JP2021163632A - Secondary battery deterioration estimation method, life estimation method and control device - Google Patents

Secondary battery deterioration estimation method, life estimation method and control device Download PDF

Info

Publication number
JP2021163632A
JP2021163632A JP2020064179A JP2020064179A JP2021163632A JP 2021163632 A JP2021163632 A JP 2021163632A JP 2020064179 A JP2020064179 A JP 2020064179A JP 2020064179 A JP2020064179 A JP 2020064179A JP 2021163632 A JP2021163632 A JP 2021163632A
Authority
JP
Japan
Prior art keywords
secondary battery
negative electrode
deterioration
capacity
life
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020064179A
Other languages
Japanese (ja)
Other versions
JP7321963B2 (en
Inventor
祐貴 高橋
Yuki Takahashi
弘貴 西
Hiroki Nishi
裕也 稲垣
Yuya Inagaki
恒良 中嶋
Tsuneyoshi Nakashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primearth EV Energy Co Ltd
Original Assignee
Primearth EV Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primearth EV Energy Co Ltd filed Critical Primearth EV Energy Co Ltd
Priority to JP2020064179A priority Critical patent/JP7321963B2/en
Publication of JP2021163632A publication Critical patent/JP2021163632A/en
Application granted granted Critical
Publication of JP7321963B2 publication Critical patent/JP7321963B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

To provide a secondary battery deterioration estimation method, life estimation method and control device, capable of using an in-vehicle lithium ion secondary battery until a target life by accurately estimating a deterioration in a secondary battery and controlling the secondary battery.SOLUTION: A secondary battery can be used until a target life by: acquiring deterioration information up to now from a step of calculating deviation capacity ΔQ corresponding to a positive and negative electrode composition to calculate the deviation capacity ΔQ corresponding to a positive and negative electrode composition, by multiplying a difference between an amount of decrease in negative electrode capacity ΔQNE and an amount of decrease in positive electrode capacity ΔQPE by a lapsed time Δt by an ECU mounted on a vehicle, the amount of decrease in negative electrode capacity and the amount of decrease in positive electrode capacity being calculated in a step of calculating an amount of decrease in negative electrode capacity and in a step of calculating an amount of decrease in positive electrode capacity, respectively (S10); determining input information of conditions to be predicted in future (S11); estimating deterioration at the end of a life target period (S12-17); determining whether the life target is reachable by comparing the estimated deterioration with a preset threshold (S18); and, if it is determined that the life target is not reachable, controlling such that an SOC usage area with a less deterioration amount is used (S20).SELECTED DRAWING: Figure 6

Description

本発明は、二次電池の劣化推定方法、寿命推定方法、及び制御装置に係り、詳細には、正極及び負極の劣化度を推定して二次電池の劣化をより精度高く推定する劣化推定方法、寿命推定方法、及び制御装置に関する。 The present invention relates to a deterioration estimation method, a life estimation method, and a control device for a secondary battery, and more specifically, a deterioration estimation method for estimating the deterioration degree of a positive electrode and a negative electrode to estimate the deterioration of a secondary battery with higher accuracy. , Life estimation method, and control device.

周知のように、携帯用の電子機器の電源として、また、電気自動車やハイブリッド自動車などの電源として、リチウムイオン二次電池などの二次電池が用いられている。
例えば車両に搭載されるリチウムイオン二次電池は、温度環境や経過時間といった劣化要因に加えて、使用者による充放電の状況、使用頻度、使用される二次電池のSOCの状態なども劣化要因として大きく寄与する。そのため単純に経過時間や走行距離などからは、劣化度を推定することができない。
As is well known, a secondary battery such as a lithium ion secondary battery is used as a power source for portable electronic devices and as a power source for electric vehicles and hybrid vehicles.
For example, in the case of lithium-ion secondary batteries mounted on vehicles, in addition to deterioration factors such as temperature environment and elapsed time, deterioration factors such as charge / discharge status by the user, frequency of use, and SOC status of the secondary battery used are also deterioration factors. Contributes greatly as. Therefore, the degree of deterioration cannot be estimated simply from the elapsed time and the mileage.

そこで、特許文献1では、リチウムイオン二次電池の容量の低下の要因である正負極組成対応ずれ容量ΔQを用いて、リチウムイオン二次電池の劣化を推定する手法が開示されている。具体的には、下記ターフェル式(式(5))により、負極での被膜形成電流密度iを求める。 Therefore, Patent Document 1 discloses a method of estimating the deterioration of a lithium ion secondary battery by using the positive electrode / negative electrode composition-corresponding deviation capacity ΔQ, which is a factor of reducing the capacity of the lithium ion secondary battery. Specifically, the film formation current density i at the negative electrode is obtained by the following Tafel equation (formula (5)).

Figure 2021163632

ここで、iを交換電流密度、αを移動係数、Fをファラデー定数、Rを気体定数、Tを絶対温度、Usideを被膜形成電位、UNEを負極開放電位とする。
Figure 2021163632

Here, i 0 is the exchange current density, α is the transfer coefficient, F is the Faraday constant, R is the gas constant, T is the absolute temperature, U side is the film formation potential, and UNE is the negative electrode open potential.

そして、ある周期Δtごとに計算し、iとΔtの積を積算することで、正負極組成対応ずれ容量ΔQを算出する。
このような方法によれば、リチウムイオン二次電池の劣化度を推定することができる。
Then, it is calculated for each period Δt, and the product of i and Δt is integrated to calculate the deviation capacity ΔQ corresponding to the positive and negative electrode compositions.
According to such a method, the degree of deterioration of the lithium ion secondary battery can be estimated.

特開2017−190979号公報JP-A-2017-190979

しかしながら、従来の発明では、正負極組成対応ずれ容量ΔQの算出において、負極における副反応のみを考慮しており、正極における副反応の影響が小さいものとして考慮されていないため、正負極組成対応ずれ容量ΔQの値を過度に見積もる可能性があるという問題があった。 However, in the conventional invention, only the side reaction at the negative electrode is considered in the calculation of the deviation capacity ΔQ corresponding to the positive / negative electrode composition, and the influence of the side reaction at the positive electrode is not considered to be small. There was a problem that the value of the capacitance ΔQ could be overestimated.

本発明は、上記課題を解決するものであって、その目的は、二次電池の劣化度をより正確に推定する二次電池の劣化推定方法、寿命推定方法、及び制御装置を提供することにある。 The present invention solves the above problems, and an object of the present invention is to provide a method for estimating deterioration of a secondary battery, a method for estimating the life of a secondary battery, and a control device for more accurately estimating the degree of deterioration of the secondary battery. be.

上記課題を解決するため、本発明の二次電池の劣化推定方法では、負極の被膜形成電流密度をiNEとし、aNEを負極上で起こる副反応の交換電流密度とし、bNEを負極上で起こる副反応の過電圧項としたとき、別記式(1)により算出された負極の被膜形成電流密度iNEに基づいて経過時間Δtを乗じることで負極における容量低下量ΔQNEを算出する負極容量低下量算出のステップと、正極被膜形成電流密度をiPEとし、aPEを正極上で起こる副反応の交換電流密度とし、bPEを正極上で起こる副反応の過電圧項としたとき、別記式(2)により算出された正極の被膜形成電流密度iPEに基づいて経過時間Δtを乗じることで正極における容量低下量ΔQPEを算出する正極容量低下量算出のステップと、前記負極容量低下量算出のステップで算出した負極容量低下量ΔQNEと、前記正極容量低下量算出のステップで算出した正極容量低下量ΔQPEとの差から、正負極組成対応ずれ容量ΔQを算出する正負極組成対応ずれ容量ΔQ算出のステップとを備えることを特徴とする。なお、負極の被膜形成電流密度iNEと正極被膜形成電流密度をiPEとの差に経過時間Δtを乗じることで正負極組成対応ずれ容量ΔQを求めるようにしても本発明と同一である。 To solve the above problems, in the secondary battery of the degradation estimation method of the present invention, a film formation current density of the negative electrode and i NE, the exchange current density of side reactions that occur with a NE on the negative electrode, the b NE negative electrode when a side reaction overvoltage term occurring in, the negative electrode capacity to calculate the capacity decrease amount Delta] Q NE in the negative electrode by multiplying the elapsed time Δt based on the film-forming current density i NE of the negative electrode which is calculated by the stated formula (1) When the step of calculating the amount of decrease and the positive electrode film forming current density are iPE , a PE is the exchange current density of the side reaction occurring on the positive electrode, and b PE is the overvoltage term of the side reaction occurring on the positive electrode. (2) a step of positive electrode capacity decrease amount calculation for calculating a capacity decrease amount Delta] Q PE in the positive electrode by multiplying the elapsed time Δt based on the film-forming current density i PE of the positive electrode calculated by the negative electrode capacity decrease amount calculation From the difference between the negative electrode capacity reduction amount ΔQ NE calculated in the step of and the positive electrode capacity reduction amount ΔQ PE calculated in the positive electrode capacity reduction amount calculation step, the positive and negative electrode composition correspondence deviation capacity ΔQ is calculated. It is characterized by including a step of calculating the capacity ΔQ. Incidentally, the same also with the present invention so as to determine the positive and negative electrodes discrepancy capacity ΔQ by multiplying the elapsed time Δt a film formation current density i NE and the positive electrode film formation current density of the negative electrode to the difference between the i PE.

また、前記負極容量低下量算出のステップにおいて、iを交換電流密度、αを移動係数、Fをファラデー定数、Rを気体定数、Tを絶対温度、Usideを被膜形成電位、UNEを負極開放電位、UPEを正極開放電位としたとき、別記式(3)により算出した負極被膜形成電流密度iNEに基づいて負極副反応電流値ISR(NE)を算出し、前記正極容量低下量算出のステップにおいて、別記式(4)により正極被膜形成電流密度iPEに基づいて正極副反応電流値ISR(PE)を算出することもできる。 Further, in the step of calculating the amount of decrease in the negative electrode capacity, i 0 is the exchange current density, α is the transfer coefficient, F is the Faraday constant, R is the gas constant, T is the absolute temperature, U side is the film formation potential, and UNE is the negative electrode. open-circuit potential, when the U PE as a positive electrode open-circuit potential based on the negative electrode film forming the current density i NE calculated by otherwise equation (3) to calculate the negative electrode side reaction current value I SR (NE), the positive electrode capacity decrease amount in the calculation step, it is also stated formula (4) by calculating the positive electrode film formation current density i on the basis of the PE positive electrode side reaction current value I SR (PE).

この場合、前記負極容量低下量算出のステップ及び前記正極容量低下量算出のステップにおいて、経過時間に応じて副反応電流値を減衰させた値を用いて正極容量低下量ΔQPE、負極容量低下量ΔQNEを算出することもできる。 In this case, in the step of calculating the negative electrode capacity reduction amount and the step of calculating the positive electrode capacity reduction amount, the positive electrode capacity reduction amount ΔQ PE and the negative electrode capacity reduction amount are used by using the values obtained by declining the side reaction current value according to the elapsed time. You can also calculate the ΔQ NE.

また、前記負極容量低下量算出のステップ及び前記正極容量低下量算出のステップにおいて、二次電池を特定の条件で保存する保存のステップと、前記保存した二次電池の保存前後の電池満容量の容量低下量Qlossを測定する電池容量低下量測定のステップと、前記保存した二次電池の保存前後の自己放電容量QSDを測定する自己放電容量測定のステップと、前記容量低下量Qloss及び自己放電容量QSDから、前記保存時の特定条件における正極及び負極の副反応電流値を求める劣化特性取得のステップとを含み、前記劣化特性取得のステップにより正極及び負極の副反応電流値に基づいて劣化を推定することもできる。 Further, in the step of calculating the amount of decrease in negative electrode capacity and the step of calculating the amount of decrease in positive electrode capacity, a storage step of storing the secondary battery under specific conditions and a battery full capacity before and after storage of the stored secondary battery a step of the battery capacity decrease amount measurement for measuring a capacity decrease amount Q loss, comprising the steps of self-discharge capacity measurement for measuring a self-discharge capacity Q SD before and after storage of the secondary battery the storage, the capacity decrease amount Q loss and from self-discharge capacity Q SD, and a step of degradation characteristic acquisition for obtaining the secondary reaction current value of the positive and negative electrodes in a particular condition during the storage, based on secondary reactions current value of the positive electrode and the negative electrode in the step of the degradation characteristic acquisition It is also possible to estimate the deterioration.

なお、前記二次電池がリチウムイオン二次電池である場合に特に好適に実施できる。
また、本発明の二次電池の寿命推定方法では、将来の時間tmaxにおける二次電池の劣化推定することで当該二次電池の寿命を推定する寿命推定方法であって、上記リチウムイオン二次電池の劣化推定方法を用いて寿命推定時t1の正負極組成対応ずれ容量ΔQを算出する二次電池の劣化推定のステップと、前記二次電池の劣化推定のステップにおいて算出した正負極組成対応ずれ容量ΔQ及び条件に基づいて、寿命推定時t1から将来の寿命目標である時間tmaxにわたる二次電池の劣化を積算することで時間tmaxにおける二次電池の劣化を推定する二次電池の寿命推定のステップとを備えたことを特徴とする。
It should be noted that this can be particularly preferably carried out when the secondary battery is a lithium ion secondary battery.
Further, the secondary battery life estimation method of the present invention is a life estimation method for estimating the life of the secondary battery by estimating the deterioration of the secondary battery at a future time tmax, and is the above-mentioned lithium ion secondary battery. Degradation estimation step of the secondary battery for calculating the positive / negative composition correspondence deviation capacity ΔQ of t1 at the time of life estimation using the deterioration estimation method of, and positive / negative composition correspondence deviation capacity calculated in the deterioration estimation step of the secondary battery. Based on ΔQ and conditions, the step of estimating the life of the secondary battery at which the deterioration of the secondary battery at the time tmax is estimated by integrating the deterioration of the secondary battery from the time of life estimation t1 to the future life target time tmax. It is characterized by having and.

また、前記二次電池の寿命推定のステップにおいて、前記二次電池の劣化推定のステップにおける条件として蓄積されたセルSOC若しくはセル温度により導かれた確率密度関数に基づいて求められた累積分布関数を参照関数として、乱数を発生させてモンテカルロシミュレーションにより、寿命推定時t1から将来の時間tmaxにわたる二次電池の劣化を積算することもできる。 Further, in the step of estimating the life of the secondary battery, the cumulative distribution function obtained based on the probability density function derived from the cell SOC or the cell temperature accumulated as a condition in the step of estimating the deterioration of the secondary battery is used. As a reference function, it is also possible to generate a random number and integrate the deterioration of the secondary battery from t1 at the time of life estimation to tmax in the future time by Monte Carlo simulation.

また、前記二次電池の寿命推定のステップにおいて推定された時間tmaxにおける二次電池の劣化と、予め設定された二次電池の劣化の閾値とを比較することで、前記二次電池が時間tmaxにおける劣化が前記閾値未満で寿命に到達するか否かを判定する二次電池の寿命判断のステップをさらに備えることもできる。 Further, by comparing the deterioration of the secondary battery at the time tmax estimated in the step of estimating the life of the secondary battery with the preset threshold of deterioration of the secondary battery, the secondary battery has a time tmax. It is also possible to further include a step of determining the life of the secondary battery, which determines whether or not the deterioration in the above-mentioned is less than the threshold value and reaches the end of life.

また、前記二次電池の寿命判断のステップにおいて、前記二次電池が時間tmaxにおける寿命に到達できないと判定された場合に、二次電池の寿命推定のステップにおけるセルSOCの条件を変更することで寿命に到達できるか否かを再判定する再判定のステップをさらに備えることも好ましい。 Further, when it is determined in the step of determining the life of the secondary battery that the secondary battery cannot reach the life at the time tmax, the cell SOC condition in the step of estimating the life of the secondary battery can be changed. It is also preferable to further include a re-determination step of re-determining whether or not the life can be reached.

また、前記再判定のステップで、条件を変えた場合に寿命に到達できると判定できた場合に、当該セルSOCの条件に従って、二次電池のセルSOCの制御を行う制御のステップを備えることも好ましい。 Further, if it can be determined in the re-determination step that the life can be reached when the conditions are changed, a control step of controlling the cell SOC of the secondary battery according to the conditions of the cell SOC may be provided. preferable.

本発明の二次電池の制御装置は、二次電池のセル電圧を検出する電圧センサと、二次電池のセル温度を検出する温度センサと、CPUとメモリとを有し、前記電圧センサからセルSOCを推定するコンピュータとを備えた二次電池の制御装置であって、前述の二次電池の寿命推定方法を実行する制御手段を構成する。前記二次電池は車両に搭載され、前記コンピュータが前記車両に搭載されたコンピュータで好適に実施することができる。 The secondary battery control device of the present invention includes a voltage sensor that detects the cell voltage of the secondary battery, a temperature sensor that detects the cell temperature of the secondary battery, a CPU, and a memory, and the cell is derived from the voltage sensor. It is a control device for a secondary battery including a computer for estimating SOC, and constitutes a control means for executing the above-mentioned method for estimating the life of the secondary battery. The secondary battery is mounted on a vehicle, and the computer can be suitably implemented by a computer mounted on the vehicle.

