JP2022025611A - Cu-Ni-Al SYSTEM COPPER ALLOY PLATE MATERIAL, MANUFACTURING METHOD THEREOF AND CONDUCTIVE SPRING MEMBER - Google Patents

Cu-Ni-Al SYSTEM COPPER ALLOY PLATE MATERIAL, MANUFACTURING METHOD THEREOF AND CONDUCTIVE SPRING MEMBER Download PDF

Info

Publication number
JP2022025611A
JP2022025611A JP2020128528A JP2020128528A JP2022025611A JP 2022025611 A JP2022025611 A JP 2022025611A JP 2020128528 A JP2020128528 A JP 2020128528A JP 2020128528 A JP2020128528 A JP 2020128528A JP 2022025611 A JP2022025611 A JP 2022025611A
Authority
JP
Japan
Prior art keywords
plate material
rolling
copper alloy
aging
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020128528A
Other languages
Japanese (ja)
Inventor
俊也 首藤
Toshiya Shudo
周平 笠谷
Shuhei Kasaya
宏 兵藤
Hiroshi Hyodo
章 菅原
Akira Sugawara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2020128528A priority Critical patent/JP2022025611A/en
Publication of JP2022025611A publication Critical patent/JP2022025611A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Conductive Materials (AREA)

Abstract

To remarkably improve the fatigue characteristics while maintaining discoloration resistance, in a high strength Cu-Ni-Al system copper alloy of a composition region exhibiting whitish metallic appearance.SOLUTION: The above problem is solved by a copper alloy plate material having a chemical composition satisfying, in mass%, Ni: 10.0 to 30.0%, Al: 1.00 to 6.50%, Ag: 0 to 0.50%, B: 0 to 0.10%, Co: 0 to 2.0%, Cr: 0 to 0.5%, Fe: 0 to 2.0%, Mg: 0 to 2.0%, Mn: 0 to 2.0%, P: 0 to 0.2%, Si: 0 to 2.0%, Sn: 0 to 2.0%, Ti: 0 to 2.0%, Zn: 0 to 2.0%, Zr: 0 to 0.3%, the remainder consisting of Cu and inevitable impurities, and Ni/Al≤9.0, in which an area rate of deposits having an area of 0.1 μm2 or larger is 2.0% or smaller in an observation surface parallel to the plate surface, and the Vickers hardness is 270 HV or larger.SELECTED DRAWING: Figure 3

Description

本発明は、Cu-Ni-Al系銅合金板材およびその製造方法に関する。また、前記板材を用いた導電ばね部材に関する。 The present invention relates to a Cu—Ni—Al-based copper alloy plate material and a method for producing the same. Further, the present invention relates to a conductive spring member using the plate material.

Cu-Ni-Al系銅合金は、Ni-Al系の析出物により高強度化が可能であり、また、銅合金のなかでも銅の色味が薄い金属外観を呈する。この成分系の銅合金は、リードフレーム、コネクタなどの導電ばね部材や非磁性高強度部材として有用である。 The Cu—Ni—Al-based copper alloy can be increased in strength by the Ni—Al-based precipitate, and has a metallic appearance in which the color of copper is lighter than that of the copper alloy. This component-based copper alloy is useful as a conductive spring member such as a lead frame and a connector, and a non-magnetic high-strength member.

コネクタなどの導電ばね部材には、それを使用する電子機器等の小型化・高集積化に対応できるよう、従来にも増して小型で高性能な特性が要求されるようになっている。特に、部品の小型化により金属部への繰り返し負荷応力が増加することから、高耐久性のニーズが高まっている。コネクタなどの金属ばね部材において、その耐久性を向上させるためには、疲労特性を改善することが重要である。一方、Cu-Ni-Al系銅合金に特有の白色調の表面外観を重視する用途では、美麗な白色調が損なわれないよう、耐変色性に優れることも重要となる。 Conductive spring members such as connectors are required to have smaller and higher performance characteristics than ever before so that they can be miniaturized and highly integrated in electronic devices and the like that use them. In particular, the need for high durability is increasing because the repetitive load stress on the metal part increases due to the miniaturization of parts. In order to improve the durability of metal spring members such as connectors, it is important to improve the fatigue characteristics. On the other hand, in applications where the white surface appearance peculiar to Cu—Ni—Al copper alloys is emphasized, it is also important to have excellent discoloration resistance so that the beautiful white tone is not impaired.

これまでに、Cu-Ni-Al系銅合金の高強度特性を活かしながら、他の諸特性を改善する検討が種々行われてきた。
例えば、特許文献1には、所定量のSiを含有するCu-Ni-Al系銅合金において、700~1020℃での溶体化処理と400~650℃での時効処理を施す工程により、Siを含むγ’相を平均粒径100nm以下で析出させることにより、高強度、加工性、高導電性に優れる材料を得る技術が示されている。ただし、特許文献1に開示の製造工程では疲労特性の十分な改善は望めない。
So far, various studies have been conducted to improve various other characteristics while utilizing the high strength characteristics of Cu—Ni—Al-based copper alloys.
For example, Patent Document 1 describes Si in a Cu—Ni—Al-based copper alloy containing a predetermined amount of Si by a step of solution treatment at 700 to 1020 ° C. and aging treatment at 400 to 650 ° C. A technique for obtaining a material excellent in high strength, processability, and high conductivity by precipitating a γ'phase containing γ'phase with an average particle size of 100 nm or less has been shown. However, in the manufacturing process disclosed in Patent Document 1, sufficient improvement in fatigue characteristics cannot be expected.

特許文献2には、Cu-Ni-Al系銅合金において、「強度-曲げ加工性バランス」に優れ、かつ耐変色性にも優れる板材を製造する技術が開示されている。その製造工程では、溶体化処理を施した材料に必要に応じて冷間圧延歪を付与した後、高めの温度域での第1時効処理と、従来一般的な温度域での第2時効処理とを続けて施す手法が採用されている。この2段階の時効処理により粒界反応型の不連続析出が生じにくくなるとともに、強度向上に寄与する微細第二相粒子の粒内析出が十分に起こり、優れた強度-曲げ加工性バランスが実現できるという。しかし、本発明者らの最近の研究によれば、特許文献2の製造方法では、粒界での不連続析出の抑制効果は認められるものの、粒界析出物の存在量自体に着目すると、その存在量の低減効果は限定的であり、疲労特性の十分な改善は認められない。 Patent Document 2 discloses a technique for producing a plate material having an excellent "strength-bending workability balance" and excellent discoloration resistance in a Cu—Ni—Al-based copper alloy. In the manufacturing process, cold rolling strain is applied to the solution-treated material as necessary, and then the first aging treatment in a higher temperature range and the second aging treatment in a conventional general temperature range are applied. The method of continuously applying and is adopted. This two-step aging treatment makes it difficult for intergranular reaction-type discontinuous precipitation to occur, and at the same time, intragranular precipitation of fine second-phase particles that contribute to strength improvement occurs sufficiently, achieving an excellent strength-bending workability balance. It is said that it can be done. However, according to a recent study by the present inventors, although the production method of Patent Document 2 has an effect of suppressing discontinuous precipitation at the grain boundaries, when focusing on the abundance of grain boundary precipitates themselves, the effect is observed. The effect of reducing the abundance is limited, and sufficient improvement in fatigue characteristics is not observed.

特許文献3には、Cu-Ni-Al系銅合金において、高いヤング率を有する板材の製造技術が開示されている。具体的には、中間焼鈍を挟んだ冷間圧延を特定条件で行い、溶体化処理をゆっくりとした昇温速度で行い、かつ圧延率が低めにコントロールされた条件で仕上冷間圧延を行ったのちに時効処理を施すことによって特定の結晶配向が得られ、高いヤング率が実現できるという。しかし、特許文献3の製造方法では疲労特性を十分に改善することはできない。 Patent Document 3 discloses a technique for manufacturing a plate material having a high Young's modulus in a Cu—Ni—Al-based copper alloy. Specifically, cold rolling with intermediate annealing was performed under specific conditions, solutionization treatment was performed at a slow temperature rise rate, and finish cold rolling was performed under conditions where the rolling ratio was controlled to be low. Later, by applying aging treatment, a specific crystal orientation can be obtained, and a high Young's modulus can be realized. However, the manufacturing method of Patent Document 3 cannot sufficiently improve the fatigue characteristics.

特許文献4には、本発明とは別の合金系であるCu-Ti系銅合金において、溶体化処理、前駆処理、冷間圧延、時効処理の工程を採用することにより粒界反応析出を抑制する技術が開示されている。しかし、本発明で対象とするCu-Ni-Al系銅合金はCu-Ti系銅合金よりも合金成分の添加量が多いことから、粒界析出物の生成量も本来多い。そのため特許文献4の手法を適用するだけでは粒界析出物の量を効果的に低減することは困難であり、疲労特性の改善には、より厳密な製造条件の制御が必要である。 In Patent Document 4, in a Cu—Ti copper alloy, which is an alloy system different from that of the present invention, the grain boundary reaction precipitation is suppressed by adopting the steps of solution treatment, precursor treatment, cold rolling, and aging treatment. The technology to be used is disclosed. However, since the Cu—Ni—Al-based copper alloy targeted by the present invention has a larger amount of alloy components added than the Cu—Ti-based copper alloy, the amount of grain boundary precipitates produced is also inherently large. Therefore, it is difficult to effectively reduce the amount of grain boundary precipitates only by applying the method of Patent Document 4, and more strict control of manufacturing conditions is required to improve the fatigue characteristics.

国際公開第2012/081573号International Publication No. 2012/081573 特開2020-50923号公報Japanese Unexamined Patent Publication No. 2020-50923 特開2020-79436号公報Japanese Unexamined Patent Publication No. 2020-79436 特許第6263333号Patent No. 6263333

Cu-Ni-Al系銅合金はコネクタ等の導電ばね部材に有用な合金であるが、部品の小型化ニーズに十分対応し得るような疲労特性の改善手法は確立されていない。本発明は、高強度化されたCu-Ni-Al系銅合金の板材において、耐変色性を維持しながら疲労特性を顕著に改善することを目的とする。 Cu—Ni—Al-based copper alloys are useful alloys for conductive spring members such as connectors, but a method for improving fatigue characteristics that can sufficiently meet the needs for miniaturization of parts has not been established. An object of the present invention is to remarkably improve fatigue characteristics of a high-strength Cu—Ni—Al copper alloy plate while maintaining discoloration resistance.

