particle size of the coarsely pulverized product is preferably 65 μm or less. By setting the volume average particle size of the coarsely crushed material to 65 μm or less, it is possible to suppress an increase in the temperature of the material to be crushed. Therefore, when producing toner particles having a smaller particle size, it is possible to provide a method for producing toner particles that can suppress in-machine fusion and achieve improvement in toner productivity.

次に、本発明の製造方法で、トナー粒子を製造する手順について説明する。 Next, a procedure for manufacturing toner particles by the manufacturing method of the present invention will be described.

まず、原料混合工程では、トナー内添剤として、少なくとも結着樹脂、着色剤を所定量秤量して配合し、混合する。必要に応じて、トナーの加熱定着時にホットオフセットの発生を抑制する離型剤、該離型剤を分散させる分散剤、帯電制御剤などを混合してもよい。混合装置の一例としては、ダブルコン・ミキサー、V型ミキサー、ドラム型ミキサー、スーパーミキサー、ヘンシェルミキサー、ナウターミキサー等がある。 First, in the raw material mixing step, at least a binder resin and a colorant are weighed and mixed in a predetermined amount as a toner internal additive, and then mixed. If necessary, a mold release agent that suppresses the generation of hot offset when the toner is heated and fixed, a dispersant that disperses the mold release agent, a charge control agent, and the like may be mixed. Examples of the mixing device include a double-con mixer, a V-type mixer, a drum-type mixer, a super mixer, a Henschel mixer, a Nauter mixer, and the like.

更に、上記で配合し、混合したトナー原料を溶融混練して、樹脂類を溶融し、その中の着色剤等を分散させる。該溶融混練工程では、例えば、加圧ニーダー、バンバリィミキサー等のバッチ式練り機や、連続式の練り機を用いることができる。近年では、連続生産できる等の優位性から、1軸または2軸押出機が主流となっており、例えば、神戸製鋼所社製KTK型2軸押出機、東芝機械社製TEM型2軸押出機、ケイ・シー・ケイ社製2軸押出機、ブス社製コ・ニーダー、池貝社製PCM型2軸押出機等が一般的に使用される。更に、トナー原料を溶融混練することによって得られる着色樹脂組成物は、溶融混練後、2本ロール等で圧延され、水冷等で冷却する冷却工程を経て冷却される。 Further, the toner raw materials blended and mixed as described above are melt-kneaded to melt the resins and disperse the colorants and the like therein. In the melt-kneading step, for example, a batch type kneader such as a pressure kneader or a Bambary mixer, or a continuous type kneader can be used. In recent years, single-screw or twin-screw extruders have become the mainstream because of their superiority such as continuous production. For example, KTK type twin-screw extruder manufactured by Kobe Steel Co., Ltd. and TEM type twin-screw extruder manufactured by Toshiba Machinery Co., Ltd. , A twin-screw extruder manufactured by K.C.K., a co-kneader manufactured by Buss, a PCM type twin-screw extruder manufactured by Ikekai, and the like are generally used. Further, the colored resin composition obtained by melt-kneading the toner raw material is melt-kneaded, rolled by two rolls or the like, and cooled through a cooling step of cooling by water cooling or the like.

上記で得られた着色樹脂組成物の冷却物は、次いで、粉砕工程で所望の粒径にまで粉砕される。粉砕工程では、まず、クラッシャー、ハンマーミル、フェザーミル等で粗粉砕される。更に、イノマイザー(ホソカワミクロン社製)、クリプトロン(川崎重工社製)、スーパーローター(日清エンジニアリング社製)、ターボミル(ターボ工業社製)等の機械式粉砕機で微粉砕される。粉砕工程では、このように段階的に所定のトナー粒度まで粉砕される。 The cooled product of the colored resin composition obtained above is then pulverized to a desired particle size in the pulverization step. In the crushing step, first, coarse crushing is performed with a crusher, a hammer mill, a feather mill or the like. Further, it is finely pulverized by a mechanical crusher such as an innomizer (manufactured by Hosokawa Micron), a cryptron (manufactured by Kawasaki Heavy Industries), a super rotor (manufactured by Nisshin Engineering), and a turbo mill (manufactured by Turbo Industries). In the pulverization step, the toner is pulverized step by step to a predetermined toner particle size.

次に、本発明で使用する結着樹脂及び着色剤を少なくとも含むトナー粒子の原材料について説明する。 Next, the raw materials of the toner particles containing at least the binder resin and the colorant used in the present invention will be described.

<結着樹脂>
電子写真に用いられるトナーに用いられる結着樹脂としては、一般的な樹脂を用いることができる。例えば、ポリエステル樹脂、スチレン-アクリル酸共重合体、ポリオレフィン系樹脂、ビニル系樹脂、フッ素樹脂、フェノール樹脂、シリコーン樹脂、エポキシ樹脂など。この中でも、低温定着性を良好にするという観点から非晶性ポリエステル樹脂が用いられ、低温定着性と耐ホットオフセット性の両立の観点から、低分子量ポリエステルと高分子量ポリエステルを併用することが知られている。また、さらなる低温定着性の向上と保管時の耐ブロッキング性の観点から結晶性ポリエステルを可塑剤として用いることもある。
<Bundling resin>
As the binder resin used for the toner used in the electrograph, a general resin can be used. For example, polyester resin, styrene-acrylic acid copolymer, polyolefin resin, vinyl resin, fluororesin, phenol resin, silicone resin, epoxy resin and the like. Among these, amorphous polyester resin is used from the viewpoint of improving low temperature fixability, and it is known that low molecular weight polyester and high molecular weight polyester are used in combination from the viewpoint of achieving both low temperature fixability and hot offset resistance. ing. In addition, crystalline polyester may be used as a plasticizer from the viewpoint of further improving low temperature fixability and blocking resistance during storage.

<着色剤>
トナーに含有できる着色剤としては、以下のものが挙げられる。
<Colorant>
Examples of the colorant that can be contained in the toner include the following.

該着色剤としては、公知の有機顔料若しくは油性染料、カーボンブラック、又は磁性体などが挙げられる。 Examples of the colorant include known organic pigments or oil dyes, carbon black, magnetic substances and the like.

