JP2021162511A - Secondary battery life prediction method, life prediction device, and vehicle - Google Patents

Secondary battery life prediction method, life prediction device, and vehicle Download PDF

Info

Publication number
JP2021162511A
JP2021162511A JP2020066186A JP2020066186A JP2021162511A JP 2021162511 A JP2021162511 A JP 2021162511A JP 2020066186 A JP2020066186 A JP 2020066186A JP 2020066186 A JP2020066186 A JP 2020066186A JP 2021162511 A JP2021162511 A JP 2021162511A
Authority
JP
Japan
Prior art keywords
secondary battery
amount
circuit state
physical quantity
open circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020066186A
Other languages
Japanese (ja)
Other versions
JP7447639B2 (en
Inventor
宗隆 樋口
munetaka Higuchi
渉 増田
Wataru Masuda
輝彦 花岡
Teruhiko Hanaoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2020066186A priority Critical patent/JP7447639B2/en
Publication of JP2021162511A publication Critical patent/JP2021162511A/en
Application granted granted Critical
Publication of JP7447639B2 publication Critical patent/JP7447639B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

To provide a method with which it is possible to estimate storage degradation using a physical model and predict the battery life of a secondary battery with good accuracy in a short time.SOLUTION: Provided is a method for predicting the battery life of a secondary battery 100. This method comprises: a step for acquiring a first physical quantity when the open-circuit state 330B of an electric circuit 300 begins and a second physical quantity when the open-circuit state 330B terminates and calculating a difference between the first and the second physical quantities; a step for calculating, on the basis of the difference, a self-discharge current amount ΔI which is the amount of current discharged while the electric circuit 300 is in the open-circuit state 330B; a step for calculating, on the basis of the self-discharge current amount ΔI, an increment of generated amount of a side reaction product generated in the interface between the surfaces of positive and negative active materials 112, 122 of the secondary battery 100 and the electrolyte; a step for calculating, on the basis of the generated amount of side reaction product, the increment of interface resistance of the secondary battery 100; and a step for estimating, on the basis of the increment of interface resistance, the degradation characteristic of the secondary battery 100 in the open-circuit state 330B.SELECTED DRAWING: Figure 1

Description

本開示は、二次電池の寿命予測方法、寿命予測装置及び当該寿命予測装置を搭載した車両に関するものである。 The present disclosure relates to a method for predicting the life of a secondary battery, a life prediction device, and a vehicle equipped with the life prediction device.

従来より、物理モデルを用いて二次電池の劣化特性を推定することが行われている(例えば特許文献1参照)。 Conventionally, the deterioration characteristics of a secondary battery have been estimated using a physical model (see, for example, Patent Document 1).

特許文献1では、充放電に伴う二次電池の内部抵抗の増加のモデル化に際し、負極における不動態皮膜の成長を考慮して負極SEI成長モデル(負極不動態成長モデル)を含む物理モデルを用いることが開示されている。 In Patent Document 1, when modeling the increase in the internal resistance of the secondary battery due to charging / discharging, a physical model including a negative electrode SEI growth model (negative electrode passivation growth model) is used in consideration of the growth of the passivation film on the negative electrode. Is disclosed.

特開2014−167406号公報Japanese Unexamined Patent Publication No. 2014-167406

ところで、二次電池の劣化特性は、二次電池が外部に対して仕事をしているサイクル時における劣化(サイクル劣化)と、二次電池が外部に対して仕事をしていない保存時における二次電池の劣化(保存劣化)との二種類に大別される。 By the way, the deterioration characteristics of the secondary battery are the deterioration during the cycle when the secondary battery is working to the outside (cycle deterioration) and the deterioration characteristic when the secondary battery is not working to the outside during storage. It is roughly divided into two types: deterioration of the next battery (preservation deterioration).

例えば特許文献1に記載の技術は、サイクル劣化の推定には適用できるものの、保存劣化の推定には適用できない。 For example, the technique described in Patent Document 1 can be applied to the estimation of cycle deterioration, but cannot be applied to the estimation of storage deterioration.

また、従来、保存劣化は、経験則に基づく統計モデルを使用しているが、統計モデルを作成するのに膨大な時間、手間、及びコストがかかるという問題、及び、二次電池の材料が変化すると、予測精度が低下するという問題等があった。 In addition, conventional storage deterioration uses a statistical model based on empirical rules, but there is a problem that it takes a huge amount of time, labor, and cost to create a statistical model, and the material of the secondary battery changes. Then, there is a problem that the prediction accuracy is lowered.

