JP2022021445A - Method and system for estimating state of secondary battery - Google Patents

Method and system for estimating state of secondary battery Download PDF

Info

Publication number
JP2022021445A
JP2022021445A JP2020124997A JP2020124997A JP2022021445A JP 2022021445 A JP2022021445 A JP 2022021445A JP 2020124997 A JP2020124997 A JP 2020124997A JP 2020124997 A JP2020124997 A JP 2020124997A JP 2022021445 A JP2022021445 A JP 2022021445A
Authority
JP
Japan
Prior art keywords
secondary battery
capacity
reduction amount
positive electrode
capacity reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020124997A
Other languages
Japanese (ja)
Other versions
JP7288884B2 (en
Inventor
弘貴 西
Hiroki Nishi
祐貴 高橋
Yuki Takahashi
恒良 中嶋
Tsuneyoshi Nakashima
裕也 稲垣
Yuya Inagaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primearth EV Energy Co Ltd
Original Assignee
Primearth EV Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primearth EV Energy Co Ltd filed Critical Primearth EV Energy Co Ltd
Priority to JP2020124997A priority Critical patent/JP7288884B2/en
Publication of JP2022021445A publication Critical patent/JP2022021445A/en
Application granted granted Critical
Publication of JP7288884B2 publication Critical patent/JP7288884B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

To estimate a deterioration state of a positive electrode for each deterioration factor without damaging a secondary battery.SOLUTION: A battery state estimation method for a secondary battery, which estimates a battery state, comprises: a capacity reduction amount specification step of specifying a capacity reduction amount ΔQ that is a battery capacity reduction amount from an initial capacity of a secondary battery; a first step of specifying a first capacity reduction amount Q1 derived from positive/negative electrode capacity deviation, based on a positive electrode potential and a temperature; a second step of specifying a second volume reduction amount Q2 derived from a side reaction of forming a film on a positive electrode active material, based on the positive electrode potential and the temperature; and a third step of calculating a third capacity reduction amount Q3 due to the structural change of the positive electrode active material by subtracting the first capacity reduction amount Q1 and the second capacity reduction amount Q2 from the capacity reduction amount ΔQ.SELECTED DRAWING: Figure 1

Description

本発明は、二次電池の状態推定方法法及び二次電池の状態推定システムに関する。 The present invention relates to a method for estimating the state of a secondary battery and a system for estimating the state of the secondary battery.

周知のように、携帯用の電子機器の電源として、また、電気自動車やハイブリッド自動車などの電源として、リチウムイオン二次電池などの二次電池が用いられている。
例えば車両に搭載されるリチウムイオン二次電池は、温度環境や経過時間といった劣化要因に加えて、充放電回数等も劣化要因として寄与する。そのため、経過時間や走行距離等のみだけでは、劣化度を推定することができない。
As is well known, a secondary battery such as a lithium ion secondary battery is used as a power source for portable electronic devices and as a power source for electric vehicles and hybrid vehicles.
For example, in a lithium ion secondary battery mounted on a vehicle, in addition to deterioration factors such as temperature environment and elapsed time, the number of charge / discharge cycles also contributes as deterioration factors. Therefore, the degree of deterioration cannot be estimated only from the elapsed time, the mileage, and the like.

そこで、特許文献1では、リチウムイオン二次電池の容量の低下の要因である正負極組成対応ずれ容量を用いて、リチウムイオン二次電池の劣化を推定する手法が開示されている。具体的には、電流密度と過電圧との関係を記述したターフェル式を用いて、負極での副反応における被膜形成電流密度を求める。そして、被膜形成電流密度を所定の周期毎に算出し、その被膜形成電流密度を積算することで正負極組成対応ずれ容量を算出する。 Therefore, Patent Document 1 discloses a method of estimating the deterioration of a lithium ion secondary battery by using the shift capacity corresponding to the positive / negative electrode composition, which is a factor of the decrease in the capacity of the lithium ion secondary battery. Specifically, the film formation current density in the side reaction at the negative electrode is obtained by using the Tafel equation that describes the relationship between the current density and the overvoltage. Then, the film forming current density is calculated for each predetermined cycle, and the positive / negative electrode composition-corresponding displacement capacity is calculated by integrating the film forming current density.

特開2017-190979号公報Japanese Unexamined Patent Publication No. 2017-190979

従来の発明では、負極における副反応のみを考慮している。しかし、リチウムイオン二次電池の劣化状態を精度よく判定するためには、正極における容量低下量を考慮する必要があるが、正極の容量低下の要因は複数であり判定が困難であった。また、リチウムイオン二次電池の劣化状態を判定するには、リチウムイオン二次電池を分解すればよいが、リチウムイオン二次電池を再利用する上では、非破壊で劣化状態を把握することが望ましい。 In the prior invention, only side reactions at the negative electrode are considered. However, in order to accurately determine the deterioration state of the lithium ion secondary battery, it is necessary to consider the amount of capacity decrease in the positive electrode, but it is difficult to determine because there are multiple factors for the capacity decrease in the positive electrode. Further, in order to determine the deteriorated state of the lithium ion secondary battery, the lithium ion secondary battery may be disassembled, but when reusing the lithium ion secondary battery, it is necessary to grasp the deteriorated state in a non-destructive manner. desirable.

本発明は、このような実情に鑑みてなされたものであり、その目的は、リチウムイオン二次電池を破壊することなく、正極の劣化状態を劣化要因毎に推定することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to estimate the deterioration state of the positive electrode for each deterioration factor without destroying the lithium ion secondary battery.

上記課題を解決する電池状態推定方法は、電池状態を推定する二次電池の電池状態推定方法であって、前記二次電池の初期容量からの電池容量の低下量である容量低下量を特定する容量低下量特定工程と、正極電位及び温度に基づき、正負極容量ずれに由来する第1容量低下量を特定する第1工程と、前記正極電位及び前記温度に基づき、正極活物質に被膜が形成される副反応に由来する第2容量低下量を特定する第2工程と、前記容量低下量から、前記第1容量低下量及び前記第2容量低下量を減じて、前記正極活物質の構造変化による第3容量低下量を算出する第3工程と、を含む。 The battery state estimation method that solves the above problems is a battery state estimation method for a secondary battery that estimates the battery state, and specifies a capacity decrease amount that is a decrease amount of the battery capacity from the initial capacity of the secondary battery. A film is formed on the positive electrode active material based on the capacity reduction amount specifying step, the first step of specifying the first capacity reduction amount due to the positive and negative electrode capacity deviation based on the positive electrode potential and the temperature, and the positive electrode potential and the temperature. The structural change of the positive electrode active material is carried out in the second step of specifying the second volume reduction amount derived from the side reaction to be carried out, and by subtracting the first volume reduction amount and the second volume reduction amount from the volume reduction amount. The third step of calculating the amount of decrease in the third capacity according to the above is included.

上記課題を解決する電池状態推定システムは、電池状態を推定する二次電池の電池状態推定システムであって、前記二次電池が搭載された車両に設けられた第1制御装置が、正極電位及び温度に基づき、正負極容量ずれに由来する第1容量低下量を特定する第1工程と、正極電位及び温度に基づき、正極活物質に被膜が形成される副反応に由来する第2容量低下量を特定する第2工程と、を実行し、第2制御装置が、前記二次電池の初期容量からの電池容量の低下量である容量低下量を特定する容量低下量特定工程と、前記容量低下量から、前記第1容量低下量及び前記第2容量低下量を減じて、正極活物質の構造変化による第3容量低下量を算出する第3工程とを実行する。 The battery state estimation system that solves the above problems is a battery state estimation system for a secondary battery that estimates the battery state, and a first control device provided in a vehicle equipped with the secondary battery has a positive electrode potential and a positive electrode potential. The first step of specifying the first volume reduction amount due to the positive / negative electrode capacity shift based on the temperature, and the second volume reduction amount derived from the side reaction in which a film is formed on the positive electrode active material based on the positive electrode potential and the temperature. The second step of specifying the capacity reduction amount and the capacity reduction amount specifying step of specifying the capacity reduction amount, which is the amount of decrease in the battery capacity from the initial capacity of the secondary battery, and the capacity reduction The third step of calculating the third volume reduction amount due to the structural change of the positive electrode active material by subtracting the first volume reduction amount and the second volume reduction amount from the amount is executed.

本発明者は、二次電池の劣化要因が、主に正負極容量ずれに由来する第1容量低下量、正極活物質に被膜が形成される副反応に由来する第2容量低下量、正極活物質の二次粒子の構造変化に由来する第3容量低下量であることに着目し、二次電池11の使用履歴である正極電位、負極電位及び温度に基づき第1容量低下量と、第2容量低下量とを推定した。そして、初期容量からの容量低下量から、第1容量低下量及び第2容量低下量を減じて、正極活物質の二次粒子の構造変化に由来する第3容量低下量を推定した。このため、第3容量低下量を、二次電池を破壊することなく推定することができる。 According to the present inventor, the deterioration factors of the secondary battery are mainly the amount of decrease in the first capacity due to the displacement of the positive and negative electrodes, the amount of decrease in the second capacity due to the side reaction in which a film is formed on the positive electrode active material, and the positive electrode activity. Focusing on the third volume reduction due to the structural change of the secondary particles of the substance, the first volume reduction and the second volume reduction based on the positive electrode potential, the negative electrode potential, and the temperature, which are the usage histories of the secondary battery 11. It was estimated that the capacity was reduced. Then, the first volume decrease and the second volume decrease were subtracted from the volume decrease from the initial volume to estimate the third volume decrease due to the structural change of the secondary particles of the positive electrode active material. Therefore, the amount of decrease in the third capacity can be estimated without damaging the secondary battery.

上記電池状態推定方法について、前記第3容量低下量が第2閾値未満である場合に、前記二次電池を、相対的に広いSOCの許容範囲で再利用される二次電池として判定し、前記第3容量低下量が前記第2閾値以上である場合に、前記二次電池を、前記二次電池を相対的に狭いSOCの許容範囲で再利用される二次電池として判定する判定工程をさらに含んでいてもよい。 Regarding the battery state estimation method, when the amount of decrease in the third capacity is less than the second threshold value, the secondary battery is determined as a secondary battery to be reused within a relatively wide SOC tolerance, and the above is described. Further, a determination step of determining the secondary battery as a secondary battery to be reused within a relatively narrow SOC tolerance when the amount of decrease in the third capacity is equal to or greater than the second threshold value is further performed. It may be included.

上記構成によれば、二次電池の容量低下量の大きさに基づき、SOCの許容範囲に応じた再利用時の用途を判定した。このため、二次電池の再利用時の用途を適切に判定することができる。 According to the above configuration, the use at the time of reuse according to the allowable range of SOC was determined based on the magnitude of the capacity decrease amount of the secondary battery. Therefore, it is possible to appropriately determine the intended use of the secondary battery when it is reused.