シアン系着色剤としては、銅フタロシアニン化合物及びその誘導体、アントラキノン化合物、塩基染料レーキ化合物などが挙げられる。 Examples of the cyan-based colorant include copper phthalocyanine compounds and derivatives thereof, anthraquinone compounds, and basic dye lake compounds.

マゼンタ系着色剤としては、縮合アゾ化合物、ジケトピロロピロール化合物、アントラキノン化合物、キナクリドン化合物、塩基染料レーキ化合物、ナフトール化合物、ベンズイミダゾロン化合物、チオインジゴ化合物、ペリレン化合物などが挙げられる。 Examples of the magenta colorant include condensed azo compounds, diketopyrrolopyrrole compounds, anthraquinone compounds, quinacridone compounds, basic dye lake compounds, naphthol compounds, benzimidazolone compounds, thioindigo compounds, perylene compounds and the like.

イエロー系着色剤としては、縮合アゾ化合物、イソインドリノン化合物、アントラキノン化合物、アゾ金属錯体、メチン化合物、アリルアミド化合物などが挙げられる。 Examples of the yellow colorant include condensed azo compounds, isoindolinone compounds, anthraquinone compounds, azo metal complexes, methine compounds, allylamide compounds and the like.

黒色系着色剤としては、カーボンブラック、磁性体、又は、前記イエロー系着色剤、マゼンタ系着色剤、及びシアン着色剤を用い黒色に調色されたものが挙げられる。 Examples of the black colorant include carbon black, a magnetic substance, or a color toned black using the yellow colorant, magenta colorant, and cyan colorant.

該着色剤は、一種単独で又は二種以上を混合して用いることができる。 The colorant can be used alone or in combination of two or more.

<離型剤>
必要に応じて、トナーの加熱定着時にホットオフセットの発生を抑制する離型剤を用いてもよい。該離型剤としては、低分子量ポリオレフィン類、シリコーンワックス、脂肪酸アミド類、エステルワックス類、カルナバワックス、炭化水素系ワックスなどが一般的に例示できる。
<Release agent>
If necessary, a mold release agent that suppresses the occurrence of hot offset during heating and fixing of the toner may be used. As the release agent, low molecular weight polyolefins, silicone waxes, fatty acid amides, ester waxes, carnauba waxes, hydrocarbon waxes and the like can be generally exemplified.

<トナー粒子の粒度分布の測定方法>
トナー粒子の粒度分布は以下のように測定する。
<Measurement method of particle size distribution of toner particles>
The particle size distribution of the toner particles is measured as follows.

測定装置として、50μmのアパーチャーチューブを備えた細孔電気抵抗法による精密粒度分布測定装置「コールター・カウンタ Multisizer 3」(登録商標、ベックマン・コールター社製)を用いる。測定条件の設定及び測定データの解析は、付属の専用ソフト「ベックマン・コールター Multisizer 3 Version3.51」(ベックマン・コールター社製)を用いる。なお、測定は実効測定チャンネル数2万5千チャンネルで行う。 As the measuring device, a precision particle size distribution measuring device "Coulter Counter Multisizer 3" (registered trademark, manufactured by Beckman Coulter) equipped with a 50 μm aperture tube by the pore electric resistance method is used. For the setting of measurement conditions and the analysis of measurement data, the attached dedicated software "Beckman Coulter Multisizer 3 Version 3.51" (manufactured by Beckman Coulter) is used. The measurement is performed with 25,000 effective measurement channels.

測定に使用する電解水溶液は、特級塩化ナトリウムをイオン交換水に溶解して濃度が約1質量%となるようにしたもの、例えば、「ISOTON II」(ベックマン・コールター社製)が使用できる。 As the electrolytic aqueous solution used for the measurement, one in which special grade sodium chloride is dissolved in ion-exchanged water so that the concentration becomes about 1% by mass, for example, "ISOTON II" (manufactured by Beckman Coulter) can be used.

なお、測定及び解析を行う前に、以下のように専用ソフトの設定を行う。 Before performing measurement and analysis, set the dedicated software as follows.

専用ソフトの「標準測定方法(SOM)を変更」画面において、コントロールモードの総カウント数を50000粒子に設定し、測定回数を1回、Kd値は「標準粒子10.0μm」(ベックマン・コールター社製)を用いて得られた値を設定する。 On the "Change standard measurement method (SOM)" screen of the dedicated software, set the total count number in the control mode to 50,000 particles, measure once, and set the Kd value to "standard particles 10.0 μm" (Beckman Coulter). The value obtained by using (manufactured by) is set.

「閾値/ノイズレベルの測定ボタン」を押すことで、閾値とノイズレベルを自動設定する。また、カレントを1600μAに、ゲインを2に、電解水溶液をISOTON IIに設定し、「測定後のアパーチャーチューブのフラッシュ」にチェックを入れる。 By pressing the "threshold / noise level measurement button", the threshold and noise level are automatically set. Also, set the current to 1600 μA, the gain to 2, and the electrolytic aqueous solution to ISOTON II, and check "Flash of aperture tube after measurement".

専用ソフトの「パルスから粒径への変換設定」画面において、ビン間隔を対数粒径に、粒径ビンを256粒径ビンに、粒径範囲を1μmから30μmまでに設定する。 On the "Pulse to particle size conversion setting" screen of the dedicated software, set the bin spacing to logarithmic particle size, the particle size bin to 256 particle size bins, and the particle size range from 1 μm to 30 μm.