上記目的を達成するため、本明細書では以下の発明を開示する。
[1]質量%で、Ni:10.0~30.0%、Al:1.00~6.50%、Ag:0~0.50%、B:0~0.10%、Co:0~2.0%、Cr:0~0.5%、Fe:0~2.0%、Mg:0~2.0%、Mn:0~2.0%、P:0~0.2%、Si:0~2.0%、Sn:0~2.0%、Ti:0~2.0%、Zn:0~2.0%、Zr:0~0.3%、残部がCuおよび不可避的不純物からなり、かつ下記(1)式を満たす化学組成を有し、板面に平行な観察面において面積0.1μm以上の析出物の面積率が2.0%以下であり、ビッカース硬さが270HV以上である銅合金板材。
Ni/Al≦9.0 …(1)
ここで、(1)式の元素記号の箇所には質量%で表される当該元素の含有量値が代入される。
[2]板面に平行な観察面において長径1.0μm以上の粗大析出物粒子の個数密度が3.0×10個/mm以下である、上記[1]に記載の銅合金板材。
[3]板面に平行な観察面において長径5~50nmの微細析出物粒子の個数密度が1.0×10個/mm以上である、上記[1]または[2]に記載の銅合金板材。
[4]圧延直角方向の引張強さが900MPa以上である、上記[1]~[3]のいずれかに記載の銅合金板材。
[5]質量%で、Ni:10.0~30.0%、Al:1.00~6.50%、Ag:0~0.50%、B:0~0.10%、Co:0~2.0%、Cr:0~0.5%、Fe:0~2.0%、Mg:0~2.0%、Mn:0~2.0%、P:0~0.2%、Si:0~2.0%、Sn:0~2.0%、Ti:0~2.0%、Zn:0~2.0%、Zr:0~0.3%、残部がCuおよび不可避的不純物からなり、かつ下記(1)式を満たす化学組成の鋳片を、1000~1150℃で加熱する工程(鋳片加熱工程)、
最終圧延パスでの圧延温度が800℃以上となる条件で熱間圧延を行った後、700℃から600℃までの平均冷却速度が40℃/s以上となる条件で冷却する工程(熱間圧延工程)、
10.0~20.0N/mmの張力を付与した状態で、950~1100℃で30~360秒保持する熱処理を施す工程(溶体化処理工程)、
前記溶体化処理工程後の板材に、700~900℃で10~300秒保持する熱処理を施す工程(第1時効処理工程)、
圧延率5~50%以下の範囲で冷間圧延を施す工程(時効間冷間圧延工程)、
前記時効間冷間圧延工程後の板材に、400~620℃で0.5~75時間保持する熱処理を施す工程(第2時効処理工程)、
を含む製造工程により、板面に平行な観察面において面積0.1μm以上の析出物の面積率が2.0%以下である板材を得る、銅合金板材の製造方法。
Ni/Al≦9.0 …(1)
ここで、(1)式の元素記号の箇所には質量%で表される当該元素の含有量値が代入される。
[6]熱間圧延工程と溶体化処理工程の間に、
圧延率50%以上の冷間圧延を施す工程(冷間圧延工程)、
を含む、上記[5]に記載の銅合金板材の製造方法。
[7]上記[1]~[4]のいずれかに記載の銅合金板材を材料に用いた導電ばね部材。
In order to achieve the above object, the following inventions are disclosed in the present specification.
[1] In terms of mass%, Ni: 10.0 to 30.0%, Al: 1.00 to 6.50%, Ag: 0 to 0.50%, B: 0 to 0.10%, Co: 0. ~ 2.0%, Cr: 0 ~ 0.5%, Fe: 0 ~ 2.0%, Mg: 0 ~ 2.0%, Mn: 0 ~ 2.0%, P: 0 ~ 0.2% , Si: 0 to 2.0%, Sn: 0 to 2.0%, Ti: 0 to 2.0%, Zn: 0 to 2.0%, Zr: 0 to 0.3%, the balance is Cu and It is composed of unavoidable impurities, has a chemical composition satisfying the following formula (1), has an area ratio of 0.1 μm 2 or more on the observation surface parallel to the plate surface, and has an area ratio of 2.0% or less. A copper alloy plate having a hardness of 270 HV or more.
Ni / Al ≤ 9.0 ... (1)
Here, the content value of the element represented by mass% is substituted in place of the element symbol in the formula (1).
[2] The copper alloy plate material according to the above [1], wherein the number density of coarse precipitate particles having a major axis of 1.0 μm or more is 3.0 × 10 4 particles / mm 2 or less on an observation surface parallel to the plate surface.
[3] The copper according to the above [1] or [2], wherein the number density of fine precipitate particles having a major axis of 5 to 50 nm is 1.0 × 10 7 particles / mm 2 or more on an observation surface parallel to the plate surface. Alloy plate material.
[4] The copper alloy plate material according to any one of the above [1] to [3], wherein the tensile strength in the direction perpendicular to rolling is 900 MPa or more.
[5] In terms of mass%, Ni: 10.0 to 30.0%, Al: 1.00 to 6.50%, Ag: 0 to 0.50%, B: 0 to 0.10%, Co: 0. ~ 2.0%, Cr: 0 ~ 0.5%, Fe: 0 ~ 2.0%, Mg: 0 ~ 2.0%, Mn: 0 ~ 2.0%, P: 0 ~ 0.2% , Si: 0 to 2.0%, Sn: 0 to 2.0%, Ti: 0 to 2.0%, Zn: 0 to 2.0%, Zr: 0 to 0.3%, the balance is Cu and A step of heating a slab composed of unavoidable impurities and having a chemical composition satisfying the following formula (1) at 1000 to 1150 ° C. (slab heating step).
A process of hot rolling under the condition that the rolling temperature in the final rolling pass is 800 ° C or higher, and then cooling under the condition that the average cooling rate from 700 ° C to 600 ° C is 40 ° C / s or higher (hot rolling). Process),
A step of performing a heat treatment for holding at 950 to 1100 ° C. for 30 to 360 seconds (solution treatment step) with a tension of 10.0 to 20.0 N / mm 2 applied.
A step of subjecting the plate material after the solution treatment step to a heat treatment for holding at 700 to 900 ° C. for 10 to 300 seconds (first aging treatment step).
A process of cold rolling in a rolling ratio of 5 to 50% or less (aging cold rolling process),
A step of subjecting the plate material after the aging cold rolling step to a heat treatment for holding at 400 to 620 ° C. for 0.5 to 75 hours (second aging treatment step).
A method for producing a copper alloy plate material, wherein a plate material having an area ratio of a precipitate having an area of 0.1 μm 2 or more and an area ratio of 2.0% or less on an observation surface parallel to the plate surface is obtained by a manufacturing process including.
Ni / Al ≤ 9.0 ... (1)
Here, the content value of the element represented by mass% is substituted in place of the element symbol in the formula (1).
[6] Between the hot rolling process and the solution treatment process,
A process of performing cold rolling with a rolling ratio of 50% or more (cold rolling process),
The method for producing a copper alloy plate material according to the above [5].
[7] A conductive spring member using the copper alloy plate material according to any one of the above [1] to [4] as a material.

本明細書において「板面」とは、板材の板厚方向に対して垂直な表面である。「板面」は「圧延面」と呼ばれることもある。「面積0.1μm以上の析出物の面積率」は以下のようにして求めることができる。 As used herein, the "plate surface" is a surface perpendicular to the plate thickness direction of the plate material. The "plate surface" is sometimes called the "rolled surface". The "area ratio of precipitates having an area of 0.1 μm 2 or more" can be obtained as follows.

[面積0.1μm以上の析出物の面積率の求め方]
板面を下記電解研磨条件で電解研磨したのちエタノール中で20分間の超音波洗浄を施して得た観察面について、FE-SEM(電界放出形走査電子顕微鏡)により倍率2000倍の観察視野を無作為に設定して面積S(μm)である観察画像を得る。得られた画像を画像解析ソフトウェアで処理することにより、析出物に相当する領域(以下「析出物領域」と言う。)のうち、1つの独立した析出物領域の面積が0.1μm未満であるものを除いた、全析出物領域の合計面積S(μm)を求め、(S/S)×100の値をこの観察視野における析出物面積率A(%)とする。この操作を重複しない異なる5以上の視野について行い、各視野の析出物面積率Aの相加平均値を求め、これを当該板材の「面積0.1μm以上の析出物の面積率(%)」とする。
(電解研磨条件)
・電解液:蒸留水、リン酸、エタノール、2-プロパノールを10:5:5:1で混合
・液温:20℃
・電圧:15V
・電解時間:20秒
[How to determine the area ratio of precipitates with an area of 0.1 μm 2 or more]
The observation surface obtained by electrolytically polishing the plate surface under the following electrolytic polishing conditions and then subject to ultrasonic cleaning in ethanol for 20 minutes has no observation field with a magnification of 2000 times by FE-SEM (field emission scanning electron microscope). An observation image having an area S 0 (μm 2 ) is obtained by setting it at random. By processing the obtained image with image analysis software, the area of one independent precipitate region in the region corresponding to the precipitate (hereinafter referred to as “precipitate region”) is less than 0.1 μm 2 . The total area S 1 (μm 2 ) of the total precipitate region excluding certain ones is obtained, and the value of (S 1 / S 0 ) × 100 is defined as the precipitate area ratio A (%) in this observation field. This operation is performed for five or more different visual fields that do not overlap, and the arithmetic mean value of the precipitate area ratio A of each visual field is obtained, and this is calculated as "area ratio (%) of precipitates having an area of 0.1 μm 2 or more" of the plate material. ".
(Electropolishing conditions)
・ Electrolyte: Distilled water, phosphoric acid, ethanol, 2-propanol are mixed at 10: 5: 5: 1 ・ Liquid temperature: 20 ° C
・ Voltage: 15V
・ Electrolysis time: 20 seconds

前記のビッカース硬さは、JIS Z2244:2009に準拠して測定される板材の板面についてのビッカース硬さを採用することができる。 As the Vickers hardness, the Vickers hardness of the plate surface of the plate material measured in accordance with JIS Z2244: 2009 can be adopted.

粒子の「長径」は、粒子を取り囲む最小円の直径(μmあるいはnm)として定義される。「長径1.0μm以上の粗大析出物粒子の個数密度」および「長径5~50nmの微細析出物粒子の個数密度」は、それぞれ以下のようにして求めることができる。 The "major axis" of a particle is defined as the diameter (μm or nm) of the smallest circle surrounding the particle. The "number density of coarse precipitate particles having a major axis of 1.0 μm or more" and the "number density of fine precipitate particles having a major axis of 5 to 50 nm" can be obtained as follows.

[粗大析出物粒子の個数密度の求め方]
板面を下記の電解研磨条件で電解研磨してCu素地のみを溶解させることにより析出物粒子を露出させたのちエタノール中で20分間の超音波洗浄を施して得た観察面について、FE-SEM(電界放出形走査電子顕微鏡)により観察し、FE-SEM画像上に観測される長径1.0μm以上の析出物粒子の総個数を観察総面積(mm)で除した値を、粗大析出物粒子の粒子個数密度(個/mm)とする。観察総面積は、無作為に設定した重複しない複数の観察視野により合計0.1mm以上とする。観察視野から一部がはみ出している析出物粒子は、観察視野内に現れている部分の長径が1.0μm以上であればカウント対象とする。
(電解研磨条件)
・電解液:蒸留水、リン酸、エタノール、2-プロパノールを10:5:5:1で混合
・液温:20℃
・電圧:15V
・電解時間:20秒
[How to determine the number density of coarse precipitate particles]
The FE-SEM was obtained by electrolyzing the plate surface under the following electrolysis conditions to dissolve only the Cu substrate to expose the precipitate particles, and then subjecting the plate surface to ultrasonic cleaning in ethanol for 20 minutes. The value obtained by dividing the total number of precipitate particles having a major axis of 1.0 μm or more observed on the FE-SEM image by the total observed area (mm 2 ) when observed by (electrolyzed scanning electron microscope) is the coarse precipitate. The particle number density of the particles (pieces / mm 2 ). The total observation area shall be 0.1 mm 2 or more in total based on a plurality of non-overlapping observation fields set at random. Precipitate particles partially protruding from the observation field of view are counted if the major axis of the part appearing in the observation field of view is 1.0 μm or more.
(Electropolishing conditions)
・ Electrolyte: Distilled water, phosphoric acid, ethanol, 2-propanol are mixed at 10: 5: 5: 1 ・ Liquid temperature: 20 ° C
・ Voltage: 15V
・ Electrolysis time: 20 seconds

[微細析出物粒子の個数密度の求め方]
板面を上掲「面積0.1μm以上の析出物の面積率の求め方」に記載した電解研磨条件で電解研磨したのちエタノール中で20分間の超音波洗浄を施して得た観察面について、FE-SEM(電界放出形走査電子顕微鏡)により倍率10万倍で観察し、面積0.1μm以上の粒子の一部または全部が視野中に含まれない観察視野を無作為に設定する。その観察視野について、粒子の輪郭全体が見えている粒子のうち長径が5~50nmである析出物粒子の数をカウントする。この操作を領域が重複しない10以上の観察視野について行い、観察した全視野での前記カウント数の合計NTOTALを観察視野の総面積で除した値を、1mmあたりの個数に換算し、これを微細析出物粒子の個数密度(個/mm)とする。
[How to determine the number density of fine precipitate particles]
About the observation surface obtained by electropolishing the plate surface under the electropolishing conditions described in "How to determine the area ratio of precipitates with an area of 0.1 μm 2 or more" and then performing ultrasonic cleaning in ethanol for 20 minutes. , FE-SEM (field emission scanning electron microscope) is used for observation at a magnification of 100,000 times, and an observation field is randomly set in which some or all of the particles having an area of 0.1 μm 2 or more are not included in the field. For the observation field of view, the number of precipitate particles having a major axis of 5 to 50 nm among the particles in which the entire outline of the particles is visible is counted. This operation is performed for 10 or more observation fields where the regions do not overlap, and the value obtained by dividing the total N TOTAL of the counts in all the observed fields by the total area of the observation field is converted into the number per 1 mm 2 . Is the number density of fine precipitate particles (pieces / mm 2 ).