上記電池状態推定方法について、前記第1工程は、被膜形成電流密度を電極毎に推定する電流密度推定工程と、前記被膜形成電流密度に基づいて副反応電流値を電極毎に推定する電流値推定工程と、負極の前記副反応電流値及び正極の前記副反応電流値の差と時間とに基づいて前記第1容量低下量を算出する工程とを含み、前記電流密度推定工程は、「i」を交換電流密度、「α」を移動係数、「F」をファラデー定数、「R」を気体定数、「T」を温度、「E´」を被膜形成電位、「E」を電極電位としたとき、下記式(1)に基づいて前記被膜形成電流密度を推定し、 Regarding the battery state estimation method, the first step is a current density estimation step of estimating the film forming current density for each electrode, and a current value estimation for estimating a side reaction current value for each electrode based on the film forming current density. The current density estimation step includes a step of calculating the first capacitance reduction amount based on the difference between the side reaction current value of the negative electrode and the side reaction current value of the positive electrode and the time, and the current density estimation step is “i 0 ”. Is the exchange current density, "α" is the transfer coefficient, "F" is the Faraday constant, "R" is the gas constant, "T" is the temperature, "E'" is the film formation potential, and "E" is the electrode potential. Then, the film forming current density is estimated based on the following equation (1), and the film forming current density is estimated.

Figure 2022021445000002
前記電流値推定工程は、過電圧項を「η」としたとき、下記式(2)に基づいて前記副反応電流値を推定してもよい。
Figure 2022021445000002
In the current value estimation step, when the overvoltage term is “η”, the side reaction current value may be estimated based on the following equation (2).

Figure 2022021445000003
上記構成によれば、正負極容量ずれに由来する第1容量低下量を、ターフェルの式に基づき被膜形成電流密度を推定する工程と、被膜形成電流密度から副反応電流値を求める工程と、正極の副反応電流値及び負極の副反応電流値から第1容量低下量を算出する工程とによって求めた。このため、二次電池を解体することなく、第1容量低下量を推定することができる。
Figure 2022021445000003
According to the above configuration, a step of estimating the film forming current density based on the Tafel equation, a step of obtaining a side reaction current value from the film forming current density, and a positive electrode for the amount of decrease in the first capacitance due to the positive / negative electrode capacitance shift. It was obtained by the step of calculating the first capacitance reduction amount from the side reaction current value of the above and the side reaction current value of the negative electrode. Therefore, the amount of decrease in the first capacity can be estimated without disassembling the secondary battery.

上記電池状態推定方法について、前記第2工程は、時間当たりの容量低下量である劣化速度と前記正極電位及び前記温度との関係を示す劣化速度情報に基づき前記第2容量低下量を特定し、前記劣化速度情報は、前記温度が一定の場合に前記正極電位が高くなるに伴い高い前記劣化速度を関連付け、前記正極電位が一定の場合に前記温度が高くなるに伴い高い前記劣化速度を関連付けてもよい。 Regarding the battery state estimation method, in the second step, the second capacity reduction amount is specified based on the deterioration rate information indicating the relationship between the deterioration rate, which is the capacity reduction amount per hour, the positive potential and the temperature. The deterioration rate information is associated with a higher deterioration rate as the positive potential increases when the temperature is constant, and is associated with a higher deterioration rate as the temperature increases when the positive potential is constant. May be good.

上記実施形態によれば、二次電池11の正極の劣化速度と、正極電位及び二次電池11の温度との関係を定めた劣化速度情報を予め準備し、二次電池の使用履歴に基づき、劣化速度情報を参照することによって、正極の保存劣化による第2容量低下量を求めた。つまり二次電池の使用履歴さえ蓄積すれば、二次電池を解体することなく、第2容量低下量を推定することができる。 According to the above embodiment, deterioration rate information defining the relationship between the deterioration rate of the positive electrode of the secondary battery 11 and the positive electrode potential and the temperature of the secondary battery 11 is prepared in advance, and based on the usage history of the secondary battery, By referring to the deterioration rate information, the amount of decrease in the second capacity due to storage deterioration of the positive electrode was determined. That is, as long as the usage history of the secondary battery is accumulated, the amount of decrease in the second capacity can be estimated without disassembling the secondary battery.

上記電池状態推定方法について、前記二次電池は車両に搭載され、前記車両に設けられた制御装置が、前記正負極容量ずれに由来する前記第1容量低下量を特定する前記第1工程を実行し、前記正極活物質に被膜が形成される副反応に由来する第2容量低下量を特定する前記第2工程を実行してもよい。 Regarding the battery state estimation method, the secondary battery is mounted on a vehicle, and a control device provided in the vehicle executes the first step of specifying the first capacity reduction amount due to the positive / negative electrode capacity deviation. Then, the second step of specifying the amount of the second volume decrease due to the side reaction in which a film is formed on the positive electrode active material may be executed.

上記構成によれば、車両に搭載された制御装置が、前記二次電池の電圧及び温度を取得し、第1容量低下量及び容量低下量を推定する。したがって、二次電池を車両から取り外した後に、予め算出した容量低下量及び容量低下量を利用することができるため、劣化状態を短時間で判定することができる。 According to the above configuration, the control device mounted on the vehicle acquires the voltage and temperature of the secondary battery, and estimates the first capacity reduction amount and the capacity reduction amount. Therefore, after the secondary battery is removed from the vehicle, the capacity reduction amount and the capacity reduction amount calculated in advance can be used, so that the deterioration state can be determined in a short time.

本発明によれば、二次電池を破壊することなく、正極の劣化状態を劣化要因毎に推定することができる。 According to the present invention, the deterioration state of the positive electrode can be estimated for each deterioration factor without damaging the secondary battery.

一実施形態の二次電池の容量低下量の内訳を模式的に示す図。The figure which shows the breakdown of the capacity decrease amount of the secondary battery of one Embodiment schematically. 同実施形態の電池制御回路を概略的に示す図。The figure which shows schematic the battery control circuit of the same embodiment. 同実施形態の充放電制御回路及び劣化判定装置を概略的に示す図。The figure which shows schematic the charge / discharge control circuit and deterioration determination apparatus of the same embodiment. 同実施形態の容量低下量判定の手順を示すフローチャート。The flowchart which shows the procedure of capacity reduction amount determination of the same embodiment. 同実施形態の正極の保存劣化に由来する劣化速度と保存時間との関係を正極電位毎に示すグラフ。The graph which shows the relationship between the deterioration rate and the storage time derived from the storage deterioration of the positive electrode of the same embodiment for each positive electrode potential. 同実施形態の正極の保存劣化に由来する劣化速度と正極電位との関係を示すグラフ。The graph which shows the relationship between the deterioration rate derived from the preservation deterioration of the positive electrode of the same embodiment, and the positive electrode potential. 同実施形態の正極の保存劣化に由来する劣化速度と保存時間との関係を温度毎に示すグラフ。The graph which shows the relationship between the deterioration rate and the storage time derived from the storage deterioration of the positive electrode of the same embodiment for each temperature. 同実施形態の正極の保存劣化に由来する劣化速度と温度との関係を示すグラフ。The graph which shows the relationship between the deterioration rate and the temperature derived from the storage deterioration of the positive electrode of the same embodiment. 同実施形態の正極の保存劣化に由来する劣化速度と、正極電位及び温度との関係を示すマップの概略図。The schematic diagram of the map which shows the relationship between the deterioration rate derived from the preservation deterioration of the positive electrode of the same embodiment, and the positive electrode potential and temperature. 同実施形態の劣化状態判定の手順を示すフローチャート。The flowchart which shows the procedure of the deterioration state determination of the same embodiment. 変形例の状態推定システムを概略的に示す図。The figure which shows roughly the state estimation system of the modification example.

図1~図10を参照して、二次電池の状態推定方法及び状態推定システムの一実施形態について説明する。
図1を参照して、リチウムイオン二次電池(以下、二次電池という)の状態推定方法の概要を説明する。二次電池の容量低下の要因としては、主に、「(1)正負極容量ずれ」、「(2)正極の保存劣化」、「(3)正極のサイクル劣化」がある。なお、本実施形態では、二次電池は、LiNiOを含む正極活物質、グラファイトを主成分とする負極活物質を備えるものとして説明する。
An embodiment of a state estimation method and a state estimation system for a secondary battery will be described with reference to FIGS. 1 to 10.
With reference to FIG. 1, an outline of a state estimation method for a lithium ion secondary battery (hereinafter referred to as a secondary battery) will be described. The main causes of the decrease in the capacity of the secondary battery are "(1) positive and negative electrode capacity deviation", "(2) storage deterioration of the positive electrode", and "(3) cycle deterioration of the positive electrode". In the present embodiment, the secondary battery will be described as including a positive electrode active material containing LiNiO 2 and a negative electrode active material containing graphite as a main component.

「(1)正負極容量ずれ」は、正極容量と負極容量とのずれに由来する。二次電池の容量は、二次電池の動作範囲での正極容量と負極容量とが重なる領域の大きさで決まる。劣化のない初期状態の二次電池であっても、正極容量及び負極容量は互いにずれた状態にある。やがて正極と負極との両方で副反応等が進行すると、正極容量及び負極容量が初期状態から低下する。その結果、正極容量及び負極容量のずれが拡大し、正極容量及び負極容量の重なる領域がさらに縮小される。この拡大した容量ずれが、正負極容量ずれによる容量低下である。 "(1) Positive / negative electrode capacity deviation" is derived from the deviation between the positive electrode capacity and the negative electrode capacity. The capacity of the secondary battery is determined by the size of the region where the positive electrode capacity and the negative electrode capacity overlap in the operating range of the secondary battery. Even in the secondary battery in the initial state without deterioration, the positive electrode capacity and the negative electrode capacity are in a state of being deviated from each other. When a side reaction or the like progresses in both the positive electrode and the negative electrode, the positive electrode capacity and the negative electrode capacity decrease from the initial state. As a result, the deviation between the positive electrode capacity and the negative electrode capacity is widened, and the area where the positive electrode capacity and the negative electrode capacity overlap is further reduced. This expanded capacity shift is a capacity decrease due to the positive and negative electrode capacity shifts.

「(2)正極の保存劣化」は、放置しているだけで正極容量自体が低下する現象である。この容量低下は、正極活物質であるLiNiOが、NiO等を含む被膜を生成する副反応によるものである。つまり、被膜が生成されることにより、正極へのリチウムイオンの吸蔵及び放出が妨げられ、結果として正極容量が低下する。 "(2) Storage deterioration of the positive electrode" is a phenomenon in which the positive electrode capacity itself decreases just by leaving it unattended. This decrease in capacity is due to a side reaction in which LiNiO 2 , which is a positive electrode active material, forms a film containing NiO and the like. That is, the formation of the film prevents the storage and release of lithium ions into the positive electrode, and as a result, the capacity of the positive electrode is reduced.