具体的な測定法は以下の通りである。
(1)Multisizer 3専用のガラス製250mL丸底ビーカーに電解水溶液約200mLを入れ、サンプルスタンドにセットし、スターラーロッドの撹拌を反時計回りで24回転/秒にて行う。そして、専用ソフトの「アパーチャーのフラッシュ」機能により、アパーチャーチューブ内の汚れと気泡を除去しておく。
(2)ガラス製の100mL平底ビーカーに電解水溶液約30mLを入れる。この中に分散剤として「コンタミノンN」(非イオン界面活性剤、陰イオン界面活性剤、有機ビルダーからなるpH7の精密測定器洗浄用中性洗剤の10質量%水溶液、和光純薬工業社製)をイオン交換水で約3質量倍に希釈した希釈液を約0.3mL加える。
(3)発振周波数50kHzの発振器2個を、位相を180度ずらした状態で内蔵し、電気的出力120Wの超音波分散器「Ultrasonic Dispersion System Tetora150」(日科機バイオス社製)を準備する。超音波分散器の水槽内に約3.3Lのイオン交換水を入れ、この水槽中にコンタミノンNを約2mL添加する。
(4)前記(2)のビーカーを超音波分散器のビーカー固定穴にセットし、超音波分散器を作動させる。そして、ビーカー内の電解水溶液の液面の共振状態が最大となるようにビーカーの高さ位置を調整する。
(5)前記(4)のビーカー内の電解水溶液に超音波を照射した状態で、トナー約10mgを少量ずつ電解水溶液に添加し、分散させる。そして、さらに60秒間超音波分散処理を継続する。なお、超音波分散にあたっては、水槽の水温が10℃以上40℃以下となるように適宜調節する。
(6)サンプルスタンド内に設置した前記(1)の丸底ビーカーに、ピペットを用いてトナーを分散した前記(5)の電解水溶液を滴下し、測定濃度が約5%となるように調整する。そして、測定粒子数が50000個になるまで測定を行う。
(7)測定データを装置付属の専用ソフトにて解析を行ない、重量平均粒径(D4)を算出する。なお、専用ソフトでグラフ/体積%と設定したときの、「分析/体積統計値(算術平均)」画面の「平均径」が重量平均粒径(D4)である。
The specific measurement method is as follows.
(1) Put about 200 mL of the electrolytic aqueous solution in a 250 mL round bottom beaker made of glass exclusively for Multisizer 3, set it on the sample stand, and stir the stirrer rod counterclockwise at 24 rpm. Then, the dirt and air bubbles in the aperture tube are removed by the "aperture flash" function of the dedicated software.
(2) Put about 30 mL of the electrolytic aqueous solution in a 100 mL flat-bottomed beaker made of glass. Among them, as a dispersant, "Contaminone N" (a 10% by mass aqueous solution of a neutral detergent for cleaning a pH 7 precision measuring instrument consisting of a nonionic surfactant, an anionic surfactant, and an organic builder, manufactured by Wako Pure Chemical Industries, Ltd. ) Is diluted about 3 times by mass with ion-exchanged water, and about 0.3 mL of the diluted solution is added.
(3) Two oscillators with an oscillation frequency of 50 kHz are built in with their phases shifted by 180 degrees, and an ultrasonic disperser "Ultrasonic Dispersion System Tetora 150" (manufactured by Nikkaki Bios) with an electrical output of 120 W is prepared. About 3.3 L of ion-exchanged water is put into the water tank of the ultrasonic disperser, and about 2 mL of contaminone N is added to this water tank.
(4) The beaker of (2) above is set in the beaker fixing hole of the ultrasonic disperser, and the ultrasonic disperser is operated. Then, the height position of the beaker is adjusted so that the resonance state of the liquid level of the electrolytic solution in the beaker is maximized.
(5) In a state where the electrolytic aqueous solution in the beaker of (4) is irradiated with ultrasonic waves, about 10 mg of toner is added little by little to the electrolytic aqueous solution and dispersed. Then, the ultrasonic dispersion processing is continued for another 60 seconds. For ultrasonic dispersion, the water temperature in the water tank is appropriately adjusted to be 10 ° C. or higher and 40 ° C. or lower.
(6) Using a pipette, the electrolytic aqueous solution of (5) in which toner is dispersed is dropped onto the round bottom beaker of (1) installed in the sample stand, and the measured concentration is adjusted to about 5%. .. Then, the measurement is performed until the number of measured particles reaches 50,000.
(7) The measurement data is analyzed by the dedicated software attached to the device, and the weight average particle size (D4) is calculated. The "average diameter" of the "analysis / volume statistical value (arithmetic mean)" screen when the graph / volume% is set by the dedicated software is the weight average particle diameter (D4).

<粗粉砕粒子の粒度分布の測定方法>
粗粉砕物の粒度分布の測定として、粒度分布測定装置LA-950V2(堀場製作所製)を用いた。この装置はレーザー散乱法を用いて、0.01μm~3000μmまでの粒径が測定可能である。この装置を用いて湿式測定により粗粉砕物の粒径を測定した。湿式測定の方法としては水媒体に粗粉砕物を交ぜ、上記コールターカウンタ同様に分散剤として「コンタミノンN」を用いて超音波分散させたものを装置内に導入させた。試料(粗粉砕物)の屈折率の値として1.53、分散媒の屈折率の値として1.33を用いて測定を行った。
<Measurement method of particle size distribution of coarsely pulverized particles>
A particle size distribution measuring device LA-950V2 (manufactured by HORIBA, Ltd.) was used to measure the particle size distribution of the coarsely pulverized product. This device can measure particle sizes from 0.01 μm to 3000 μm using a laser scattering method. The particle size of the coarsely pulverized product was measured by wet measurement using this device. As a method of wet measurement, a coarsely pulverized product was mixed with an aqueous medium and ultrasonically dispersed using "Contaminone N" as a dispersant as in the above Coulter counter, and introduced into the apparatus. The measurement was carried out using 1.53 as the value of the refractive index of the sample (coarse pulverized product) and 1.33 as the value of the refractive index of the dispersion medium.

以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.

<非晶性ポリエステル樹脂Lの製造例>
・ポリオキシプロピレン(2.2)-2,2-ビス(4-ヒドロキシフェニル)プロパン:72.0質量部(0.20モル;多価アルコール総モル数に対して100.0mol%)
・テレフタル酸:
28.0質量部(0.17モル;多価カルボン酸総モル数に対して100.0mol%)
・2-エチルヘキサン酸錫(エステル化触媒):0.5質量部
冷却管、撹拌機、窒素導入管、及び、熱電対のついた反応槽に、上記材料を秤量した。次にフラスコ内を窒素ガスで置換した後、撹拌しながら徐々に昇温し、200℃の温度で撹拌しつつ、4時間反応させた。
<Production example of amorphous polyester resin L>
Polyoxypropylene (2.2) -2,2-bis (4-hydroxyphenyl) propane: 72.0 parts by mass (0.20 mol; 100.0 mol% based on the total number of moles of polyhydric alcohol)
·Terephthalic acid:
28.0 parts by mass (0.17 mol; 100.0 mol% based on the total number of moles of polyvalent carboxylic acid)
-Tin 2-ethylhexanoate (esterification catalyst): 0.5 parts by mass The above materials were weighed in a cooling tube, a stirrer, a nitrogen introduction tube, and a reaction vessel equipped with a thermocouple. Next, the inside of the flask was replaced with nitrogen gas, the temperature was gradually raised while stirring, and the reaction was carried out for 4 hours while stirring at a temperature of 200 ° C.