本発明の二次電池の劣化推定方法によれば、二次電池の劣化度をより正確に推定することができる。 According to the method for estimating deterioration of a secondary battery of the present invention, the degree of deterioration of a secondary battery can be estimated more accurately.

本実施形態に係るリチウムイオン二次電池を搭載する車両の全体構成を概略的に示す図。The figure which shows schematic the whole structure of the vehicle which mounts the lithium ion secondary battery which concerns on this embodiment. 従来技術の(a)劣化前の正極・負極の容量−OCP特性を示すグラフ、(b)劣化後の正極・負極の容量−OCP特性を示すグラフ。A graph showing (a) the capacitance-OCP characteristics of the positive electrode and the negative electrode before deterioration, and (b) a graph showing the capacitance-OCP characteristics of the positive electrode and the negative electrode after deterioration. 本実施形態の(a)劣化前の正極・負極の容量−OCP特性を示すグラフ、(b)劣化後の正極・負極の容量−OCP特性を示すグラフ。In this embodiment, (a) a graph showing the capacitance-OCP characteristics of the positive electrode and the negative electrode before deterioration, and (b) a graph showing the capacitance-OCP characteristics of the positive electrode and the negative electrode after deterioration. 本実施形態の時間tから所定の時間tまでに積算された正負極組成対応ずれ容量ΔQを算出するフローチャート。The flowchart which calculates the positive electrode composition correspondence deviation capacity ΔQ integrated from the time t 0 of this embodiment to a predetermined time t 1. (a)図3に示す本実施形態のΔQと、(b)図2に示す従来技術のΔQとを比較する模式図。FIG. 3A is a schematic diagram comparing ΔQ of the present embodiment shown in FIG. 3 with ΔQ of the prior art shown in FIG. 寿命推定による劣化抑制制御方法の手順を示すフローチャート。The flowchart which shows the procedure of the deterioration suppression control method by life estimation. 劣化特性取得の装置の構成を示すブロック図。The block diagram which shows the structure of the device of deterioration characteristic acquisition. 劣化特性取得の手順を示すフローチャート。A flowchart showing a procedure for acquiring deterioration characteristics. (a)は、セルSOC、(b)は、セル温度TBの入力情報を決定する方法を示す図。(A) is a figure which shows the cell SOC, (b) is a figure which shows the method of determining the input information of a cell temperature TB. (a)〜(c)被膜成長のモデルを示す模式図。(A)-(c) Schematic diagram showing a model of film growth. 被膜形成量と副反応電流値の関係を示す式。An equation showing the relationship between the amount of film formed and the side reaction current value. 被膜量の逆数に対する電流値の減衰率を示すグラフ。The graph which shows the attenuation rate of the current value with respect to the reciprocal of the coating amount. 経過時間と被膜形成量と副反応電流値の関係を示す表。A table showing the relationship between the elapsed time, the amount of film formation, and the side reaction current value. 従来技術の劣化度推定結果と本実施形態の劣化度推定結果を比較するグラフ。The graph which compares the deterioration degree estimation result of the prior art with the deterioration degree estimation result of this embodiment. 劣化量とSOCの関係を示す図。The figure which shows the relationship between the deterioration amount and SOC.

図1〜図15を参照して、本発明の一実施形態である二次電池の劣化推定方法、寿命推定方法、制御方法及び制御装置について説明する。本実施形態では、二次電池の一例として車載用のリチウムイオン二次電池1を例に説明する。 A deterioration estimation method, a life estimation method, a control method, and a control device for a secondary battery, which are embodiments of the present invention, will be described with reference to FIGS. 1 to 15. In the present embodiment, an in-vehicle lithium ion secondary battery 1 will be described as an example of the secondary battery.

<本実施形態の構成の概略>
本実施形態のリチウムイオン二次電池1の劣化推定方法は、車両10に搭載されたリチウムイオン二次電池1について劣化状態を推定する。推定は、逐次測定したセル電圧VBとセル温度TBとに基づいて、正極及び負極の正負極組成対応ずれ容量ΔQをそれぞれΔQPEとΔQNEと個別に算出して、リチウムイオン二次電池1の劣化状態を推定する。その推定に基づいた予測の結果、その使用SOC域では、リチウムイオン二次電池1の劣化状態が想定する寿命までに想定した閾値より大きくなると判断する場合がある。その場合には、そのリチウムイオン二次電池1のこれまで使用した使用SOC域を避け、劣化の進行が遅くなる使用SOC域を選択するように制御を行う。
<Outline of the configuration of this embodiment>
The deterioration estimation method of the lithium ion secondary battery 1 of the present embodiment estimates the deterioration state of the lithium ion secondary battery 1 mounted on the vehicle 10. In the estimation, the deviation capacitance ΔQ corresponding to the positive and negative electrode compositions of the positive electrode and the negative electrode is calculated individually for ΔQ PE and ΔQ NE , respectively, based on the cell voltage VB and the cell temperature TB measured sequentially, and the lithium ion secondary battery 1 is estimated. Estimate the deterioration state. As a result of the prediction based on the estimation, it may be determined that the deteriorated state of the lithium ion secondary battery 1 becomes larger than the assumed threshold value by the expected life in the used SOC region. In that case, control is performed so as to avoid the used SOC region of the lithium ion secondary battery 1 used so far and select the used SOC region in which the progress of deterioration is slowed down.

<リチウムイオン二次電池が搭載される車両の全体構成>
まず、本実施形態のリチウムイオン二次電池1が搭載される車両10について、簡単に説明する。
<Overall configuration of vehicle equipped with lithium-ion secondary battery>
First, the vehicle 10 on which the lithium ion secondary battery 1 of the present embodiment is mounted will be briefly described.

図1は、実施形態に係るリチウムイオン二次電池1を搭載する車両10の全体構成を概略的に示す図である。図1に示す車両10は、ハイブリッド車両である。車両10は、リチウムイオン二次電池1の制御装置18と、PCU(パワーコントロールユニット:Power Control Unit)30と、モータジェネレータ41,42と、エンジン50と、動力分割装置60と、駆動軸70と、駆動輪80とを備える。 FIG. 1 is a diagram schematically showing an overall configuration of a vehicle 10 equipped with a lithium ion secondary battery 1 according to an embodiment. The vehicle 10 shown in FIG. 1 is a hybrid vehicle. The vehicle 10 includes a control device 18 for a lithium ion secondary battery 1, a PCU (Power Control Unit) 30, motor generators 41 and 42, an engine 50, a power split device 60, and a drive shaft 70. , The drive wheel 80 is provided.

リチウムイオン二次電池の制御装置18は、リチウムイオン二次電池1と、このリチウムイオン二次電池1のセル電圧VB、電流IB、セル温度TBを常時監視する監視ユニット20と、これらのセル電圧VB・電流IB・セル温度TBを記憶するメモリ102、及びこれらを処理するCPU101を備えたECU(電子制御装置:Electronic Control Unit)100とを備える。 The control device 18 of the lithium ion secondary battery includes the lithium ion secondary battery 1, the monitoring unit 20 that constantly monitors the cell voltage VB, the current IB, and the cell temperature TB of the lithium ion secondary battery 1, and the cell voltage thereof. It includes a memory 102 that stores VB, current IB, and cell temperature TB, and an ECU (electronic control unit) 100 that includes a CPU 101 that processes these.

<モータジェネレータ42>
モータジェネレータ42は、主として電動機として動作し、急加速時にはリチウムイオン二次電池1から供給された大電流で駆動輪80を駆動する。一方、車両の制動時や下り斜面では、モータジェネレータ42は、発電機として動作して大電流の回生発電を行ない、リチウムイオン二次電池1に大電流を供給する。
<Motor generator 42>
The motor generator 42 mainly operates as an electric motor, and drives the drive wheels 80 with a large current supplied from the lithium ion secondary battery 1 at the time of sudden acceleration. On the other hand, when the vehicle is braking or on a downward slope, the motor generator 42 operates as a generator to regenerate a large current and supply a large current to the lithium ion secondary battery 1.

このような車載用のリチウムイオン二次電池1では、使用環境により劣化の進み方が異なることがある。例えば、環境温度が低温から高温まで変化してセル温度TBが低温から高温まで変化したり、ハイレートの充放電が行われたり、その充放電の状況から低いセルSOCから高いセルSOCまで変化したりしたような場合である。 In such an in-vehicle lithium ion secondary battery 1, the progress of deterioration may differ depending on the usage environment. For example, the environmental temperature changes from low temperature to high temperature and the cell temperature TB changes from low temperature to high temperature, high rate charging / discharging is performed, and the charging / discharging situation changes from low cell SOC to high cell SOC. This is the case.

<リチウムイオン二次電池の監視ユニット20>
監視ユニット20は、電圧センサ21と、電流センサ22と、温度センサ23とを含む。電圧センサ21は、セル電圧VBを検出する。電流センサ22は、リチウムイオン二次電池1に入出力される電流IBを検出する。温度センサ23は、ブロック毎のセル温度TBを検出する。各センサは、その検出結果を示す信号をECU100に出力する。これらのセル電圧VB、電流IBは、このリチウムイオン二次電池1の履歴として、一定時間毎にセル温度TB、セル電圧VBとして記憶される。
<Lithium-ion secondary battery monitoring unit 20>
The monitoring unit 20 includes a voltage sensor 21, a current sensor 22, and a temperature sensor 23. The voltage sensor 21 detects the cell voltage VB. The current sensor 22 detects the current IB input / output to / from the lithium ion secondary battery 1. The temperature sensor 23 detects the cell temperature TB for each block. Each sensor outputs a signal indicating the detection result to the ECU 100. These cell voltage VB and current IB are stored as cell temperature TB and cell voltage VB at regular time intervals as the history of the lithium ion secondary battery 1.

<セル電圧VB・電流IB・セル温度TB・セルSOC>
本実施形態では、リチウムイオン二次電池1が車両10に搭載された使用開始の時間tから、その運用時には、Δt(例えば、0.1秒)毎に、セル電圧VB・電流IB・セル温度TBの測定及び記録、劣化の判定が行われている。ECU100は、測定したセル電圧VBと正負極組成対応ずれ容量ΔQから、セルSOCを推定し、新たな正負極組成対応ずれ容量ΔQを算出し、その値を累積して記憶する。
<Cell voltage VB, current IB, cell temperature TB, cell SOC>
In the present embodiment, the cell voltage VB, the current IB, and the cell are used every Δt (for example, 0.1 second) from the start time t 0 when the lithium ion secondary battery 1 is mounted on the vehicle 10 and during its operation. Temperature TB is measured and recorded, and deterioration is determined. The ECU 100 estimates the cell SOC from the measured cell voltage VB and the deviation capacity ΔQ corresponding to the positive / negative electrode composition, calculates a new deviation capacity ΔQ corresponding to the positive / negative electrode composition, and accumulates and stores the value.

(実施形態の作用)
本実施形態では、リチウムイオン二次電池1とこれを搭載する車両10により、以下のような作用を奏することができる。
(Action of Embodiment)
In the present embodiment, the lithium ion secondary battery 1 and the vehicle 10 on which the lithium ion secondary battery 1 is mounted can exert the following actions.

<従来技術の正負極組成対応ずれ容量ΔQの算出>
次に、本発明の劣化推定の原理を説明する。説明のため従来の技術から説明する。図2は、(a)劣化前の正極・負極の容量−OCP(Open circuit potential)特性(電池容量とそのときの正極・負極の開放電位との関係を示すもの)を示すグラフ、(b)劣化後のOCP特性を示すグラフである。図2(a)に示すグラフは電極の組成などから特定される電池の初期の劣化前の特性を示すグラフで、セル電圧VBがわかれば、負極及び正極の容量に応じた開放電位VNE及びVPEがわかる。図2(a)からわかるように、正極OCPのグラフUPE及び負極OCPのグラフUNE0は、不規則な曲線となっている。特に、負極はリチウムイオンの吸収・拡散から階段状のグラフとなる。ここでセル電圧VBは、正極の電位VPE0と負極の電位VNE0の電位差となる。そうすると、図2(a)に示す正極OCPのグラフUPEと負極OCPのグラフUNEとの相対的な位置関係と、正負極の容量により、セル電圧VBは変化することになる。このときには、正負極組成対応ずれ容量ΔQは生じていない。
<Calculation of deviation capacity ΔQ corresponding to positive / negative electrode composition of the prior art>
Next, the principle of deterioration estimation of the present invention will be described. For the sake of explanation, the conventional technique will be described first. FIG. 2 is a graph showing (a) positive electrode / negative electrode capacity-OCP (Open circuit potential) characteristics (relationship between battery capacity and positive electrode / negative electrode open potential at that time), (b). It is a graph which shows the OCP characteristic after deterioration. The graph shown in FIG. 2A is a graph showing the characteristics of the battery before initial deterioration, which is specified from the composition of the electrodes and the like. If the cell voltage VB is known, the open potential VNE and the open potential VNE according to the capacities of the negative electrode and the positive electrode You can see V PE. As can be seen from FIG. 2 (a), the graph U NE0 graph U PE and negative OCP positive electrode OCP has a irregular curve. In particular, the negative electrode has a stepped graph due to the absorption and diffusion of lithium ions. Here, the cell voltage VB is the potential difference between the positive electrode potential V PE0 and the negative electrode potential V NE0. Then, the relative positional relationship between the chart U NE graphs U PE and negative OCP positive electrode OCP shown in FIG. 2 (a), the capacity of the positive and negative electrodes, the cell voltage VB will change. At this time, the deviation capacity ΔQ corresponding to the positive and negative electrode compositions does not occur.

そこで、特許文献1では、リチウムイオン二次電池の劣化の要因である容量低下を、「正負極組成対応ずれ容量ΔQ」を用いることとでリチウムイオン二次電池の劣化を推定している。「正負極組成対応ずれ容量ΔQ」とは、初期状態から正極活物質の表面の局所充電率と負極活物質の表面の局所充電率の対応関係のずれによる電池容量の変動量である。 Therefore, in Patent Document 1, the deterioration of the lithium ion secondary battery is estimated by using the "positive electrode composition correspondence deviation capacity ΔQ" for the capacity decrease which is a factor of the deterioration of the lithium ion secondary battery. The “positive electrode composition correspondence deviation capacity ΔQ” is the amount of fluctuation in the battery capacity due to the deviation of the correspondence between the local charge rate on the surface of the positive electrode active material and the local charge rate on the surface of the negative electrode active material from the initial state.

図2(b)は、従来技術における劣化後の正極・負極の容量−OCP特性を示すグラフである。図2(b)を参照して従来技術のΔQを説明する。図2(a)に示す状態から、使用により劣化が進むと、図2(b)に示すように負極における副反応による容量低下量ΔQNEが低下する。このため、負極OCPのグラフUNE0上の点の位置が、当初の位置から、左側に示す負極OCPのグラフUNE1上の点の位置にずれ、左向きの矢印で示す正負極組成対応ずれ容量ΔQが生じる。 FIG. 2B is a graph showing the capacitance-OCP characteristics of the positive electrode and the negative electrode after deterioration in the prior art. ΔQ of the prior art will be described with reference to FIG. 2 (b). As the deterioration progresses due to use from the state shown in FIG. 2 (a), the amount of volume reduction ΔQ NE due to a side reaction at the negative electrode decreases as shown in FIG. 2 (b). Therefore, the position of a point on the graph U NE0 of the negative electrode OCP is, from the initial position, displacement at the position of a point on the graph U NE1 of the negative electrode OCP shown on the left side, the positive and negative electrodes discrepancy capacity ΔQ indicated by the leftward arrow Occurs.

ここでセル電圧VBは、正極の電位VPEと負極の電位VNEの電位差となる。そうするとセル電圧VBは、例えば<正極電位VPE0−負極電位VNE0>の電位差から、<正極電位VPE0−負極電位VNE1>の電位差となり、図2(a)で示すように、電位差が小さくなる。そうすると検出したセル電圧VBと容量との対応関係に差が生じることになる。 Here, the cell voltage VB is the potential difference between the potential V PE of the positive electrode and the potential V NE of the negative electrode. Then, the cell voltage VB becomes the potential difference of <positive potential V PE0 -negative potential V NE1 > from the potential difference of <positive potential V PE0 -negative potential V NE0 >, and the potential difference is small as shown in FIG. 2 (a). Become. Then, there will be a difference in the correspondence between the detected cell voltage VB and the capacity.

そこで、使用による劣化をターフェル式などを使って推定し、この正負極組成対応ずれ容量ΔQを算出する。このΔQは、随時積算されて、セル電圧VBから、正極電位VPEと負極電位VNEをそれぞれ算出する場合に正負極組成対応ずれ容量ΔQが参照される。 Therefore, the deterioration due to use is estimated using the Tafel equation or the like, and the deviation capacity ΔQ corresponding to the positive and negative electrode compositions is calculated. This ΔQ is integrated at any time, and when the positive electrode potential V PE and the negative electrode potential V NE are calculated from the cell voltage VB, the deviation capacity ΔQ corresponding to the positive and negative electrode compositions is referred to.