「(3)正極のサイクル劣化」は、正極活物質の二次粒子の構造変化に伴う現象であって、二次電池が充放電を繰り返すことにより正極容量が低下するものである。なお、二次粒子は、一次粒子が集まった二次粒子である。ここで「一次粒子」とは、外見上の幾何学的形態から判断して単位粒子と考えられる粒子を指す。充放電の条件にもよるが、充放電が繰り返されることにより正極活物質は膨張及び収縮し、二次粒子の殻が崩れる。二次粒子の殻が崩れると、正極活物質の粒子を流れる電子の導電パスが切断されるため、正極の容量が低下する。また、正極活物質がLiNiOではなくても、充放電を繰り返すことにより、正極活物質は膨張及び収縮を繰り返すため、サイクル劣化が生じる。 "(3) Cycle deterioration of the positive electrode" is a phenomenon associated with a structural change of the secondary particles of the positive electrode active material, and the positive electrode capacity decreases as the secondary battery repeatedly charges and discharges. The secondary particles are secondary particles in which primary particles are gathered. Here, the "primary particle" refers to a particle considered to be a unit particle judging from its apparent geometrical morphology. Although it depends on the charging / discharging conditions, the positive electrode active material expands and contracts due to repeated charging / discharging, and the shell of the secondary particles collapses. When the shell of the secondary particles collapses, the conductive path of the electrons flowing through the particles of the positive electrode active material is cut, so that the capacity of the positive electrode decreases. Further, even if the positive electrode active material is not LiNiO 2 , the positive electrode active material repeats expansion and contraction due to repeated charging and discharging, so that cycle deterioration occurs.

二次電池の初期容量Qから推定時の容量Q´を減じた全体の容量低下量ΔQは、これらの要因毎の容量低下量Q1~Q3を積算した量に対応すると考えられる。このうち、正負極容量ずれに由来する第1容量低下量Q1(以下、単に容量低下量Q1という)は、副反応の電極反応速度に応じた電流密度と過電圧との関係を記述したターフェルの式に基づく正極の副反応電流値と負極の副反応電流値により推定することが可能である。つまり、過電圧が同一である場合に、大きな電流が流れるほど、その反応速度は早いといえる。また、正極の保存劣化による第2容量低下量Q2(以下、単に容量低下量Q2という)は、二次電池の温度及び電池電圧を含む使用履歴と、予め記録されたマップとを用いて推定することが可能である。 It is considered that the total capacity reduction amount ΔQ obtained by subtracting the estimated capacity Q'from the initial capacity Q of the secondary battery corresponds to the integrated amount of the capacity reduction amounts Q1 to Q3 for each of these factors. Of these, the first capacitance reduction amount Q1 (hereinafter, simply referred to as capacity reduction amount Q1) derived from the positive and negative electrode capacitance shift is a Tafel equation describing the relationship between the current density and the overvoltage according to the electrode reaction rate of the side reaction. It is possible to estimate from the side reaction current value of the positive electrode and the side reaction current value of the negative electrode based on. That is, when the overvoltages are the same, it can be said that the larger the current flows, the faster the reaction speed. Further, the second capacity decrease amount Q2 (hereinafter, simply referred to as capacity decrease amount Q2) due to storage deterioration of the positive electrode is estimated using a usage history including the temperature and battery voltage of the secondary battery and a map recorded in advance. It is possible.

一方、正極のサイクル劣化による第3容量低下量Q3(以下、単に容量低下量Q3という)は、上述したように正極活物質の充放電の繰り返しに伴う二次粒子の構造変化に由来し、電気化学反応とは異なる機構で発生するため、電気化学反応の電流密度を求めるターフェルの式等からはその容量低下量を推定することはできない。また、温度や電池電圧とは直接的に依存しないため、正極の保存劣化による容量低下量Q2のように電池温度及び電池電圧から求めることはできない。一方、容量低下量Q3は、二次電池を解体し、正極活物質を取り出して分析すれば劣化状態は判別できるが、二次電池を再利用する上では非破壊で容量低下量を推定することが好ましい。 On the other hand, the third capacity decrease amount Q3 (hereinafter, simply referred to as capacity decrease amount Q3) due to the cycle deterioration of the positive electrode is derived from the structural change of the secondary particles due to repeated charging and discharging of the positive electrode active material as described above, and is electrically generated. Since it occurs by a mechanism different from that of the chemical reaction, the amount of decrease in capacity cannot be estimated from Tafel's equation for obtaining the current density of the electrochemical reaction. Further, since it does not directly depend on the temperature and the battery voltage, it cannot be obtained from the battery temperature and the battery voltage like the capacity decrease amount Q2 due to the storage deterioration of the positive electrode. On the other hand, the capacity reduction amount Q3 can be determined by disassembling the secondary battery and extracting and analyzing the positive electrode active material, but when reusing the secondary battery, the capacity reduction amount should be estimated in a non-destructive manner. Is preferable.

したがって、本実施形態では、全体の容量低下量ΔQ、正負極容量ずれに由来する容量低下量Q1、及び正極の保存劣化に由来する容量低下量Q2を求め、容量低下量ΔQから容量低下量Q1,Q2を減ずることによって、正極のサイクル劣化に由来する容量低下量Q3を推定する。 Therefore, in the present embodiment, the total capacity reduction amount ΔQ, the capacity reduction amount Q1 due to the positive / negative electrode capacity deviation, and the capacity reduction amount Q2 due to the storage deterioration of the positive electrode are obtained, and the capacity reduction amount Q1 is obtained from the capacity reduction amount ΔQ. , Q2 is reduced to estimate the amount of capacity decrease Q3 due to the cycle deterioration of the positive electrode.

そして、推定した容量低下量Q3は、二次電池の再利用時の用途又は条件を決定するために用いられる。例えば、容量低下量Q3が所定値以上の場合には、その二次電池を、相対的に狭いSOCの許容範囲で再利用される二次電池として判定し、容量低下量Q3が所定値未満の場合には、相対的に広いSOCの許容範囲で再利用される二次電池として判定する。又は、容量低下量Q3に基づき、二次電池のSOCの許容範囲を決定してもよいし、二次電池の温度環境、下限電圧及び上限電圧、充放電の制御方法、使用可能期間等を決定してもよい。 Then, the estimated capacity reduction amount Q3 is used to determine the use or condition when the secondary battery is reused. For example, when the capacity reduction amount Q3 is equal to or more than a predetermined value, the secondary battery is determined as a secondary battery to be reused within a relatively narrow SOC tolerance range, and the capacity reduction amount Q3 is less than the predetermined value. In the case, it is determined as a secondary battery to be reused within a relatively wide SOC tolerance. Alternatively, the allowable range of SOC of the secondary battery may be determined based on the capacity reduction amount Q3, or the temperature environment of the secondary battery, the lower limit voltage and the upper limit voltage, the charge / discharge control method, the usable period, etc. may be determined. You may.

次に図2~図10を参照して、二次電池の状態推定方法及び状態推定システムについて詳述する。
図2は、二次電池11を搭載する車両10の要部の概略的に示す図である。車両10は、ハイブリッド自動車又は電気自動車である。二次電池11は、複数の電池モジュール11Aを組み合わせた組電池である。電池モジュール11Aは、LiNiO等のリチウム遷移金属複合酸化物を含む正極活物質、炭素材料を含む負極活物質を備える。
Next, with reference to FIGS. 2 to 10, the state estimation method and the state estimation system of the secondary battery will be described in detail.
FIG. 2 is a diagram schematically showing a main part of a vehicle 10 equipped with a secondary battery 11. The vehicle 10 is a hybrid vehicle or an electric vehicle. The secondary battery 11 is an assembled battery in which a plurality of battery modules 11A are combined. The battery module 11A includes a positive electrode active material containing a lithium transition metal composite oxide such as LiNiO 2 and a negative electrode active material containing a carbon material.

車両10は、二次電池11とPCU12とを接続する電池制御回路13を備えている。PCU12は、インバータ等を内蔵し、発電機及び電動機として機能するモータジェネレータ15と接続している。モータジェネレータ15は、電動機として機能する場合にはPCU12を介して二次電池11から供給された電流によって駆動して、車輪に回転力を伝達する。また、モータジェネレータ15は、発電機として機能する場合にはPCU12を介して二次電池11に電流を供給し、二次電池11を充電する。また、二次電池11は、図示しない充放電制御装置を介して、充電スタンド等の外部の充電装置から電流を供給されるものであってもよい。 The vehicle 10 includes a battery control circuit 13 that connects the secondary battery 11 and the PCU 12. The PCU 12 has a built-in inverter and the like, and is connected to a motor generator 15 that functions as a generator and an electric motor. When the motor generator 15 functions as an electric motor, the motor generator 15 is driven by a current supplied from the secondary battery 11 via the PCU 12 to transmit a rotational force to the wheels. When the motor generator 15 functions as a generator, the motor generator 15 supplies a current to the secondary battery 11 via the PCU 12 to charge the secondary battery 11. Further, the secondary battery 11 may be one in which a current is supplied from an external charging device such as a charging stand via a charging / discharging control device (not shown).

また、電池制御回路13には、電圧検出部16及び電流検出部17が設けられている。さらに、車両10には二次電池11の状態を監視する第1制御装置としての制御装置20が設けられている。制御装置20は、CPU等の演算部21、演算結果を一時的に記憶するメモリ22、及びストレージ23を備えている。ストレージ23には、状態推定プログラムや二次電池11の履歴情報等が記録される。電圧検出部16は、検出した二次電池11の電圧値を、制御装置20に出力する。電流検出部17は、検出した二次電池11の電流値を、制御装置20に出力する。制御装置20は、電圧検出部16及び電流検出部17から取得した電圧値及び電流値等の履歴情報をストレージ23に記憶する。 Further, the battery control circuit 13 is provided with a voltage detection unit 16 and a current detection unit 17. Further, the vehicle 10 is provided with a control device 20 as a first control device for monitoring the state of the secondary battery 11. The control device 20 includes a calculation unit 21 such as a CPU, a memory 22 for temporarily storing calculation results, and a storage 23. The storage 23 records a state estimation program, history information of the secondary battery 11, and the like. The voltage detection unit 16 outputs the detected voltage value of the secondary battery 11 to the control device 20. The current detection unit 17 outputs the detected current value of the secondary battery 11 to the control device 20. The control device 20 stores the history information such as the voltage value and the current value acquired from the voltage detection unit 16 and the current detection unit 17 in the storage 23.