そこで本開示では、物理モデルを用いた保存劣化の推定を可能とし、二次電池の電池寿命をより短期間で精度よく予測可能な方法、その装置及び当該装置を備えた車両を提供することを課題とする。 Therefore, in the present disclosure, it is possible to estimate storage deterioration using a physical model, and provide a method capable of accurately predicting the battery life of a secondary battery in a shorter period of time, the device thereof, and a vehicle equipped with the device. Make it an issue.

上記の課題を解決するために、本開示では、保存時の劣化特性を、電極の活物質表面と電解液との界面における副反応物の生成反応により消費された電流量を考慮してモデル化するようにした。 In order to solve the above problems, in the present disclosure, the deterioration characteristics during storage are modeled in consideration of the amount of current consumed by the side reaction product formation reaction at the interface between the active material surface of the electrode and the electrolytic solution. I tried to do it.

すなわち、ここに開示する二次電池の寿命予測方法は、二次電池の電池寿命を予測する方法であって、前記二次電池を含む電気回路の開回路状態が開始するときの前記二次電池の物理量である第1物理量と、前記開回路状態が終了するときの前記二次電池の前記物理量である第2物理量とを取得し、前記第1物理量と前記第2物理量との差を算出する工程と、前記第1物理量と前記第2物理量との前記差に基づいて、前記電気回路が前記開回路状態の間に放電した電流量である自己放電電流量を算出する工程と、前記自己放電電流量に基づいて、前記二次電池の電極に含まれる活物質表面と電解液との界面において生成された副反応物の生成量を算出する工程と、前記副反応物の前記生成量に基づいて、前記二次電池の界面抵抗の増加量を算出する工程と、前記界面抵抗の前記増加量に基づいて、前記開回路状態における前記二次電池の劣化特性を推定する工程と、を備えたことを特徴とする。 That is, the secondary battery life prediction method disclosed herein is a method of predicting the battery life of the secondary battery, and the secondary battery when the open circuit state of the electric circuit including the secondary battery starts. The first physical quantity, which is the physical quantity of, and the second physical quantity, which is the physical quantity of the secondary battery when the open circuit state ends, are acquired, and the difference between the first physical quantity and the second physical quantity is calculated. A step of calculating the self-discharge current amount, which is the amount of current discharged by the electric circuit during the open circuit state, and the self-discharge, based on the step and the difference between the first physical amount and the second physical amount. Based on the step of calculating the amount of by-product produced at the interface between the surface of the active material and the electrolytic solution contained in the electrode of the secondary battery based on the amount of current, and the amount of by-product produced. A step of calculating the increase amount of the interfacial resistance of the secondary battery and a step of estimating the deterioration characteristics of the secondary battery in the open circuit state based on the increase amount of the interfacial resistance are provided. It is characterized by that.

二次電池を含む電気回路が開回路状態の間は、二次電池は外部に対して仕事をしていない保存状態にある。二次電池は、保存状態にある場合においても、時間の経過とともに劣化していく。しかしながら、二次電池が保存状態にある場合には、電気回路は開回路状態であり充放電電流が流れないため、例えばサイクル劣化モデルを用いて保存状態における二次電池の劣化特性を推定することはできない。 While the electric circuit including the secondary battery is in the open circuit state, the secondary battery is in a stored state in which it does not work to the outside. The secondary battery deteriorates with the passage of time even when it is in a stored state. However, when the secondary battery is in the stored state, the electric circuit is in the open circuit state and the charge / discharge current does not flow. Therefore, for example, the deterioration characteristics of the secondary battery in the stored state should be estimated using a cycle deterioration model. Can't.

ここに、本願発明者らは、満充電状態の二次電池を一定期間保存後、放電試験を行ったところ、保存前に比較して保存後には充放電電流量が減少することを見出した。この充放電電流量の減少分は、電極に含まれる活物質表面と電解液との界面における副反応物の生成反応により消費されたものと考えられる。すなわち、保存時においても、前記界面における副反応物の生成により、副反応物層が不動態皮膜の一部として成長し、界面抵抗が上昇して二次電池の内部抵抗が上昇、すなわち二次電池の劣化が進んだものと考えられる。 Here, the inventors of the present application have found that when a fully charged secondary battery is stored for a certain period of time and then subjected to a discharge test, the amount of charge / discharge current decreases after storage as compared with that before storage. It is considered that this decrease in the amount of charge / discharge current was consumed by the reaction of producing a side reaction product at the interface between the surface of the active material and the electrolytic solution contained in the electrode. That is, even during storage, the formation of side reactants at the interface causes the sidereactor layer to grow as part of the passivation film, increasing the interface resistance and increasing the internal resistance of the secondary battery, that is, secondary. It is probable that the battery has deteriorated.