特許文献1では、正負極組成対応ずれ容量ΔQは、正極に変化がない前提であるので、負極における副反応による容量低下量ΔQNEの低下と等しい。
<本実施形態の正負極組成対応ずれ容量ΔQの算出の特徴>
図3(a)は、本実施形態の劣化前の正極・負極のSOC−OCP特性を示すグラフである。従来においても正極が負極と同じように副反応を生じること自体は知られていたが、どのような副反応がどのように作用するかは周知ではなかった。また、将来の副反応電流を推定することも容易ではなかった。さらに正極の副反応の影響は小さなものと思われていた。このため、専ら負極の劣化のみを考慮し、正極のずれを考慮することに対しては、単に処理を複雑にするだけであるという阻害要因があったといえる。そのため、当業者は引用文献1においても図2(b)に示すのと同じように正極の副反応は考慮されていなかった。
In Patent Document 1, since it is assumed that the positive electrode composition-corresponding deviation capacity ΔQ does not change in the positive electrode, it is equal to the decrease in the capacity decrease amount ΔQ NE due to a side reaction in the negative electrode.
<Characteristics of calculation of deviation capacity ΔQ corresponding to positive / negative electrode composition of this embodiment>
FIG. 3A is a graph showing the SOC-OCP characteristics of the positive electrode and the negative electrode before deterioration of the present embodiment. Conventionally, it has been known that a positive electrode causes a side reaction in the same manner as a negative electrode, but it is not well known what kind of side reaction acts and how. Also, it was not easy to estimate future side reaction currents. Furthermore, the effect of the positive electrode side reaction was thought to be small. Therefore, it can be said that there was an impediment to considering only the deterioration of the negative electrode and the deviation of the positive electrode, which simply complicates the process. Therefore, those skilled in the art did not consider the side reaction of the positive electrode in Cited Document 1 as shown in FIG. 2 (b).

しかしながら本発明者は、そのリチウムイオン二次電池1自体が、どのような特性を持った電池であるかを解析したうえで、さらに正極にどのような副反応が生じそれがどのように作用するかを解明し、実験によりその影響が小さくないことを見出し、本発明に至ったものである。また、正極も負極と同様に、ターフェルの式により副反応の反応速度を規定することができることを実験的に確認した。 However, the present inventor analyzes what kind of characteristics the lithium ion secondary battery 1 itself has, and then what kind of side reaction occurs on the positive electrode and how it works. It was clarified that the effect was not small by experiments, and the present invention was reached. It was also experimentally confirmed that the reaction rate of the side reaction can be defined by the Tafel equation for the positive electrode as well as the negative electrode.

<本実施形態の正負極組成対応ずれ容量ΔQの算出>
図3(a)は、本実施形態の劣化前の正極・負極のSOC−OCP特性を示すグラフである。図3(b)は、本実施形態の劣化後の正極・負極のSOC−OCP特性を示すグラフである。本発明者の知見によれば、実際には、図3(b)に示すように、正極においても副反応による容量低下ΔQPEが生じる。正極の容量低下ΔQPEが生じると、図3(a)に示す正極OCPのグラフ上の点UPE0上の位置が、左向きの矢印で示すΔQPEだけ左側の位置にずれ、グラフ上の点UPE1となる。
<Calculation of deviation capacity ΔQ corresponding to positive / negative electrode composition of this embodiment>
FIG. 3A is a graph showing the SOC-OCP characteristics of the positive electrode and the negative electrode before deterioration of the present embodiment. FIG. 3B is a graph showing the SOC-OCP characteristics of the positive electrode and the negative electrode after deterioration of the present embodiment. According to the findings of the present inventor, in reality, as shown in FIG. 3 (b), a volume decrease ΔQ PE due to a side reaction also occurs at the positive electrode. When the positive electrode capacity decrease ΔQ PE occurs, the position on the point U PE0 on the graph of the positive electrode OCP shown in FIG. 3A shifts to the left position by the ΔQ PE indicated by the arrow pointing to the left, and the point U on the graph. It becomes PE1.

つまり、セル電圧VBの低下は、負極の電位VNEの上昇と正極の電位VPEの低下の両者から生じる。従来は、図2(b)に示されるようにセル電圧VBの低下は、すべて負極の電位VNEの上昇に起因するものとみなされていた。言い換えると、ΔQ=ΔQNEとみなされていた。しかしながら、本実施形態では、セル電圧VBの低下は、負極の電位VNEの上昇と正極の電位VPEの低下の両者から生じるものとし、これらをそれぞれ切り分けて分析することとしたものである。 That is, the decrease in the cell voltage VB is caused by both an increase in the potential VNE of the negative electrode and a decrease in the potential V PE of the positive electrode. Conventionally, as shown in FIG. 2B, the decrease in the cell voltage VB was considered to be entirely due to the increase in the potential VNE of the negative electrode. In other words, it was considered that ΔQ = ΔQ NE. However, in the present embodiment, reduction of the cell voltage VB is assumed to result from both a decrease in the rise and the positive potential V PE negative electrode potential V NE, in which it was decided to analyze isolate them respectively.

本実施形態では、ずれが生じる前のセル電圧VBは、図3(a)に示すように<正極電位VPE0-負極電位VNE0>の電位差であるが、ずれを生じると、図3(b)に示すように<正極電位VPE1-負極電位VNE1>の電位差となる。 In the present embodiment, the cell voltage VB before the deviation occurs is the potential difference of <positive potential V PE0 -negative potential V NE0 > as shown in FIG. 3 (a), but when the deviation occurs, FIG. 3 (b) ), The potential difference is <positive potential V PE1 -negative potential V NE1>.

本実施形態では、図3(b)に示すように、セル電圧VBの低下を、負極の電位VNEの上昇と正極の電位VPEの低下に振り分けた結果、セル電圧VBが同じ電圧であったとしても、図2(b)の従来技術で示す負極の電位VNEの上昇よりも本実施形態の図3(b)に示す負極の電位VNEの上昇は小さいものとなっている。 In the present embodiment, as shown in FIG. 3B, as a result of allocating the decrease in the cell voltage VB to the increase in the potential V NE of the negative electrode and the decrease in the potential V PE of the positive electrode, the cell voltage VB is the same voltage. as also, the rise in the potential V NE of the negative electrode shown in FIG. 3 (b) of the present embodiment than the rise in the potential V NE of the negative electrode shown in prior art FIG. 2 (b) has become smaller.

これをΔQについて言い換えれば、従来のΔQNE>本実施形態のΔQNEという関係から本実施形態のΔQは、従来のΔQよりも小さなものとなる。
さらに、従来のΔQNE>本実施形態のΔQNEという関係から、負極における副反応による容量低下量ΔQNEの低下によるずれと、正極における副反応による容量低下量ΔQPEの低下によるずれとが、相殺されてΔQが小さくなる。すなわち、ΔQ=ΔQNE−ΔQPEという関係になる。したがって、本実施形態のΔQは、従来のΔQよりもさらに小さなものとなる。
In other words this for Delta] Q, Delta] Q of this embodiment from the relationship that Delta] Q NE conventional Delta] Q NE> the present embodiment, becomes smaller than the conventional Delta] Q.
Furthermore, the relationship that Delta] Q NE conventional Delta] Q NE> the present embodiment, the displacement due to the decrease in capacity decrease amount Delta] Q NE due to side reactions in the anode, and the deviation due to side reactions decrease in capacity decrease amount Delta] Q PE by the positive electrode, It is offset and the ΔQ becomes smaller. That is, the relationship is ΔQ = ΔQ NE − ΔQ PE. Therefore, the ΔQ of the present embodiment is even smaller than that of the conventional ΔQ.

つまり、本発明者は、従来の方法では、セル電圧VBが同じ電圧であったとしても、ΔQを大きく見積もる可能性があったことを見出した。本実施形態においては、ΔQNEとΔQPEとをそれぞれ劣化を正確に算出する。ここから導かれたΔQを用いることで、セル電圧VBを正極電位VPEと負極電位VNEに正しく振り分け、さらにΔQNEとΔQPEとをそれぞれ劣化を正確に算出する。これを繰り返すことで、常に正負極組成対応ずれ容量ΔQをより正確に推定することができるものとした。 That is, the present inventor has found that in the conventional method, even if the cell voltage VB is the same voltage, there is a possibility that ΔQ may be overestimated. In the present embodiment, the deterioration of ΔQ NE and ΔQ PE is calculated accurately. By using ΔQ derived from this, the cell voltage VB is correctly distributed to the positive electrode potential VPE and the negative electrode potential VNE, and the deterioration of each of ΔQ NE and ΔQ PE is calculated accurately. By repeating this, the deviation capacitance ΔQ corresponding to the positive and negative electrode compositions can always be estimated more accurately.

<正負極組成対応ずれ容量ΔQの算出>
<本発明の正負極組成対応ずれ容量ΔQの算出>
ここで、本発明は、負極の被膜形成電流密度iNEに経過時間Δtを乗じることで負極における副反応による容量低下量ΔQNEの低下を求め、正極被膜形成電流密度をiPEに経過時間Δtを乗じることで正極における副反応による容量低下ΔQPEを求め、これらの差から正負極組成対応ずれ容量ΔQを求めるようにしても実施できる。そうすると、いずれにしてもΔQNEとΔQPEとをそれぞれ算出する必要がある。
<Calculation of deviation capacity ΔQ corresponding to positive and negative electrode composition>
<Calculation of deviation capacity ΔQ corresponding to positive / negative electrode composition of the present invention>
Here, in the present invention, the elapsed time Δt is obtained by multiplying the negative electrode film forming current density iNE by the elapsed time Δt to obtain the decrease in the capacitance decrease amount ΔQ NE due to the side reaction in the negative electrode, and the positive electrode film forming current density is set to the iPE by the elapsed time Δt. It is also possible to obtain the capacity decrease ΔQ PE due to the side reaction in the positive electrode by multiplying by, and to obtain the positive electrode / negative electrode composition-corresponding deviation capacity ΔQ from these differences. Then, in any case, it is necessary to calculate ΔQ NE and ΔQ PE, respectively.

もちろん、負極における副反応電流値ISR(NE)と正極における副反応電流値ISR(PE)の差に、経過時間Δtを掛けて、経過時間Δtの正負極組成対応ずれ容量ΔQ(t〜t)の総量を算出するようにしてもよい。ここでは、そのような手順の本実施形態のΔQの算出方法について図4を参照して説明する。 Of course, the difference between the side reaction current value I SR (NE) at the negative electrode and the side reaction current value I SR (PE) at the positive electrode is multiplied by the elapsed time Δt, and the deviation capacity ΔQ (t 0) corresponding to the positive and negative electrode composition of the elapsed time Δt. The total amount of ~ t 1 ) may be calculated. Here, a method of calculating ΔQ according to the present embodiment of such a procedure will be described with reference to FIG.

<本実施形態の正負極組成対応ずれ容量ΔQの算出の手順>
図4は、このような方法に基づいて本実施形態の時間tから所定の時間tまでに積算された正負極組成対応ずれ容量ΔQを算出するフローチャートの一例である。
<Procedure for calculating the deviation capacity ΔQ corresponding to the positive and negative electrode compositions of this embodiment>
FIG. 4 is an example of a flowchart for calculating the positive / negative electrode composition-corresponding deviation capacity ΔQ integrated from the time t 0 of the present embodiment to the predetermined time t 1 based on such a method.

以下、図4に沿ってその手順を説明する。まず、ΔQ(t〜t)の算出を開始する(S1)。ここで時間tは、このリチウムイオン二次電池1の劣化の推定の開始時である。また、時間tは、リチウムイオン二次電池1の劣化の推定の終了時である。Δtは、時間tから時間tまでの経過時間である。そして時間tは、測定間隔時間である。例えば、0.1秒である。 Hereinafter, the procedure will be described with reference to FIG. First, the calculation of ΔQ (t 0 to t 1 ) is started (S1). Here, the time t 0 is the start of the estimation of the deterioration of the lithium ion secondary battery 1. Further, the time t 1 is the time when the estimation of the deterioration of the lithium ion secondary battery 1 is completed. Δt is the elapsed time from time t 0 to time t 1. The time t 2 is the measurement interval time. For example, 0.1 seconds.

続いて、検査の対象となるリチウムイオン二次電池1のセル電圧VBとセルの環境温度であるセル温度Tを測定する(S2)。セル電圧VBとセル温度TBは、リチウムイオン二次電池1が搭載された車両10の監視ユニット20の電圧センサ21と温度センサ23(図1)により測定される。 Subsequently, the cell voltage VB of the lithium ion secondary battery 1 to be inspected and the cell temperature T, which is the environmental temperature of the cell, are measured (S2). The cell voltage VB and the cell temperature TB are measured by the voltage sensor 21 and the temperature sensor 23 (FIG. 1) of the monitoring unit 20 of the vehicle 10 on which the lithium ion secondary battery 1 is mounted.

S2の処理に続いてセル電圧VBとセル温度TBとから負極電位VNEを算出する(S3)。時間tにおいては、ΔQ=0であるので、図3(a)のグラフに従ってセル電圧VBを正極電位VPEと負極電位VNEに振り分けることができる。 Following the process of S2, the negative electrode potential VNE is calculated from the cell voltage VB and the cell temperature TB (S3). Since ΔQ = 0 at time t 0 , the cell voltage VB can be divided into the positive electrode potential V PE and the negative electrode potential V NE according to the graph of FIG. 3 (a).

負極電位VNEとセル温度TBから負極における副反応電流値ISR(NE)を算出する(S4)。
S3の処理と並行して、S2の処理に続けてセル電圧VBとセル温度TBとから正極電位VPEを算出する(S5)。正極電位VPEから正極における副反応電流値ISR(PE)を算出する(S6)。
The side reaction current value ISR (NE) at the negative electrode is calculated from the negative electrode potential V NE and the cell temperature TB (S4).
In parallel with the processing of S3, the positive electrode potential V PE is calculated from the cell voltage VB and the cell temperature TB following the processing of S2 (S5). The side reaction current value I SR (PE) at the positive electrode is calculated from the positive electrode potential V PE (S6).

S4で算出したISR(NE)と、S6で算出したISR(PE)とから、ΔQ(t〜t)=(ISR(NE)−ISR(PE))×Δtを算出する。すなわち、負極における副反応電流値ISR(NE)と正極における副反応電流値ISR(PE)の差に、経過時間Δtを掛けて、経過時間Δtの正負極組成対応ずれ容量ΔQ(t〜t)の総容量を算出する(S7)。 From the I SR (NE) calculated in S4 and the I SR (PE) calculated in S6, ΔQ (t 0 to t 1 ) = (I SR (NE) −I SR (PE) ) × Δt is calculated. .. That is, the difference between the side reaction current value I SR (NE) at the negative electrode and the side reaction current value I SR (PE) at the positive electrode is multiplied by the elapsed time Δt, and the deviation capacity ΔQ (t 0) corresponding to the positive and negative electrode composition of the elapsed time Δt. Calculate the total capacity of ~ t 1) (S7).

この処理は、時間t0から時間t1まで、Δtが順次処理される。この処理が一巡終了すると、次の処理時にはΔQ(t〜t)が算出されている。このようにt〜tn+1の処理時にはΔQ(tn−1〜t)が算出されている。そこで、S2で取得したセル電圧VBは、図3(b)に示すように、すでに算出し累積されたΔQによりセル電圧VBを正極電位VPEと負極電位VNEに振り分けることができる。これを繰り返すことで、その後も、その時点で算出したΔQによりセル電圧VBを正確に正極電位VPEと負極電位VNEに振り分けて、S3、S5の処理をすることができる。 In this process, Δt is sequentially processed from time t0 to time t1. When this process is completed, ΔQ (t 0 to t 1 ) is calculated at the next process. In this way, ΔQ (t n-1 to t n ) is calculated during the processing of t n to t n + 1. Therefore, as shown in FIG. 3B, the cell voltage VB acquired in S2 can divide the cell voltage VB into the positive electrode potential V PE and the negative electrode potential V NE according to the ΔQ already calculated and accumulated. By repeating this, the cell voltage VB can be accurately divided into the positive electrode potential V PE and the negative electrode potential V NE according to the ΔQ calculated at that time, and the processing of S3 and S5 can be performed.

<負極及び正極における副反応電流値ISR(NE)・SR(PE)
ここで、負極及び正極における副反応による容量低下ΔQNE及びΔQPE、すなわち負極における副反応電流値ISR(NE)と正極における副反応電流値ISR(PE)は、以下のようにして求められる。
<Vaccine side reaction current values for negative and positive electrodes I SR (NE) and I SR (PE) >
Here, the volume reduction ΔQ NE and ΔQ PE due to side reactions at the negative electrode and the positive electrode, that is, the side reaction current value I SR (NE) at the negative electrode and the side reaction current value I SR (PE) at the positive electrode are obtained as follows. Be done.

負極の副反応電流値ISR(NE)は、aNEを負極上で起こる副反応の交換電流密度とし、bNEを負極上で起こる副反応の過電圧項としたとき、下記式(6) The negative electrode side reaction current value ISR (NE) is the following equation (6), where a NE is the exchange current density of the side reaction that occurs on the negative electrode and b NE is the overvoltage term of the side reaction that occurs on the negative electrode.

Figure 2021163632

により負極における容量低下量ΔQNEを算出することができる。
Figure 2021163632

Therefore, the amount of decrease in capacity ΔQ NE at the negative electrode can be calculated.