ある板厚t(mm)からある板厚t(mm)までの圧延率は、下記(2)式により求まる。
圧延率(%)=[(t-t)/t]×100 …(2)
The rolling ratio from a certain plate thickness t 0 (mm) to a certain plate thickness t 1 (mm) can be obtained by the following equation (2).
Rolling rate (%) = [(t 0 -t 1 ) / t 0 ] x 100 ... (2)

本発明によれば、白色調の金属外観を呈する組成域のCu-Ni-Al系銅合金の板材において、高強度を有し、疲労特性が顕著に改善されており、かつ耐変色性に優れるものが提供可能となった。 According to the present invention, in a Cu—Ni—Al-based copper alloy plate material having a white metallic appearance in a composition range, it has high strength, fatigue characteristics are remarkably improved, and discoloration resistance is excellent. Things are now available.

画像解析ソフトウェアにおける「Threshold」画面を例示した図。The figure which illustrated the "Threshold" screen in the image analysis software. 比較例No.35について、倍率2000倍のFE-SEM観察画像(上段)と、それを画像処理して得られた「面積0.1μm以上の析出物」の存在箇所を表すマッピング画像(下段)を例示した図。For Comparative Example No. 35, an FE-SEM observation image (upper) at a magnification of 2000 times and a mapping image (lower) showing the location of the “precipitate having an area of 0.1 μm 2 or more” obtained by image processing the image (upper). ) Is illustrated. 本発明例No.6について、倍率2000倍のFE-SEM観察画像(上段)と、それを画像処理して得られた「面積0.1μm以上の析出物」の存在箇所を表すマッピング画像(下段)を例示した図。Regarding Example No. 6 of the present invention, an FE-SEM observation image (upper) at a magnification of 2000 times and a mapping image showing the location of the “precipitate having an area of 0.1 μm 2 or more” obtained by image processing the image (upper). The figure exemplifying the lower row).

[化学組成]
本発明では、Cu-Ni-Al系銅合金を対象とする。以下、合金成分に関する「%」は、特に断らない限り「質量%」を意味する。
[Chemical composition]
The present invention targets Cu—Ni—Al-based copper alloys. Hereinafter, "%" regarding the alloy component means "mass%" unless otherwise specified.

Niは、CuとともにCu-Ni-Al系銅合金のマトリックス(金属素地)を構成する主要な元素である。また、合金中のNiの一部はAlと結合してNi-Al系析出物を形成し、その微細な粒子は強度の向上に寄与する。十分な強度を得るためには10%以上のNi含有量を確保することが望ましい。また、Ni含有量の増大に伴って、他の一般的な銅合金と比べ白色調の金属外観を呈するようになる。ただし、他の銅合金と同様、高湿環境に曝されると金属表面に薄い酸化皮膜が形成され、外観として判る程度に変色することがある。その場合、美麗な白色外観が損なわれる。特に耐変色性を重視する場合、Ni含有量を12.0%以上と高くし、かつAl含有量を後述のように確保することがより好ましい。15.0%以上のNi含有量とすることがより効果的である。一方、Ni含有量が多くなると熱間加工性が悪くなる。Ni含有量は30.0%以下に制限され、25.0%以下に制限してもよい。また、Ni含有量を18.0%以上22.0%以下に管理してもよい。 Ni, together with Cu, is a major element constituting a matrix (metal base) of a Cu—Ni—Al-based copper alloy. Further, a part of Ni in the alloy combines with Al to form a Ni—Al-based precipitate, and the fine particles contribute to the improvement of strength. In order to obtain sufficient strength, it is desirable to secure a Ni content of 10% or more. Further, as the Ni content increases, a whiter metallic appearance is exhibited as compared with other general copper alloys. However, like other copper alloys, when exposed to a high humidity environment, a thin oxide film is formed on the metal surface, and the color may change to the extent that it can be seen from the outside. In that case, the beautiful white appearance is impaired. In particular, when discoloration resistance is important, it is more preferable to increase the Ni content to 12.0% or more and secure the Al content as described later. It is more effective to set the Ni content to 15.0% or more. On the other hand, when the Ni content is high, the hot workability deteriorates. The Ni content is limited to 30.0% or less and may be limited to 25.0% or less. Further, the Ni content may be controlled to 18.0% or more and 22.0% or less.

Alは、Ni-Al系析出物を形成する元素である。Al含有量が少なすぎると強度向上が不十分となる。また、Ni含有量の増加に伴ってAl含有量も増加させることによって、耐変色性を改善することができる。さらに、十分な強度レベルを得ながら疲労特性を向上させるためにはNi/Al比が高くなりすぎないように成分調整することが重要であることがわかった。種々検討の結果、Al含有量は1.00%以上とし、かつ下記(1)式を満たすNi/Al比とする必要がある。下記(1)’式を満たすことがより好ましい。
Ni/Al≦9.0 …(1)
2.0≦Ni/Al≦8.0 …(1)’
ここで、(1)式、(1)’式の元素記号の箇所には質量%で表される当該元素の含有量値が代入される。
一方、Al含有量が過大になると熱間加工性が悪くなる。Al含有量は6.50%以下に制限される。
Al is an element that forms a Ni—Al-based precipitate. If the Al content is too small, the strength improvement will be insufficient. Further, the discoloration resistance can be improved by increasing the Al content as the Ni content increases. Furthermore, it was found that it is important to adjust the components so that the Ni / Al ratio does not become too high in order to improve the fatigue characteristics while obtaining a sufficient strength level. As a result of various studies, it is necessary that the Al content is 1.00% or more and the Ni / Al ratio satisfies the following formula (1). It is more preferable to satisfy the following equation (1)'.
Ni / Al ≤ 9.0 ... (1)
2.0 ≤ Ni / Al ≤ 8.0 ... (1)'
Here, the content value of the element represented by mass% is substituted in the place of the element symbol of the equations (1) and (1)'.
On the other hand, if the Al content is excessive, the hot workability deteriorates. The Al content is limited to 6.50% or less.

その他の元素として、必要に応じてAg、B、Co、Cr、Fe、Mg、Mn、P、Si、Sn、Ti、Zn、Zr等を含有させることができる。これらの元素の含有量範囲は、Ag:0~0.50%、B:0~0.10%、Co:0~2.0%、Cr:0~0.5%、Fe:0~2.0%、Mg:0~2.0%、Mn:0~2.0%、P:0~0.2%、Si:0~2.0%、Sn:0~2.0%、Ti:0~2.0%、Zn:0~2.0%、Zr:0~0.3%である。また、これら任意添加元素の総量は2.0%以下とすることが望ましく、1.2%以下、あるいは0.5%以下としてもよい。 As other elements, Ag, B, Co, Cr, Fe, Mg, Mn, P, Si, Sn, Ti, Zn, Zr and the like can be contained, if necessary. The content range of these elements is Ag: 0 to 0.50%, B: 0 to 0.10%, Co: 0 to 2.0%, Cr: 0 to 0.5%, Fe: 0 to 2. .0%, Mg: 0 to 2.0%, Mn: 0 to 2.0%, P: 0 to 0.2%, Si: 0 to 2.0%, Sn: 0 to 2.0%, Ti : 0 to 2.0%, Zn: 0 to 2.0%, Zr: 0 to 0.3%. Further, the total amount of these optional additive elements is preferably 2.0% or less, and may be 1.2% or less, or 0.5% or less.

[面積0.1μm以上の析出物の面積率]
本発明で対象とするCu-Ni-Al系銅合金では、Ni-Al系の金属間化合物を主体とする第二相が生成しやすい。その第二相のうち、時効処理によって結晶粒内に微細に析出する粒子(後述の「微細析出物」)は強度向上に寄与する。しかし、この合金系では時効処理時に結晶粒界での不連続析出が生じてしまい、結晶粒界に存在する粒界析出物が疲労特性の向上を阻む要因となっていた。また、結晶粒界での不連続析出とは別に、結晶粒内には溶体化処理で十分に固溶しきれなかった第二相や、結晶粒内での連続析出により生成した析出物などが粗大化して、ミクロンオーダーの粗大な粒子(後述の「粗大析出物」)が形成される場合もある。
[Area ratio of precipitates with an area of 0.1 μm 2 or more]
In the Cu—Ni—Al-based copper alloy targeted by the present invention, a second phase mainly composed of a Ni—Al-based intermetallic compound is likely to be generated. Of the second phase, particles finely deposited in crystal grains by aging treatment (“fine precipitates” described later) contribute to the improvement of strength. However, in this alloy system, discontinuous precipitation at the grain boundaries occurs during the aging treatment, and the grain boundary precipitates existing at the grain boundaries are a factor that hinders the improvement of the fatigue characteristics. In addition to the discontinuous precipitation at the grain boundaries, the second phase, which could not be sufficiently solid-dissolved by the solution treatment, and the precipitates generated by the continuous precipitation in the crystal grains are contained in the crystal grains. It may be coarsened to form micron-order coarse particles (“coarse precipitates” described below).

発明者らは、本合金系で疲労特性に影響を及ぼす析出物のサイズや量について,詳細に研究を行ってきた。その結果、金属組織中に観察される面積0.1μm以上の析出物の存在量を低減することが極めて有効であるとの知見を得た。具体的には、板面に平行な観察面において面積0.1μm以上の析出物の面積率が2.0%以下である組織状態とすることにより、疲労特性の顕著な改善効果が得られる。面積0.1μm以上の析出物の面積率を1.6%以下とすることがより効果的であり、1.0%以下とすることが更に効果的である。 The inventors have conducted detailed studies on the size and amount of precipitates that affect fatigue properties in this alloy system. As a result, it was found that it is extremely effective to reduce the abundance of precipitates having an area of 0.1 μm 2 or more observed in the metallographic structure. Specifically, by setting the texture state in which the area ratio of the precipitate having an area of 0.1 μm 2 or more is 2.0% or less on the observation surface parallel to the plate surface, a remarkable improvement effect of fatigue characteristics can be obtained. .. It is more effective to set the area ratio of the precipitate having an area of 0.1 μm 2 or more to 1.6% or less, and further to set it to 1.0% or less.

面積0.1μm以上の析出物には「粒界析出物」と「粒内析出物」の両方が含まれるが、金属組織中の面積率において、面積0.1μm以上の析出物の大部分は「粒界析出物」で占められる。疲労特性には、特に粒界析出物のサイズおよび量による影響が大きい。したがって、上掲の「面積0.1μm以上の析出物の面積率の求め方」により特定される面積率を低減することは、本合金系の板材の疲労特性を向上させるための手段として極めて有効である。 Precipitates with an area of 0.1 μm 2 or more include both “grain boundary precipitates” and “intragrain precipitates”, but the area ratio in the metal structure is large for precipitates with an area of 0.1 μm 2 or more. The portion is occupied by "grain boundary precipitates". Fatigue characteristics are particularly affected by the size and amount of grain boundary precipitates. Therefore, reducing the area ratio specified by the above-mentioned "Method for determining the area ratio of precipitates having an area of 0.1 μm 2 or more" is extremely a means for improving the fatigue characteristics of the plate material of this alloy system. It is valid.