また、二次電池11には、電池内の温度である温度Tを測定する温度検出部18が設けられている。温度検出部18は、1乃至複数の電池モジュール11Aの内部の温度を検出する。なお、温度検出部18は、電池モジュール11Aの外側であって電池モジュール11Aのケース近傍の温度を検出してもよい。 Further, the secondary battery 11 is provided with a temperature detection unit 18 for measuring the temperature T, which is the temperature inside the battery. The temperature detection unit 18 detects the temperature inside one or more battery modules 11A. The temperature detection unit 18 may detect the temperature on the outside of the battery module 11A and in the vicinity of the case of the battery module 11A.

制御装置20の演算部21は、所定の時間間隔毎に、電圧値、電流値及び温度を取得し、取得した時刻(又は基準時からの経過時間)に関連付けて履歴情報としてストレージ23に記録する。また、演算部21は、履歴情報に基づき、電圧値及び温度に基づいて、二次電池11の正負極容量ずれに由来する容量低下量Q1と、正極のサイクル劣化に由来する容量低下量Q2とを状態推定プログラムに従って推定し、それらの値をストレージ23に記録する。 The calculation unit 21 of the control device 20 acquires a voltage value, a current value, and a temperature at predetermined time intervals, and records the voltage value, the current value, and the temperature in the storage 23 as history information in association with the acquired time (or the elapsed time from the reference time). .. Further, the calculation unit 21 determines the capacity decrease amount Q1 due to the positive / negative electrode capacity deviation of the secondary battery 11 and the capacity decrease amount Q2 due to the cycle deterioration of the positive electrode based on the history information and the voltage value and the temperature. Is estimated according to the state estimation program, and those values are recorded in the storage 23.

図3は、二次電池11について、劣化状態を判定する検査システム30を概略的に示す図である。この検査システム30は、電池制御回路13から外した二次電池11を測定対象とする。検査システム30は、充放電制御回路31と、第2制御装置としての劣化判定装置35とを備える。充放電制御回路31は、図示しない電源に接続された測定用充放電装置32と、電圧検出部33と、電流検出部34とを備える。劣化判定装置35は、測定用充放電装置32を制御する。測定用充放電装置32は、劣化判定装置35からの要求に基づき、直流電流を供給して二次電池11を充電する。また、測定用充放電装置32は、劣化判定装置35からの要求に基づき、二次電池11を放電する。なお、充放電制御回路31には外部負荷(図示略)が接続されていてもよい。なお、制御装置20と劣化判定装置35とが、状態判定システムに対応する。 FIG. 3 is a diagram schematically showing an inspection system 30 for determining a deterioration state of the secondary battery 11. The inspection system 30 measures the secondary battery 11 removed from the battery control circuit 13. The inspection system 30 includes a charge / discharge control circuit 31 and a deterioration determination device 35 as a second control device. The charge / discharge control circuit 31 includes a measurement charge / discharge device 32 connected to a power source (not shown), a voltage detection unit 33, and a current detection unit 34. The deterioration determination device 35 controls the charging / discharging device 32 for measurement. The measurement charge / discharge device 32 supplies a direct current to charge the secondary battery 11 based on the request from the deterioration determination device 35. Further, the charging / discharging device 32 for measurement discharges the secondary battery 11 based on the request from the deterioration determining device 35. An external load (not shown) may be connected to the charge / discharge control circuit 31. The control device 20 and the deterioration determination device 35 correspond to the state determination system.

劣化判定装置35は、CPU等の演算部36と、演算部36の演算結果を一時的に記憶するメモリ37と、ストレージ38とを備える。ストレージ38には、劣化判定プログラム、二次電池11の履歴情報、劣化判定結果を示す劣化判定情報等が記録される。なお、履歴情報は制御装置20から取得される。履歴情報の取得方法は特に限定されない。例えば、二次電池11を車両10から取り外す際に制御装置20も合わせて取り外す場合には、取り外した制御装置20と劣化判定装置35とを接続して履歴情報を取得してもよい。又は劣化判定装置35を車載ネットワーク等に接続し、車両10に搭載された制御装置20から履歴情報を取得するようにしてもよい。 The deterioration determination device 35 includes a calculation unit 36 such as a CPU, a memory 37 for temporarily storing the calculation result of the calculation unit 36, and a storage 38. The storage 38 records a deterioration determination program, history information of the secondary battery 11, deterioration determination information indicating the deterioration determination result, and the like. The history information is acquired from the control device 20. The method of acquiring the history information is not particularly limited. For example, when the control device 20 is also removed when the secondary battery 11 is removed from the vehicle 10, the removed control device 20 and the deterioration determination device 35 may be connected to acquire history information. Alternatively, the deterioration determination device 35 may be connected to an in-vehicle network or the like to acquire history information from the control device 20 mounted on the vehicle 10.

次に、図4及び図5を参照して、二次電池11の状態推定方法の手順についてその動作とともに説明する。
図4は、車両10に搭載された制御装置20が実行する容量低下量の推定方法の手順を示す。制御装置20は、ストレージ23に格納された状態推定プログラムを実行し、ステップS11~S15の処理を所定の時間Δt毎に繰り返す。なお、この容量低下量の推定は、走行状態、停車状態、及び駐車状態等の車両状態、充電状態、放電状態及び充放電を行っていない状態といった二次電池11の電池状態に限らず、所定の時間Δt毎に実行してもよい。或いは、車両状態及び電池状態の少なくとも一方が所定の状態である場合に実行してもよい。
Next, with reference to FIGS. 4 and 5, the procedure of the state estimation method of the secondary battery 11 will be described together with its operation.
FIG. 4 shows a procedure of a capacity reduction amount estimation method executed by the control device 20 mounted on the vehicle 10. The control device 20 executes the state estimation program stored in the storage 23, and repeats the processes of steps S11 to S15 every predetermined time Δt. The estimation of the capacity reduction amount is not limited to the battery state of the secondary battery 11 such as a running state, a stopped state, a vehicle state such as a parked state, a charging state, a discharging state, and a state in which charging / discharging is not performed. It may be executed every time Δt of. Alternatively, it may be executed when at least one of the vehicle state and the battery state is a predetermined state.

まず制御装置20は、温度検出部18から温度Tを取得する(ステップS11)。また、制御装置20は、電圧検出部16から電圧値である電圧Vを取得する(ステップS12)。さらに、制御装置20は、取得した温度T及び電圧Vに基づいて、正極の副反応電流値Ipと、負極の副反応電流値Inとを推定する(ステップS13)。 First, the control device 20 acquires the temperature T from the temperature detection unit 18 (step S11). Further, the control device 20 acquires a voltage V, which is a voltage value, from the voltage detection unit 16 (step S12). Further, the control device 20 estimates the side reaction current value Ip of the positive electrode and the side reaction current value In of the negative electrode based on the acquired temperature T and voltage V (step S13).

ステップS13における正極の副反応電流値Ipの予測方法について説明する。まず、NiOを含む被膜を生成する正極の副反応における被膜形成電流密度ipを下記の式(3)に従って求める(電流密度推定工程)。被膜形成電流密度ipが大きいほど、この副反応による正極の劣化速度は大きいことになる。 A method of predicting the side reaction current value Ip of the positive electrode in step S13 will be described. First, the film-forming current density ip in the side reaction of the positive electrode that forms a film containing NiO is obtained according to the following equation (3) (current density estimation step). The larger the film formation current density ip, the higher the deterioration rate of the positive electrode due to this side reaction.

Figure 2022021445000004
上記式(3)はターフェルの式に基づくものである。「io」は、正極の副反応が平衡状態にある場合の交換電流密度であり、定数である。「α」は移動係数、「F」はファラデー定数、「R」は気体定数である。「T」は絶対温度であって、温度検出部18から取得した温度Tである。また「Ep」は電圧Vから求められた正極電位であって、「Ep´」はNiO等を含む被膜が形成される被膜形成電位であり定数である。つまり、温度T及び正極電位Epに応じて、被膜形成電流密度ipは変わる。
Figure 2022021445000004
The above equation (3) is based on the Tafel equation. “Io” is an exchange current density when the side reaction of the positive electrode is in an equilibrium state, and is a constant. “Α” is a movement coefficient, “F” is a Faraday constant, and “R” is a gas constant. “T” is an absolute temperature, which is the temperature T obtained from the temperature detection unit 18. Further, "Ep" is a positive electrode potential obtained from the voltage V, and "Ep'" is a film forming potential at which a film containing NiO or the like is formed and is a constant. That is, the film forming current density ip changes depending on the temperature T and the positive electrode potential Ep.

なお、電圧Vは、その電圧値が検出されたときの正極電位Epと負極電位Enとの差であるため、正極電位Ep及び負極電位Enは、電圧値が測定されたときの温度Tと電圧Vとからそれぞれ求めることができる。そのため、電圧V、温度T、予め求められたマップ又はグラフを用いて正極電位Epを特定する。負極電位Enも同様である。 Since the voltage V is the difference between the positive electrode potential Ep and the negative electrode potential En when the voltage value is detected, the positive electrode potential Ep and the negative electrode potential En are the temperature T and the voltage when the voltage value is measured. It can be obtained from V and each. Therefore, the voltage V, the temperature T, and the positive electrode potential Ep are specified using a map or graph obtained in advance. The same applies to the negative electrode potential En.

次に、被膜形成電流密度ipを用い、式(4)に従って正極の副反応電流値Ipを求める(電流値推定工程)。 Next, using the film forming current density ip, the side reaction current value Ip of the positive electrode is obtained according to the equation (4) (current value estimation step).

Figure 2022021445000005
「ηp」は過電圧項であって、正極の副反応の平衡電極電位と実際に反応が進行するときの正極電位Epとの差である。
Figure 2022021445000005
“Ηp” is an overvoltage term, which is the difference between the equilibrium electrode potential of the side reaction of the positive electrode and the positive electrode potential Ep when the reaction actually proceeds.

次に、負極の副反応電流値Inの推定方法について説明する。負極の副反応は、主に電解質の分解反応による負極活物質の表面上に形成されるSEI(Solid Electrolyte Interphase)の生成反応である。SEIは、リチウムイオンを放出及び吸入可能な被膜であり、電解質の分解を抑制するが、厚くなるとリチウムイオンの拡散を妨げ容量低下を招来する。負極の副反応電流値Inを推定する際は、まず負極の被膜形成電流密度inを下記の式(5)に従って求める(電流密度推定工程)。被膜形成電流密度inが大きいほど、SEIを生成する副反応による副反応の劣化速度は大きいことになる。 Next, a method of estimating the side reaction current value In of the negative electrode will be described. The adverse reaction of the negative electrode is a reaction of forming SEI (Solid Electrolyte Interphase) formed on the surface of the negative electrode active material mainly by the decomposition reaction of the electrolyte. SEI is a film that can release and inhale lithium ions and suppresses the decomposition of electrolytes, but when it becomes thicker, it hinders the diffusion of lithium ions and causes a decrease in capacity. When estimating the side reaction current value In of the negative electrode, first, the film forming current density in of the negative electrode is obtained according to the following equation (5) (current density estimation step). The larger the film formation current density in, the greater the rate of deterioration of the side reaction due to the side reaction that produces SEI.