また、正極副反応電流値ISR(PE)は、aPEを正極上で起こる副反応の交換電流密度とし、bPEを正極上で起こる副反応の過電圧項としたとき、下記式(7) The positive electrode side reaction current value ISR (PE) is the following equation (7), where a PE is the exchange current density of the side reaction that occurs on the positive electrode and b PE is the overvoltage term of the side reaction that occurs on the positive electrode.

Figure 2021163632

により正極における容量低下量ΔQPEを算出することができる。
Figure 2021163632

Therefore, the amount of decrease in capacity at the positive electrode ΔQ PE can be calculated.

<負極における副反応による容量低下量ΔQNEの低下の求め方>
次に、これらの式を用いて具体的に負極及び正極における副反応による容量低下量ΔQNEの低下及び容量低下量ΔQPEの低下を求める方法について説明する。
<How to determine the decrease in capacity ΔQ NE due to side reactions at the negative electrode>
Next, a method of specifically obtaining a decrease in the volume reduction amount ΔQ NE and a decrease in the capacity reduction amount ΔQ PE due to a side reaction in the negative electrode and the positive electrode will be described using these equations.

ここでは、まず、負極について説明する。負極における副反応による容量低下ΔQNEは特許文献1に記載されたようにターフェル式を用いて求めることができる。
すなわち、負極における副反応による容量低下量ΔQNEの低下は、負極副反応電流値ISR(NE)をΔtの間で積分する。負極副反応電流値ISR(NE)は、負極被膜形成電流密度iNEに基づいて算出することができる。負極被膜形成電流密度iNEは、セル電圧VB及びセル温度TBに基づいて、次のターフェル式により求めることができる。
Here, first, the negative electrode will be described. The volume reduction ΔQ NE due to a side reaction at the negative electrode can be obtained by using the Tafel equation as described in Patent Document 1.
That is, the decrease in the capacity decrease amount ΔQ NE due to the side reaction at the negative electrode integrates the negative electrode side reaction current value ISR (NE) between Δt. The negative electrode side reaction current value ISR (NE) can be calculated based on the negative electrode coating formation current density iNE. Negative film formation current density i NE, based on the cell voltage VB and cell temperature TB, can be obtained by the following Tafel equation.

<ターフェル式による負極副反応電流値ISR(NE)の算出>
本実施形態では、以下に示すターフェル式(式(3))により、負極被膜形成電流密度iNEを求める。
<Calculation of negative electrode side reaction current value ISR (NE) by Tafel equation>
In the present embodiment, the negative electrode film forming current density iNE is obtained by the Tafel equation (formula (3)) shown below.

Figure 2021163632

ここで、iを交換電流密度、αを移動係数、Fをファラデー定数、Rを気体定数、Tを絶対温度、Usideを被膜形成電位、UNEを負極開放電位とする。
Figure 2021163632

Here, i 0 is the exchange current density, α is the transfer coefficient, F is the Faraday constant, R is the gas constant, T is the absolute temperature, U side is the film formation potential, and UNE is the negative electrode open potential.

<ターフェルの式を用いた負極組成対応容量低下量ΔQNEの計算>
ターフェル式(数(3))による負極での被膜形成電流密度iの求め方は、詳しくは、引用文献1の段落0024〜0081、特にターフェルの式を用いた正負極組成対応ずれ容量ΔQの計算方法は、段落0076〜0081に詳細に記載されているため、ここでは詳しい記載は省略する。
<Calculation of capacity reduction amount ΔQ NE corresponding to negative electrode composition using Tafel's equation>
For details on how to obtain the film formation current density i at the negative electrode by the Tafel equation (number (3)), refer to paragraphs 0024 to 0081 of Cited Document 1, in particular, the calculation of the displacement capacitance ΔQ corresponding to the positive and negative electrode compositions using the Tafel equation. Since the method is described in detail in paragraphs 0076 to 0081, detailed description is omitted here.

式(3)の交換電流密度iは、リチウムイオン二次電池1の製造完了後に数回充放電を繰り返すと、SEI(solid electrolyte interphase)被膜の形成速度が略定常となるので略一定の値に落ち着いてくる。このため、試験等により予めセル温度TBに対応するマップを作成しておき、このマップから読み出すようにしてもよい。 The exchange current density i 0 of the formula (3) is a substantially constant value because the formation rate of the SEI (solid electrolyte interphase) film becomes substantially constant when charging / discharging is repeated several times after the production of the lithium ion secondary battery 1 is completed. Calm down. Therefore, a map corresponding to the cell temperature TB may be created in advance by a test or the like and read from this map.

移動係数αは、例えば、充放電効率が同一と仮定して、0.5としてもよい。また、被膜形成の主要因である電解液の還元分解は、負極開放電位が0.6V〜1.0Vで連続的に起こるので、例えば、被膜形成電位Usideを0.6V、0.8Vあるいは1.0Vのように設定してもよい。 The transfer coefficient α may be set to 0.5, for example, assuming that the charge / discharge efficiencies are the same. Further, the reductive decomposition of the electrolytic solution, which is the main factor of film formation, occurs continuously when the negative electrode open potential is 0.6 V to 1.0 V. Therefore, for example, the film formation potential Uside is 0.6 V, 0.8 V or 1. It may be set as 0.0V.

<正極における副反応電流値ISR(PE)
従来、正負極組成対応ずれ容量ΔQは、負極表面上でのSEI被膜形成(副反応)の影響が主であると考えられていた。負極で形成される被膜は、SEIのほか、LiF、LiCoなどがあるが、負極副反応電流ISR(PE)は、上述のターフェルの式により推定されていた。
<Vaccine side reaction current value ISR (PE) at the positive electrode>
Conventionally, it has been considered that the deviation capacity ΔQ corresponding to the positive and negative electrode compositions is mainly affected by the formation of an SEI film (a side reaction) on the surface of the negative electrode. The coating formed on the negative electrode includes LiF, Li 2 Co 3, and the like in addition to SEI, but the negative electrode side reaction current ISR (PE) was estimated by the Tafel equation described above.

本発明者は、正極で形成される被膜についても、同じように考え、同様にターフェルの式により推定できるのではないかという仮説をたて、実験によりこの仮説が正しいことを見出した。 The present inventor considered the film formed by the positive electrode in the same manner, made a hypothesis that it could be estimated by the Tafel equation in the same manner, and found that this hypothesis was correct by experiments.

そこで、正極においても、セル電圧VB及びセル温度TBに基づいて、下記式(4)のターフェル式により正極での被膜形成電流密度をiPEを算出する。
ここで、iを交換電流密度、αを移動係数、Fをファラデー定数、Rを気体定数、Tを絶対温度、Usideを被膜形成電位、UPEを正極開放電位とする。
Therefore, also for the positive electrode, iPE is calculated for the film formation current density at the positive electrode by the Tafel equation of the following formula (4) based on the cell voltage VB and the cell temperature TB.
Here, the exchange current density i 0, move coefficient alpha, Faraday constant F, the gas to R constant, absolute temperature T, the film formation potential U side, the U PE positive electrode open-circuit potential.

Figure 2021163632

そして、この正極被膜形成電流密度をiPEに基づいて、正極副反応電流値ISR(PE)を算出する。
Figure 2021163632

Then, the positive electrode side reaction current value ISR (PE) is calculated based on the positive electrode film forming current density of iPE.

<正負極組成対応ずれ容量ΔQ(t〜t)の総容量>
そして、図4に示すフォローチャートのS7において、このように算出した負極副反応電流値ISR(NE)と、正極副反応電流値ISR(PE)とから、ΔQ(t0〜t1)=(ISR(NE)−ISR(PE))×Δtを算出する。すなわち、負極における副反応電流値ISR(NE)と正極における副反応電流値ISR(PE)の差に、経過時間Δtを乗じて、経過時間Δtの正負極組成対応ずれ容量ΔQ(t〜t)の総容量を算出する(S7)。
<Total capacity of deviation capacity ΔQ (t 0 to t 1 ) corresponding to positive and negative electrode compositions>
Then, in S7 of the follow chart shown in FIG. 4, ΔQ (t0 to t1) = (from the negative electrode side reaction current value I SR (NE) calculated in this way and the positive electrode side reaction current value I SR (PE). I SR (NE) -I SR (PE) ) × Δt is calculated. That is, the difference between the side reaction current value I SR (NE) at the negative electrode and the side reaction current value I SR (PE) at the positive electrode is multiplied by the elapsed time Δt, and the deviation capacity ΔQ (t 0) corresponding to the positive / negative electrode composition of the elapsed time Δt. Calculate the total capacity of ~ t 1) (S7).

<本実施形態のΔQと、従来技術のΔQとの比較>
図5(a)は、図2(a)、(b)に示す従来技術のΔQを、図5(b)は、図3(a)、(b)に示す本実施形態のΔQを示し、これらを簡単に比較する模式図である。特許文献1に示す従来の劣化の判断において、図5(a)の上の図は劣化前の正負極組成対応ずれがない状態を示している。この状態から、図5(a)の下の図のように負極容量低下量ΔQNEが3マス分ずれたときは、正負極組成対応ずれ容量ΔQが3マス分となる。
<Comparison between ΔQ of the present embodiment and ΔQ of the prior art>
5 (a) shows ΔQ of the prior art shown in FIGS. 2 (a) and 2 (b), and FIG. 5 (b) shows ΔQ of the present embodiment shown in FIGS. 3 (a) and 3 (b). It is a schematic diagram which compares these easily. In the conventional determination of deterioration shown in Patent Document 1, the upper figure of FIG. 5A shows a state in which there is no deviation corresponding to the positive and negative electrode compositions before deterioration. From this state, when the negative electrode capacity decrease amount ΔQ NE deviates by 3 squares as shown in the lower figure of FIG. 5A, the positive electrode capacity-corresponding deviation capacity ΔQ becomes 3 squares.

一方、本実施形態のΔQは、図5(b)上段に示すずれがない状態から、図5(b)下段に示すように図5(b)と同じように負極容量低下量ΔQNEが3マス分ずれる。このとき、図5(b)のように正極1PEの正極容量低下量ΔQPEが1マス分同じ方向にずれているので、ずれが相殺されて、正負極組成対応ずれ容量ΔQは2マス分となる。すなわち従来の劣化推定方法と比較すると、本実施形態の劣化推定方法は、ΔQを過大に評価することなく。ΔQをより正確に推定することができることがわかる。 On the other hand, in ΔQ of the present embodiment, from the state where there is no deviation shown in the upper part of FIG. 5B, the negative electrode capacity decrease amount ΔQ NE is 3 as shown in the lower part of FIG. The mass is off. At this time, since the positive electrode capacity reduction amount Delta] Q PE of positive electrode 1 PE is shifted to 1 mass fraction same direction as in FIG. 5 (b), the deviation is canceled, the positive and negative electrodes discrepancy capacity Delta] Q is 2 mass fraction It becomes. That is, as compared with the conventional deterioration estimation method, the deterioration estimation method of the present embodiment does not overestimate ΔQ. It can be seen that ΔQ can be estimated more accurately.

なお、厳密には、前述のようにΔQNE自体も、従来技術よりも本実施形態のほうが減少するが、ここでは説明の簡略化のため、省略している。
<リチウムイオン二次電池の劣化抑制制御方法>
このような本実施形態のリチウムイオン二次電池1の劣化推定方法により推定された正負極組成対応ずれ容量ΔQに基づいて、リチウムイオン二次電池1の劣化を抑制するリチウムイオン二次電池の寿命推定方法及び劣化抑制制御方法について説明する。本実施形態では、セルSOCθ、セル電圧VB及びセル温度TBの履歴に基づいて、将来的なリチウムイオン二次電池1の劣化状態を予測することができる。そして、この結果に基づいて必要に応じてセルSOCθの使用帯域を制御することで、リチウムイオン二次電池1の寿命を延命することが可能になる。
Strictly speaking, as described above, ΔQ NE itself is also reduced in the present embodiment as compared with the prior art, but is omitted here for the sake of brevity.
<Deterioration suppression control method for lithium-ion secondary batteries>
The life of the lithium ion secondary battery that suppresses the deterioration of the lithium ion secondary battery 1 based on the deviation capacity ΔQ corresponding to the positive and negative electrode compositions estimated by the deterioration estimation method of the lithium ion secondary battery 1 of the present embodiment. The estimation method and the deterioration suppression control method will be described. In the present embodiment, the deterioration state of the lithium ion secondary battery 1 in the future can be predicted based on the history of the cell SOC θ, the cell voltage VB, and the cell temperature TB. Then, by controlling the usage band of the cell SOCθ as needed based on this result, the life of the lithium ion secondary battery 1 can be extended.

<リチウムイオン二次電池の劣化抑制制御方法の手順>
図6は、本実施形態のリチウムイオン二次電池1の劣化を抑制するリチウムイオン二次電池の劣化抑制制御方法のフローチャートである。
<Procedure of control method for suppressing deterioration of lithium ion secondary battery>
FIG. 6 is a flowchart of a deterioration suppression control method for the lithium ion secondary battery 1 that suppresses deterioration of the lithium ion secondary battery 1 of the present embodiment.

リチウムイオン二次電池1が車両10に搭載されると計算が開始される(計算開始)。寿命目標到達の可否の判断のタイミングは、常時行う必要はなく、例えば、イグニションをオンしたタイミングや、イグニションにかかわらず1日〜数日に1回程度としてもよい。計算は、例えば測定間隔時間Δt毎に繰り返されてt0から寿命目標期間tmaxまで継続して計算される。 The calculation is started when the lithium ion secondary battery 1 is mounted on the vehicle 10 (calculation start). It is not always necessary to determine whether or not the life target can be reached. For example, the timing of turning on the ignition or once every few days may be set regardless of the ignition. The calculation is repeated every measurement interval time Δt, for example, and is continuously calculated from t0 to the life target period tmax.

計算開始に先立って、劣化特性のデータが読み込まれている。劣化特性のデータは、工場出荷の際に図8に示す劣化特性取得の手順で測定される。そして劣化特性のデータが、車両10のECU100のROMなどのメモリ102(図1)に予め読み出し可能に記憶されている。 Prior to the start of the calculation, the deterioration characteristic data is read. The deterioration characteristic data is measured at the time of shipment from the factory by the procedure for acquiring the deterioration characteristics shown in FIG. Then, the deterioration characteristic data is readable and stored in advance in a memory 102 (FIG. 1) such as a ROM of the ECU 100 of the vehicle 10.

ここで、図8を参照して、劣化特性取得の手順を説明する。
<劣化特性取得の手順>
正確な予測のためには、その予測の基準となるリチウムイオン二次電池1の劣化特性、つまり劣化の速度の取得が重要である。そこで、リチウムイオン二次電池1を車両に搭載する前、若しくは車両に搭載されたリチウムイオン二次電池1を車両から取り外して、劣化特性取得の装置にセットして測定をする。そして、予め設定された特定の温度、時間、充放電の条件で「保存」を行い、その前後での副反応電流の実測値の差から、このリチウムイオン二次電池1の固有の劣化の速度を正極と負極に分けて測定する。この副反応電流の実測値を基準として、将来的に予想される条件で補正することにより、リチウムイオン二次電池1の負極容量低下量ΔQNEと正極容量低下量ΔQPEを正確に算出することができるものである。
Here, a procedure for acquiring deterioration characteristics will be described with reference to FIG.
<Procedure for acquiring deterioration characteristics>
For accurate prediction, it is important to acquire the deterioration characteristics of the lithium ion secondary battery 1, which is the reference for the prediction, that is, the rate of deterioration. Therefore, before the lithium ion secondary battery 1 is mounted on the vehicle, or the lithium ion secondary battery 1 mounted on the vehicle is removed from the vehicle and set in a device for acquiring deterioration characteristics for measurement. Then, "preservation" is performed under a specific preset temperature, time, and charge / discharge conditions, and the rate of deterioration peculiar to the lithium ion secondary battery 1 is obtained from the difference in the measured values of the side reaction currents before and after that. Is measured separately for the positive electrode and the negative electrode. Accurately calculate the negative electrode capacity reduction amount ΔQ NE and the positive electrode capacity reduction amount ΔQ PE of the lithium ion secondary battery 1 by correcting the measured value of this side reaction current under the conditions expected in the future. Can be done.

<リチウムイオン二次電池の劣化特性取得の装置の構成>
図7は、リチウムイオン二次電池1の劣化特性取得のため装置の構成を示すブロック図である。本実施形態のリチウムイオン二次電池1の劣化情報取得の装置の構成は、周知の充放電装置3、セル電圧測定器4、セル電流測定器5、温度計6、保温装置7を備える。また、これらを制御するインタフェースを備えた周知のコンピュータからなる制御装置8を備える。制御装置8は、CPU81とメモリ82を備える。メモリ82は、RAM、ROMを備える。
<Configuration of equipment for acquiring deterioration characteristics of lithium-ion secondary batteries>
FIG. 7 is a block diagram showing a configuration of an apparatus for acquiring deterioration characteristics of the lithium ion secondary battery 1. The configuration of the device for acquiring deterioration information of the lithium ion secondary battery 1 of the present embodiment includes a well-known charging / discharging device 3, a cell voltage measuring device 4, a cell current measuring device 5, a thermometer 6, and a heat retaining device 7. Further, a control device 8 composed of a well-known computer provided with an interface for controlling these is provided. The control device 8 includes a CPU 81 and a memory 82. The memory 82 includes a RAM and a ROM.