[ビッカース硬さ]
本発明のCu-Ni-Al系銅合金板材は、時効処理によって高強度化されたものである。時効処理による高強度化の指標として、ビッカース硬さを採用することができる。導電ばね部材の小型化ニーズに十分に対応するためには、ビッカース硬さが270HV以上であることが望まれる。300HV以上であることがより好ましく、320HV以上であることが一層好ましく、330HV以上としてもよい。
[Vickers hardness]
The Cu—Ni—Al-based copper alloy plate material of the present invention has been increased in strength by aging treatment. Vickers hardness can be adopted as an index for increasing the strength by aging treatment. In order to sufficiently meet the needs for miniaturization of the conductive spring member, it is desired that the Vickers hardness is 270 HV or more. It is more preferably 300 HV or more, further preferably 320 HV or more, and may be 330 HV or more.

[長径1.0μm以上の粗大析出物粒子の個数密度]
長径1.0μm以上の粗大析出物粒子は上述の「面積0.1μm以上の析出物の面積率」の一部を占める。面積0.1μm以上の析出物の面積率が大きい場合には、長径1.0μm以上の粗大析出物粒子の個数密度も多くなる傾向にある。ただし、溶体化処理後に残留した第二相に起因する粗大粒子や、時効処理時に粗大成長することによって生じた結晶粒内の粗大析出物などは、疲労特性に大きな悪影響を及ぼさない。それらはむしろ曲げ加工性の低下要因となる。長径1.0μm以上の粗大析出物粒子は強度向上に寄与しないことから、その存在量は少ないことが望ましい。長径1.0μm以上の粗大析出物粒子の存在密度は3.0×10個/mm以下であることが好ましい。曲げ加工性を重視する用途を考慮すると、長径1.0μm以上の粗大析出物粒子の存在密度は0.3×10個/mm以下と極めて少ないことがより好ましい。
[Number density of coarse precipitate particles with a major axis of 1.0 μm or more]
Coarse precipitate particles having a major axis of 1.0 μm or more occupy a part of the above-mentioned “area ratio of precipitates having an area of 0.1 μm 2 or more”. When the area ratio of the precipitate having an area of 0.1 μm 2 or more is large, the number density of the coarse precipitate particles having a major axis of 1.0 μm or more tends to increase. However, the coarse particles caused by the second phase remaining after the solution treatment and the coarse precipitates in the crystal grains generated by the coarse growth during the aging treatment do not have a great adverse effect on the fatigue characteristics. Rather, they cause a decrease in bending workability. Since coarse precipitate particles having a major axis of 1.0 μm or more do not contribute to the improvement of strength, it is desirable that the abundance thereof is small. The abundance density of coarse precipitate particles having a major axis of 1.0 μm or more is preferably 3.0 × 10 4 particles / mm 2 or less. Considering the use in which bending workability is important, the abundance density of coarse precipitate particles having a major axis of 1.0 μm or more is more preferably 0.3 × 10 4 particles / mm 2 or less, which is extremely small.

[長径5~50nmの微細析出物粒子の個数密度]
長径5~50nmの微細析出物粒子は、マトリックス(金属素地)中に分散して存在することにより強度向上に寄与する。そのなかでも長径が20nm程度以上のものは曲げ加工性の向上にも寄与する。本発明対象のCu-Ni-Al系銅合金において生成する微細析出物は、金属間化合物NiAlを主体とするNi-Al系析出相である。強度向上や曲げ加工性の観点から、長径5~50nmの微細析出物粒子の個数密度は1.0×10個/mm以上であることが好ましい。特に、例えば圧延直角方向(TD)の引張強さが1000MPa以上というような、銅合金としてかなり高い強度レベルを安定して得るためには、長径5~50nmの微細析出物粒子の個数密度を5.0×10個/mm以上とすることが好ましく、8.0×10個/mm以上としてもよい。
[Number density of fine precipitate particles with a major axis of 5 to 50 nm]
The fine precipitate particles having a major axis of 5 to 50 nm contribute to the improvement of strength by being dispersed in the matrix (metal substrate). Among them, those having a major axis of about 20 nm or more also contribute to the improvement of bending workability. The fine precipitate formed in the Cu—Ni—Al-based copper alloy of the present invention is a Ni—Al-based precipitate phase mainly composed of the intermetallic compound Ni 3 Al. From the viewpoint of strength improvement and bending workability, the number density of fine precipitate particles having a major axis of 5 to 50 nm is preferably 1.0 × 10 7 / mm 2 or more. In particular, in order to stably obtain a fairly high strength level as a copper alloy, for example, the tensile strength in the direction perpendicular to rolling (TD) is 1000 MPa or more, the number density of fine precipitate particles having a major axis of 5 to 50 nm is set to 5. It is preferably .0 × 10 7 pieces / mm 2 or more, and may be 8.0 × 10 7 pieces / mm 2 or more.

[引張強さ]
小型化・薄肉化が進展する導電ばね部材の素材に用いる銅合金板材として、圧延直角方向(TD)の引張強さは900MPa以上であることが望まれ、950MPa以上であることがより好ましい。また、後述の実施例に示すように、圧延直角方向の引張強さを1000MPa以上や、1100MPa以上に調整することも可能であり、用途に応じた強度レベルを実現することができる。そのような高い強度レベルの銅合金板材は白色調の外観とも相まって、本来導電性が銅系材料より低い鉄系の導電ばね部材の代替にも適している。
[Tensile strength]
As a copper alloy plate material used as a material for conductive spring members that are becoming smaller and thinner, the tensile strength in the direction perpendicular to rolling (TD) is desired to be 900 MPa or more, and more preferably 950 MPa or more. Further, as shown in Examples described later, it is possible to adjust the tensile strength in the direction perpendicular to rolling to 1000 MPa or more or 1100 MPa or more, and it is possible to realize a strength level according to the application. Such a high-strength level copper alloy plate material, coupled with a white-like appearance, is also suitable as a substitute for an iron-based conductive spring member whose conductivity is originally lower than that of a copper-based material.

[製造方法]
以上説明した銅合金板材は、例えば以下のような製造工程により作ることができる。
溶解・鋳造→鋳片加熱→熱間圧延→冷間圧延→(中間焼鈍→冷間圧延)→溶体化処理→→第1時効処理→時効間冷間圧延→第2時効処理
なお、上記工程中には記載していないが、熱間圧延後には必要に応じて面削が行われ、各熱処理後には必要に応じて酸洗、研磨、あるいは更に脱脂が行われる。以下、各工程について説明する。
[Production method]
The copper alloy plate material described above can be produced, for example, by the following manufacturing process.
Melting / casting → slab heating → hot rolling → cold rolling → (intermediate annealing → cold rolling) → solution heat treatment → → 1st aging treatment → aging cold rolling → 2nd aging treatment Although not described in the above, after hot rolling, surface milling is performed as necessary, and after each heat treatment, pickling, polishing, or further degreasing is performed as necessary. Hereinafter, each step will be described.

[溶解・鋳造]
連続鋳造、半連続鋳造等により鋳片を製造すればよい。Alの酸化を防止する観点から、チャンバー内で不活性ガス雰囲気下または真空下での溶解を行うことが好ましい。
[Melting / Casting]
The slab may be manufactured by continuous casting, semi-continuous casting, or the like. From the viewpoint of preventing the oxidation of Al, it is preferable to carry out the dissolution in the chamber under an atmosphere of an inert gas or under vacuum.

[鋳片加熱]
鋳片を1000~1150℃で加熱保持する。この加熱は熱間圧延時の鋳片加熱工程を利用して実施することができる。従来、Cu-Ni-Al系銅合金の鋳片加熱は950℃以下の温度で行われることが多かった。本発明ではNiおよびAlの含有量が高い組成域において、時効処理で連続析出を促進させて強度に寄与する微細析出物を結晶粒内で十分に生成させるとともに、疲労特性向上を阻害する結晶粒界での不連続析出を抑制する必要がある。そのためには、鋳片を上記の高温に加熱することにより、鋳造組織中に存在する粗大な第二相をできるだけ固溶させておくことが有効となる。ただし、1150℃を超えると鋳造組織中の融点が低い部分が脆弱となり、熱間圧延で割れが生じる恐れがある。上記温度範囲での加熱保持時間は1.5時間以上とすることがより効果的であり、2時間以上とすることが更に効果的である。経済性を考慮し、上記温度域での鋳片加熱時間は5時間以下の範囲で設定することが望ましい。
[Cast heating]
The slab is heated and held at 1000 to 1150 ° C. This heating can be carried out by utilizing the slab heating step at the time of hot rolling. Conventionally, slab heating of a Cu—Ni—Al-based copper alloy has often been performed at a temperature of 950 ° C. or lower. In the present invention, in the composition range where the Ni and Al contents are high, the crystal grains that promote continuous precipitation by aging treatment to sufficiently generate fine precipitates that contribute to strength in the crystal grains and inhibit the improvement of fatigue characteristics. It is necessary to suppress discontinuous precipitation at the boundary. For that purpose, it is effective to heat the slab to the above-mentioned high temperature to dissolve the coarse second phase existing in the cast structure as much as possible. However, if the temperature exceeds 1150 ° C., the portion of the cast structure having a low melting point becomes fragile, and there is a risk of cracking during hot rolling. It is more effective that the heating holding time in the above temperature range is 1.5 hours or more, and it is more effective that the heating holding time is 2 hours or more. Considering economic efficiency, it is desirable to set the slab heating time in the above temperature range within the range of 5 hours or less.

[熱間圧延]
熱間圧延では、最終パスの圧延温度を800℃以上とする。各圧延パスの温度は、その圧延パスでワークロールから出た直後の材料の表面温度によって表すことができる。最終パスでの圧延を終えた後には、できるだけ速やかに強制冷却を開始し、700℃から600℃までの平均冷却速度が40℃/s以上となる条件で冷却する。このような条件で熱間圧延行程を終了することにより、不要な析出を抑えた熱間圧延材を得ることができ、それが後述の第2時効処理工程での粒界析出抑制、すなわち前述の「面積0.1μm以上の析出物の面積率」の顕著な低減に極めて有効であることがわかった。量産現場の操業において800℃以上の最終パス圧延温度を安定して実現する観点から、熱間圧延後の板厚(仕上板厚)は例えば5~15mmの範囲とすることが好ましく、7~15mmの範囲とすることがより好ましい。
[Hot rolling]
In hot rolling, the rolling temperature of the final pass is set to 800 ° C. or higher. The temperature of each rolling pass can be represented by the surface temperature of the material immediately after leaving the work roll at that rolling pass. After the rolling in the final pass is completed, forced cooling is started as soon as possible, and cooling is performed under the condition that the average cooling rate from 700 ° C. to 600 ° C. is 40 ° C./s or more. By terminating the hot rolling process under such conditions, it is possible to obtain a hot rolled material in which unnecessary precipitation is suppressed, which is the suppression of grain boundary precipitation in the second aging treatment step described later, that is, the above-mentioned description. It was found to be extremely effective in significantly reducing the "area ratio of precipitates having an area of 0.1 μm 2 or more". From the viewpoint of stably achieving a final pass rolling temperature of 800 ° C. or higher in the operation of a mass production site, the plate thickness (finished plate thickness) after hot rolling is preferably in the range of, for example, 5 to 15 mm, preferably 7 to 15 mm. It is more preferable to set it in the range of.

熱間圧延後の強制冷却手段としては水冷が一般的であり、例えば特許文献2にも、Cu-Ni-Al系銅合金の熱間圧延後に「水冷などにより急冷することが好ましい」と記載されている(段落0033)。本発明においても水冷を採用することができる。ただし、量産現場で行われている通常の熱間圧延では、例えば板厚5~15mmといった比較的厚い熱延板の板幅全体において上記の速い冷却速度に厳密にコントロールすることは設備上の制約もあり必ずしも容易ではなく、通常の水冷による「急冷」では、本発明で必要とする冷却速度は得られていなかった。特許文献2の技術においても上記のような速い冷却速度への厳密なコントロールは必要とされていない。水冷能力を増強した設備を使用することにより、800℃以上という高い最終パス圧延温度と、40℃/s以上という速い冷却速度の両立が可能となる。 Water cooling is generally used as the forced cooling means after hot rolling. For example, Patent Document 2 also describes that after hot rolling of a Cu—Ni—Al copper alloy, “quick cooling by water cooling or the like is preferable”. (Paragraph 0033). Water cooling can also be adopted in the present invention. However, in normal hot rolling performed at mass production sites, it is a facility limitation to strictly control the above-mentioned fast cooling rate over the entire plate width of a relatively thick hot-rolled plate having a plate thickness of 5 to 15 mm, for example. Therefore, it is not always easy, and the cooling rate required by the present invention has not been obtained by "quenching" by ordinary water cooling. Even in the technique of Patent Document 2, strict control to the high cooling rate as described above is not required. By using equipment with enhanced water cooling capacity, it is possible to achieve both a high final pass rolling temperature of 800 ° C or higher and a fast cooling rate of 40 ° C / s or higher.