Figure 2022021445000006
「io」は、副反応が平衡状態にある場合の交換電流密度であり、定数である。「α」は移動係数、「F」はファラデー定数、「R」は気体定数である。「T」は絶対温度であって、温度検出部18から取得した温度Tである。また「En」は負極電位であり、「En´」はSEI等が形成される被膜形成電位であって定数である。つまり、温度T及び負極電位Enに応じて、正極の交換電流密度ioは変わる。
Figure 2022021445000006
“Io” is the exchange current density when the side reaction is in equilibrium, and is a constant. “Α” is a movement coefficient, “F” is a Faraday constant, and “R” is a gas constant. “T” is an absolute temperature, which is the temperature T obtained from the temperature detection unit 18. Further, "En" is a negative electrode potential, and "En'" is a film forming potential on which SEI or the like is formed and is a constant. That is, the exchange current density io of the positive electrode changes depending on the temperature T and the negative electrode potential En.

次に、被膜形成電流密度inを用い、式(6)に従って負極の副反応電流値Inを求める(電流値推定工程)。 Next, using the film forming current density in, the side reaction current value In of the negative electrode is obtained according to the equation (6) (current value estimation step).

Figure 2022021445000007
「ηn」は過電圧項であって、負極の副反応の平衡電極電位と実際に反応が進行するときの負極電位Enとの差である。
Figure 2022021445000007
“Ηn” is an overvoltage term, which is the difference between the equilibrium electrode potential of the side reaction of the negative electrode and the negative electrode potential En when the reaction actually proceeds.

このようにして正極の副反応電流値Ip及び負極の副反応電流値Inを求めると、これらから、正極及び負極の容量ずれによる容量低下量Q1を推定する(ステップS14、第1工程)。具体的には、制御装置20は、副反応電流値Ipと副反応電流値Inを用いて以下の式(7)に従って、時間Δtあたりの容量ずれによる容量低下量Q1を算出する。 When the side reaction current value Ip of the positive electrode and the side reaction current value In of the negative electrode are obtained in this way, the capacity decrease amount Q1 due to the capacity shift between the positive electrode and the negative electrode is estimated (step S14, first step). Specifically, the control device 20 calculates the capacity decrease amount Q1 due to the capacity shift per time Δt according to the following equation (7) using the side reaction current value Ip and the side reaction current value In.

Figure 2022021445000008
次に、制御装置20は、正極の保存劣化による容量低下量Q2を推定する(ステップS15、第2工程)。以下、保存劣化による容量低下量Q2の推定方法について詳述する。
Figure 2022021445000008
Next, the control device 20 estimates the amount of capacity decrease Q2 due to storage deterioration of the positive electrode (step S15, second step). Hereinafter, the method of estimating the capacity decrease amount Q2 due to storage deterioration will be described in detail.

先ず、図5~図8を参照して、正極劣化速度の傾向について説明する。図5及び図6は、正極劣化速度の正極電位依存性を示し、図7及び図8は正極劣化速度の温度依存性を示す。図5は、横軸を電池の保存時間(t)の平方根(t1/2)、縦軸を正極比容量(mAh/g)としている。劣化速度線100は正極電位Epが3.886V、劣化速度線101は正極電位Epが3.984V、劣化速度線102は正極電位Epが4.1Vであって、いずれも保存時の温度が85℃であるときの劣化速度を示す。劣化速度線100~102はいずれも保存時間が長くなるに伴い正極比容量が低下している。また、劣化速度線100~102のうち、正極電位Epが最も高い劣化速度線102は最も傾きの絶対値が大きく、劣化速度が大きい。また、正極電位Epが最も低い劣化速度線100は、最も傾きの絶対値が小さく、劣化速度が小さい。 First, the tendency of the positive electrode deterioration rate will be described with reference to FIGS. 5 to 8. 5 and 6 show the positive electrode voltage dependence of the positive electrode deterioration rate, and FIGS. 7 and 8 show the temperature dependence of the positive electrode deterioration rate. In FIG. 5, the horizontal axis is the square root (t 1/2 ) of the battery storage time (t), and the vertical axis is the positive electrode specific volume (mAh / g). The deterioration rate line 100 has a positive electrode potential Ep of 3.886V, the deterioration rate line 101 has a positive electrode potential Ep of 3.984V, and the deterioration rate line 102 has a positive electrode potential Ep of 4.1V. Shows the deterioration rate at ° C. In each of the deterioration rate lines 100 to 102, the positive electrode specific capacity decreases as the storage time becomes longer. Further, among the deterioration rate lines 100 to 102, the deterioration rate line 102 having the highest positive electrode potential Ep has the largest absolute value of inclination and the highest deterioration rate. Further, the deterioration rate line 100 having the lowest positive electrode potential Ep has the smallest absolute value of slope and the lowest deterioration rate.

図6は、図5に示すグラフを、正極電位Epと正極劣化速度との関係に置き換えたものである。正極劣化速度{(mAh/g)・t1/2}は、正極比容量を保存時間の平方根(t1/2)で除して算出する。正極電位Epが大きくなるに伴い、劣化速度は指数関数的に上昇する。 FIG. 6 replaces the graph shown in FIG. 5 with the relationship between the positive electrode potential Ep and the positive electrode deterioration rate. The positive electrode deterioration rate {(mAh / g) · t 1/2 } is calculated by dividing the positive electrode specific volume by the square root (t 1/2 ) of the storage time. As the positive electrode potential Ep increases, the deterioration rate increases exponentially.

図7及び図8は、正極劣化速度の温度依存性を示すグラフである。図7のグラフの横軸は、電池の保存時間(t)の平方根(t1/2)、縦軸は電池の正極比容量(mAh/g)である。劣化速度線110~112は、いずれも保存時の正極電位Epが4.1Vであり、劣化速度線110が温度60℃、劣化速度線111が温度75℃、劣化速度線112が温度85℃の条件で測定されたものである。劣化速度線110~112は、保存時間が長くなるに伴い、正極比容量が低下している。温度が最も高い劣化速度線112は、最も傾きの絶対値が大きく、劣化速度が大きい。また、温度が最も低い劣化速度線110は、最も傾きが大きく、劣化速度が小さい。 7 and 8 are graphs showing the temperature dependence of the positive electrode deterioration rate. The horizontal axis of the graph of FIG. 7 is the square root (t 1/2 ) of the storage time (t) of the battery, and the vertical axis is the positive electrode specific capacity (mAh / g) of the battery. The deterioration rate lines 110 to 112 have a positive electrode potential Ep of 4.1 V at the time of storage, the deterioration rate line 110 has a temperature of 60 ° C., the deterioration rate line 111 has a temperature of 75 ° C., and the deterioration rate line 112 has a temperature of 85 ° C. It was measured under the conditions. The deterioration rate lines 110 to 112 have a lower positive electrode specific capacity as the storage time becomes longer. The deterioration rate line 112 having the highest temperature has the largest absolute value of inclination and the highest deterioration rate. Further, the deterioration rate line 110 having the lowest temperature has the largest inclination and the lowest deterioration rate.

図8は、図7に示すグラフを、温度と劣化速度との関係に置き換えたものである。縦軸は、正極比容量を時間で除して算出した劣化速度の自然対数である。横軸は、絶対温度の逆数「1/K」に「10」を乗じたものである。温度が高くなるほど、劣化速度は大きくなる。 FIG. 8 replaces the graph shown in FIG. 7 with the relationship between the temperature and the deterioration rate. The vertical axis is the natural logarithm of the deterioration rate calculated by dividing the specific volume of the positive electrode by time. The horizontal axis is the reciprocal of the absolute temperature " 1 / K" multiplied by "103". The higher the temperature, the higher the deterioration rate.

図9は、図5~図8のグラフに基づき作成された劣化速度情報としてのマップ120を模式的に示す。マップ120は、温度T及び正極電位Epから劣化速度(mAh/g・t1/2)を求めるためのものである。このマップ120は、車両10に搭載された制御装置20のストレージ23に格納されている。縦軸は温度であり、図9中上方向に向かうにつれて温度は高くなり、下方向に向かうにつれて温度は低くなる。横軸は正極電位Epであり、図9中右方向に向かうにつれて正極電位Epは高くなる。温度が一定の場合、正極電位が高いほど劣化速度は大きい。また、正極電位が一定の場合、温度が高いほど劣化速度は大きい。また、マップ120の上方左側に向かうにつれ、劣化速度は大きくなる。つまり、温度が高く且つ正極電位が高くなるほど相乗的に劣化速度は大きくなる。 FIG. 9 schematically shows a map 120 as deterioration rate information created based on the graphs of FIGS. 5 to 8. The map 120 is for obtaining the deterioration rate (mAh / g · t 1/2 ) from the temperature T and the positive electrode potential Ep. This map 120 is stored in the storage 23 of the control device 20 mounted on the vehicle 10. The vertical axis is the temperature, and the temperature increases in the upward direction in FIG. 9, and decreases in the downward direction. The horizontal axis is the positive electrode potential Ep, and the positive electrode potential Ep increases toward the right in FIG. When the temperature is constant, the higher the positive electrode potential, the higher the deterioration rate. Further, when the positive electrode potential is constant, the higher the temperature, the higher the deterioration rate. Further, the deterioration rate increases toward the upper left side of the map 120. That is, the higher the temperature and the higher the positive electrode potential, the higher the deterioration rate synergistically.

制御装置20は、図9に示すマップ120を用いて、正極電位Epと温度Tとから劣化速度を求める。また、制御装置20は劣化速度に時間(Δt)を乗算して、正極の保存劣化による容量低下量Q2を算出する。 The control device 20 obtains the deterioration rate from the positive electrode potential Ep and the temperature T using the map 120 shown in FIG. Further, the control device 20 multiplies the deterioration rate by the time (Δt) to calculate the capacity decrease amount Q2 due to the storage deterioration of the positive electrode.

このように、制御装置20は、時間Δt毎に容量低下量Q1,Q2を推定し、前回(n回目)までに算出した容量低下量の積算値(ΣQ1,ΣQ2)に、今回(n+1回目)に算出した容量低下量Q1,Q2を新たに積算する。 In this way, the control device 20 estimates the capacity reduction amount Q1 and Q2 every time Δt, and the integrated value (ΣQ1, ΣQ2) of the capacity reduction amount calculated up to the previous time (nth time) is added to this time (n + 1th time). The capacity reduction amounts Q1 and Q2 calculated in 1 are newly integrated.