本構成では、電気回路の開回路状態が開始するときの第1物理量と、電気回路の開回路状態が終了するときの第2物理量との差に基づいて、開回路状態の間に放電した電流量、すなわち自己放電電流量を算出する。そして、自己放電電流量から、上記界面において生成した副反応物の生成量を算出する。さらに、当該生成量に基づいて、当該界面における界面抵抗の増加量を算出し、保存時における二次電池の劣化特性を推定する。 In this configuration, the current discharged during the open circuit state is based on the difference between the first physical quantity when the open circuit state of the electric circuit starts and the second physical quantity when the open circuit state of the electric circuit ends. The quantity, that is, the amount of self-discharge current is calculated. Then, the amount of the side reaction product produced at the interface is calculated from the amount of self-discharge current. Further, based on the amount of production, the amount of increase in interface resistance at the interface is calculated, and the deterioration characteristics of the secondary battery during storage are estimated.

すなわち、本構成では、保存時における二次電池の劣化を電極活物質表面と電解液との界面における副反応物の増加によるものと想定し、自己放電電流量と副反応物の生成反応との関係を考慮した物理モデルを構築する。そして、当該物理モデルを用いて、保存時の二次電池の劣化特性を推定するから、短期間で精度の高い二次電池の寿命予測が可能となる。 That is, in this configuration, it is assumed that the deterioration of the secondary battery during storage is due to an increase in side reactants at the interface between the surface of the electrode active material and the electrolytic solution, and the amount of self-discharge current and the reaction of producing side reactants Build a physical model that considers relationships. Then, since the deterioration characteristics of the secondary battery during storage are estimated using the physical model, it is possible to predict the life of the secondary battery with high accuracy in a short period of time.

なお、本明細書において、「電気回路の開回路状態が開始するとき」とは、対象となる開回路状態が開始するときであり、例えば電気回路が前の閉回路状態から当該開回路状態へ切り替わるとき、及び、電気回路が前の開回路状態から当該開回路状態になるときを含む。また、「電気回路の閉回路状態が終了するとき」とは、対象となる開回路状態が終了するときであり、例えば電気回路が当該開回路状態から次の閉回路状態へ切り替わるとき、及び、電気回路が当該開回路状態から次の開回路状態になるときを含む。また、「とき」とは、瞬間、直前、及び直後を含む概念である。また、「物理量」は、時刻、電流値、及び/又は電圧値等である。 In the present specification, "when the open circuit state of the electric circuit starts" is when the target open circuit state starts, for example, the electric circuit changes from the previous closed circuit state to the open circuit state. This includes when switching and when the electric circuit changes from the previous open circuit state to the open circuit state. Further, "when the closed circuit state of the electric circuit ends" is when the target open circuit state ends, for example, when the electric circuit switches from the open circuit state to the next closed circuit state, and This includes when the electric circuit changes from the open circuit state to the next open circuit state. Moreover, "time" is a concept including the moment, immediately before, and immediately after. Further, the "physical quantity" is a time, a current value, and / or a voltage value or the like.

好ましい態様では、前記電気回路は、前記開回路状態の前後は、閉回路状態であり、前記開回路状態が開始するときとは、前記電気回路が前の閉回路状態から前記開回路状態へ切り替わるときであり、前記開回路状態が終了するときとは、前記電気回路が前記開回路状態から後の閉回路状態へ切り替わるときである。 In a preferred embodiment, the electric circuit is in a closed circuit state before and after the open circuit state, and when the open circuit state starts, the electric circuit switches from the previous closed circuit state to the open circuit state. The time when the open circuit state ends is when the electric circuit switches from the open circuit state to a later closed circuit state.