[冷間圧延]
溶体化処理の前に、冷間圧延を施し、板厚を調整しておくことができる。必要に応じて「中間焼鈍→冷間圧延」の工程を1回または複数回加えてもよい。溶体化処理前に行う冷間圧延での圧延率(中間焼鈍を行う場合は最後の中間焼鈍後の冷間圧延での圧延率)は例えば50%以上とすることができる。圧延率の上限は、ミルの能力に応じて、例えば99.5%以下の範囲で設定すればよい。
[Cold rolling]
Before the solution treatment, cold rolling can be performed to adjust the plate thickness. If necessary, the process of "intermediate annealing → cold rolling" may be added once or multiple times. The rolling ratio in cold rolling before the solution treatment (in the case of intermediate annealing, the rolling ratio in cold rolling after the final intermediate annealing) can be, for example, 50% or more. The upper limit of the rolling ratio may be set in the range of, for example, 99.5% or less according to the capacity of the mill.

[溶体化処理]
溶体化処理は、時効処理前にNi-Al系の第二相を十分に固溶させること(溶体化)が主目的である。本発明では一般的なCu-Ni-Al系銅合金の溶体化処理温度(800~900℃程度)よりも高温に加熱する。具体的には、950~1100℃の温度域に材料が保持される時間を30~360秒とする。このような高温域に加熱すると、保持時間が上記のように短くても第二相を十分に固溶させることができる。特許文献2の技術においても同様の高温域で短時間の溶体化処理を施す手法を採用している、ただし、本発明ではこの溶体化処理を、材料に10.0~20.0N/mmの高い張力が付与された状態で行う。この溶体化処理条件に従うことが、疲労特性の顕著な向上効果を安定的に得る上で極めて有効であることがわかった。そのメカニズムについては現時点で必ずしも明確ではないが、高い張力付与下での高温短時間の溶体化処理によって、適度に歪が付与された再結晶組織が形成されると考えられ、その結晶粒内の歪が時効析出の起点サイトとして機能して結晶粒内での微細析出が促進され、その結果、粒界反応が抑制されて疲労特性が向上するのではないかと推察される。この張力が低すぎても高すぎても、粒界析出物の量が多くなって「面積0.1μm以上の析出物の面積率」が増加し、疲労特性の顕著な向上は実現できないことから、発明者らは溶体化処理での適度な歪の導入が粒内析出の核として機能するものと考えている。
[Solution processing]
The main purpose of the solution treatment is to sufficiently dissolve the second phase of the Ni—Al system (solution formation) before the aging treatment. In the present invention, the temperature is higher than the solution treatment temperature (about 800 to 900 ° C.) of a general Cu—Ni—Al-based copper alloy. Specifically, the time for holding the material in the temperature range of 950 to 1100 ° C. is 30 to 360 seconds. When heated to such a high temperature range, the second phase can be sufficiently solid-dissolved even if the holding time is short as described above. The technique of Patent Document 2 also employs a method of performing a short-time solution treatment in a high temperature region. However, in the present invention, this solution treatment is applied to a material at 10.0 to 20.0 N / mm 2 . Perform with high tension applied. It was found that following these solution treatment conditions is extremely effective in stably obtaining the effect of significantly improving fatigue characteristics. The mechanism is not always clear at this time, but it is considered that a recrystallized structure with moderate strain is formed by high temperature and short time solution treatment under high tension application, and the inside of the crystal grains is considered to be formed. It is speculated that the strain functions as the starting site of aging precipitation and promotes fine precipitation in the crystal grains, and as a result, the grain boundary reaction is suppressed and the fatigue characteristics are improved. If this tension is too low or too high, the amount of grain boundary precipitates will increase and the "area ratio of precipitates with an area of 0.1 μm 2 or more" will increase, and it will not be possible to achieve a significant improvement in fatigue characteristics. Therefore, the inventors believe that the introduction of appropriate strain in the solution treatment functions as the core of intragranular precipitation.

張力は、例えば連続熱処理炉を通板させながら加熱ゾーンの両端にあるブライドルロールの駆動力によって制御することができる。張力の方向は圧延方向となる。溶体化処理に引き続き第1時効処理に供するが、第1時効処理は溶体化処理の冷却過程において行うことも可能である。溶体化処理後に常温付近まで冷却する場合は、例えば900℃から300℃までの平均冷却速度が100℃/s以上となるように急冷することが好ましい。 The tension can be controlled by, for example, the driving force of the bridle rolls at both ends of the heating zone while passing through a continuous heat treatment furnace. The direction of tension is the rolling direction. The first aging treatment is performed following the solution treatment, but the first aging treatment can also be performed in the cooling process of the solution treatment. When cooling to around room temperature after the solution treatment, it is preferable to rapidly cool the product so that the average cooling rate from 900 ° C. to 300 ° C. is 100 ° C./s or more.

[第1時効処理]
溶体化処理後には冷間圧延による加工歪を付与することなく、直接第1時効処理に供する。第1時効処理は700~900℃で10~300秒保持する条件で行う。張力付与下での溶体化処理によって上述のように歪が付与された再結晶組織が得られていると考えられる。そのような組織状態に前記条件の加熱を施すと、結晶粒内に連続析出の核が多数形成され、それが結果的に第2時効処理での粒界析出物の生成を抑制する上で有効に機能するものと推察される。第1時効処理の加熱保持後には700℃から600℃までの平均冷却速度が70℃/s以上となる条件で冷却することが好ましい。第1時効処理は短時間であるため、連続熱処理炉にて行うことが効率的である。
[1st aging process]
After the solution treatment, it is directly subjected to the first aging treatment without imparting processing strain due to cold rolling. The first aging treatment is carried out under the condition of holding at 700 to 900 ° C. for 10 to 300 seconds. It is considered that the recrystallized structure to which the strain is applied as described above is obtained by the solution treatment under the application of tension. When such a texture state is heated under the above conditions, a large number of continuous precipitation nuclei are formed in the crystal grains, which is effective in suppressing the formation of grain boundary precipitates in the second aging treatment as a result. It is presumed that it works for. After the heat retention of the first aging treatment, it is preferable to cool under the condition that the average cooling rate from 700 ° C. to 600 ° C. is 70 ° C./s or more. Since the first aging treatment is short, it is efficient to perform it in a continuous heat treatment furnace.

[時効間冷間圧延]
第1時効処理と第2時効処理の間に冷間圧延を施す。この冷間圧延を本明細書では「時効間冷間圧延」と呼んでいる。この冷間圧延は、最終的な板厚を得るための最後の冷間圧延とすることができる。例えば板厚0.03~0.5mmに仕上げることが好ましい。時効間冷間圧延での圧延率は5~50%の範囲とする必要があり、5~40%の範囲とすることがより好ましい。第1時効処理を終えた材料に対して、この比較的軽度の冷間圧延を施すことによって、加工歪(すなわち転位)が適度に導入され、第2時効処理で結晶粒内の連続析出が促進される。時効間冷間圧延の圧延率が高すぎると粒界析出物の多い組織状態となり、疲労特性の顕著な改善は望めない。
[Aging cold rolling]
Cold rolling is performed between the first aging treatment and the second aging treatment. This cold rolling is referred to as "aging cold rolling" in the present specification. This cold rolling can be the final cold rolling to obtain the final plate thickness. For example, it is preferable to finish the plate with a thickness of 0.03 to 0.5 mm. The rolling ratio in aging cold rolling needs to be in the range of 5 to 50%, more preferably in the range of 5 to 40%. By subjecting the material that has undergone the first aging treatment to this relatively light cold rolling, processing strain (that is, dislocation) is appropriately introduced, and continuous precipitation in the crystal grains is promoted by the second aging treatment. Will be done. If the rolling ratio of aging cold rolling is too high, the structure state has a large amount of grain boundary precipitates, and no significant improvement in fatigue characteristics can be expected.

[第2時効処理]
次いで最終的な時効処理として「第2時効処理」を施す。第2時効処理は、上記の時効間冷間圧延を終えた組織状態の材料に対し、400~620℃で0.5~75時間保持する条件範囲内で行う。この条件範囲内において、目的とする強度レベルに応じて、ビッカース硬さが270HV以上となる時効条件を設定することができる。第2時効処理によって結晶粒内に微細析出物が分散した組織が得られ、高強度化が実現する。同時に粒界析出物の生成は顕著に抑制され「面積0.1μm以上の析出物の面積率」が少ない組織状態となり、疲労特性の顕著な改善効果が安定して得られる。第2時効処理はバッチ式熱処理炉を使用して窒素雰囲気下で行うことが望ましい。
[Second aging process]
Next, a "second aging process" is performed as the final aging process. The second aging treatment is carried out within the condition range of holding the material in the microstructured state after the above-mentioned aging cold rolling at 400 to 620 ° C. for 0.5 to 75 hours. Within this condition range, the aging condition at which the Vickers hardness is 270 HV or more can be set according to the target strength level. By the second aging treatment, a structure in which fine precipitates are dispersed in the crystal grains is obtained, and high strength is realized. At the same time, the formation of grain boundary precipitates is remarkably suppressed, and the structure state has a small "area ratio of precipitates having an area of 0.1 μm 2 or more", and a remarkable improvement effect of fatigue characteristics can be stably obtained. It is desirable that the second aging treatment be performed in a nitrogen atmosphere using a batch heat treatment furnace.

以上のようにして得られた本発明に従う板材を素材として、プレス成形加工や曲げ加工を含む加工を施し、耐久性の高い導電ばね部材を得ることができる。 Using the plate material according to the present invention obtained as described above as a material, it is possible to perform processing including press forming processing and bending processing to obtain a highly durable conductive spring member.

表1に示す化学組成の銅合金を溶製し、縦型半連続鋳造機を用いて鋳造した。得られた鋳片を表2、表3に示す温度、時間で加熱保持したのち抽出して、熱間圧延を施し、水冷した。トータルの熱間圧延率は85~95%である。最終パスの圧延温度、700℃から600℃までの平均冷却速度および熱間圧延後の仕上板厚は表2、表3中に示してある。熱間圧延後の水冷では板幅全体にわたって十分な冷却速度が得られるよう、水量を増強した冷却設備を使用した。700℃から600℃までの平均冷却速度は水冷開始直前の板表面温度T(℃)および水冷終了直後の板表面温度T(℃)を測定し、その間の経過時間t(s)から算出した。各例においてTが700℃以上であり、Tが600℃以下であり、かつ水冷終了後に板厚中央部からの復熱による表面温度の上昇が見られないことが確認された。そこで、(T-T)/tの算出値を5℃刻みで繰り下げ処理した値(例えば算出値68℃/sであれば65℃/sに換算した値)を、700℃から600℃までの平均冷却速度として表2、表3中に記載した。この値が40℃/s以上であれば、冷却中に700℃から600℃まで少なくとも平均冷却速度40℃/s以上の冷却速度が確保されたと見なすことができる。 A copper alloy having the chemical composition shown in Table 1 was melted and cast using a vertical semi-continuous casting machine. The obtained slabs were heated and held at the temperatures and times shown in Tables 2 and 3, then extracted, hot-rolled, and water-cooled. The total hot rolling ratio is 85-95%. The rolling temperature of the final pass, the average cooling rate from 700 ° C to 600 ° C, and the finished plate thickness after hot rolling are shown in Tables 2 and 3. For water cooling after hot rolling, a cooling facility with an increased amount of water was used so that a sufficient cooling rate could be obtained over the entire plate width. The average cooling rate from 700 ° C to 600 ° C is calculated from the plate surface temperature T 0 (° C) immediately before the start of water cooling and the plate surface temperature T 1 (° C) immediately after the end of water cooling, and the elapsed time t (s) during that period. did. In each example, it was confirmed that T 0 was 700 ° C. or higher, T 1 was 600 ° C. or lower, and no increase in surface temperature due to reheat from the central portion of the plate thickness was observed after the completion of water cooling. Therefore, the value obtained by deferring the calculated value of (T 0 -T 1 ) / t in 5 ° C increments (for example, if the calculated value is 68 ° C / s, the value converted to 65 ° C / s) is changed from 700 ° C to 600 ° C. The average cooling rates up to are listed in Tables 2 and 3. When this value is 40 ° C./s or more, it can be considered that a cooling rate of at least an average cooling rate of 40 ° C./s or more is secured from 700 ° C. to 600 ° C. during cooling.