さらに、反応槽内の圧力を8.3kPaに下げ、1時間維持した後、180℃まで冷却し、大気圧に戻した。
・無水トリメリット酸:
3質量部(0.01モル;多価カルボン酸総モル数に対して4.0mol%)
・tert-ブチルカテコール(重合禁止剤):0.1質量部
その後、上記材料を加え、反応槽内の圧力を8.3kPaに下げ、温度180℃に維持したまま、1時間反応させ、ASTM D36-86に従って測定した軟化点が90℃に達したことを確認してから温度を下げて反応を止め、結着樹脂として非晶性ポリエステル樹脂Lを得た。
Further, the pressure in the reaction vessel was lowered to 8.3 kPa, maintained for 1 hour, cooled to 180 ° C., and returned to atmospheric pressure.
・ Trimellitic acid anhydride:
3 parts by mass (0.01 mol; 4.0 mol% based on the total number of moles of polyvalent carboxylic acid)
-Tert-Butylcatechol (polymerization inhibitor): 0.1 part by mass Then, the above material was added, the pressure in the reaction vessel was lowered to 8.3 kPa, and the reaction was carried out for 1 hour while maintaining the temperature at 180 ° C., ASTM D36. After confirming that the softening point measured according to −86 reached 90 ° C., the temperature was lowered to stop the reaction, and an amorphous polyester resin L was obtained as the binder resin.

<非晶性ポリエステル樹脂Hの製造例>
・ポリオキシプロピレン(2.2)-2,2-ビス(4-ヒドロキシフェニル)プロパン:72.3質量部(0.20モル;多価アルコール総モル数に対して100.0mol%)
・テレフタル酸:
18.3質量部(0.11モル;多価カルボン酸総モル数に対して65.0mol%)
・フマル酸:
2.9質量部(0.03モル;多価カルボン酸総モル数に対して15.0mol%)
・2-エチルヘキサン酸錫(エステル化触媒):0.5質量部
冷却管、撹拌機、窒素導入管、及び、熱電対のついた反応槽に、上記材料を秤量した。次にフラスコ内を窒素ガスで置換した後、撹拌しながら徐々に昇温し、200℃の温度で撹拌しつつ、2時間反応させた。
<Production example of amorphous polyester resin H>
Polyoxypropylene (2.2) -2,2-bis (4-hydroxyphenyl) propane: 72.3 parts by mass (0.20 mol; 100.0 mol% based on the total number of moles of polyhydric alcohol)
·Terephthalic acid:
18.3 parts by mass (0.11 mol; 65.0 mol% based on the total number of moles of polyvalent carboxylic acid)
・ Fumaric acid:
2.9 parts by mass (0.03 mol; 15.0 mol% based on the total number of moles of polyvalent carboxylic acid)
-Tin 2-ethylhexanoate (esterification catalyst): 0.5 parts by mass The above materials were weighed in a cooling tube, a stirrer, a nitrogen introduction tube, and a reaction vessel equipped with a thermocouple. Next, the inside of the flask was replaced with nitrogen gas, the temperature was gradually raised while stirring, and the reaction was carried out for 2 hours while stirring at a temperature of 200 ° C.

さらに、反応槽内の圧力を8.3kPaに下げ、1時間維持した後、180℃まで冷却し、大気圧に戻した。
・無水トリメリット酸:
6.5質量部(0.03モル;多価カルボン酸総モル数に対して20.0mol%)
・tert-ブチルカテコール(重合禁止剤):0.1質量部
その後、上記材料を加え、反応槽内の圧力を8.3kPaに下げ、温度160℃に維持したまま、15時間反応させ、ASTM D36-86に従って測定した軟化点が137℃に達したのを確認してから温度を下げて反応を止め、結着樹脂として非晶性ポリエステル樹脂Hを得た。
Further, the pressure in the reaction vessel was lowered to 8.3 kPa, maintained for 1 hour, cooled to 180 ° C., and returned to atmospheric pressure.
・ Trimellitic acid anhydride:
6.5 parts by mass (0.03 mol; 20.0 mol% based on the total number of moles of polyvalent carboxylic acid)
-Tert-Butylcatechol (polymerization inhibitor): 0.1 part by mass Then, the above material was added, the pressure in the reaction vessel was lowered to 8.3 kPa, and the reaction was carried out for 15 hours while maintaining the temperature at 160 ° C., ASTM D36. After confirming that the softening point measured according to −86 reached 137 ° C., the temperature was lowered to stop the reaction, and an amorphous polyester resin H was obtained as the binder resin.

<結晶性ポリエステル樹脂>
・1,6-ヘキサンジオール:
34.5質量部(0.29モル;多価アルコール総モル数に対して100.0mol%)
・ドデカン二酸:
65.5質量部(0.28モル;多価カルボン酸総モル数に対して100.0mol%)
・2-エチルヘキサン酸錫:0.5質量部
冷却管、撹拌機、窒素導入管、及び、熱電対のついた反応槽に、上記材料を秤量した。フラスコ内を窒素ガスで置換した後、撹拌しながら徐々に昇温し、140℃の温度で撹拌しつつ、3時間反応させた。
<Crystalline polyester resin>
-1,6-Hexanediol:
34.5 parts by mass (0.29 mol; 100.0 mol% based on the total number of moles of polyhydric alcohol)
・ Dodecanedioic acid:
65.5 parts by mass (0.28 mol; 100.0 mol% based on the total number of moles of polyvalent carboxylic acid)
-Tin 2-ethylhexanoate: 0.5 parts by mass The above materials were weighed in a cooling tube, a stirrer, a nitrogen introduction tube, and a reaction vessel equipped with a thermocouple. After replacing the inside of the flask with nitrogen gas, the temperature was gradually raised while stirring, and the reaction was carried out for 3 hours while stirring at a temperature of 140 ° C.