これらは、リチウムイオン二次電池1の劣化特性取得の装置の構成として、リチウムイオン二次電池1を特定の条件で保存する保存手段として機能する。また保存したリチウムイオン二次電池1の保存前後の電池満容量の容量低下量Qlossを測定する電池容量低下量測定手段として機能する。また、保存したリチウムイオン二次電池1の保存前後の自己放電容量QSDを測定する自己放電量測定手段として機能する。また、測定した容量低下量Qloss及び自己放電容量QSDと、予め取得した副反応速度と使用環境の関係を用いて、想定される使用環境下における正極の劣化量と、負極の劣化量とをそれぞれ算出する劣化量算出手段として機能する。 These function as a storage means for storing the lithium ion secondary battery 1 under specific conditions as a configuration of an apparatus for acquiring deterioration characteristics of the lithium ion secondary battery 1. It also functions as a battery capacity reduction amount measuring means for measuring the capacity reduction amount Q loss of the battery full capacity before and after storage of the stored lithium ion secondary battery 1. Also functions as a self-discharge amount measuring means for measuring a self-discharge capacity Q SD before and after the storage was a lithium ion secondary battery 1 storage. Also, the measured volume reduction amount Q loss and self-discharge capacity Q SD, using the previously obtained relation between the secondary reaction rate environment of use, and deterioration of the positive electrode in the environment of use envisaged, the deterioration amount of the negative electrode It functions as a deterioration amount calculation means for calculating each of the above.

<劣化特性取得のフローチャート>
次に、図8のフローチャートを参照して、本実施形態のリチウムイオン二次電池の寿命推定方法、劣化抑制制御方法の前提である劣化特性取得について説明する。劣化特性取得の手順は、このリチウムイオン二次電池1固有の副反応電流値、自己放電の測定により、このリチウムイオン二次電池1の劣化速度の個体差がわかる。
<Flowchart for acquiring deterioration characteristics>
Next, with reference to the flowchart of FIG. 8, the deterioration characteristic acquisition which is the premise of the life estimation method and the deterioration suppression control method of the lithium ion secondary battery of the present embodiment will be described. In the procedure for acquiring the deterioration characteristics, the individual difference in the deterioration rate of the lithium ion secondary battery 1 can be found by measuring the side reaction current value and self-discharge peculiar to the lithium ion secondary battery 1.

ここでまず、このフローチャートの説明に先立って、説明で用いる用語について予め説明する。
「T1(°C)」は、任意の保存温度(例えば50°C)である。
Here, first, prior to the explanation of this flowchart, the terms used in the explanation will be described in advance.
“T1 (° C)” is an arbitrary storage temperature (for example, 50 ° C).

「t1(h)」は、任意の保存期間(例えば24時間)である。
「V1(V)」は、セル電圧VBが完全放電の電圧3.0(V)(この実施形態では、セルSOC0%の完全放電状態のセル電圧VBを「下限電圧」という。)から、満充電の4.1(V)(セルSOC0〜100%、本実施形態では、「上限電圧」という。)の間で任意に設定した電圧(例えば3.8(V))で、本実施形態では、「基準電圧」という。本実施形態では、自己放電容量の測定の基準電圧に用いられるとともに、保存の任意の初期セル電圧VBでもある。
“T1 (h)” is an arbitrary storage period (for example, 24 hours).
“V1 (V)” is full from the voltage of 3.0 (V) at which the cell voltage VB is completely discharged (in this embodiment, the cell voltage VB in the fully discharged state with 0% cell SOC is referred to as “lower limit voltage”). A voltage (for example, 3.8 (V)) arbitrarily set between 4.1 (V) of charging (cell SOC 0 to 100%, referred to as "upper limit voltage" in this embodiment), in this embodiment. , "Reference voltage". In this embodiment, it is used as a reference voltage for measuring the self-discharge capacity and is also an arbitrary initial cell voltage VB for storage.

「Q1(Ah)」は、セル電圧VBを下限電圧3.0(V)から上限電圧(満充電のセル電圧VB=4.1(V)(ここでは、セルSOC100%の電圧))の電池容量を測定した保存前電池満容量である。 "Q1 (Ah)" is a battery having a cell voltage VB of a lower limit voltage of 3.0 (V) to an upper limit voltage (fully charged cell voltage VB = 4.1 (V) (here, cell SOC 100% voltage)). It is the full capacity of the pre-storing battery whose capacity has been measured.

「Q2(Ah)」下限電圧3.0(V)から基準電圧V1=3.8(V)で測定した保存前の区間容量である。
「Q3(Ah)」は、基準電圧V1=3.8(V)から保存を経て下限電圧3.0(V)まで放電した保存後の残存容量である。
It is the section capacitance before storage measured from the lower limit voltage 3.0 (V) of "Q2 (Ah)" to the reference voltage V1 = 3.8 (V).
“Q3 (Ah)” is the remaining capacity after storage, which is discharged from the reference voltage V1 = 3.8 (V) to the lower limit voltage of 3.0 (V) after storage.

「Q4(Ah)」は、下限電圧3.0(V)から、上限電圧4.1(V)で測定した保存後電池満容量である。
「QSD(Ah)」は、保存前の区間容量Q2と保存後の残存容量Q3の差から求めた保存期間中の自己放電容量である。
“Q4 (Ah)” is the full capacity of the battery after storage measured from the lower limit voltage of 3.0 (V) to the upper limit voltage of 4.1 (V).
QSD (Ah)” is the self-discharge capacity during the storage period obtained from the difference between the section capacity Q2 before storage and the remaining capacity Q3 after storage.

「Qloss(Ah)」は、保存前電池満容量Q1から保存後電池満容量の差から求めた容量低下量である。
「ISR(NE)0(A)」は、自己放電容量QSD(Ah)÷保存時間t1(h)で求めた負極の副反応電流(速度)である。
“Q loss (Ah)” is a capacity decrease amount obtained from the difference between the battery full capacity before storage Q1 and the battery full capacity after storage.
ISR (NE) 0 (A)” is a negative electrode side reaction current (velocity) determined by the self-discharge capacity QSD (Ah) ÷ storage time t1 (h).

「ISR(PE)0(A)」は、負極の副反応電流(速度)ISR(NE)0から、容量低下量Qloss(Ah)÷保存時間t1(h)の商との差から求めた正極の副反応電流(速度)である。 “I SR (PE) 0 (A)” is based on the difference from the vaccine current (velocity) I SR (NE) 0 of the negative electrode and the quotient of the volume reduction amount Q loss (Ah) ÷ storage time t1 (h). This is the obtained side reaction current (velocity) of the positive electrode.

本実施形態では以上のように規定する。
<劣化特性取得のフローチャートの手順>
次に、これらの定義を用いて、リチウムイオン二次電池1の劣化特性取得の手順を図8のフローチャートに沿って説明する。
In this embodiment, it is defined as described above.
<Procedure of flowchart for acquiring deterioration characteristics>
Next, using these definitions, the procedure for acquiring the deterioration characteristics of the lithium ion secondary battery 1 will be described with reference to the flowchart of FIG.

まず、劣化特性取得の処理を開始すると(START)、完全放電時のセルSOC0%の下限電圧3.0(V)からセルSOC100%の上限電圧4.1(V)の満充電まで充電して保存前の電池満容量Q1(Ah)を測定する(S101)。 First, when the process of acquiring deterioration characteristics is started (START), the battery is charged from the lower limit voltage 3.0 (V) of the cell SOC 0% at the time of complete discharge to the full charge of the upper limit voltage 4.1 (V) of the cell SOC 100%. The battery full capacity Q1 (Ah) before storage is measured (S101).

次に、下限電圧3.0(V)から基準電圧V1=3.8(V)までの電圧区間において充電することで保存前の区間容量Q2(Ah)を測定する(S102)。
続いて、基準電圧V1=3.8(V)に電圧を調整したまま、任意の温度T1(例えば50°C)で任意の時間t1(例えば24時間)保存する(S104)。この手順が「保存のステップ」に相当する。したがって、この保存は、開始セル電圧、保存温度T1、保存時間t1が常に一定な条件で行われる。
Next, the section capacitance Q2 (Ah) before storage is measured by charging in the voltage section from the lower limit voltage 3.0 (V) to the reference voltage V1 = 3.8 (V) (S102).
Subsequently, while adjusting the voltage to the reference voltage V1 = 3.8 (V), it is stored at an arbitrary temperature T1 (for example, 50 ° C.) for an arbitrary time t1 (for example, 24 hours) (S104). This procedure corresponds to the "save step". Therefore, this storage is performed under conditions in which the starting cell voltage, the storage temperature T1, and the storage time t1 are always constant.

保存前に基準電圧V1=3.8(V)に電圧を調整した後、保存を経て、下限電圧3.0(V)まで放電し、保存後の残存容量Q3(Ah)を測定する(S105)。続いて、下限電圧3.0(V)から、上限電圧4.1(V)までの満充電を行い、保存後の電池満容量Q4(Ah)を測定する(S106)。この場合は、電圧で規定する。保存後は、活物質・電解質の劣化、被膜の形成などの理由から保存前より満充電容量が低下するからである。 After adjusting the voltage to the reference voltage V1 = 3.8 (V) before storage, the battery is discharged to the lower limit voltage of 3.0 (V) after storage, and the remaining capacity Q3 (Ah) after storage is measured (S105). ). Subsequently, the battery is fully charged from the lower limit voltage of 3.0 (V) to the upper limit voltage of 4.1 (V), and the battery full capacity Q4 (Ah) after storage is measured (S106). In this case, the voltage is specified. This is because after storage, the full charge capacity is lower than before storage due to deterioration of the active material / electrolyte, formation of a film, and the like.

そして、保存前の区間容量Q2(Ah)と、保存後の残存容量Q3(Ah)との差を求める。保存前の区間容量Q2に対し、保存後の残存容量Q3は、自己放電による容量の低下がある。つまり同じ下限電圧3.0(V)から基準電圧V1=3.8(V)までの電圧区間でこれらを求めることで保存時間t1の自己放電量を求めることができる。この手順により、保存時間t1に減少した電気容量から自己放電容量QSDを算出する(S107)。この手順が、「自己放電量測定のステップ」に相当する。 Then, the difference between the section capacity Q2 (Ah) before storage and the remaining capacity Q3 (Ah) after storage is obtained. Compared to the section capacity Q2 before storage, the remaining capacity Q3 after storage has a decrease in capacity due to self-discharge. That is, the self-discharge amount of the storage time t1 can be obtained by obtaining these in the voltage section from the same lower limit voltage 3.0 (V) to the reference voltage V1 = 3.8 (V). By this procedure, the self-discharge capacity QSD is calculated from the electric capacity reduced to the storage time t1 (S107). This procedure corresponds to the “step of measuring the amount of self-discharge”.

次に、自己放電容量QSD(Ah)を保存時間t1(h)で除して、負極の副反応電流(速度)ISR(NE)0(A)を算出する(S108)。
また、容量低下量Qloss(Ah)を、保存前の電池満容量Q1(Ah)と保存後の電池満容量Q4(Ah)との差から算出する(S109)。
Next, the self-discharge capacity QSD (Ah) is divided by the storage time t1 (h) to calculate the side reaction current (velocity) I SR (NE) 0 (A) of the negative electrode (S108).
Further, the capacity reduction amount Q loss (Ah) is calculated from the difference between the battery full capacity Q1 (Ah) before storage and the battery full capacity Q4 (Ah) after storage (S109).

最後に、負極の副反応電流(速度)ISR(NE)0(A)と、容量低下量Qloss(Ah)を保存時間t1(h)で除した商(A)との差から、正極の副反応電流(速度)ISR(PE)0(A)を算出する(S110)。 Finally, from the difference between the side reaction current (velocity) I SR (NE) 0 (A) of the negative electrode and the quotient (A) obtained by dividing the volume reduction amount Q loss (Ah) by the storage time t1 (h), the positive electrode The side reaction current (velocity) I SR (PE) 0 (A) of is calculated (S110).

以上で、本実施形態の所定の保存区間におけるリチウムイオン二次電池の負極の副反応電流(速度)ISR(NE)0(A)と正極の副反応電流(速度)ISR(PE)0(A)を測定する劣化特定取得の手順が終了する(END)。 As described above, the side reaction current (velocity) I SR (NE) 0 (A) of the negative electrode of the lithium ion secondary battery and the side reaction current (velocity) I SR (PE) 0 of the positive electrode in the predetermined storage section of the present embodiment. The procedure for acquiring the deterioration identification for measuring (A) is completed (END).

このような手順により、保存を開始する基準電圧V1(V)、保存温度T1(°C)、保存時間t1(h)の条件での正極の副反応電流(速度)ISR(PE)0(A)と、負極の副反応電流(速度)ISR(NE)0(A)とが測定できる。すなわち、このリチウムイオン二次電池1の基準となる劣化の特性が判明する。この手順は、セル毎に行ってもよいが、同じ構成のリチウムイオン二次電池1であれば、全数検査せず抜き取り検査でも十分である。 By such a procedure, the side reaction current (velocity) I SR (PE) 0 of the positive electrode under the conditions of the reference voltage V1 (V) for starting storage, the storage temperature T1 (° C), and the storage time t1 (h) ( A) and the side reaction current (velocity) I SR (NE) 0 (A) of the negative electrode can be measured. That is, the deterioration characteristic that serves as a reference for the lithium ion secondary battery 1 is clarified. This procedure may be performed for each cell, but if the lithium ion secondary battery 1 has the same configuration, a sampling inspection without 100% inspection is sufficient.

以上が、リチウムイオン二次電池1の劣化特性取得の手順である。
次に、図6に戻り、リチウムイオン二次電池の劣化抑制制御方法のフローチャートの計算が開始された後に処理される、「現在までの劣化情報取得(S10)」のステップについて説明する。
The above is the procedure for acquiring the deterioration characteristics of the lithium ion secondary battery 1.
Next, returning to FIG. 6, the step of “acquisition of deterioration information up to now (S10)”, which is processed after the calculation of the flowchart of the deterioration suppression control method for the lithium ion secondary battery is started, will be described.

<現在までの劣化情報取得(S10)>
ここでは、開始時間t0から現在の時間t1までの劣化情報を取得する(S10)。
これは、S11〜S16のステップにおいて車両10の制御装置18のECU100により実際に測定され、記憶され、処理されて算出された正負極組成対応ずれ容量ΔQが、順次積算されたものである。したがって第1巡目の処理では、リチウムイオン二次電池1の劣化がなく、ΔQもゼロである。したがって、この「現在までの劣化情報」は、ゼロである。2巡目から、順次劣化情報が蓄積されていく。この手順により、使用開始から現在までに積算されたリチウムイオン二次電池1の劣化の状態を知ることができ、この状態を起点にさらに将来の劣化を予測することができる。
<Acquisition of deterioration information up to now (S10)>
Here, deterioration information from the start time t0 to the current time t1 is acquired (S10).
This is a sequential integration of the positive and negative electrode composition-corresponding deviation capacitance ΔQ actually measured, stored, processed and calculated by the ECU 100 of the control device 18 of the vehicle 10 in the steps S11 to S16. Therefore, in the first round of processing, there is no deterioration of the lithium ion secondary battery 1, and ΔQ is also zero. Therefore, this "deterioration information up to now" is zero. From the second round, deterioration information is accumulated in sequence. By this procedure, it is possible to know the state of deterioration of the lithium ion secondary battery 1 accumulated from the start of use to the present, and it is possible to predict further deterioration from this state as a starting point.

<入力情報決定(S11)>
現在までの劣化情報取得(S10)の手順が完了したら、次に、入力情報が決定される(S11)。本実施形態のリチウムイオン二次電池1の劣化を抑制するリチウムイオン二次電池の制御方法は、将来的な寿命が到来するときのリチウムイオン二次電池1の劣化を予測する必要がある。
<Determination of input information (S11)>
After the procedure of acquiring deterioration information (S10) up to now is completed, the input information is next determined (S11). The method for controlling the lithium ion secondary battery that suppresses the deterioration of the lithium ion secondary battery 1 of the present embodiment needs to predict the deterioration of the lithium ion secondary battery 1 when the life of the lithium ion secondary battery 1 is reached in the future.

図9は、入力情報を決定する方法を示す図である。
S10で現在までの劣化が判明したが、将来の劣化を推定するためのセルSOCと、セル温度TBは、車両10のECU100により蓄積されたセル電圧VBとセル温度TBから推定される。
FIG. 9 is a diagram showing a method of determining input information.
Although the deterioration up to the present was found in S10, the cell SOC and the cell temperature TB for estimating the future deterioration are estimated from the cell voltage VB and the cell temperature TB accumulated by the ECU 100 of the vehicle 10.