熱間圧延で割れが生じた一部の例(No.37~39)では、その時点で製造を中止した。熱間圧延後、表層の酸化層を機械研磨により除去(面削)し、表2、表3に示す板厚まで冷間圧延を施した。No.47では、この冷間圧延工程の途中で675℃×10時間の中間焼鈍を入れた。それ以外は中間焼鈍なしのストレート圧延である。得られた各冷間圧延材に連続式の焼鈍炉を用いて溶体化処理を施した。溶体化処理は、炉内通板中の板に所定の張力を付与しながら表2、表3に示す条件で行った。張力は加熱ゾーンの入り側および出側にあるブライドルロールの駆動力によってコントロールした。加熱後の冷却は、900℃から300℃までの平均冷却速度が100℃/s以上となる条件での水冷とした。溶体化処理後には、一部の例(No.35、47、48)を除き、冷間圧延歪を加えることなく直接、後述の第1時効処理を施した。No.35、48では溶体化処理後に板厚0.1mmまで最終的な冷間圧延を施したのち第1時効処理に供した。No.47では溶体化処理後に板厚0.1mmまで最終的な冷間圧延を施したのち直接、後述の第2時効処理に相当する最終的な時効処理に供した。上記一部の例において溶体化処理直後に実施した冷間圧延を「時効前冷間圧延」として表中に記載してある。 In some examples (Nos. 37 to 39) in which cracks were generated by hot rolling, production was discontinued at that point. After hot rolling, the oxide layer on the surface was removed (face milled) by mechanical polishing, and cold rolling was performed to the plate thickness shown in Tables 2 and 3. In No. 47, intermediate annealing at 675 ° C. × 10 hours was carried out in the middle of this cold rolling step. Other than that, it is straight rolling without intermediate annealing. Each of the obtained cold-rolled materials was solution-treated using a continuous annealing furnace. The solution heat treatment was carried out under the conditions shown in Tables 2 and 3 while applying a predetermined tension to the plate in the in-core plate. Tension was controlled by the driving force of the bridle rolls on the entry and exit sides of the heating zone. The cooling after heating was water cooling under the condition that the average cooling rate from 900 ° C to 300 ° C was 100 ° C / s or more. After the solution treatment, except for some examples (No. 35, 47, 48), the first aging treatment described later was directly performed without applying cold rolling strain. In Nos. 35 and 48, after the solution treatment, the final cold rolling was performed to a plate thickness of 0.1 mm, and then the first aging treatment was performed. In No. 47, after the solution heat treatment, the final cold rolling was performed to a plate thickness of 0.1 mm, and then the film was directly subjected to the final aging treatment corresponding to the second aging treatment described later. In some of the above examples, the cold rolling performed immediately after the solution treatment is described in the table as "cold rolling before aging".

第1時効処理では、連続式の焼鈍炉を用いて表2、表3に記載の温度で同表に記載の時間保持したのち、700℃から600℃までの平均冷却速度が同表に記載の値となる条件で水冷した。次いで、一部の例(No.35、48)を除き、表2、表3に記載の圧延率で同表に記載の最終板厚まで最終的な冷間圧延を施した。この冷間圧延は第1、第2の時効処理の間で行うことから本明細書では「時効間冷間圧延」と呼んでいる。No.35、48では時効間冷間圧延を行っていない。 In the first aging treatment, after holding the temperature shown in Tables 2 and 3 for the time shown in the same table using a continuous annealing furnace, the average cooling rate from 700 ° C. to 600 ° C. is shown in the same table. It was water-cooled under the conditions that became the value. Then, except for some examples (No. 35 and 48), the final cold rolling was performed at the rolling ratios shown in Tables 2 and 3 to the final plate thickness shown in the same table. Since this cold rolling is performed between the first and second aging treatments, it is referred to as "aging cold rolling" in the present specification. In Nos. 35 and 48, cold rolling is not performed during aging.

次いで、一部の例(No.35、47、48)を除き時効間冷間圧延後の板材に対して、最終的な時効処理である「第2時効処理」を施した。No.35、48では第1時効処理後の板材を直接、第2時効処理に供した。またNo.47では時効前冷間圧延後の板材を直接、最終的な時効処理に供した。これらの最終的な時効処理はバッチ式の焼鈍炉を用いて表2、表3の「第2時効処理」の欄に記載の温度で同表に記載の時間保持する条件にて行った。窒素雰囲気で実施し、冷却は空冷とした。このようにして、表2、表3に示す最終板厚の板材製品(供試材)を得た。各供試材について以下の調査を行った。 Next, except for some examples (No. 35, 47, 48), the plate material after aging cold rolling was subjected to "second aging treatment", which is the final aging treatment. In Nos. 35 and 48, the plate material after the first aging treatment was directly subjected to the second aging treatment. Further, in No. 47, the plate material after cold rolling before aging was directly subjected to the final aging treatment. These final aging treatments were carried out using a batch type annealing furnace under the conditions of holding at the temperature described in the column of "second aging treatment" in Tables 2 and 3 for the time described in the same table. It was carried out in a nitrogen atmosphere, and the cooling was air cooling. In this way, plate material products (test materials) having the final plate thickness shown in Tables 2 and 3 were obtained. The following surveys were conducted on each test material.

(面積0.1μm以上の析出物の面積率)
上掲の「面積0.1μm以上の析出物の面積率の求め方」に従い、電解研磨および超音波洗浄により調製した観察面をFE-SEM(日本電子株式会社製;JSM-7200F)により加速電圧15kV、照射電流14で観察し、無作為に設定した重複しない異なる5視野について観察画像を得た。なお画像サイズは、1280ピクセル×960ピクセルで保存を行った。上記電解研磨は、BUEHLER社製の電解研磨装置(ElectroMet 4)を用いて行った。上記超音波洗浄は、超音波洗浄機「BRANSONIC M2800-J」を用いて20分間行った。画像解析ソフトウェアとしてImage J(アメリカ国立衛生研究所 (NIH)、Version 1.52a)を使用した。同ソフトウェアによる解析条件は、Analyze、Set Scaleを順次選択して表示される「Set Scale」画面において、撮影したFE-SEM像のスケールバー長さのピクセル数を測定し、Distance in pixelsに入力する。続いて、スケールバーの長さ(μm)をKnown distanceに入力し、Pixel aspect ratioを1.0に、Unit of lengthをμmとし、ソフトウェア上で析出物のサイズを認識できるように設定する。その後、「Resize Image Canvas」画面において、Widthを1280ピクセル、Heightを950ピクセル、PositionをTop-Centerに設定し、スケールバーの部分を除いたFE-SEMイメージ部分の画像を表示させる。このスケールの設定とスケールバー表示部分の削除を行ったのち、Image、Adjust、Thresholdを順次選択して表示される「Threshold」画面において、しきい値の上限を255、下限をピクセルの個数割合が5%に最も近くなる値に設定した。図1に「Threshold」画面を例示する。具体的には図1中のPの箇所のしきい値上限を255とし、Qの箇所に表示される値が5%に最も近くなるようにしきい値下限を設定した。その後、同ソフトウェアの「Analyze Particles」画面において、1つの独立した析出物領域の面積が0.1μm未満であるものを除くための条件としてSizeを「0.10-Infinity」に設定する。さらにCircularityを0.00-1.00、ShowをMASKとし、Display results、Clear results、Summarize、Include holesの項目のみにそれぞれチェックを付した条件に設定して、粒子解析を行い、その視野についての面積0.1μm以上の析出物の面積率Aを定めた。この操作を5つの視野について行い、各視野の析出物面積率Aの相加平均値を求め、これを当該板材の「面積0.1μm以上の析出物の面積率(%)」とした。
(Area ratio of precipitates with an area of 0.1 μm 2 or more)
Accelerate the observation surface prepared by electrolytic polishing and ultrasonic cleaning by FE-SEM (manufactured by JEOL Ltd .; JSM-7200F) according to the above "How to determine the area ratio of precipitates with an area of 0.1 μm 2 or more". Observations were made at a voltage of 15 kV and an irradiation current of 14, and observation images were obtained for 5 different non-overlapping visual fields set at random. The image size was 1280 pixels × 960 pixels. The electropolishing was performed using an electropolishing apparatus (ElectroMet 4) manufactured by BUEHLER. The ultrasonic cleaning was performed for 20 minutes using an ultrasonic cleaning machine "BRANSONIC M2800-J". ImageJ (National Institutes of Health (NIH), Version 1.52a) was used as the image analysis software. The analysis condition by the software is to measure the number of pixels of the scale bar length of the captured FE-SEM image on the "Set Scale" screen displayed by sequentially selecting Analyze and Set Scale, and input it to Disstance in pixels. .. Subsequently, the length (μm) of the scale bar is input to the Known distance, the Pixel aspect ratio is set to 1.0, the Unit of length is set to μm, and the size of the precipitate is set so that the size of the precipitate can be recognized by the software. After that, on the "Resize Image Canvas" screen, the Wizard is set to 1280 pixels, the Height is set to 950 pixels, the Position is set to Top-Center, and the image of the FE-SEM image portion excluding the scale bar portion is displayed. After setting this scale and deleting the scale bar display part, the upper limit of the threshold value is 255 and the lower limit is the number ratio of pixels on the "Threshold" screen that is displayed by sequentially selecting Image, Adjust, and Thrashold. It was set to the value closest to 5%. FIG. 1 illustrates a "Threshold" screen. Specifically, the upper limit of the threshold value at the point P in FIG. 1 was set to 255, and the lower limit of the threshold value was set so that the value displayed at the place Q was the closest to 5%. After that, in the "Analyze Particles" screen of the software, Size is set to "0.10-Infinity" as a condition for excluding those having an area of one independent precipitate region of less than 0.1 μm 2 . Furthermore, with Circularity set to 0.00-1.00 and Show set to MASK, particle analysis is performed by setting conditions in which only the items of Display resonances, Clear reacts, Summarize, and Particle areas are checked, and the field of view is described. The area ratio A of the precipitate having an area of 0.1 μm 2 or more was determined. This operation was performed for five visual fields, and the arithmetic mean value of the precipitate area ratio A of each visual field was obtained, and this was defined as the "area ratio (%) of precipitates having an area of 0.1 μm 2 or more" of the plate material.

参考のため、図2、図3に、倍率2000倍のFE-SEM観察画像(上段)と、それを画像処理して得られた「面積0.1μm以上の析出物」の存在箇所を表すマッピング画像(下段)を例示する。図2は比較例No.35、図3は本発明例No.6である。FE-SEM観察画像の下部に示されている白のスケールバーの長さが10μmに相当する。 For reference, FIGS. 2 and 3 show the presence of an FE-SEM observation image (upper) at a magnification of 2000 times and a “precipitate having an area of 0.1 μm 2 or more” obtained by image processing the image. An example is a mapping image (lower). FIG. 2 is Comparative Example No. 35, and FIG. 3 is the present invention Example No. 6. The length of the white scale bar shown at the bottom of the FE-SEM observation image corresponds to 10 μm.