次に、上記材料を加え、反応槽内の圧力を8.3kPaに下げ、温度200℃に維持したまま、4時間反応させた。 Next, the above materials were added, the pressure in the reaction vessel was lowered to 8.3 kPa, and the reaction was carried out for 4 hours while maintaining the temperature at 200 ° C.

さらに、反応槽内の圧力を序々に開放して常圧へ戻した後、脂肪族モノカルボン酸及び脂肪族モノアルコールからなる群より選ばれた1種以上の脂肪族化合物を、原料モノマー100.0mol%に対し7.0mol%加え、常圧下にて200℃で2時間反応させた。 Further, after the pressure in the reaction vessel is gradually released and returned to normal pressure, one or more aliphatic compounds selected from the group consisting of aliphatic monocarboxylic acids and aliphatic monoalcohols are used as the raw material monomer 100. 7.0 mol% was added to 0 mol%, and the mixture was reacted at 200 ° C. for 2 hours under normal pressure.

その後、再び反応槽内を5kPa以下へ減圧して200℃で3時間反応させることにより、結晶性ポリエステル樹脂を得た。 Then, the inside of the reaction vessel was reduced to 5 kPa or less and reacted at 200 ° C. for 3 hours to obtain a crystalline polyester resin.

<トナーの製造例>
・非晶性ポリエステル樹脂L 80質量部
・非晶性ポリエステル樹脂H 20質量部
・結晶性ポリエステル樹脂 5質量部
・フィッシャートロプシュワックス(炭化水素ワックス、最大吸熱ピークのピーク温度90℃) 5質量部
・C.I.ピグメントブルー15:3 7質量部
上記材料をヘンシェルミキサー(FM-75型、三井鉱山(株)製)を用いて、回転数20s-1、回転時間5minで混合した後、二軸混練機(PCM-30型、株式会社池貝製)にて混練した。混練時のバレル温度は、混練物の出口温度が120℃になるよう設定した。混練物の出口温度は、安立計器社製ハンディタイプ温度計HA-200Eを用い直接計測した。得られた混練物を冷却し、ピンミルにて体積平均粒径60μmに粗粉砕し、トナー粗砕物1を得た。
<Toner manufacturing example>
・ Amorphous polyester resin L 80 parts by mass ・ Amorphous polyester resin H 20 parts by mass ・ Crystalline polyester resin 5 parts by mass ・ Fisher Tropsch wax (hydrocarbon wax, peak temperature of maximum heat absorption peak 90 ° C) 5 parts by mass ・C. I. Pigment Blue 15:37 parts by mass Mixing the above materials with a Henshell mixer (FM-75 type, manufactured by Mitsui Mine Co., Ltd.) at a rotation speed of 20 s -1 and a rotation time of 5 min, and then a twin-screw kneader (PCM). Kneaded with -30 type, manufactured by Ikekai Co., Ltd.). The barrel temperature at the time of kneading was set so that the outlet temperature of the kneaded product was 120 ° C. The outlet temperature of the kneaded product was directly measured using a handy type thermometer HA-200E manufactured by Anritsu Meter Co., Ltd. The obtained kneaded product was cooled and coarsely pulverized with a pin mill to a volume average particle size of 60 μm to obtain a toner coarse pulverized product 1.

なお、以下の実施例及び比較例で得られた微粉砕品の重量平均粒径はトナー粒子の重量平均粒径(D4)の測定方法に従い行った。 The weight average particle size of the finely pulverized products obtained in the following Examples and Comparative Examples was measured according to the method for measuring the weight average particle size (D4) of the toner particles.

〔実施例1〕
本実施例においては、粉砕装置図1、図2に示したものを用いる。
[Example 1]
In this embodiment, the crushing apparatus shown in FIGS. 1 and 2 is used.

図1、図2に示す粉砕装置の構成は、機械式粉砕機(ターボ工業社製ターボミルT250-CRS-ローター形状RS型)において、粉体供給口A(粉体供給口101)に、内部を気流が流れる配管A(配管201)が接続されており、該配管Aにおける該粉体供給口Aより上流側に、配管A内に該粗粉砕物を投入するための粉体投入口B(粉体投入口202)を設けた。また、粉体投入口Bの角度を変化させることができるように改造した。 The configuration of the crushing device shown in FIGS. 1 and 2 is such that in a mechanical crusher (Turbo Mill T250-CRS-Rotor shape RS type manufactured by Turbo Industries, Ltd.), the inside is inserted into the powder supply port A (powder supply port 101). A pipe A (pipe 201) through which an air flow flows is connected, and a powder input port B (powder) for charging the coarse pulverized material into the pipe A is connected to the upstream side of the powder supply port A in the pipe A. A body inlet 202) was provided. Further, it was modified so that the angle of the powder charging port B could be changed.

実施例1では、粉体投入口Bの角度を20°から160°まで10°/1secの速度で連続的に変化させながら粉砕を行った。このとき、該配管Aの長手方向の角度を0°とした。粉体投入口Bの角度は、20°から160°に到達した後は、160°から20°まで10°/1secの速度で変化させ、その後は再び20°から160°まで10°/1secの速度で変化させ、粉砕が終了するまで、20°から160°を往復するように変化させた。 In Example 1, pulverization was performed while continuously changing the angle of the powder charging port B from 20 ° to 160 ° at a rate of 10 ° / 1 sec. At this time, the angle in the longitudinal direction of the pipe A was set to 0 °. After reaching the powder inlet B from 20 ° to 160 °, the angle is changed from 160 ° to 20 ° at a speed of 10 ° / 1 sec, and then again from 20 ° to 160 ° at 10 ° / 1 sec. The speed was changed to reciprocate from 20 ° to 160 ° until the grinding was completed.