このようにステップS11~S15を繰り返すことにより、制御装置20のストレージ23に記録された容量低下量Q1,Q2を更新する。或いは、所定の時間Δt毎に算出した容量低下量Q1,Q2を、算出の都度、ストレージ23に蓄積してもよい。 By repeating steps S11 to S15 in this way, the capacity reduction amounts Q1 and Q2 recorded in the storage 23 of the control device 20 are updated. Alternatively, the capacity reduction amounts Q1 and Q2 calculated every predetermined time Δt may be stored in the storage 23 each time the calculation is performed.

次に、図10を参照して、容量低下量の推定方法の後に行われる劣化判定方法について説明する。本実施形態では、劣化判定は、車両10から二次電池11を取り外した後に検査システム30を用いて行われる。 Next, with reference to FIG. 10, a deterioration determination method performed after the method of estimating the capacity reduction amount will be described. In the present embodiment, the deterioration determination is performed by using the inspection system 30 after removing the secondary battery 11 from the vehicle 10.

まず、充放電制御回路31に二次電池11を接続し、SOC100%まで充電した後、放電することで電池容量Q´を取得する(ステップS21)。電池容量Q´は放電容量であり、容量の測定方法は特に限定されず、電池の使用状況の情報等から推定してもよい。 First, the secondary battery 11 is connected to the charge / discharge control circuit 31, charged to 100% SOC, and then discharged to acquire the battery capacity Q'(step S21). The battery capacity Q'is the discharge capacity, and the method for measuring the capacity is not particularly limited, and may be estimated from information on the battery usage status or the like.

次に、劣化判定装置35は、初期容量Qを取得する(ステップS22)。初期容量は、劣化判定装置35のストレージ23等に記憶されているか、若しくは二次電池11の固有の規定値である。さらに、劣化判定装置35は、初期容量Qから電池容量Q´を減じて、電池全体の容量低下量ΔQを算出する(ステップS23、容量低下量特定工程)。 Next, the deterioration determination device 35 acquires the initial capacity Q (step S22). The initial capacity is stored in the storage 23 or the like of the deterioration determination device 35, or is a specified value peculiar to the secondary battery 11. Further, the deterioration determination device 35 subtracts the battery capacity Q'from the initial capacity Q to calculate the capacity reduction amount ΔQ of the entire battery (step S23, capacity reduction amount specifying step).

また、劣化判定装置35は、ステップS14で算出した正負極容量ずれによる容量低下量Q1、ステップS15で算出した正極の保存劣化による容量低下量Q2を取得する(ステップS25、第3工程)。 Further, the deterioration determination device 35 acquires the capacity reduction amount Q1 due to the positive and negative electrode capacity deviation calculated in step S14 and the capacity reduction amount Q2 due to storage deterioration of the positive electrode calculated in step S15 (step S25, third step).

劣化判定装置35は、電池容量Q´が第1閾値Qth1を超えるか否かを判断する(ステップS26)。第1閾値Qth1は、再利用可能な二次電池11の容量の下限値に設定されている。この下限値は、用途を問わず、共通のものである。劣化判定装置35は、電池容量Q´が第1閾値Qth1以下と判断すると(ステップS26:NO)、その二次電池11を再利用不可能と判断する(ステップS29)。 The deterioration determination device 35 determines whether or not the battery capacity Q'exceeds the first threshold value Qth1 (step S26). The first threshold value Qth1 is set to the lower limit of the capacity of the reusable secondary battery 11. This lower limit is common regardless of the application. When the deterioration determination device 35 determines that the battery capacity Q'is equal to or less than the first threshold value Qth1 (step S26: NO), the deterioration determination device 35 determines that the secondary battery 11 cannot be reused (step S29).

一方、劣化判定装置35は、電池容量Q´が第1閾値Qth1以下と判断すると(ステップS26:YES)、正極のサイクル劣化による容量低下量Q3が第2閾値Qth2未満であるか否かを判断する(ステップS27、判定工程)。第2閾値Qth2は、再利用が可能と判断された場合に、二次電池11の劣化状態を第1劣化状態と第2劣化状態に分類するための閾値である。 On the other hand, when the deterioration determination device 35 determines that the battery capacity Q'is equal to or less than the first threshold value Qth1 (step S26: YES), the deterioration determination device 35 determines whether or not the capacity decrease amount Q3 due to the cycle deterioration of the positive electrode is less than the second threshold value Qth2. (Step S27, determination step). The second threshold value Qth2 is a threshold value for classifying the deteriorated state of the secondary battery 11 into a first deteriorated state and a second deteriorated state when it is determined that the secondary battery 11 can be reused.

劣化判定装置35は、容量低下量Q3が第2閾値Qth2未満であると判断すると(ステップS27:YES)、二次電池11が第1劣化状態であると判断する(ステップS28)。第1劣化状態は、第2劣化状態よりも劣化が進んでいない状態である。第1劣化状態の二次電池11は、SOCの許容範囲が広い使用状態、つまり深い充放電を行う状態で使用される二次電池11として用いられる。具体的には、第1劣化状態の二次電池11は、家庭向け定置用途、産業用定置等の定置用途とされるか、又は電気自動車(EV車)で利用される。 When the deterioration determination device 35 determines that the capacity reduction amount Q3 is less than the second threshold value Qth2 (step S27: YES), the deterioration determination device 35 determines that the secondary battery 11 is in the first deterioration state (step S28). The first deteriorated state is a state in which deterioration has not progressed as much as the second deteriorated state. The secondary battery 11 in the first deteriorated state is used as the secondary battery 11 used in a usage state in which the allowable range of SOC is wide, that is, in a state where deep charging / discharging is performed. Specifically, the secondary battery 11 in the first deteriorated state is used for stationary purposes such as home-use stationary use and industrial stationary use, or is used in an electric vehicle (EV vehicle).

一方、劣化判定装置35は、容量低下量Q3が第2閾値Qth2以上であると判断すると(ステップS27:NO)、二次電池11が第2劣化状態であると判断する(ステップS30)。第2劣化状態は、第1劣化状態よりも劣化が進んだ状態であって、二次電池11のSOCの許容範囲が比較的狭くされる。第2劣化状態では、家庭向け定置、産業用定置等の定置用途、又は電気自動車(EV車)での利用を不可能とし、浅い充放電が行われるハイブリッド車や自動運転用のバックアップ電池等での利用を可能とする。 On the other hand, when the deterioration determination device 35 determines that the capacity decrease amount Q3 is equal to or greater than the second threshold value Qth2 (step S27: NO), the deterioration determination device 35 determines that the secondary battery 11 is in the second deterioration state (step S30). The second deteriorated state is a state in which the deterioration is more advanced than the first deteriorated state, and the allowable range of SOC of the secondary battery 11 is relatively narrowed. In the second deteriorated state, it cannot be used for stationary applications such as home-use stationary and industrial stationary, or for electric vehicles (EV vehicles), and for hybrid vehicles and backup batteries for automatic driving where shallow charging and discharging are performed. Allows the use of.

上記実施形態の効果について説明する。
(1)本発明者は、二次電池11の劣化要因が、主に正負極容量ずれに由来する容量低下量Q1、正極の保存劣化に由来する容量低下量Q2、サイクル劣化による容量低下量Q3であることに着目した。このうち、サイクル劣化による容量低下量Q3は、二次電池を解体しなければその定量化は困難である。そこで、二次電池11の使用履歴である電圧V及び温度Tに基づき容量低下量Q1と、容量低下量Q2とを推定した。そして、初期容量Qを基準とした容量低下量ΔQから、容量低下量Q1及び容量低下量Q2を減じることによって、容量低下量Q3を推定した。このため、二次電池11を破壊することなく、正極の劣化状態を劣化要因毎に推定することができる。
The effect of the above embodiment will be described.
(1) In the present inventor, the deterioration factors of the secondary battery 11 are mainly the capacity reduction amount Q1 due to the positive and negative electrode capacity deviation, the capacity reduction amount Q2 due to the storage deterioration of the positive electrode, and the capacity reduction amount Q3 due to cycle deterioration. I paid attention to that. Of these, it is difficult to quantify the amount of capacity decrease Q3 due to cycle deterioration unless the secondary battery is disassembled. Therefore, the capacity reduction amount Q1 and the capacity reduction amount Q2 were estimated based on the voltage V and the temperature T, which are the usage histories of the secondary battery 11. Then, the capacity reduction amount Q3 was estimated by subtracting the capacity reduction amount Q1 and the capacity reduction amount Q2 from the capacity reduction amount ΔQ based on the initial capacity Q. Therefore, the deterioration state of the positive electrode can be estimated for each deterioration factor without damaging the secondary battery 11.

(2)上記実施形態では、二次電池11の容量低下量Q3の大きさに基づき、SOCの許容範囲に応じた再利用時の用途を判定した。このため、二次電池11の再利用時の用途を適切に判定することができる。 (2) In the above embodiment, the use for reuse according to the allowable range of SOC is determined based on the size of the capacity reduction amount Q3 of the secondary battery 11. Therefore, it is possible to appropriately determine the intended use of the secondary battery 11 when it is reused.

(3)上記実施形態では、正負極容量ずれに由来する容量低下量Q1を、ターフェルの式に基づき被膜形成電流密度を推定する工程と、被膜形成電流密度から副反応電流値を求める工程と、正極の副反応電流値及び負極の副反応電流値から第1容量低下量を算出する工程とによって求めた。このため、二次電池11を解体することなく、容量低下量Q1を推定することができる。 (3) In the above embodiment, the step of estimating the film forming current density based on the Tafel equation and the step of obtaining the side reaction current value from the film forming current density for the capacity decrease amount Q1 derived from the positive and negative electrode capacitance deviation. It was obtained by the step of calculating the first capacitance reduction amount from the side reaction current value of the positive electrode and the side reaction current value of the negative electrode. Therefore, the capacity reduction amount Q1 can be estimated without disassembling the secondary battery 11.

(4)上記実施形態では、二次電池11の正極の劣化速度と、正極電位及び二次電池11の温度との関係を定めたマップ120を予め準備し、二次電池11の使用履歴に基づき、マップ120を参照することによって、正極の保存劣化による容量低下量Q2を求めた。つまり二次電池11の使用履歴さえ蓄積すれば、二次電池11を解体することなく、容量低下量Q2を推定することができる。 (4) In the above embodiment, a map 120 that defines the relationship between the deterioration rate of the positive electrode of the secondary battery 11 and the positive electrode potential and the temperature of the secondary battery 11 is prepared in advance, and is based on the usage history of the secondary battery 11. , The capacity decrease amount Q2 due to the storage deterioration of the positive electrode was obtained by referring to the map 120. That is, as long as the usage history of the secondary battery 11 is accumulated, the capacity reduction amount Q2 can be estimated without disassembling the secondary battery 11.