(粗大析出物粒子の個数密度)
上掲の「粗大析出物粒子の個数密度の求め方」に従い、電解研磨および超音波洗浄により調製した観察面をFE-SEMにより観察し、長径1.0μm以上の粗大析出物粒子の個数密度を求めた。上記電解研磨は、BUEHLER社製の電解研磨装置(ElectroMet 4)を用いて行った。上記超音波洗浄は、超音波洗浄機「BRANSONIC M2800-J」を用いて20分間行った。
(Number density of coarse precipitate particles)
According to the above "How to determine the number density of coarse precipitate particles", observe the observation surface prepared by electrolytic polishing and ultrasonic cleaning with FE-SEM, and determine the number density of coarse precipitate particles with a major axis of 1.0 μm or more. I asked. The electropolishing was performed using an electropolishing apparatus (ElectroMet 4) manufactured by BUEHLER. The ultrasonic cleaning was performed for 20 minutes using an ultrasonic cleaning machine "BRANSONIC M2800-J".

(微細析出物粒子の個数密度)
上掲の「微細析出物粒子の個数密度の求め方」に従い、電解研磨および超音波洗浄により調製した観察面をFE-SEM(日本電子株式会社製;JSM-7200F)で観察し、長径が5~50nmである微細第二相粒子の個数密度(個/mm)を求めた。上記電解研磨は、BUEHLER社製の電解研磨装置(ElectroMet 4)を用いて行った。上記超音波洗浄は、超音波洗浄機「BRANSONIC M2800-J」を用いて20分間行った。
(Number density of fine precipitate particles)
According to the above "How to determine the number density of fine precipitate particles", the observation surface prepared by electrolytic polishing and ultrasonic cleaning was observed with FE-SEM (manufactured by JEOL Ltd .; JSM-7200F), and the major axis was 5. The number density (pieces / mm 2 ) of fine second-phase particles having a diameter of about 50 nm was determined. The electropolishing was performed using an electropolishing apparatus (ElectroMet 4) manufactured by BUEHLER. The ultrasonic cleaning was performed for 20 minutes using an ultrasonic cleaning machine "BRANSONIC M2800-J".

(疲労強度)
幅方向が圧延方向、長手方向が圧延直角方向である幅3mm、長さ15~25mmの試験片(穴あけなし)を用いて、疲労試験装置(日本テクノプラス株式会社製;RF-RT)により共振法での疲労試験を行った。振幅を測定するレーザースポットの位置は試験片の端部から1mmの位置とした。ヤング率が初期(試験前)のヤング率の98%となったときに材料が「疲労」したと判断した。20MPa刻みの種々の応力でそれぞれ測定を行い、10回で疲労が生じない最大応力を疲労強度(MPa)とした。この操作を1つの供試材で5回実施し、5回の疲労強度の平均値(1の位は四捨五入)を当該供試材の疲労強度として採用した。この疲労強度が200MPa以上であるものは高強度Cu-Ni-Al合金の板材として非常に優れた疲労特性を有すると評価される。なお、ヤング率は、当該板材から採取した長手方向が圧延並行方向であるJIS 5号引張試験片についてJISZ 2241:2011に基づきクロスヘッド変位速度vcが0.02mm/sである引張試験を行って0.1秒毎にひずみと応力の値を記録し、応力が100MPaから400MPaまでの間で記録されたひずみと応力の全データを用いて応力-ひずみ直交座標系における回帰直線を最小二乗法により定めたときの、当該回帰直線の傾きとした。
(Fatigue strength)
Resonated by a fatigue tester (manufactured by Nippon Techno Plus Co., Ltd .; RF-RT) using a test piece (without drilling) with a width of 3 mm and a length of 15 to 25 mm, the width direction being the rolling direction and the longitudinal direction being the rolling perpendicular direction. A fatigue test was conducted by the method. The position of the laser spot for measuring the amplitude was set to a position 1 mm from the end of the test piece. When the Young's modulus reached 98% of the initial (pre-test) Young's modulus, it was determined that the material was "fatigue". Measurements were made with various stresses in increments of 20 MPa, and the maximum stress at which fatigue did not occur after 107 times was defined as the fatigue strength (MPa). This operation was carried out 5 times with one test material, and the average value of the fatigue strength of 5 times (rounded to the nearest 1) was adopted as the fatigue strength of the test material. Those having a fatigue strength of 200 MPa or more are evaluated to have very excellent fatigue characteristics as a plate material of a high-strength Cu—Ni—Al alloy. For Young's modulus, a tensile test with a crosshead displacement speed vc of 0.02 mm / s was performed on a JIS No. 5 tensile test piece whose longitudinal direction was parallel to rolling, which was collected from the plate material, based on JISZ 2241: 2011. The strain and stress values are recorded every 0.1 seconds, and the regression line in the stress-strain orthogonal coordinate system is calculated by the minimum square method using all the strain and stress data recorded between 100 MPa and 400 MPa. It was the slope of the regression line when it was determined.

(硬さ)
板面のビッカース硬さをJIS Z2244:2009に準拠する方法で測定した。形成されるくぼみ(圧痕)の対角線長さdとdの平均値d(mm)が試料板厚の2/3以下となる試験力F(N)で7点測定し、最大値および最小値を除いた5点の平均値を当該供試材の硬さとして採用した。
(Hardness)
The Vickers hardness of the plate surface was measured by a method according to JIS Z2244: 2009. The average value d (mm) of the diagonal lengths d 1 and d 2 of the formed indentation (indentation) is 2/3 or less of the sample plate thickness. The average value of 5 points excluding the value was adopted as the hardness of the test material.

(引張強さ)
各供試材から圧延直角方向(TD)の引張試験片(JIS 5号)を採取し、試験数N=3でJIS Z2241に準拠した引張試験行い、引張強さを測定した。N=3の平均値を当該供試材の成績値とした。
(Tensile strength)
Tensile test pieces (JIS No. 5) in the direction perpendicular to rolling (TD) were collected from each test material, and a tensile test was performed in accordance with JIS Z2241 with the number of tests N = 3, and the tensile strength was measured. The average value of N = 3 was used as the performance value of the test material.

(耐変色性)
供試材から幅10mm×長さ65mmのサンプルを採取し、板面(圧延面)を番手1200(JIS R6010:2000に規定される粒度P1200)の研磨紙により乾式研磨したのち、エタノールを浸透させたキムワイプ(登録商標)で研磨粉を拭き取り除去し、乾燥させることにより、耐候性試験片を作製した。耐候性試験は、試験片を温度50℃、相対湿度95%の雰囲気中に24時間暴露する方法で行った。耐候性試験の前および後の試験片表面について、それぞれLを測定し、JIS Z8730:2009に規定されるL表示色による色差ΔE abを求めた。この色差ΔE abが5.0未満であるものは導電ばね部材として良好な耐変色性を有すると判断できる。したがって、色差ΔE abが5.0未満であるものを合格(耐変色性;良好)と判定した。なお、参考のため、無酸素銅(C1020)、70-30黄銅(C2600)、ネパール黄銅(C4622)の各板材についても同条件で耐候性試験を実施した。その結果、色差ΔE abは、無酸素銅が11.0、70-30黄銅が10.5、ネパール黄銅が10.7であった。
これらの調査結果を表4、表5に示す。
(Discoloration resistance)
A sample having a width of 10 mm and a length of 65 mm is taken from the test material, and the plate surface (rolled surface) is dry-polished with a polishing paper having a count of 1200 (grain size P1200 specified in JIS R6010: 2000) and then infiltrated with ethanol. A weather resistance test piece was prepared by wiping off the polishing powder with a Kimwipe (registered trademark) and drying it. The weather resistance test was carried out by exposing the test piece to an atmosphere having a temperature of 50 ° C. and a relative humidity of 95% for 24 hours. L * a * b * was measured on the surface of the test piece before and after the weather resistance test, respectively, and the color difference ΔE * ab according to the display color was determined by L * a * b * specified in JIS Z8730: 2009. If the color difference ΔE * ab is less than 5.0, it can be judged that the conductive spring member has good discoloration resistance. Therefore, those having a color difference ΔE * ab of less than 5.0 were judged to be acceptable (discoloration resistance; good). For reference, weather resistance tests were also conducted on each plate material of oxygen-free copper (C1020), 70-30 brass (C2600), and Nepalese brass (C4622) under the same conditions. As a result, the color difference ΔE * ab was 11.0 for oxygen-free copper, 10.5 for 70-30 brass, and 10.7 for Nepalese brass.
The results of these surveys are shown in Tables 4 and 5.

Figure 2022025611000002
Figure 2022025611000002

Figure 2022025611000003
Figure 2022025611000003

Figure 2022025611000004
Figure 2022025611000004

Figure 2022025611000005
Figure 2022025611000005

Figure 2022025611000006
Figure 2022025611000006

本発明例のCu-Ni-Al系銅合金板材はいずれも、強度、疲労特性、耐変色性に優れる。このうちNo.13はNi/Alが比較的高い組成において時効処理時間を比較的長くしたことにより、他の発明例よりも結晶粒内の粗大析出物が多い金属組織となった。しかし、面積0.1μm以上の析出物の面積率は低く抑えられており、比較例のものに比べ疲労特性の顕著な改善が認められた。 All of the Cu—Ni—Al-based copper alloy plates of the examples of the present invention are excellent in strength, fatigue characteristics, and discoloration resistance. Of these, No. 13 had a metal structure having more coarse precipitates in the crystal grains than in other invention examples because the aging treatment time was relatively long in the composition having a relatively high Ni / Al. However, the area ratio of the precipitate having an area of 0.1 μm 2 or more was kept low, and a remarkable improvement in fatigue characteristics was observed as compared with that of the comparative example.

比較例のうち、No.31~36、41~48は、本発明の規定を満たす化学組成の銅合金について、本発明で規定する製造条件を外れる製造工程により板材を製造した例である。具体的には、No.31は鋳片加熱温度が低かった。No.32は熱間圧延最終パスでの圧延温度が低かった。No.33は溶体化処理温度が低かった。No.34は熱間圧延最終パス後の700℃から600℃までの平均冷却速度が小さかった。No.35は最終冷間圧延を溶体化処理と第1時効処理の間で行った。No.36は第1時効処理の時間が短かった。No.41は溶体化処理を従来一般的な低い張力レベルで行った。No.42は時効間冷間圧延での圧延率が高かった。No.43は溶体化処理時の張力が高かった。No.44は第1時効処理の温度が高かった。No.45は第1時効処理の温度が低かった。No.46は第1時効処理の時間が長かった。No.47は熱間圧延最終パス後の700℃から600℃までの平均冷却速度が小さく、中間焼鈍を入れた冷間圧延工程の後に、従来一般的な低い張力レベルで溶体化処理を行い、第1時効処理に相当する工程を実施しなかった。No.48は熱間圧延最終パス後の700℃から600℃までの平均冷却速度が小さく、従来一般的な低い張力レベルでの溶体化処理と第1時効処理の間で最終冷間圧延を行った。これらの例ではいずれも粒界析出物が多く生成したことに起因して面積0.1μm以上の析出物の面積率が大きい組織状態となり、疲労特性の改善は不十分であった。 Among the comparative examples, Nos. 31 to 36 and 41 to 48 are examples of copper alloys having a chemical composition satisfying the provisions of the present invention, in which a plate material is manufactured by a manufacturing process that does not meet the manufacturing conditions specified in the present invention. Specifically, No. 31 had a low slab heating temperature. In No. 32, the rolling temperature in the final hot rolling pass was low. No. 33 had a low solution treatment temperature. No. 34 had a small average cooling rate from 700 ° C. to 600 ° C. after the final pass of hot rolling. In No. 35, the final cold rolling was performed between the solution treatment and the first aging treatment. No. 36 had a short time for the first aging process. In No. 41, the solution treatment was performed at a conventional low tension level. No. 42 had a high rolling ratio in aging cold rolling. No. 43 had a high tension during the solution treatment. In No. 44, the temperature of the first aging treatment was high. In No. 45, the temperature of the first aging treatment was low. No. 46 had a long time for the first aging process. No. 47 has a small average cooling rate from 700 ° C to 600 ° C after the final pass of hot rolling, and after the cold rolling process with intermediate annealing, solution treatment is performed at a conventional low tension level. The process corresponding to the first aging treatment was not carried out. No. 48 has a small average cooling rate from 700 ° C to 600 ° C after the final hot rolling pass, and the final cold rolling is performed between the solution treatment at a low tension level and the first aging treatment, which are generally common in the past. rice field. In all of these examples, due to the formation of a large amount of grain boundary precipitates, the texture state was such that the area ratio of the precipitates having an area of 0.1 μm 2 or more was large, and the improvement of the fatigue characteristics was insufficient.