過去のセルSOC(%)と、セル電圧VB(V)、セル温度TB(°C)は、車両10のECU100によりメモリ102に蓄積されている。
図9(a)は、将来の劣化を推定するためのセルSOC(%)の推定方法を示す図である。蓄積された、過去のセルSOC(%)から確率密度関数PDF(probability distribution function)が導かれる。確率密度関数PDFは、上に凸のグラフで、存在確率を示す。この例では、概ね50〜60%にピークを有する。ここからこれを累積した累積確率(cumulative probabilities)、すなわち累積分布関数CDF(cumulative distribution function)が導かれる。累積確率0〜100%を示す右上がりのグラフとなる。
The past cell SOC (%), cell voltage VB (V), and cell temperature TB (° C) are stored in the memory 102 by the ECU 100 of the vehicle 10.
FIG. 9A is a diagram showing a method of estimating cell SOC (%) for estimating future deterioration. The probability density function PDF (probability distribution function) is derived from the accumulated past cell SOC (%). The probability density function PDF shows the existence probability with an upwardly convex graph. In this example, it has a peak at approximately 50-60%. From this, the cumulative probability (cumulative probabilities), that is, the cumulative distribution function CDF (cumulative distribution function), is derived. It is an upward-sloping graph showing a cumulative probability of 0 to 100%.

次に、モンテカルロシミュレーションにより、乱数を発生させて縦軸の座標を決定し、この累積分布関数CDFを参照関数として、セルSOCθが仮想的に決定される。
一方、図9(b)は、将来の劣化を推定するためのセル温度TB(°C)の推定方法を示す図である。セル温度TBに関してもセルSOCと同じような処理がなされる。蓄積された、過去のセル温度TB(°C)は、確率密度関数PDFが導かれる。確率密度関数PDFは、上に凸のグラフで、存在確率を示す。この例では、概ね30°Cにピークを有する。ここからこれを累積した累積分布関数CDFが導かれる。累積確率0〜100%を示す右上がりのグラフとなる。
Next, by Monte Carlo simulation, a random number is generated to determine the coordinates of the vertical axis, and the cell SOCθ is virtually determined using this cumulative distribution function CDF as a reference function.
On the other hand, FIG. 9B is a diagram showing a method of estimating the cell temperature TB (° C) for estimating future deterioration. The cell temperature TB is processed in the same manner as the cell SOC. The accumulated past cell temperature TB (° C) is derived from the probability density function PDF. The probability density function PDF shows the existence probability with an upwardly convex graph. In this example, it has a peak at approximately 30 ° C. From this, the cumulative distribution function CDF, which is the accumulation of these, is derived. It is an upward-sloping graph showing a cumulative probability of 0 to 100%.

次に、モンテカルロシミュレーションにより、乱数を発生させて縦軸の座標を決定し、この累積分布関数CDFを参照関数として、セル温度TB(°C)が仮想的に決定される。 Next, by Monte Carlo simulation, a random number is generated to determine the coordinates of the vertical axis, and the cell temperature TB (° C) is virtually determined using this cumulative distribution function CDF as a reference function.

このように決定されたセルSOCθ(%)とセル温度TB(°C)とから、その時の時間t2の入力情報が決定される。このようにして、時間t2毎にセルSOCθ(%)とセル温度TB(°C)が決定される。 From the cell SOC θ (%) and the cell temperature TB (° C) determined in this way, the input information of the time t2 at that time is determined. In this way, the cell SOC θ (%) and the cell temperature TB (° C) are determined every time t2.

<劣化後のOCV作成(S12)>
そして、入力情報決定(S11)で決定されたセルSOCθとセル温度TBにより、その時間t2に生じた副反応電流値が計算され、正負極組成対応ずれ容量ΔQが算出される。
<Creation of OCV after deterioration (S12)>
Then, the side reaction current value generated at that time t2 is calculated by the cell SOC θ and the cell temperature TB determined in the input information determination (S11), and the deviation capacity ΔQ corresponding to the positive and negative electrode compositions is calculated.

図3(b)で説明したとおり、劣化が進むと負極開放電位のグラフUNE上の点及び正極開放電位のグラフUPE上の点が図にそれぞれグラフUNE、グラフUPEに沿って左方向にシフトする。そうすると、図に示す負極開放電位のグラフU´NE上の点及び正極開放電位のグラフU´PE上の点の位置となる。この時の負極開放電位のグラフU´NE上のVNE1及び正極開放電位のグラフU´PE上のVPE1から、劣化後のOCVを推定する。 As described in FIG. 3 (b), the deterioration progresses the negative electrode open-circuit potential of the graph U respectively graphs in point diagram on the graph U PE point and the positive electrode open-circuit potential of the NE U NE, along the graph U PE left Shift in the direction. Then, the position of a point on the graph U 'PE point and the positive electrode open-circuit potential of the graph U' NE of the negative electrode open-circuit potential shown in FIG. From V PE1 on the graph U 'PE of V NE1 and positive open-circuit potential of the graph U' NE of the negative electrode open-circuit potential at this time, to estimate the OCV after deterioration.

<V´PE、V´NE算出(S13)>
入力が決定された情報に基づいて、正極電位V´PE、負極電位V´NEを算出する。
<電位に基づくISR(PE)、ISR(NE)を算出(S14)>
S13で算出された正極電位V´PE、負極電位V´NEに基づいて、正極における副反応電流値ISR(PE)、負極における副反応電流値ISR(NE)を算出する(S14)。
<V'PE, V'NE calculated (S13)>
Based on the information input is determined, calculates positive electrode potential V'PE, the negative electrode potential V'NE.
<Calculate I SR (PE) and I SR (NE) based on electric potential (S14)>
The positive electrode potential V'PE calculated in S13, based on the negative electrode potential V'NE, side reactions current I SR in the positive electrode (PE), to calculate a side reaction current value I SR (NE) in the negative electrode (S14).

<負極及び正極における副反応電流値ISR(NE)・SR(PE)
ここで、負極及び正極における副反応による容量低下ΔQNE及びΔQPE、すなわち負極における副反応電流値ISR(NE)と正極における副反応電流値ISR(PE)は、上述したように以下のようにして求められる。
<Vaccine side reaction current values for negative and positive electrodes I SR (NE) and I SR (PE) >
Here, the volume reduction ΔQ NE and ΔQ PE due to side reactions at the negative electrode and the positive electrode, that is, the side reaction current value I SR (NE) at the negative electrode and the side reaction current value I SR (PE) at the positive electrode are as follows as described above. Is required in this way.

負極の副反応電流値ISR(NE)は、aNEを負極上で起こる副反応の交換電流密度とし、bNEを負極上で起こる副反応の過電圧項としたとき、下記式(6) The negative electrode side reaction current value ISR (NE) is the following equation (6), where a NE is the exchange current density of the side reaction that occurs on the negative electrode and b NE is the overvoltage term of the side reaction that occurs on the negative electrode.

Figure 2021163632

により負極における副反応電流値ISR(NE)を算出することができる。
Figure 2021163632

This allows the side reaction current value ISR (NE) at the negative electrode to be calculated.

また、正極副反応電流値ISR(PE)は、aPEを正極上で起こる副反応の交換電流密度とし、bPEを正極上で起こる副反応の過電圧項としたとき、下記式(7) The positive electrode side reaction current value ISR (PE) is the following equation (7), where a PE is the exchange current density of the side reaction that occurs on the positive electrode and b PE is the overvoltage term of the side reaction that occurs on the positive electrode.

Figure 2021163632

により正極における副反応電流値ISR(PE)を算出することができる。
Figure 2021163632

This allows the side reaction current value ISR (PE) at the positive electrode to be calculated.

<温度と劣化量を考慮したISR(PE)、ISR(NE)を副反応積算量に加算(S15)>
入力されたセル温度TBと、S14で算出された正極における副反応電流値ISR(PE)、負極における副反応電流値ISR(NE)に基づいて、正極容量低下量ΔQPEと負極容量低下量ΔQNEを求める。
<Add I SR (PE) and I SR (NE) considering the temperature and the amount of deterioration to the accumulated side reaction amount (S15)>
Based on the input cell temperature TB, the side reaction current value I SR (PE) at the positive electrode calculated in S14, and the side reaction current value I SR (NE) at the negative electrode, the positive electrode capacity decrease amount ΔQ PE and the negative electrode capacity decrease Find the quantity ΔQ NE .

<ターフェル式による負極副反応電流値ISR(NE)の算出>
本実施形態では、以下に示すターフェル式(式(3))により、負極被膜形成電流密度iNEを求める。
<Calculation of negative electrode side reaction current value ISR (NE) by Tafel equation>
In the present embodiment, the negative electrode film forming current density iNE is obtained by the Tafel equation (formula (3)) shown below.

Figure 2021163632

ここで、iを交換電流密度、αを移動係数、Fをファラデー定数、Rを気体定数、Tを絶対温度、Usideを被膜形成電位、UNEを負極開放電位とする。
Figure 2021163632

Here, i 0 is the exchange current density, α is the transfer coefficient, F is the Faraday constant, R is the gas constant, T is the absolute temperature, U side is the film formation potential, and UNE is the negative electrode open potential.

<ターフェル式による負極副反応電流値ISR(PE)の算出>
正極においても、下記式(4)のターフェル式により正極での被膜形成電流密度iPEを算出する。
<Calculation of negative electrode side reaction current value ISR (PE) by Tafel equation>
Even in the positive electrode, to calculate a film formation current density i PE at the positive electrode by Tafel equation of formula (4).

ここで、iを交換電流密度、αを移動係数、Fをファラデー定数、Rを気体定数、Tを絶対温度、Usideを被膜形成電位、UNEを負極開放電位とする。 Here, i 0 is the exchange current density, α is the transfer coefficient, F is the Faraday constant, R is the gas constant, T is the absolute temperature, U side is the film formation potential, and UNE is the negative electrode open potential.

Figure 2021163632

そして、この正極被膜形成電流密度をiPEに基づいて、正極副反応電流値ISR(PE)を算出する。
Figure 2021163632

Then, the positive electrode side reaction current value ISR (PE) is calculated based on the positive electrode film forming current density of iPE.

<正負極の副反応電流値の被膜成長に応じた減衰>
なお、前記ターフェル式では、SEI被膜の厚みについては、考慮されていない。そこで、ΔQPE、ΔQNEの算出において、各経過時間における被膜形成量に応じて、副反応電流値を減衰させた値を用いてΔQPE、ΔQNEを算出する。
<Attenuation of the side reaction current value of the positive and negative electrodes according to the film growth>
In the Tafel equation, the thickness of the SEI coating is not considered. Therefore, Delta] Q PE, in the calculation of Delta] Q NE, according to the film formation amount at each elapsed time, Delta] Q PE, a Delta] Q NE is calculated using a value obtained by attenuating the side reaction current value.

図10は、被膜成長のモデルを示す模式図である。図11は、被膜形成量と副反応電流値の関係を示す式である。図12は、被膜量の逆数に対する電流値の減衰率を示すグラフである。図13は、経過時間と被膜形成量と副反応電流値の関係を示す表である。図14は、従来技術の劣化度推定結果と本実施形態の劣化度推定結果を比較するグラフである。図10〜14を参照して、正負極の副反応電流値の被膜成長に応じた減衰について説明する。 FIG. 10 is a schematic view showing a model of film growth. FIG. 11 is an equation showing the relationship between the amount of film formed and the side reaction current value. FIG. 12 is a graph showing the attenuation rate of the current value with respect to the reciprocal of the coating amount. FIG. 13 is a table showing the relationship between the elapsed time, the amount of film formation, and the side reaction current value. FIG. 14 is a graph comparing the deterioration degree estimation result of the prior art and the deterioration degree estimation result of the present embodiment. With reference to FIGS. 10 to 14, the attenuation of the side reaction current values of the positive and negative electrodes according to the film growth will be described.

図10(a)に示すように、リチウムイオン二次電池1の組み立て直後(コンディショニング前)の時間tは、集電箔1cと合材1aとが貼り合された状態で、SEI被膜1seiは形成されていない。使用に応じて、時間tでは、図10(b)に示すようにSEI被膜1seiが、形成される。さらに使用を続け、時間tになると図10(c)のようにSEI被膜1seiが厚く成長する。このSEI被膜1seiは、抵抗となり電流の流れを妨げる。副反応電流値Iは、厚さxに依存する。副反応電流値Iは、図11に示す式のように、1/xに比例する(kは係数)。そして、(t〜t)におけるΔQを算出する場合に、図12に示す「1/Σ副電流値×t/mAh」と「副反応電流値の減衰率/%」の関係により、減衰させた(t〜t)における副反応電流値を用いて(t〜t)におけるΔQを算出する。 As shown in FIG. 10A, the time t 0 immediately after assembling the lithium ion secondary battery 1 (before conditioning) is a state in which the current collector foil 1c and the mixture 1a are bonded together, and the SEI coating 1sei is formed. Not formed. Depending on the use, at time t 1, the SEI film 1sei as shown in FIG. 10 (b), it is formed. Further continued use, grows thicker SEI film 1sei as shown in FIG. 10 (c) When it is time t 2. This SEI coating 1sei acts as a resistor and obstructs the flow of current. The side reaction current value I depends on the thickness x. The side reaction current value I is proportional to 1 / x as shown in FIG. 11 (k is a coefficient). Then, when calculating ΔQ in (t 1 to t 2 ), it is attenuated due to the relationship between “1 / Σ subcurrent value × t / mAh” and “adverse reaction current value attenuation rate /%” shown in FIG. calculating the ΔQ in (t 1 ~t 2) with a side reaction current value at was (t 1 ~t 2).

その結果、図13に示すように、時間がt〜t〜tと経過していくと、被膜量は、累積的に厚くなるとともに、副反応電流値Iは、厚さxの逆数に比例して小さくなる。
本実施形態では、以上に述べた正負極の副反応電流値の被膜成長に応じた減衰を考慮するため、図14に示すように、本実施形態の劣化推定の方法は、従来の技術によるターフェル式のみの劣化推定の方法よりも、より実際の劣化に近い推定が可能となっている。
As a result, as shown in FIG. 13, as the time elapses from t 1 to t 2 to t n , the coating amount is cumulatively thickened, and the side reaction current value I is the reciprocal of the thickness x. It becomes smaller in proportion to.
In the present embodiment, since the attenuation of the side reaction current values of the positive and negative electrodes described above according to the film growth is taken into consideration, as shown in FIG. 14, the method of estimating the deterioration of the present embodiment is Tafel by the conventional technique. It is possible to estimate the deterioration closer to the actual deterioration than the deterioration estimation method using only the equation.

<正負極の劣化量の差分からΔQ算出(S16)>
また、図6のフローチャートに戻り説明を続ける。正極容量低下量ΔQPEと負極容量低下量ΔQNEとの差分から正負極組成対応ずれ容量ΔQを算出する。
<Calculation of ΔQ from the difference in the amount of deterioration of the positive and negative electrodes (S16)>
Further, the explanation will be continued by returning to the flowchart of FIG. The deviation capacity ΔQ corresponding to the positive / negative electrode composition is calculated from the difference between the positive electrode capacity decrease amount ΔQ PE and the negative electrode capacity decrease amount ΔQ NE.

<寿命目標期間算出完了(S17)>
S11〜S16の処理を、時間t毎に行い、寿命目標期間tmaxまで完了していなければ、S11に戻り、次の時間tn+1について処理を続行する(S17:NO→S11)。
<Completion of calculation of life target period (S17)>
The processing of S11 to S16 is performed every time t n , and if the life target period t max is not completed , the process returns to S11 and the processing is continued for the next time t n + 1 (S17: NO → S11).

一方、S11〜S16の処理を、時間t毎に行い、寿命目標期間tmaxまで完了した場合には、寿命が目標に到達可能かどうかが判断される(S17:YES→S18)。
<寿命目標到達可能(S18)>
寿命目標期間tmaxまで正負極組成対応ずれ容量ΔQを積算し、その結果、予め設定された正負極組成対応ずれ容量ΔQの閾値と比較し、この閾値より小さければ、寿命目標期間tmaxまで、所定の性能が維持できるとして計算を終了する。
On the other hand, when the processes of S11 to S16 are performed every time t n and the life target period tmax is completed, it is determined whether or not the life can reach the target (S17: YES → S18).
<Achievable life target (S18)>
The deviation capacity ΔQ corresponding to the positive and negative electrode composition is integrated up to the life target period tmax, and as a result, it is compared with the threshold value of the deviation capacity ΔQ corresponding to the positive and negative electrode composition set in advance. The calculation is finished assuming that the performance can be maintained.

一方、寿命目標期間tmaxまで正負極組成対応ずれ容量ΔQを積算し、その結果、予め設定された正負極組成対応ずれ容量ΔQの閾値と比較し、この閾値より大きければ、寿命目標期間tmaxまで、所定の性能が維持できないとして寿命目標に到達が不可能と判断される(S18:NO)。 On the other hand, the deviation capacity ΔQ corresponding to the positive and negative electrode composition is integrated up to the life target period tmax, and as a result, it is compared with the threshold value of the deviation capacity ΔQ corresponding to the positive and negative electrode composition set in advance. It is determined that the life target cannot be reached because the predetermined performance cannot be maintained (S18: NO).