(5)上記実施形態によれば、車両10に搭載された制御装置20が、使用中の二次電池11の使用履歴を取得して、容量低下量Q1及び容量低下量Q2を推定する。したがって、二次電池11を車両10から取り外した後に、予め算出した容量低下量Q1及び容量低下量Q2を利用することができるため、劣化状態を短時間で判定することができる。 (5) According to the above embodiment, the control device 20 mounted on the vehicle 10 acquires the usage history of the secondary battery 11 in use, and estimates the capacity reduction amount Q1 and the capacity reduction amount Q2. Therefore, after the secondary battery 11 is removed from the vehicle 10, the capacity reduction amount Q1 and the capacity reduction amount Q2 calculated in advance can be used, so that the deterioration state can be determined in a short time.

上記各実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
・上記実施形態では、劣化判定装置35が、容量低下量ΔQを算出するようにした。劣化判定装置は、二次電池11の充電を行う充電スタンド等の外部充電装置であってもよい。図11に示すように、車両130は、外部充電装置140から供給される電流によって二次電池11を充電する車載充電制御装置131と、制御装置20(図2参照)とを備えている。なお、車載充電制御装置131は、制御装置20を兼ねていてもよい。車載充電制御装置131と、外部充電装置140とは、ケーブル群132,133によって接続される。ケーブル群132,133は、充電用のケーブルの他、車載充電制御装置131と外部充電装置140との間で通信に用いられる通信線を有している。そして、この通信線を通じて、車載充電制御装置131と外部充電装置140との間でデータを送受信する。この態様において、外部充電装置140が、二次電池11を放電(又は充電)させて、放電容量(又は充電容量)を測定するようにしてもよい。そして、測定した放電容量(又は充電容量)を通信線を通じて車載充電制御装置131に送信するようにしてもよい。車載充電制御装置131は、受信した放電容量(又は充電容量)を制御装置20に送信し、制御装置20は、初期容量と、放電容量(又は充電容量)とから容量低下量ΔQを算出する。これによれば、二次電池11が車両130に搭載された状態で、二次電池11の劣化状態を判定することができる。そして、制御装置20が、二次電池11が第1劣化状態又は第2劣化状態になったと判定した場合、車両130のインストルメントパネル等に設けられた報知装置を動作させて、二次電池11の劣化を報知するようにしてもよい。また、この態様において、外部充電装置140が、放電容量(又は充電容量)を測定することに加え、車載充電制御装置131から通信線を介して容量低下量Q1,Q2を取得し、容量低下量Q3を算出するようにしてもよい。そして、二次電池11の劣化状態について判定するようにしてもよい。
Each of the above embodiments can be modified and implemented as follows. The present embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
-In the above embodiment, the deterioration determination device 35 calculates the capacity reduction amount ΔQ. The deterioration determination device may be an external charging device such as a charging stand that charges the secondary battery 11. As shown in FIG. 11, the vehicle 130 includes an in-vehicle charge control device 131 for charging the secondary battery 11 by a current supplied from the external charging device 140, and a control device 20 (see FIG. 2). The in-vehicle charge control device 131 may also serve as the control device 20. The in-vehicle charge control device 131 and the external charge device 140 are connected by cable groups 132 and 133. In addition to the charging cable, the cable groups 132 and 133 have a communication line used for communication between the in-vehicle charge control device 131 and the external charging device 140. Then, data is transmitted and received between the in-vehicle charge control device 131 and the external charge device 140 through this communication line. In this embodiment, the external charging device 140 may discharge (or charge) the secondary battery 11 to measure the discharge capacity (or charge capacity). Then, the measured discharge capacity (or charge capacity) may be transmitted to the in-vehicle charge control device 131 through the communication line. The in-vehicle charge control device 131 transmits the received discharge capacity (or charge capacity) to the control device 20, and the control device 20 calculates the capacity reduction amount ΔQ from the initial capacity and the discharge capacity (or charge capacity). According to this, the deterioration state of the secondary battery 11 can be determined in the state where the secondary battery 11 is mounted on the vehicle 130. Then, when the control device 20 determines that the secondary battery 11 is in the first deteriorated state or the second deteriorated state, the control device 20 operates the notification device provided on the instrument panel or the like of the vehicle 130 to operate the secondary battery 11. You may be notified of the deterioration of. Further, in this embodiment, in addition to measuring the discharge capacity (or charge capacity), the external charging device 140 acquires the capacity reduction amounts Q1 and Q2 from the in-vehicle charge control device 131 via the communication line, and the capacity reduction amount. Q3 may be calculated. Then, the deterioration state of the secondary battery 11 may be determined.

・上記実施形態では、二次電池11の再利用について判定するにあたり、劣化判定装置35が電池容量Q´が第1閾値Qth1を超えるか否かを判断するようにした(ステップS26)。しかし、容量低下量Q3と、容量低下量Q1,Q2はある程度相関性がある場合には、少なくとも容量低下量Q3が第2閾値Qth2未満であるか否かを判定(ステップS27)できれば、ステップS26を省略してもよい。 -In the above embodiment, when determining the reuse of the secondary battery 11, the deterioration determination device 35 determines whether or not the battery capacity Q'exceeds the first threshold value Qth1 (step S26). However, if the capacity reduction amount Q3 and the capacity reduction amounts Q1 and Q2 have a certain degree of correlation, and if it can be determined at least whether or not the capacity reduction amount Q3 is less than the second threshold value Qth2 (step S27), step S26. May be omitted.

・二次電池11の劣化判定において、電池容量Q´が第1閾値Qth1以下であるか否か、及び正極のサイクル劣化による容量低下量Q3が第2閾値Qth2未満であるか否かを判断するようにした。これに加え、二次電池11の使用期間、及び充放電サイクル回数等の使用履歴を示すパラメータが、閾値を超えるか否かを判定するようにしてもよい。 -In the deterioration determination of the secondary battery 11, it is determined whether or not the battery capacity Q'is equal to or less than the first threshold value Qth1 and whether or not the capacity decrease amount Q3 due to the cycle deterioration of the positive electrode is less than the second threshold value Qth2. I did it. In addition to this, it may be determined whether or not the parameters indicating the usage history such as the usage period of the secondary battery 11 and the number of charge / discharge cycles exceed the threshold value.

・上記実施形態では、電池状態推定システムは、第1制御装置である制御装置20、及び第2制御装置である劣化判定装置35を含む構成とした。これに代えて、制御装置20を、容量低下量Q1を推定する装置と、容量低下量を推定する装置とに分けてもよい。劣化判定装置35を、容量低下量ΔQを特定する工程を実行する装置と、容量低下量ΔQから容量低下量Q1,Q2を減じて容量低下量Q3を算出する工程を実行する装置とに分けてもよい。 -In the above embodiment, the battery state estimation system includes a control device 20 which is a first control device and a deterioration determination device 35 which is a second control device. Instead of this, the control device 20 may be divided into a device for estimating the capacity reduction amount Q1 and a device for estimating the capacity reduction amount. The deterioration determination device 35 is divided into a device that executes a step of specifying the capacity reduction amount ΔQ and a device that executes a step of subtracting the capacity reduction amounts Q1 and Q2 from the capacity reduction amount ΔQ to calculate the capacity reduction amount Q3. May be good.

・上記実施形態では、二次電池11を、車両10,130に搭載されたリチウムイオン二次電池として説明したが、車両以外の移動体に搭載されたものであってもよい。また、家庭向け定置用途、産業用定置等の定置用途のものであってもよい。これらの二次電池11の再使用時の用途は特に限定されない。また、二次電池11は、リチウムイオン二次電池以外の電池であってもよい。例えば、容量低下の要因が、主に、正負極容量ずれに由来する第1容量低下量、正極活物質に被膜が形成される副反応に由来する第2容量低下量、正極活物質の構造変化に由来する第3容量低下量に分けられるのであれば、ニッケル水素二次電池等のアルカリ二次電池であってもよい。 -In the above embodiment, the secondary battery 11 has been described as a lithium ion secondary battery mounted on the vehicles 10 and 130, but it may be mounted on a moving body other than the vehicle. Further, it may be used for stationary purposes such as stationary use for home use and stationary use for industrial use. The use of these secondary batteries 11 at the time of reuse is not particularly limited. Further, the secondary battery 11 may be a battery other than the lithium ion secondary battery. For example, the factors of the capacity decrease are mainly the first capacity decrease amount due to the positive / negative electrode capacity shift, the second capacity decrease amount due to the side reaction in which a film is formed on the positive electrode active material, and the structural change of the positive electrode active material. An alkaline secondary battery such as a nickel-metal hydride secondary battery may be used as long as it can be divided into the third capacity reduction amount derived from the above.

10,130…車両
11…二次電池
20…第1制御装置としての制御装置
35…第2制御装置としての劣化判定装置
120…劣化速度情報としてのマップ
10, 130 ... Vehicle 11 ... Secondary battery 20 ... Control device as the first control device 35 ... Deterioration judgment device as the second control device 120 ... Map as deterioration speed information

Claims (6)