以下、粉体投入口Bの角度(粉体投入口の角度203)を〇〇°から××°へ変化させる場合、〇〇°から××°の変化の後は、××°から〇〇°へ、〇〇°から××°へ変化させたのと同じ速度で変化させ、その後、再び〇〇°から××°へ変化させる往復運動を繰り返すものとする。 Hereinafter, when the angle of the powder charging port B (angle of the powder charging port 203) is changed from 〇〇 ° to XX °, after the change from 〇〇 ° to XX °, XX ° to 〇〇 It shall be changed at the same speed as the change from 〇〇 ° to XX ° to °, and then the reciprocating motion to change from 〇〇 ° to XX ° again shall be repeated.

また、該粉体投入口Bと回転子の中心回転軸との距離(粉体投入口と回転子の中心回転軸の距離204)を2mとした。 Further, the distance between the powder charging port B and the center rotation axis of the rotor (distance 204 between the powder charging port and the center rotation axis of the rotor) was set to 2 m.

上記機械式粉砕機を用い、トナー原料(粗砕物)の製造例で得たトナー粗砕物1を用い以下に示す条件にて微粉砕品を製造した。 Using the above mechanical crusher, the finely pulverized product was manufactured under the conditions shown below using the toner crushed product 1 obtained in the production example of the toner raw material (coarse crushed product).

<条件1>
図1、図2に示す粉砕装置を用い、粉体投入口Bから粗砕物1を30kg/h、冷風を風量8m3/min流入させ、回転子と固定子とギャップ1.0mm、冷風温度-10℃、の条件で粗砕物1の粉砕を行った。
<Condition 1>
Using the crushing device shown in FIGS. 1 and 2, 30 kg / h of coarsely crushed material 1 and 8 m 3 / min of cold air are flowed in from the powder inlet B, the gap between the rotor and the stator is 1.0 mm, and the cold air temperature-. The coarsely crushed material 1 was pulverized under the condition of 10 ° C.

条件1の製造方法では、まず微粉砕品の重量平均粒径が5.0~5.2μmの範囲になるように回転子の周速度を設定し、その後同一条件で連続10時間製造を行い約300kgの微粉砕品を得た。 In the manufacturing method of condition 1, the peripheral speed of the rotor is first set so that the weight average particle size of the finely pulverized product is in the range of 5.0 to 5.2 μm, and then continuous manufacturing is performed for 10 hours under the same conditions. A finely pulverized product of 300 kg was obtained.

<条件2>
図1、図2に示す粉砕装置を用い、粉体投入口Bから粗砕物1を30kg/h、冷風を風量8m3/min流入させ、回転子と固定子とギャップ1.0mm、冷風温度-10℃、の条件で粗砕物1の粉砕を行った。
<Condition 2>
Using the crushing device shown in FIGS. 1 and 2, 30 kg / h of coarsely crushed material 1 and 8 m 3 / min of cold air are flowed in from the powder inlet B, the gap between the rotor and the stator is 1.0 mm, and the cold air temperature-. The coarsely crushed material 1 was pulverized under the condition of 10 ° C.

条件2の製造方法では、まず微粉砕品の重量平均粒径が4.0~4.2μmの範囲になるように回転子の周速度を設定し、その後同一条件で連続10時間製造を行い約300kgの微粉砕品を得た。 In the manufacturing method of condition 2, the peripheral speed of the rotor is first set so that the weight average particle size of the finely pulverized product is in the range of 4.0 to 4.2 μm, and then continuous manufacturing is performed for 10 hours under the same conditions. A finely pulverized product of 300 kg was obtained.

なお、本条件の設定粒径は、条件1で示した設定粒径(5.0~5.2μm)に対してより小粒径であるため、回転子の周速度を増大させたものとなった。 Since the set particle size under this condition is smaller than the set particle size (5.0 to 5.2 μm) shown in condition 1, the peripheral speed of the rotor is increased. rice field.

[機内融着性の評価]
連続10時間の製造後装置を停止し、回転子及び固定子のトナーの付着度合い(汚れ)を目視で確認した。
[Evaluation of in-flight fusion property]
After manufacturing for 10 hours continuously, the apparatus was stopped, and the degree of toner adhesion (dirt) on the rotor and stator was visually confirmed.

評価ランクは以下とする。
A・・・付着はほとんどなくり非常に優れている。
B・・・若干付着は認められるが実用上問題のないレベルである。
C・・・付着が認められ実用上問題がある。
The evaluation rank is as follows.
A ... Very good with almost no adhesion.
B ... Slight adhesion is observed, but there is no problem in practical use.
C ... Adhesion is observed and there is a problem in practical use.

[粒径安定性の評価]
製造した微粉砕品を2時間毎にサンプリングし、重量平均粒径(D4)を測定し、微粉砕品の粒径安定性の評価を行った。
[Evaluation of particle size stability]
The produced finely pulverized product was sampled every 2 hours, the weight average particle size (D4) was measured, and the particle size stability of the finely pulverized product was evaluated.

評価ランクは以下とする。
A・・・設定範囲内の粒径が得られており非常に優れている。
B・・・設定値から外れるが0.3μm以内であり実用上問題のないレベルである。
C・・・設定値から0.3μm以上外れ実用上問題がある。
The evaluation rank is as follows.
A ... The particle size within the set range is obtained, which is very excellent.
B: Although it deviates from the set value, it is within 0.3 μm, which is a level at which there is no practical problem.
C: There is a practical problem that the value deviates from the set value by 0.3 μm or more.

以上の各評価項目において、実施例1の製造方法では全てA判定であった。 In each of the above evaluation items, the manufacturing method of Example 1 was all judged as A.

〔実施例2〕
トナー原料(粗砕物)の製造例で得たトナー粗砕物を体積平均粒径が100μmになるように粗粉砕し、評価条件は条件2のみ評価した以外は実施例1と同様の方法で評価を実施した。
[Example 2]
The coarsely crushed toner obtained in the production example of the toner raw material (coarse crushed product) was roughly crushed so that the volume average particle size was 100 μm, and the evaluation conditions were evaluated by the same method as in Example 1 except that only condition 2 was evaluated. Carried out.