<劣化量とSOCの関係>
ここで、図15は、劣化量とSOCの関係を示す図である。通常ハイブリッド自動車においては、二次電池が回生電力を受入れられるように、また要求があれば直ちに電動機に対して電力を供給できるようにするために、そのSOC使用域は満充電の状態(100%)と、全く充電されていない状態(0%)のおおよそ中間付近(50〜60%)に制御する。しかしながら、シミュレーションの結果、現在のSOC使用域の制御では、劣化が進み寿命目標期間tmaxまで性能を維持できないことが判明した場合には、劣化量の少ないSOC使用域を使用する必要がある。限定されたSOC使用域に限定するようにPCU30により充放電制御する必要がある。ここで、ECU100では、元の使用SOC域から対応後の使用SOC域とした場合、寿命目標期間tmaxまで性能を維持できるか否かを、使用SOC域の設定を変えて、再度S10〜S18の処理を行う。使用SOC域の設定は、現在の使用SOC域が50〜60%であれば、60〜70%などとする。但し、その充電率は満充電の状態(100%)と、全く充電されていない状態(0%)からは、ある程度のマージンを取る必要がある。また、現在の使用SOC域が50〜60%であれば、40〜50%としてもよく、複数回シミュレーションを行い、最も劣化が少ない使用SOC域を選択するようにしてもよい。
<Relationship between deterioration amount and SOC>
Here, FIG. 15 is a diagram showing the relationship between the amount of deterioration and SOC. Normally, in a hybrid vehicle, the SOC usage range is fully charged (100%) so that the secondary battery can receive regenerative power and can immediately supply power to the motor when requested. ) And the state where the battery is not charged at all (0%) is controlled to be approximately in the middle (50 to 60%). However, as a result of the simulation, if it is found that the current SOC use area control deteriorates and the performance cannot be maintained until the life target period tmax, it is necessary to use the SOC use area with a small amount of deterioration. It is necessary to perform charge / discharge control by the PCU 30 so as to limit the SOC usage range to a limited range. Here, in the ECU 100, when the original used SOC area is changed to the used SOC area after the correspondence, whether or not the performance can be maintained up to the life target period tmax is determined by changing the setting of the used SOC area and again in S10 to S18. Perform processing. The setting of the used SOC area is 60 to 70% if the currently used SOC area is 50 to 60%. However, the charging rate needs to have a certain margin from the fully charged state (100%) and the completely uncharged state (0%). Further, if the currently used SOC range is 50 to 60%, it may be set to 40 to 50%, and the simulation may be performed a plurality of times to select the used SOC range with the least deterioration.

(実施形態の効果)
(1)本実施形態のリチウムイオン二次電池1の劣化推定方法では、劣化を正極と負極とに分けて求め、それぞれ正極容量低下量ΔQPEと負極容量低下量ΔQNEとに分けて劣化を推定するため、正確に推定することができる。
(Effect of embodiment)
(1) In the deterioration estimation method of the lithium ion secondary battery 1 of the present embodiment, the deterioration is determined separately for the positive electrode and the negative electrode, and the deterioration is divided into the positive electrode capacity decrease amount ΔQ PE and the negative electrode capacity decrease amount ΔQ NE, respectively. Since it is estimated, it can be estimated accurately.

(2)特に、負極容量低下量ΔQNEと、正極容量低下量ΔQPEとに容量低下量を振り分けて解析し、それぞれの差分から正負極組成対応ずれ容量ΔQを求めているので、これらが相殺されて、正負極組成対応ずれ容量ΔQを過度に見積もるようなことがなく、正確な推定をすることができる。 (2) In particular, the negative electrode capacity reduction amount ΔQ NE and the positive electrode capacity reduction amount ΔQ PE are divided and analyzed, and the positive and negative electrode composition-corresponding deviation capacity ΔQ is obtained from the difference between them. Therefore, the deviation capacity ΔQ corresponding to the positive and negative electrode compositions is not overestimated, and an accurate estimation can be made.

(3)実施形態は、製造直後の使用履歴のないリチウムイオン二次電池1で、特定条件の保存を行うことで、そのリチウムイオン二次電池1固有の劣化特性を測定できる。この劣化速度を利用して、正負極組成対応ずれ容量ΔQに基づいた寿命を推定することができる。 (3) In the embodiment, the lithium ion secondary battery 1 having no usage history immediately after production can be stored under specific conditions, and the deterioration characteristics peculiar to the lithium ion secondary battery 1 can be measured. Using this deterioration rate, it is possible to estimate the life based on the deviation capacity ΔQ corresponding to the positive and negative electrode compositions.

(4)そのため、リチウムイオン二次電池1の使用開始から、正負極組成対応ずれ容量ΔQという観点から、将来の寿命をより確実に推定することができる。
(5)また、実際にリチウムイオン二次電池1が搭載された車両10により、過去のセルSOC、セル電圧VBやセル温度TBを測定して蓄積し、これらに基づいて劣化を推定するため、過去から現在に至る劣化を極めて正確に推定することができる。
(4) Therefore, from the start of use of the lithium ion secondary battery 1, the future life can be more reliably estimated from the viewpoint of the deviation capacity ΔQ corresponding to the positive and negative electrode compositions.
(5) In addition, since the vehicle 10 actually equipped with the lithium ion secondary battery 1 actually measures and accumulates the past cell SOC, cell voltage VB, and cell temperature TB, and estimates deterioration based on these, the deterioration is estimated. Deterioration from the past to the present can be estimated extremely accurately.

(6)さらに、過去のデータに基づきシミュレーションを行うことで、将来に亘っても正確に実情に即した推定を行うことができる。
(7)また、これらは、ターフェル式などの理論に基づき計算されているので、車両においても正確な推定ができる。
(6) Furthermore, by performing a simulation based on past data, it is possible to make an accurate and realistic estimation even in the future.
(7) Moreover, since these are calculated based on the theory such as the Tafel equation, accurate estimation can be performed even in a vehicle.

(8)さらに、正負極の副反応電流値の被膜成長に応じた減衰を考慮してΔQを求めるため、より実際の劣化に近い推定が可能となっている。
(9)また、本実施形態のリチウムイオン二次電池1の制御方法では、本実施形態のリチウムイオン二次電池1の劣化推定方法に基づいて、リチウムイオン二次電池1の劣化状況に即した制御ができる。
(8) Further, since ΔQ is obtained in consideration of the attenuation of the side reaction current value of the positive electrode and the negative electrode according to the coating growth, it is possible to estimate the deterioration closer to the actual deterioration.
(9) Further, in the control method of the lithium ion secondary battery 1 of the present embodiment, the deterioration status of the lithium ion secondary battery 1 is matched based on the deterioration estimation method of the lithium ion secondary battery 1 of the present embodiment. Can be controlled.

(10)特に、リチウムイオン二次電池1が寿命目標期間tmaxまで性能を維持できるか否かを判定することができる。さらに、リチウムイオン二次電池1が寿命目標期間tmaxまで性能を維持できないことが判明した場合には、そのリチウムイオン二次電池1を交換することなく、劣化量の少ない使用SOC域を使用することで、寿命を延命することが可能となっている。 (10) In particular, it can be determined whether or not the lithium ion secondary battery 1 can maintain its performance up to the life target period tmax. Furthermore, if it is found that the lithium ion secondary battery 1 cannot maintain its performance until the life target period tmax, the used SOC range with a small amount of deterioration should be used without replacing the lithium ion secondary battery 1. Therefore, it is possible to extend the life.

(11)いずれの使用SOC域が劣化が少ないかは、シミュレーションにより劣化を比較して、選択することで最適なSOC使用域を選択することができる。
(12)これらは、車載のECU100により処理することが可能であるため、リチウムイオン二次電池1の使用開始から、常時正確な情報に基づいて、常時適正な制御を行うことができる。
(11) It is possible to select the optimum SOC usage range by comparing the deterioration by simulation and selecting which of the used SOC areas has less deterioration.
(12) Since these can be processed by the in-vehicle ECU 100, appropriate control can always be performed based on accurate information from the start of use of the lithium ion secondary battery 1.

(13)リチウムイオン二次電池1の制御は、充電の制限ではないため、車両からの回生電流を無駄にせず、使い切ることができる。
(変形例)
本発明は、上記実施形態には限定されず、下記のように実施することもできる。
(13) Since the control of the lithium ion secondary battery 1 is not a limitation of charging, the regenerative current from the vehicle can be used up without wasting it.
(Modification example)
The present invention is not limited to the above embodiment, and can be carried out as follows.

○本実施形態に係るリチウムイオン二次電池の制御装置18は、電動車両に搭載された構成を例に説明した。電動車両とは、代表的にはハイブリッド車両(プラグインハイブリッド車を含む)であるが、これに限定されるものではない。本実施形態に係るリチウムイオン二次電池の制御装置18は、リチウムイオン二次電池から供給される電力を用いて動力を発生させる車両全般に適用可能である。そのため、電動車両は、電気自動車または燃料電池車であってもよい。 The control device 18 for the lithium ion secondary battery according to the present embodiment has been described by taking as an example a configuration mounted on an electric vehicle. The electric vehicle is typically a hybrid vehicle (including a plug-in hybrid vehicle), but is not limited thereto. The lithium ion secondary battery control device 18 according to the present embodiment can be applied to all vehicles that generate electric power using electric power supplied from the lithium ion secondary battery. Therefore, the electric vehicle may be an electric vehicle or a fuel cell vehicle.

〇また、本実施形態に係るリチウムイオン二次電池の寿命推定方法の用途は車両用に限定されず、たとえば建物に載置される定置用であってもよい。
〇本実施形態では、二次電池は、リチウムイオン二次電池を例として説明したが、二次電池は、リチウムイオン二次電池に限定されるものではなく、ニッケル水素二次電池、さらに将来的に想定されるナトリウムイオン二次電池、リチウム空気二次電池なども排除するものではない。
〇 Further, the application of the method for estimating the life of the lithium ion secondary battery according to the present embodiment is not limited to the vehicle, and may be, for example, a stationary battery mounted on a building.
-In the present embodiment, the secondary battery has been described by taking a lithium ion secondary battery as an example, but the secondary battery is not limited to the lithium ion secondary battery, but is a nickel hydrogen secondary battery, and further in the future. Sodium ion secondary batteries, lithium air secondary batteries, etc., which are assumed in the above, are not excluded.

〇実施形態の推定方法は、新車時に行うことができる。その場合は、過去のデータに代わる電池モデルのデータを供給する。
〇実施形態の二次電池の検査方法は、いつでも実施可能であるため、リチウムイオン二次電池の製造時の出荷可否の検査に用いることができるだけでなく、中古車両から回収したリチウムイオン二次電池の再販売時に行うことができる。また、他の目的において単に二次電池の劣化の判断に用いることができることは当然である。
〇 The estimation method of the embodiment can be performed at the time of a new vehicle. In that case, the battery model data is supplied instead of the past data.
〇 Since the secondary battery inspection method of the embodiment can be carried out at any time, it can be used not only for inspection of availability of shipment at the time of manufacturing the lithium ion secondary battery, but also for the lithium ion secondary battery recovered from the used vehicle. Can be done at the time of resale. Moreover, it is natural that it can be simply used for determining the deterioration of the secondary battery for other purposes.

○図4、図6、図8に示すフローチャートは、一例であり、その順序を変更し、またステップの付加、削除もしくは変更をして実施することができる。
〇実施形態では、負極における副反応電流値ISR(NE)と正極における副反応電流値ISR(PE)の差に、経過時間Δtを掛けて、経過時間Δtの正負極組成対応ずれ容量ΔQ(t〜t)の総容量を算出している。これに対して、負極の被膜形成電流密度iNEに経過時間Δtを乗じることで負極における副反応による容量低下ΔQNEを、正極被膜形成電流密度をiPEに経過時間Δtを乗じることで正極における副反応による容量低下ΔQPEをそれぞれ求める。そして、これらの差から正負極組成対応ずれ容量ΔQを求めるようにしても実施できる。
○ The flowcharts shown in FIGS. 4, 6 and 8 are examples, and the order thereof can be changed, and steps can be added, deleted or changed.
〇 In the embodiment, the difference between the side reaction current value I SR (NE) at the negative electrode and the side reaction current value I SR (PE) at the positive electrode is multiplied by the elapsed time Δt, and the deviation capacity ΔQ corresponding to the positive / negative electrode composition of the elapsed time Δt. The total capacity of (t 0 to t n) is calculated. On the other hand, by multiplying the negative electrode film forming current density iNE by the elapsed time Δt, the capacity decrease due to a side reaction in the negative electrode ΔQ NE is obtained, and by multiplying the positive electrode film forming current density iPE by the elapsed time Δt, the positive electrode is used. Obtain the volume reduction ΔQ PE due to the side reaction. Then, it can also be carried out by obtaining the deviation capacity ΔQ corresponding to the positive and negative electrode compositions from these differences.

〇本発明は、要は正負極組成対応ずれ容量ΔQを負極容量低下量ΔQNEと正極容量低下量ΔQPEと基づいて算出する点にある。そのため、負極容量低下量ΔQNEと正極容量低下量ΔQPEの算出方法については実施形態に限定されるものではない。 〇 The main point of the present invention is to calculate the deviation capacity ΔQ corresponding to the positive / negative electrode composition based on the negative electrode capacity reduction amount ΔQ NE and the positive electrode capacity reduction amount ΔQ PE. Therefore, the calculation method of the negative electrode capacity reduction amount ΔQ NE and the positive electrode capacity reduction amount ΔQ PE is not limited to the embodiment.

〇実施形態に例示した要素は、相互に置換して実施することができる。
○また、本発明は、特許請求の範囲を逸脱しない限り、当業者により、その構成を付加、削除または変更をし、又はカテゴリーを変えて実施することができることは言うまでもない。
〇 The elements illustrated in the embodiment can be implemented by replacing each other.
○ Further, it goes without saying that the present invention can be implemented by a person skilled in the art by adding, deleting or changing its structure, or by changing the category, as long as it does not deviate from the scope of claims.

1…リチウムイオン二次電池
1A…セル
NE…負極
PE…正極
1a…合材
1c…集電箔
1sei…SEI被膜
2…寿命推定装置
3…充放電装置
4…セル電圧測定装置
5…セル電流測定器
6…温度計
7…保温装置
8…制御装置
81…CPU
82…メモリ
10…車両
18…制御装置
20…監視ユニット
21…電圧センサ
22…電流センサ
23…温度センサ
30…PCU
100…ECU
101…CPU
102…メモリ
…(使用開始の)時間
…(ΔQ算出の)時間
…(次のΔQ算出の)時間
…(寿命推定間隔の)時間
n、n+1…(繰り返しの)時間
tmax…寿命目標期間
Δt…経過時間
VB…セル電圧
TB…セル温度
IB…電流
θ…セルSOC
NE…(負極開放電位の)グラフ
PE…(正極開放電位の)グラフ
PE…正極電位
NE…負極電位
NE…負極被膜形成電流密度
PE…正極被膜形成電流密度
I…副反応電流値
SR(NE)…負極における副反応電流値
SR(PE)…正極における副反応電流値
Q…容量
ΔQ…正負極組成対応ずれ容量
ΔQ(t0〜t1)…Δt(t0〜t1)の正負極組成対応ずれ容量
ΔQNE…負極容量低下量
ΔQPE…正極容量低下量
Q1…保存前電池満容量
Q2…保存前の区間容量
Q3…保存後の残存容量
Q4…保存後電池満容量。
SD(Ah)…保存期間中の自己放電容量
loss(Ah)…容量低下量
T1(°C)…保存温度
V1(V)…(保存の初期電圧である)基準電圧
1 ... Lithium ion secondary battery 1A ... Cell 1 NE ... Negative electrode 1 PE ... Positive electrode 1a ... Mixing material 1c ... Current collecting foil 1sei ... SEI coating 2 ... Life estimation device 3 ... Charging / discharging device 4 ... Cell voltage measuring device 5 ... Cell Current measuring device 6 ... Thermometer 7 ... Heat retaining device 8 ... Control device 81 ... CPU
82 ... Memory 10 ... Vehicle 18 ... Control device 20 ... Monitoring unit 21 ... Voltage sensor 22 ... Current sensor 23 ... Temperature sensor 30 ... PCU
100 ... ECU
101 ... CPU
102 ... Memory t 0 ... (Start of use) time t 1 ... (ΔQ calculation) time t 2 ... (Next ΔQ calculation) time t 3 ... (Life estimation interval) time t n, t n + 1 ... (Repeat) ) Time tmax ... Life target period Δt ... Elapsed time VB ... Cell voltage TB ... Cell temperature IB ... Current θ ... Cell SOC
UNE ... Graph of (negative electrode open potential) U PE ... Graph of (positive electrode open potential) V PE ... Positive electrode potential V NE ... Negative electrode potential i NE ... Negative electrode film formation current density i PE ... Positive electrode film formation current density I ... Side reaction Current value I SR (NE) ... Side reaction current value at the negative electrode I SR (PE) ... Side reaction current value at the positive electrode Q ... Capacity ΔQ ... positive and negative electrodes discrepancy capacity Delta] Q NE ... negative electrode capacity decrease Delta] Q PE ... positive electrode capacity decrease amount Q1 ... before storage battery full capacity Q2 ... before storage interval capacity Q3 ... residual capacity Q4 ... after storage battery full capacity after storage.
Q SD (Ah) ... Self-discharge capacity during storage period Q loss (Ah) ... Capacity reduction amount T1 (° C) ... Storage temperature V1 (V) ... Reference voltage (initial voltage for storage)