電池状態を推定する二次電池の状態推定方法であって、
前記二次電池の初期容量からの電池容量の低下量である容量低下量を特定する容量低下量特定工程と、
正極電位及び温度に基づき、正負極容量ずれに由来する第1容量低下量を特定する第1工程と、
前記正極電位及び前記温度に基づき、正極活物質に被膜が形成される副反応に由来する第2容量低下量を特定する第2工程と、
前記容量低下量から、前記第1容量低下量及び前記第2容量低下量を減じて、前記正極活物質の構造変化による第3容量低下量を算出する第3工程と、
を含む二次電池の状態推定方法。
It is a method of estimating the state of a secondary battery that estimates the state of a battery.
The capacity reduction amount specifying step for specifying the capacity reduction amount, which is the battery capacity reduction amount from the initial capacity of the secondary battery, and the capacity reduction amount specifying step.
The first step of specifying the amount of decrease in the first capacity due to the displacement of the positive and negative electrodes based on the positive electrode potential and the temperature, and
A second step of specifying a second volume decrease due to a side reaction in which a film is formed on the positive electrode active material based on the positive electrode potential and the temperature.
The third step of calculating the third capacity reduction amount due to the structural change of the positive electrode active material by subtracting the first capacity reduction amount and the second capacity reduction amount from the capacity reduction amount.
Secondary battery state estimation method including.
前記第3容量低下量が第2閾値未満である場合に、前記二次電池を、相対的に広いSOCの許容範囲で再利用される二次電池として判定し、前記第3容量低下量が前記第2閾値以上である場合に、前記二次電池を、前記二次電池を相対的に狭いSOCの許容範囲で再利用される二次電池として判定する判定工程をさらに含む
請求項1に記載の二次電池の状態推定方法。
When the third capacity reduction amount is less than the second threshold value, the secondary battery is determined as a secondary battery to be reused within a relatively wide SOC tolerance range, and the third capacity reduction amount is the said. The first aspect of claim 1, further comprising a determination step of determining the secondary battery as a secondary battery to be reused within a relatively narrow SOC tolerance when the secondary threshold is equal to or higher than the second threshold. Secondary battery status estimation method.
前記第1工程は、
被膜形成電流密度を電極毎に推定する電流密度推定工程と、
前記被膜形成電流密度に基づいて副反応電流値を電極毎に推定する電流値推定工程と、
負極の前記副反応電流値及び正極の前記副反応電流値の差と時間とに基づいて前記第1容量低下量を算出する工程とを含み、
前記電流密度推定工程は、「i」を交換電流密度、「α」を移動係数、「F」をファラデー定数、「R」を気体定数、「T」を温度、「E´」を被膜形成電位、「E」を電極電位としたとき、下記式(1)に基づいて前記被膜形成電流密度を推定し、
Figure 2022021445000009
前記電流値推定工程は、過電圧項を「η」としたとき、下記式(2)に基づいて前記副反応電流値を推定する
Figure 2022021445000010
請求項1又は2に記載の二次電池の状態推定方法。
The first step is
A current density estimation process that estimates the film formation current density for each electrode,
A current value estimation step in which a side reaction current value is estimated for each electrode based on the film formation current density,
It includes a step of calculating the first capacity reduction amount based on the difference between the side reaction current value of the negative electrode and the side reaction current value of the positive electrode and the time.
In the current density estimation step, "i 0 " is the exchange current density, "α" is the transfer coefficient, "F" is the Faraday constant, "R" is the gas constant, "T" is the temperature, and "E'" is the film formation. When the potential, "E", is used as the electrode potential, the film forming current density is estimated based on the following equation (1).
Figure 2022021445000009
In the current value estimation step, when the overvoltage term is "η", the side reaction current value is estimated based on the following equation (2).
Figure 2022021445000010
The method for estimating the state of a secondary battery according to claim 1 or 2.
前記第2工程は、時間当たりの容量低下量である劣化速度と前記正極電位及び前記温度との関係を示す劣化速度情報に基づき前記第2容量低下量を特定し、
前記劣化速度情報は、前記温度が一定の場合に前記正極電位が高くなるに伴い高い前記劣化速度を関連付け、前記正極電位が一定の場合に前記温度が高くなるに伴い高い前記劣化速度を関連付ける
請求項1~3のいずれか1項に記載の二次電池の状態推定方法。
In the second step, the second capacity reduction amount is specified based on the deterioration rate information indicating the relationship between the deterioration rate, which is the capacity reduction amount per hour, the positive electrode potential, and the temperature.
The deterioration rate information is associated with a higher deterioration rate as the positive electrode potential increases when the temperature is constant, and a higher deterioration rate as the temperature increases when the positive electrode potential is constant. Item 6. The method for estimating the state of a secondary battery according to any one of Items 1 to 3.
前記二次電池は車両に搭載され、
前記車両に設けられた制御装置が、
前記二次電池の電圧及び温度を取得し、
前記正負極容量ずれに由来する前記第1容量低下量を特定する前記第1工程を実行し、
前記正極活物質に被膜が形成される副反応に由来する第2容量低下量を特定する前記第2工程を実行する
請求項1~4のいずれか1項に記載の二次電池の状態推定方法。
The secondary battery is mounted on the vehicle and
The control device provided in the vehicle
Obtain the voltage and temperature of the secondary battery,
The first step of specifying the amount of decrease in the first capacity due to the displacement of the positive and negative electrodes is executed.
The method for estimating the state of a secondary battery according to any one of claims 1 to 4, wherein the second step of specifying the amount of decrease in the second capacity due to a side reaction in which a film is formed on the positive electrode active material is executed. ..
電池状態を推定する二次電池の状態推定システムであって、
前記二次電池が搭載された車両に設けられた第1制御装置が、
正極電位及び温度に基づき、正負極容量ずれに由来する第1容量低下量を特定する第1工程と、
正極電位及び温度に基づき、正極活物質に被膜が形成される副反応に由来する第2容量低下量を特定する第2工程と、を実行し、
第2制御装置が、
前記二次電池の初期容量からの電池容量の低下量である容量低下量を特定する容量低下量特定工程と、
前記容量低下量から、前記第1容量低下量及び前記第2容量低下量を減じて、正極活物質の構造変化による第3容量低下量を算出する第3工程とを実行する
を含む二次電池の状態推定システム。
It is a secondary battery state estimation system that estimates the battery state.
The first control device provided in the vehicle equipped with the secondary battery is
The first step of specifying the amount of decrease in the first capacity due to the displacement of the positive and negative electrodes based on the positive electrode potential and the temperature, and
Based on the positive electrode potential and temperature, the second step of specifying the amount of the second volume decrease due to the side reaction of forming a film on the positive electrode active material is executed.
The second control device is
The capacity reduction amount specifying step for specifying the capacity reduction amount, which is the battery capacity reduction amount from the initial capacity of the secondary battery, and the capacity reduction amount specifying step.
A secondary battery including the third step of subtracting the first capacity reduction amount and the second capacity reduction amount from the capacity reduction amount to calculate the third capacity reduction amount due to the structural change of the positive electrode active material. State estimation system.
JP2020124997A 2020-07-22 2020-07-22 SECONDARY BATTERY STATE ESTIMATION METHOD AND SECONDARY BATTERY STATE ESTIMATION SYSTEM Active JP7288884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020124997A JP7288884B2 (en) 2020-07-22 2020-07-22 SECONDARY BATTERY STATE ESTIMATION METHOD AND SECONDARY BATTERY STATE ESTIMATION SYSTEM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020124997A JP7288884B2 (en) 2020-07-22 2020-07-22 SECONDARY BATTERY STATE ESTIMATION METHOD AND SECONDARY BATTERY STATE ESTIMATION SYSTEM

Publications (2)

Publication Number Publication Date
JP2022021445A true JP2022021445A (en) 2022-02-03
JP7288884B2 JP7288884B2 (en) 2023-06-08

Family

ID=80220576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020124997A Active JP7288884B2 (en) 2020-07-22 2020-07-22 SECONDARY BATTERY STATE ESTIMATION METHOD AND SECONDARY BATTERY STATE ESTIMATION SYSTEM

Country Status (1)

Country Link
JP (1) JP7288884B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014167406A (en) * 2013-02-28 2014-09-11 Sekisui Chem Co Ltd Battery model construction method, and accumulator degradation estimation device
JP2017190979A (en) * 2016-04-12 2017-10-19 トヨタ自動車株式会社 Battery degradation estimation device
JP2021131344A (en) * 2020-02-21 2021-09-09 プライムアースEvエナジー株式会社 Method for measuring side-reaction current value of secondary battery, life estimation method, and inspection method
JP2021163632A (en) * 2020-03-31 2021-10-11 プライムアースEvエナジー株式会社 Secondary battery deterioration estimation method, life estimation method and control device
JP2022014361A (en) * 2020-07-06 2022-01-19 プライムアースEvエナジー株式会社 Method for determining deterioration in lithium ion secondary battery and device for determining deterioration in lithium ion secondary battery
JP2022020404A (en) * 2020-07-20 2022-02-01 プライムアースEvエナジー株式会社 Method and device for determining deterioration in lithium ion secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014167406A (en) * 2013-02-28 2014-09-11 Sekisui Chem Co Ltd Battery model construction method, and accumulator degradation estimation device
JP2017190979A (en) * 2016-04-12 2017-10-19 トヨタ自動車株式会社 Battery degradation estimation device
JP2021131344A (en) * 2020-02-21 2021-09-09 プライムアースEvエナジー株式会社 Method for measuring side-reaction current value of secondary battery, life estimation method, and inspection method
JP2021163632A (en) * 2020-03-31 2021-10-11 プライムアースEvエナジー株式会社 Secondary battery deterioration estimation method, life estimation method and control device
JP2022014361A (en) * 2020-07-06 2022-01-19 プライムアースEvエナジー株式会社 Method for determining deterioration in lithium ion secondary battery and device for determining deterioration in lithium ion secondary battery
JP2022020404A (en) * 2020-07-20 2022-02-01 プライムアースEvエナジー株式会社 Method and device for determining deterioration in lithium ion secondary battery
JP7227195B2 (en) * 2020-07-20 2023-02-21 プライムアースEvエナジー株式会社 Method for determining deterioration of lithium-ion secondary battery and device for determining deterioration of lithium-ion secondary battery

Also Published As

Publication number Publication date
JP7288884B2 (en) 2023-06-08

Similar Documents

Publication Publication Date Title
US8907674B2 (en) System and method for determining degradation of rechargeable lithium ion battery
US10739407B2 (en) System and method for estimating state of health using battery model parameter
US8519674B2 (en) Method for estimating battery degradation in a vehicle battery pack
JP5761378B2 (en) Secondary battery control device and control method
JP5687584B2 (en) Lithium-ion battery condition measurement device
EP2989675B1 (en) Method and system for estimating a capacity of individual electrodes and the total capacity of a lithium-ion battery system
US11105861B2 (en) Device and method for estimating battery resistance
Guha et al. Remaining useful life estimation of lithium-ion batteries based on the internal resistance growth model
EP3671244B1 (en) Device and method for analyzing the state of health of a battery
US10011185B2 (en) Method for battery management and battery management system
WO2015174279A1 (en) Secondary-battery monitoring device and method for predicting capacity of secondary battery
WO2006107140A1 (en) Method of estimating available power for hev battery pack
KR101783918B1 (en) Apparatus and Method for Estimating Resistance of Secondary Battery
CN114158276B (en) Method of detecting lithium plating and method and apparatus for managing battery by using the same
JP2013160538A (en) Estimation device, estimation method, and control method
JP5470961B2 (en) Secondary battery control device
JP2008151745A (en) Residual capacity computing device for charge accumulating device
CN108649282B (en) Safety protection method and system for avoiding short circuit risk in lithium ion battery
JP2008292272A (en) Method of predicting voltage of electric storage device
JP7288884B2 (en) SECONDARY BATTERY STATE ESTIMATION METHOD AND SECONDARY BATTERY STATE ESTIMATION SYSTEM
JP6350366B2 (en) Charge / discharge control device
JP2024077023A (en) SOC ESTIMATION DEVICE, PROGRAM, AND ESTIMATION METHOD
JP2020077464A (en) Secondary battery system
Leng Reliability study of lithium ion cell and battery pack
JP2017195142A (en) Method for estimating salt concentration distribution of secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230529

R150 Certificate of patent or registration of utility model

Ref document number: 7288884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150