〔実施例3〕
該粉体投入口Bと回転子の中心回転軸との距離を3mとした以外は実施例2と同様の方法で評価を実施した。
[Example 3]
The evaluation was carried out in the same manner as in Example 2 except that the distance between the powder charging port B and the central rotation axis of the rotor was set to 3 m.

〔実施例4〕
粉体投入口Bの角度を20°から160°まで1°/1secの速度で連続的に変化させながら粉砕を行った以外は実施例3と同様の方法で評価を実施した。
[Example 4]
The evaluation was carried out in the same manner as in Example 3 except that the powder charging port B was pulverized while continuously changing the angle from 20 ° to 160 ° at a rate of 1 ° / 1 sec.

〔実施例5〕
粉体投入口Bの角度を20°から160°まで1°/1minの速度で変化(1分毎に1°の非連続的変化)させながら粉砕を行った以外は実施例3と同様の方法で評価を実施した。
[Example 5]
The same method as in Example 3 except that pulverization was performed while changing the angle of the powder charging port B from 20 ° to 160 ° at a speed of 1 ° / 1 min (discontinuous change of 1 ° every 1 minute). The evaluation was carried out at.

〔実施例6〕
粉体投入口Bの角度を20°から160°まで10°/10minの速度で変化(10分毎に10°の非連続的変化)させながら粉砕を行った以外は実施例3と同様の方法で評価を実施した。
[Example 6]
The same method as in Example 3 except that pulverization was performed while changing the angle of the powder charging port B from 20 ° to 160 ° at a speed of 10 ° / 10 min (discontinuous change of 10 ° every 10 minutes). The evaluation was carried out at.

〔実施例7〕
粉体投入口Bの角度を20°から90°まで10°/10minの速度で変化(10分毎に10°の非連続的変化)させながら粉砕を行った以外は実施例3と同様の方法で評価を実施した。
[Example 7]
The same method as in Example 3 except that pulverization was performed while changing the angle of the powder charging port B from 20 ° to 90 ° at a speed of 10 ° / 10 min (discontinuous change of 10 ° every 10 minutes). The evaluation was carried out at.

〔実施例8〕
粉体投入口Bの角度を20°から40°まで10°/10minの速度で変化(10分毎に10°の非連続的変化)させながら粉砕を行った以外は実施例3と同様の方法で評価を実施した。
[Example 8]
The same method as in Example 3 except that pulverization was performed while changing the angle of the powder charging port B from 20 ° to 40 ° at a speed of 10 ° / 10 min (discontinuous change of 10 ° every 10 minutes). The evaluation was carried out at.

〔実施例9〕
粉体投入口Bの角度を140°から160°まで10°/10minの速度で変化(10分毎に10°の非連続的変化)させながら粉砕を行った以外は実施例3と同様の方法で評価を実施した。
[Example 9]
The same method as in Example 3 except that pulverization was performed while changing the angle of the powder charging port B from 140 ° to 160 ° at a speed of 10 ° / 10 min (discontinuous change of 10 ° every 10 minutes). The evaluation was carried out at.

〔実施例10〕
粉体投入口Bの角度を10°から20°まで10°/10minの速度で変化(10分毎に10°の非連続的変化)させながら粉砕を行った以外は実施例3と同様の方法で評価を実施した。
[Example 10]
The same method as in Example 3 except that pulverization was performed while changing the angle of the powder charging port B from 10 ° to 20 ° at a speed of 10 ° / 10 min (discontinuous change of 10 ° every 10 minutes). The evaluation was carried out at.

〔実施例11〕
粉体投入口Bの角度を160°から170°まで10°/10minの速度で変化(10分毎に10°の非連続的変化)させながら粉砕を行った以外は実施例3と同様の方法で評価を実施した。
[Example 11]
The same method as in Example 3 except that pulverization was performed while changing the angle of the powder charging port B from 160 ° to 170 ° at a speed of 10 ° / 10 min (discontinuous change of 10 ° every 10 minutes). The evaluation was carried out at.

実施例2~11の評価結果を表1に示す。 The evaluation results of Examples 2 to 11 are shown in Table 1.

Figure 2022025737000002
Figure 2022025737000002

〔比較例1〕
該粉体投入口Bの角度を90°に固定し、評価条件を条件1と条件2で評価した以外は実施例3と同様の方法で評価を実施した。
[Comparative Example 1]
The angle of the powder charging port B was fixed at 90 °, and the evaluation was carried out in the same manner as in Example 3 except that the evaluation conditions were evaluated under the conditions 1 and 2.

比較例1の結果を表2に示す。 The results of Comparative Example 1 are shown in Table 2.

Figure 2022025737000003
Figure 2022025737000003

101:粉砕供給口A、1021:渦巻室、1022:渦巻室出口部、103:回転子、104:固定子、105:後室、106:粉体排出口、107:回転軸、108:冷風発生装置、109:冷水供給口、110:冷水排出口、201:配管A、202:粉体投入口B、203:粉体投入口の角度、204:粉体投入口と回転子の中心回転軸の距離 101: Grinding supply port A, 1021: Swirl chamber, 1022: Swirl chamber outlet, 103: Rotor, 104: Stator, 105: Rear chamber, 106: Powder discharge port, 107: Rotating shaft, 108: Cold air generation Equipment, 109: Cold water supply port, 110: Cold water discharge port, 201: Pipe A, 202: Powder input port B, 203: Powder input port angle, 204: Powder input port and center rotation axis of rotor distance

Claims (3)