Claims (12)

負極の被膜形成電流密度をiNEとし、
NEを負極上で起こる副反応の交換電流密度とし、bNEを負極上で起こる副反応の過電圧項としたとき、下記式(1)
Figure 2021163632

により算出された負極の被膜形成電流密度iNEに基づいて経過時間Δtを乗じることで負極における容量低下量ΔQNEを算出する負極容量低下量算出のステップと、
正極被膜形成電流密度をiPEとし、
PEを正極上で起こる副反応の交換電流密度とし、bPEを正極上で起こる副反応の過電圧項としたとき、下記式(2)
Figure 2021163632

により算出された正極の被膜形成電流密度iPEに基づいて経過時間Δtを乗じることで正極における容量低下量ΔQPEを算出する正極容量低下量算出のステップと、

前記負極容量低下量算出のステップで算出した負極容量低下量ΔQNEと、前記正極容量低下量算出のステップで算出した正極容量低下量ΔQPEとの差から、正負極組成対応ずれ容量ΔQを算出する正負極組成対応ずれ容量ΔQ算出のステップと
を備えることを特徴とする二次電池の劣化推定方法。
A film formation current density of the negative electrode and i NE,
When a NE is the exchange current density of the side reaction that occurs on the negative electrode and b NE is the overvoltage term of the side reaction that occurs on the negative electrode, the following equation (1)
Figure 2021163632

A step of the negative electrode capacity decrease amount calculation for calculating a capacity decrease amount Delta] Q NE in the negative electrode by multiplying the elapsed time Δt based on the film-forming current density i NE of the negative electrode which is calculated by,
Let the positive electrode film formation current density be iPE .
When a PE is the exchange current density of the side reaction that occurs on the positive electrode and b PE is the overvoltage term of the side reaction that occurs on the positive electrode, the following equation (2)
Figure 2021163632

A step of positive electrode capacity decrease amount calculation for calculating a capacity decrease amount Delta] Q PE in the positive electrode by multiplying the elapsed time Δt based on the film-forming current density i PE of the positive electrode calculated by,

From the difference between the negative electrode capacity reduction amount ΔQ NE calculated in the negative electrode capacity reduction amount calculation step and the positive electrode capacity reduction amount ΔQ PE calculated in the positive electrode capacity reduction amount calculation step, the positive electrode capacity reduction amount ΔQ PE is calculated. A method for estimating deterioration of a secondary battery, which comprises a step of calculating a deviation capacity ΔQ corresponding to a positive and negative electrode composition.
前記負極容量低下量算出のステップにおいて、
を交換電流密度、αを移動係数、Fをファラデー定数、Rを気体定数、Tを絶対温度、Usideを被膜形成電位、UNEを負極開放電位、UPEを正極開放電位としたとき、
下記式(3)
Figure 2021163632

により算出した負極被膜形成電流密度iNEに基づいて負極副反応電流値ISR(NE)を算出し、
前記正極容量低下量算出のステップにおいて、
下記式(4)
Figure 2021163632

により正極被膜形成電流密度iPEに基づいて正極副反応電流値ISR(PE)を算出することを特徴とする請求項1に記載の二次電池の劣化推定方法。
In the step of calculating the amount of decrease in negative electrode capacity,
i 0 the exchange current density, transfer coefficient of alpha, Faraday constant F, when the gas the R constant, absolute temperature T, the film formation potential U side, a negative electrode open-circuit potential of the U NE, the U PE as a positive electrode open-circuit potential ,
The following formula (3)
Figure 2021163632

The negative electrode side reaction current value ISR (NE) was calculated based on the negative electrode film formation current density iNE calculated in
In the step of calculating the amount of decrease in positive electrode capacity,
The following formula (4)
Figure 2021163632

The method for estimating deterioration of a secondary battery according to claim 1, wherein the positive electrode side reaction current value ISR (PE) is calculated based on the positive electrode film formation current density iPE.
前記負極容量低下量算出のステップ及び前記正極容量低下量算出のステップにおいて、経過時間に応じて副反応電流値を減衰させた値を用いて正極容量低下量ΔQPE、負極容量低下量ΔQNEを算出することを特徴とする請求項2に記載の二次電池の劣化推定方法。 In the step of calculating the negative electrode capacity reduction amount and the step of calculating the positive electrode capacity reduction amount, the positive electrode capacity reduction amount ΔQ PE and the negative electrode capacity reduction amount ΔQ NE are calculated using the values obtained by attenuated the side reaction current value according to the elapsed time. The method for estimating deterioration of a secondary battery according to claim 2, wherein the calculation is performed. 前記負極容量低下量算出のステップ及び前記正極容量低下量算出のステップにおいて、
二次電池を特定の条件で保存する保存のステップと、
前記保存した二次電池の保存前後の電池満容量の容量低下量Qlossを測定する電池容量低下量測定のステップと、
前記保存した二次電池の保存前後の自己放電容量QSDを測定する自己放電容量測定のステップと、
前記容量低下量Qloss及び自己放電容量QSDから、前記保存時の特定条件における正極及び負極の副反応電流値を求める劣化特性取得のステップとを含み、
前記劣化特性取得のステップにより正極及び負極の副反応電流値に基づいて劣化を推定することを特徴とする請求項1〜3のいずれか一項に記載の二次電池の劣化推定方法。
In the step of calculating the negative electrode capacity reduction amount and the step of calculating the positive electrode capacity reduction amount,
Preservation steps to preserve the rechargeable battery under specific conditions,
The step of measuring the amount of decrease in battery capacity before and after the storage of the stored secondary battery and measuring the amount of decrease in capacity of the battery full capacity Q loss , and the step of measuring the amount of decrease in battery capacity.
A step of self-discharge capacity measurement for measuring a self-discharge capacity Q SD before and after storage of the secondary battery the storage,
This includes a step of acquiring deterioration characteristics for obtaining the side reaction current values of the positive electrode and the negative electrode under the specific conditions at the time of storage from the capacity reduction amount Q loss and the self-discharge capacity Q SD.
The method for estimating deterioration of a secondary battery according to any one of claims 1 to 3, wherein the deterioration is estimated based on the side reaction current values of the positive electrode and the negative electrode by the step of acquiring the deterioration characteristics.
前記二次電池がリチウムイオン二次電池であることを特徴とする請求項1〜4のいずれか一項に記載の二次電池の劣化推定方法。 The method for estimating deterioration of a secondary battery according to any one of claims 1 to 4, wherein the secondary battery is a lithium ion secondary battery. 将来の時間tmaxにおける二次電池の劣化推定することで当該二次電池の寿命を推定する寿命推定方法であって、
請求項1〜5のいずれか一項に記載のリチウムイオン二次電池の劣化推定方法を用いて寿命推定時t1の正負極組成対応ずれ容量ΔQを算出する二次電池の劣化推定のステップと、
前記二次電池の劣化推定のステップにおいて算出した正負極組成対応ずれ容量ΔQ及び条件に基づいて、寿命推定時t1から将来の寿命目標である時間tmaxにわたる二次電池の劣化を積算することで時間tmaxにおける二次電池の劣化を推定する二次電池の寿命推定のステップと
を備えたことを特徴とする二次電池の寿命推定方法。
It is a life estimation method that estimates the life of the secondary battery by estimating the deterioration of the secondary battery at the future time tmax.
A step of estimating deterioration of a secondary battery for calculating a deviation capacity ΔQ corresponding to a positive / negative electrode composition at t1 at the time of life estimation using the method for estimating deterioration of a lithium ion secondary battery according to any one of claims 1 to 5.
Based on the positive / negative composition correspondence deviation capacity ΔQ calculated in the step of estimating the deterioration of the secondary battery and the conditions, the time is accumulated by integrating the deterioration of the secondary battery from t1 at the time of life estimation to the time tmax which is the future life target. A method for estimating the life of a secondary battery, which comprises a step of estimating the life of the secondary battery for estimating the deterioration of the secondary battery at tmax.
前記二次電池の寿命推定のステップにおいて、前記二次電池の劣化推定のステップにおける条件として蓄積されたセルSOC及びセル温度により導かれた確率密度関数に基づいて求められた累積分布関数を参照関数として、乱数を発生させてモンテカルロシミュレーションにより、寿命推定時t1から将来の時間tmaxにわたる二次電池の劣化を積算すること
を特徴とする請求項6に記載の二次電池の寿命推定方法。
In the step of estimating the life of the secondary battery, the cumulative distribution function obtained based on the stochastic density function derived from the cell SOC and the cell temperature accumulated as the conditions in the step of estimating the deterioration of the secondary battery is referred to as a reference function. The method for estimating the life of a secondary battery according to claim 6, wherein a random number is generated and the deterioration of the secondary battery is integrated from t1 at the time of estimating the life to tmax in the future time by Monte Carlo simulation.
前記二次電池の寿命推定のステップにおいて推定された時間tmaxにおける二次電池の劣化と、予め設定された二次電池の劣化の閾値とを比較することで、前記二次電池が時間tmaxにおける劣化が前記閾値未満で寿命に到達するか否かを判定する二次電池の寿命判断のステップ
をさらに備えたことを特徴とする請求項6又は請求項7に記載の二次電池の寿命推定方法。
By comparing the deterioration of the secondary battery at the time tmax estimated in the step of estimating the life of the secondary battery with the preset threshold of deterioration of the secondary battery, the secondary battery deteriorates at the time tmax. The method for estimating the life of a secondary battery according to claim 6 or 7, further comprising a step of determining the life of the secondary battery for determining whether or not the battery reaches the life below the threshold value.
前記二次電池の寿命判断のステップにおいて、前記二次電池が時間tmaxにおける寿命に到達できないと判定された場合に、二次電池の寿命推定のステップにおけるセルSOCの条件を変更することで寿命に到達できるか否かを再判定する再判定のステップをさらに備えたことを特徴とする請求項6〜8のいずれか一項に記載の二次電池の寿命推定方法。 When it is determined in the step of determining the life of the secondary battery that the secondary battery cannot reach the life at the time tmax, the life is reached by changing the cell SOC condition in the step of estimating the life of the secondary battery. The method for estimating the life of a secondary battery according to any one of claims 6 to 8, further comprising a step of re-determining whether or not the battery can be reached. 前記再判定のステップで、
条件を変えた場合に寿命に到達できると判定できた場合に、当該セルSOCの条件に従って、二次電池のセルSOCの制御を行う制御のステップ
を備えたことを特徴とする請求項9に記載の二次電池の寿命推定方法。
In the re-judgment step
The ninth aspect of the present invention is characterized in that the control step of controlling the cell SOC of the secondary battery is provided according to the condition of the cell SOC when it can be determined that the life can be reached when the conditions are changed. How to estimate the life of a secondary battery.
二次電池のセル電圧を検出する電圧センサと、
二次電池のセル温度を検出する温度センサと、
CPUとメモリとを有し、前記電圧センサからセルSOCを推定するコンピュータと
を備えた二次電池の制御装置であって、
請求項10に記載の寿命推定方法を実行する制御手段を構成することを特徴とする二次電池の制御装置。
A voltage sensor that detects the cell voltage of the secondary battery,
A temperature sensor that detects the cell temperature of the secondary battery,
A secondary battery control device having a CPU and a memory, and a computer that estimates cell SOC from the voltage sensor.
A control device for a secondary battery, which comprises a control means for executing the life estimation method according to claim 10.
前記二次電池は車両に搭載され、前記コンピュータが前記車両に搭載されたコンピュータであることを特徴とする請求項11に記載の二次電池の制御装置。 The secondary battery control device according to claim 11, wherein the secondary battery is mounted on a vehicle, and the computer is a computer mounted on the vehicle.
JP2020064179A 2020-03-31 2020-03-31 Method for estimating deterioration of secondary battery, method for estimating lifetime, and control device Active JP7321963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020064179A JP7321963B2 (en) 2020-03-31 2020-03-31 Method for estimating deterioration of secondary battery, method for estimating lifetime, and control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020064179A JP7321963B2 (en) 2020-03-31 2020-03-31 Method for estimating deterioration of secondary battery, method for estimating lifetime, and control device

Publications (2)

Publication Number Publication Date
JP2021163632A true JP2021163632A (en) 2021-10-11
JP7321963B2 JP7321963B2 (en) 2023-08-07

Family

ID=78003603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020064179A Active JP7321963B2 (en) 2020-03-31 2020-03-31 Method for estimating deterioration of secondary battery, method for estimating lifetime, and control device

Country Status (1)

Country Link
JP (1) JP7321963B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022021445A (en) * 2020-07-22 2022-02-03 プライムアースEvエナジー株式会社 Method and system for estimating state of secondary battery
WO2023157506A1 (en) * 2022-02-18 2023-08-24 株式会社日立製作所 Secondary battery control device and secondary battery system
JP7385692B2 (en) 2022-03-11 2023-11-22 本田技研工業株式会社 Measuring device, measuring method, and program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013254710A (en) * 2012-06-08 2013-12-19 Gs Yuasa Corp Power storage element life estimation device, life estimation method, and power storage system
JP2014032826A (en) * 2012-08-02 2014-02-20 Toyota Motor Corp State estimation device of secondary cell
JP2014167406A (en) * 2013-02-28 2014-09-11 Sekisui Chem Co Ltd Battery model construction method, and accumulator degradation estimation device
JP2017139109A (en) * 2016-02-03 2017-08-10 トヨタ自動車株式会社 Battery system
JP2017190979A (en) * 2016-04-12 2017-10-19 トヨタ自動車株式会社 Battery degradation estimation device
JP2019139999A (en) * 2018-02-13 2019-08-22 トヨタ自動車株式会社 Control device for secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013254710A (en) * 2012-06-08 2013-12-19 Gs Yuasa Corp Power storage element life estimation device, life estimation method, and power storage system
JP2014032826A (en) * 2012-08-02 2014-02-20 Toyota Motor Corp State estimation device of secondary cell
JP2014167406A (en) * 2013-02-28 2014-09-11 Sekisui Chem Co Ltd Battery model construction method, and accumulator degradation estimation device
JP2017139109A (en) * 2016-02-03 2017-08-10 トヨタ自動車株式会社 Battery system
JP2017190979A (en) * 2016-04-12 2017-10-19 トヨタ自動車株式会社 Battery degradation estimation device
JP2019139999A (en) * 2018-02-13 2019-08-22 トヨタ自動車株式会社 Control device for secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022021445A (en) * 2020-07-22 2022-02-03 プライムアースEvエナジー株式会社 Method and system for estimating state of secondary battery
JP7288884B2 (en) 2020-07-22 2023-06-08 プライムアースEvエナジー株式会社 SECONDARY BATTERY STATE ESTIMATION METHOD AND SECONDARY BATTERY STATE ESTIMATION SYSTEM
WO2023157506A1 (en) * 2022-02-18 2023-08-24 株式会社日立製作所 Secondary battery control device and secondary battery system
JP7385692B2 (en) 2022-03-11 2023-11-22 本田技研工業株式会社 Measuring device, measuring method, and program

Also Published As

Publication number Publication date
JP7321963B2 (en) 2023-08-07

Similar Documents

Publication Publication Date Title
EP3297121B1 (en) Charge control apparatus, charge pattern creating device, method, computer program and power storage system
US10938075B2 (en) Battery safety evaluation apparatus, battery control apparatus, battery safety evaluation method, non-transitory computer readable medium, control circuit, and power storage
US11462780B2 (en) Charge/discharge control apparatus, condition-of-use creation apparatus, non-transitory computer readable medium, and power storage system
US10644359B2 (en) Storage battery controlling device, controlling method, non-transitory computer readable medium, power storage system, and power system
US20160011274A1 (en) Battery life estimation method and battery life estimation apparatus
JP4864383B2 (en) Deterioration state estimation device for power storage device
EP3056918B1 (en) Apparatus for estimating state of hybrid secondary battery and method therefor
US9187007B2 (en) Online battery capacity estimation
US7518375B2 (en) Method of estimating maximum output of battery for hybrid electric vehicle
TWI510799B (en) Apparatus and method for estimating state of charging of battery
JP2021163632A (en) Secondary battery deterioration estimation method, life estimation method and control device
EP2957921B1 (en) Method and system for estimating soc of battery
US20150022157A1 (en) Control apparatus and control method for secondary battery
EP3605127B1 (en) Device and method for estimating battery resistance
JP5878088B2 (en) Battery module and state estimation method thereof
US20160351974A1 (en) Deterioration degree calculating method, control method, and control device for lithium ion secondary battery
CN104335057B (en) For the method and apparatus determining the actual capacity of battery
JP6798051B2 (en) Charging pattern creation device, charge control device, charging pattern creation method, program, and power storage system
KR20190046410A (en) Method of measuring state of battery and apparatus thereof
KR20110087873A (en) Apparatus and method for estimating state of charge of battery
JP2021131344A (en) Method for measuring side-reaction current value of secondary battery, life estimation method, and inspection method
JP2021162511A (en) Secondary battery life prediction method, life prediction device, and vehicle
KR102255914B1 (en) Method and Apparatus for State-of-Charge Prediction of Lithium Ion Battery for Precision Enhancement at Low Temperature

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230726

R150 Certificate of patent or registration of utility model

Ref document number: 7321963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150