No.37~39は熱間圧延で割れが生じたため、その時点で製造を中止した例である。このうち、No.37は鋳片加熱温度が高すぎた。No.38はNi含有量が高すぎた。No.39はAl含有量が高すぎた。 Nos. 37 to 39 are examples in which production was discontinued at that point because cracks occurred during hot rolling. Of these, No. 37 had a slab heating temperature that was too high. No. 38 had too high Ni content. No. 39 had an too high Al content.

No.40は化学組成においてAl含有量が低くNi/Al比が高すぎたため、耐変色性に劣り、強度レベルも低かった。 In No. 40, the Al content was low and the Ni / Al ratio was too high in the chemical composition, so that the discoloration resistance was inferior and the strength level was also low.

Claims (7)

質量%で、Ni:10.0~30.0%、Al:1.00~6.50%、Ag:0~0.50%、B:0~0.10%、Co:0~2.0%、Cr:0~0.5%、Fe:0~2.0%、Mg:0~2.0%、Mn:0~2.0%、P:0~0.2%、Si:0~2.0%、Sn:0~2.0%、Ti:0~2.0%、Zn:0~2.0%、Zr:0~0.3%、残部がCuおよび不可避的不純物からなり、かつ下記(1)式を満たす化学組成を有し、板面に平行な観察面において面積0.1μm以上の析出物の面積率が2.0%以下であり、ビッカース硬さが270HV以上である銅合金板材。
Ni/Al≦9.0 …(1)
ここで、(1)式の元素記号の箇所には質量%で表される当該元素の含有量値が代入される。
By mass%, Ni: 10.0 to 30.0%, Al: 1.00 to 6.50%, Ag: 0 to 0.50%, B: 0 to 0.10%, Co: 0 to 2. 0%, Cr: 0 to 0.5%, Fe: 0 to 2.0%, Mg: 0 to 2.0%, Mn: 0 to 2.0%, P: 0 to 0.2%, Si: 0 to 2.0%, Sn: 0 to 2.0%, Ti: 0 to 2.0%, Zn: 0 to 2.0%, Zr: 0 to 0.3%, the balance is Cu and unavoidable impurities. It has a chemical composition that satisfies the following formula (1), has an area ratio of 0.1 μm 2 or more on the observation surface parallel to the plate surface, and has a Vickers hardness of 2.0% or less. Copper alloy plate material with 270 HV or higher.
Ni / Al ≤ 9.0 ... (1)
Here, the content value of the element represented by mass% is substituted in place of the element symbol in the formula (1).
板面に平行な観察面において長径1.0μm以上の粗大析出物粒子の個数密度が3.0×10個/mm以下である、請求項1に記載の銅合金板材。 The copper alloy plate material according to claim 1, wherein the number and density of coarse precipitate particles having a major axis of 1.0 μm or more on an observation surface parallel to the plate surface is 3.0 × 10 4 particles / mm 2 or less. 板面に平行な観察面において長径5~50nmの微細析出物粒子の個数密度が1.0×10個/mm以上である、請求項1または2に記載の銅合金板材。 The copper alloy plate material according to claim 1 or 2, wherein the number density of fine precipitate particles having a major axis of 5 to 50 nm is 1.0 × 10 7 particles / mm 2 or more on an observation surface parallel to the plate surface. 圧延直角方向の引張強さが900MPa以上である、請求項1~3のいずれか1項に記載の銅合金板材。 The copper alloy plate material according to any one of claims 1 to 3, wherein the tensile strength in the direction perpendicular to rolling is 900 MPa or more. 質量%で、Ni:10.0~30.0%、Al:1.00~6.50%、Ag:0~0.50%、B:0~0.10%、Co:0~2.0%、Cr:0~0.5%、Fe:0~2.0%、Mg:0~2.0%、Mn:0~2.0%、P:0~0.2%、Si:0~2.0%、Sn:0~2.0%、Ti:0~2.0%、Zn:0~2.0%、Zr:0~0.3%、残部がCuおよび不可避的不純物からなり、かつ下記(1)式を満たす化学組成の鋳片を、1000~1150℃で加熱する工程(鋳片加熱工程)、
最終圧延パスでの圧延温度が800℃以上となる条件で熱間圧延を行った後、700℃から600℃までの平均冷却速度が40℃/s以上となる条件で冷却する工程(熱間圧延工程)、
10.0~20.0N/mmの張力を付与した状態で、950~1100℃で30~360秒保持する熱処理を施す工程(溶体化処理工程)、
前記溶体化処理工程後の板材に、700~900℃で10~300秒保持する熱処理を施す工程(第1時効処理工程)、
圧延率5~50%以下の範囲で冷間圧延を施す工程(時効間冷間圧延工程)、
前記時効間冷間圧延工程後の板材に、400~620℃で0.5~75時間保持する熱処理を施す工程(第2時効処理工程)、
を含む製造工程により、板面に平行な観察面において面積0.1μm以上の析出物の面積率が2.0%以下である板材を得る、銅合金板材の製造方法。
Ni/Al≦9.0 …(1)
ここで、(1)式の元素記号の箇所には質量%で表される当該元素の含有量値が代入される。
By mass%, Ni: 10.0 to 30.0%, Al: 1.00 to 6.50%, Ag: 0 to 0.50%, B: 0 to 0.10%, Co: 0 to 2. 0%, Cr: 0 to 0.5%, Fe: 0 to 2.0%, Mg: 0 to 2.0%, Mn: 0 to 2.0%, P: 0 to 0.2%, Si: 0 to 2.0%, Sn: 0 to 2.0%, Ti: 0 to 2.0%, Zn: 0 to 2.0%, Zr: 0 to 0.3%, the balance is Cu and unavoidable impurities. A step of heating a slab composed of and having a chemical composition satisfying the following formula (1) at 1000 to 1150 ° C. (slab heating step).
A process of hot rolling under the condition that the rolling temperature in the final rolling pass is 800 ° C or higher, and then cooling under the condition that the average cooling rate from 700 ° C to 600 ° C is 40 ° C / s or higher (hot rolling). Process),
A step of performing a heat treatment for holding at 950 to 1100 ° C. for 30 to 360 seconds (solution treatment step) with a tension of 10.0 to 20.0 N / mm 2 applied.
A step of subjecting the plate material after the solution treatment step to a heat treatment for holding at 700 to 900 ° C. for 10 to 300 seconds (first aging treatment step).
A process of cold rolling in a rolling ratio of 5 to 50% or less (aging cold rolling process),
A step of subjecting the plate material after the aging cold rolling step to a heat treatment for holding at 400 to 620 ° C. for 0.5 to 75 hours (second aging treatment step).
A method for producing a copper alloy plate material, wherein a plate material having an area ratio of a precipitate having an area of 0.1 μm 2 or more and an area ratio of 2.0% or less on an observation surface parallel to the plate surface is obtained by a manufacturing process including.
Ni / Al ≤ 9.0 ... (1)
Here, the content value of the element represented by mass% is substituted in place of the element symbol in the formula (1).
熱間圧延工程と溶体化処理工程の間に、
圧延率50%以上の冷間圧延を施す工程(冷間圧延工程)、
を含む、請求項5に記載の銅合金板材の製造方法。
Between the hot rolling process and the solution treatment process,
A process of performing cold rolling with a rolling ratio of 50% or more (cold rolling process),
5. The method for producing a copper alloy plate material according to claim 5.
請求項1~4のいずれか1項に記載の銅合金板材を材料に用いた導電ばね部材。 A conductive spring member using the copper alloy plate material according to any one of claims 1 to 4 as a material.
JP2020128528A 2020-07-29 2020-07-29 Cu-Ni-Al SYSTEM COPPER ALLOY PLATE MATERIAL, MANUFACTURING METHOD THEREOF AND CONDUCTIVE SPRING MEMBER Pending JP2022025611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020128528A JP2022025611A (en) 2020-07-29 2020-07-29 Cu-Ni-Al SYSTEM COPPER ALLOY PLATE MATERIAL, MANUFACTURING METHOD THEREOF AND CONDUCTIVE SPRING MEMBER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020128528A JP2022025611A (en) 2020-07-29 2020-07-29 Cu-Ni-Al SYSTEM COPPER ALLOY PLATE MATERIAL, MANUFACTURING METHOD THEREOF AND CONDUCTIVE SPRING MEMBER

Publications (1)

Publication Number Publication Date
JP2022025611A true JP2022025611A (en) 2022-02-10

Family

ID=80264672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020128528A Pending JP2022025611A (en) 2020-07-29 2020-07-29 Cu-Ni-Al SYSTEM COPPER ALLOY PLATE MATERIAL, MANUFACTURING METHOD THEREOF AND CONDUCTIVE SPRING MEMBER

Country Status (1)

Country Link
JP (1) JP2022025611A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114959523A (en) * 2022-04-15 2022-08-30 中国船舶重工集团公司第七二五研究所 High-strength copper alloy bar for fastener and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114959523A (en) * 2022-04-15 2022-08-30 中国船舶重工集团公司第七二五研究所 High-strength copper alloy bar for fastener and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4837697B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4809935B2 (en) Copper alloy sheet having low Young's modulus and method for producing the same
US10294554B2 (en) Copper alloy sheet material, connector, and method of producing a copper alloy sheet material
JP4118832B2 (en) Copper alloy and manufacturing method thereof
TWI381397B (en) Cu-Ni-Si-Co based copper alloy for electronic materials and its manufacturing method
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
JP2008248333A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL, AND MANUFACTURING METHOD THEREFOR
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP4087307B2 (en) High strength and high conductivity copper alloy with excellent ductility
JP7202121B2 (en) Cu-Ni-Al-based copper alloy plate material, manufacturing method thereof, and conductive spring member
JP6368518B2 (en) Cu-Ti copper alloy sheet, method for producing the same, and energized component
US10294555B2 (en) Copper alloy sheet material, connector, and method of producing a copper alloy sheet material
JP7181768B2 (en) High Young's Modulus Cu--Ni--Al Copper Alloy Plate Material, Manufacturing Method Thereof, and Conductive Spring Member
JP5555154B2 (en) Copper alloy for electrical and electronic parts and method for producing the same
JP2022025611A (en) Cu-Ni-Al SYSTEM COPPER ALLOY PLATE MATERIAL, MANUFACTURING METHOD THEREOF AND CONDUCTIVE SPRING MEMBER
WO2022024891A1 (en) Cu-ni-al-based copper alloy plate material, method for manufacturing same, and electroconductive spring member
JP6869397B2 (en) Copper alloy plate material and its manufacturing method
JP2008088558A (en) High-strength and high-conductivity copper alloy with excellent ductility
JP7038879B1 (en) Cu-Ti copper alloy plate material, its manufacturing method, and current-carrying parts
JP2021046590A (en) Copper alloy, drawn copper article and electronic apparatus component
JP6762453B1 (en) Copper alloy plate material and its manufacturing method
TW200915349A (en) Cu-Ni-Si-Co based copper alloy for electronic material and its production method
JP2021127491A (en) Copper alloy material and producing method thereof
TWI391952B (en) Cu-Ni-Si-Co based copper alloy for electronic materials and its manufacturing method
JP2012031475A (en) HIGH STRENGTH α+β TYPE TITANIUM ALLOY PLATE EXCELLENT IN BENDABILITY AND BENDING ANISOTROPY AND METHOD OF MANUFACTURING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240521