結着樹脂および着色剤を含有する混合物を溶融混練する溶融混練工程、
得られた混練物を冷却する冷却工程、
冷却物を粗粉砕する粗粉砕工程、および
粗粉砕物を微粉砕手段によって微粉砕する微粉砕工程
を有するトナーの製造方法であって、
該粉砕手段は、該粗粉砕物を粉砕手段内に供給するための粉体供給口Aと、
内周面に複数の凸部と凹部とを有する固定子と、
中心回転軸に取り付けられ、外周面に複数の凸部と凹部とを有する回転子と、
粉砕された粉体を排出するための粉体排出口と、
を有し、
該固定子は該回転子を内包しており、該固定子の表面と該回転子の表面とが所定の間隙を有して対向して、微粉砕を行う処理部が形成されており、
該粉体供給口Aには、内部を気流が流れる配管Aが接続されており、
該配管Aにおける該粉体供給口Aより上流側には、配管A内に該粗粉砕物を投入するための粉体投入口Bが設けられており、
該微粉砕工程においては、該配管Aを流れる気流に、該粉体投入口Bから該粗粉砕物が投入され、形成された粗粉砕物を含む気流を、該微粉砕手段の該粉体供給口Aから微粉砕手段内に取り込み、気流を維持したまま該処理部に該粗粉砕物を供給して、回転する回転子により微粉砕が行われるものであり、
該粉体投入口Bから該配管Aを流れる気流に該粗粉砕物を投入する角度を変化させながら該粗粉砕物の投入が行われることを特徴とするトナーの製造方法。
A melt-kneading step of melt-kneading a mixture containing a binder resin and a colorant,
Cooling process to cool the resulting kneaded product,
A method for producing a toner, which comprises a coarse pulverization step of coarsely pulverizing a cooled product and a fine pulverization step of pulverizing the coarsely pulverized material by a pulverizing means.
The crushing means includes a powder supply port A for supplying the coarsely crushed material into the crushing means, and
A stator having a plurality of protrusions and recesses on the inner peripheral surface,
A rotor attached to the central rotation axis and having a plurality of protrusions and recesses on the outer peripheral surface,
A powder outlet for discharging crushed powder and
Have,
The stator contains the rotor, and the surface of the stator and the surface of the rotor face each other with a predetermined gap to form a processing portion for fine pulverization.
A pipe A through which an air flow flows is connected to the powder supply port A.
On the upstream side of the powder supply port A in the pipe A, a powder input port B for charging the coarsely pulverized material into the pipe A is provided.
In the fine pulverization step, the coarse pulverized material is charged into the air flow flowing through the pipe A from the powder charging port B, and the air flow containing the formed coarse pulverized material is supplied to the powder of the fine pulverization means. The coarsely pulverized material is taken into the pulverizing means from the mouth A, the coarsely pulverized material is supplied to the processing portion while maintaining the air flow, and the pulverization is performed by a rotating rotor.
A method for producing toner, characterized in that the coarsely pulverized material is charged while changing the angle at which the coarsely crushed material is charged into the air flow flowing through the pipe A from the powder charging port B.
該粉体投入口Bから該配管Aを流れる気流に該粗粉砕物を投入する角度を20°以上160°以下(但し、該配管Aの長手方向の角度を0°とする。)に変化させながら該粗粉砕物の投入が行われる請求項1に記載のトナーの製造方法。 The angle at which the coarsely pulverized material is charged into the airflow flowing through the pipe A from the powder charging port B is changed to 20 ° or more and 160 ° or less (however, the longitudinal angle of the pipe A is 0 °). The method for producing toner according to claim 1, wherein the coarsely pulverized material is charged while being charged. 該粉体投入口Bと該回転子の中心回転軸との距離が2m以下である請求項1または2に記載のトナーの製造方法。 The method for producing toner according to claim 1 or 2, wherein the distance between the powder charging port B and the central rotation axis of the rotor is 2 m or less.
JP2020128788A 2020-07-30 2020-07-30 Toner manufacturing method Active JP7476022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020128788A JP7476022B2 (en) 2020-07-30 2020-07-30 Toner manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020128788A JP7476022B2 (en) 2020-07-30 2020-07-30 Toner manufacturing method

Publications (2)

Publication Number Publication Date
JP2022025737A true JP2022025737A (en) 2022-02-10
JP7476022B2 JP7476022B2 (en) 2024-04-30

Family

ID=80264760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020128788A Active JP7476022B2 (en) 2020-07-30 2020-07-30 Toner manufacturing method

Country Status (1)

Country Link
JP (1) JP7476022B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003173046A (en) 2000-12-15 2003-06-20 Canon Inc Toner production process
JP4870885B2 (en) 2001-09-19 2012-02-08 株式会社リコー Grinding device and toner manufacturing method using the same
JP4123078B2 (en) 2003-06-30 2008-07-23 ターボ工業株式会社 Fine grinding machine and its fine powder product
JP2010036071A (en) 2008-08-01 2010-02-18 Nakayama Iron Works Ltd Impact type crusher

Also Published As

Publication number Publication date
JP7476022B2 (en) 2024-04-30

Similar Documents

Publication Publication Date Title
KR101618659B1 (en) Heat treating apparatus for powder particles and method of producing toner
JP6021349B2 (en) Heat treatment apparatus and toner manufacturing method
JP5414507B2 (en) Toner heat treatment apparatus and toner manufacturing method
JP5479072B2 (en) Toner heat treatment apparatus and toner manufacturing method
CN113900363A (en) Toner classifying apparatus and method of producing toner
JP7476022B2 (en) Toner manufacturing method
JP2022088881A (en) Classifier for toner and method for manufacturing toner
JP2022041325A (en) Method for manufacturing toner
JP7199994B2 (en) Toner manufacturing method
JP7483429B2 (en) Toner manufacturing method and mechanical pulverizer for toner manufacturing
JP2006308640A (en) Method for manufacturing toner
JP7414534B2 (en) Mechanical crusher for toner manufacturing, toner manufacturing method, and toner manufacturing system
JP2007148077A (en) Method for manufacturing toner
KR101425476B1 (en) Apparatus for heat-treating toner and method for producing toner
JP2022064233A (en) Pulverizing device for toner and method for manufacturing toner
JP7475983B2 (en) Toner manufacturing method and manufacturing apparatus
JP2020134662A (en) Toner production method and toner production apparatus
JP2021196436A (en) Toner manufacturing method and toner manufacturing device
JP2021196437A (en) Method for manufacturing toner
JP2022001934A (en) Classifier to toer and method for manufacturing toner
JP4143574B2 (en) Toner production method and surface modification apparatus
JP7492405B2 (en) Toner manufacturing method
JP2023030802A (en) Classification device for toners and toner manufacturing method
JP7494048B2 (en) Mechanical pulverizer for producing toner and pulverization process system for producing toner
JP2022029520A (en) Pulverizer for toner manufacture and manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230727

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240417

R150 Certificate of patent or registration of utility model

Ref document number: 7476022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150