電気回路が閉回路状態の場合、二次電池は外部に対して仕事を行う、すなわちサイクル時である。ユーザによる二次電池の一般的な使用を考慮すると、複数のサイクル時の間に保存時が存在する場合が十分に想定される。このような場合には、対象の開回路状態が開始するときとは、電気回路が前の閉回路状態から当該開回路状態へ切り替わるときとなる。また、対象の開回路状態が終了するときとは、電気回路が当該開回路状態から次の閉回路状態へ切り替わるときとなる。本構成によれば、二次電池の実際的な使用状況を反映した寿命予測が可能となる。 When the electric circuit is in the closed circuit state, the secondary battery does work to the outside, that is, during the cycle. Considering the general use of the secondary battery by the user, it is quite possible that there will be a storage time between multiple cycle times. In such a case, the time when the target open circuit state starts is the time when the electric circuit switches from the previous closed circuit state to the open circuit state. Further, the time when the target open circuit state ends is the time when the electric circuit switches from the open circuit state to the next closed circuit state. According to this configuration, it is possible to predict the life of the secondary battery by reflecting the actual usage status of the secondary battery.

一実施形態では、前記物理量は、時刻であり、前記物理量が前記時刻の場合は、前記第1物理量と前記第2物理量との前記差は、前記二次電池が前記開回路状態にある時間としての保存時間であり、前記自己放電電流量を算出する工程では、前記差を算出する工程において算出された前記保存時間と、予め試験的に求めておいた前記二次電池の保存時間と自己放電電流量との関係と、に基づいて前記自己放電電流量を算出する。 In one embodiment, the physical quantity is a time, and when the physical quantity is the time, the difference between the first physical quantity and the second physical quantity is defined as the time during which the secondary battery is in the open circuit state. In the step of calculating the self-discharge current amount, the storage time calculated in the step of calculating the difference, and the storage time and self-discharge of the secondary battery obtained experimentally in advance. The self-discharge current amount is calculated based on the relationship with the current amount.

物理量が時刻の場合、第1物理量は、開回路状態が開始するときの時刻である。また、第2物理量は、開回路状態が終了するときの時刻である。なお、第1物理量が、開回路状態が開始する瞬間の時刻であれば、第2物理量も開回路状態が終了する瞬間の時刻である。第1物理量と第2物理量との差は、二次電池が開回路状態にある時間、すなわち保存時間に該当する。この場合、例えば寿命予測対象の二次電池における保存時間と保存時の自己放電電流量との関係を予め試験的に求めておけば、第1物理量と第2物理量との差である保存時間の値と、当該関係と、に基づいて、保存時の自己放電電流量を算出できる。保存時間の算出は容易且つ高精度であり、また安定性に優れているため、当該保存時間と予め試験的に求めておいた関係とに基づいて自己放電電流量を算出することにより、精度及び安定性に優れた寿命予測が可能となる。 When the physical quantity is a time, the first physical quantity is the time when the open circuit state starts. The second physical quantity is the time when the open circuit state ends. If the first physical quantity is the time at the moment when the open circuit state starts, the second physical quantity is also the time at the moment when the open circuit state ends. The difference between the first physical quantity and the second physical quantity corresponds to the time during which the secondary battery is in the open circuit state, that is, the storage time. In this case, for example, if the relationship between the storage time of the secondary battery whose life is to be predicted and the amount of self-discharge current during storage is obtained on a trial basis, the storage time, which is the difference between the first physical quantity and the second physical quantity, can be obtained. The amount of self-discharge current at the time of storage can be calculated based on the value and the relationship. Since the storage time is easy and highly accurate, and has excellent stability, the accuracy and accuracy can be calculated by calculating the self-discharge current amount based on the relationship between the storage time and the relationship obtained on a trial basis in advance. It is possible to predict the life with excellent stability.

一実施形態では、前記物理量は、電圧値又は電流値であり、前記第1物理量は、前記電気回路が前記前の閉回路状態から前記開回路状態へ切り替わる直前の前記電圧値又は前記電流値であり、前記第2物理量は、前記電気回路が前記開回路状態から前記次の閉回路状態へ切り替わった直後の前記電圧値又は前記電流値である。 In one embodiment, the physical quantity is a voltage value or a current value, and the first physical quantity is the voltage value or the current value immediately before the electric circuit switches from the previous closed circuit state to the open circuit state. The second physical quantity is the voltage value or the current value immediately after the electric circuit is switched from the open circuit state to the next closed circuit state.

物理量が電圧値又は電流値の場合は、第1物理量として、前の閉回路状態から対象の開回路状態へ切り替わる直前の電圧値又は電流値を取得し、第2物理量として、当該開回路状態から次の閉回路状態へ切り替わった直後の電圧値又は電流値を取得する。第1物理量と第2物理量との差は、開回路状態、すなわち保存状態の間に生じた電圧値又は電流値の減少分となり、この電圧値又は電流値の減少分から自己放電電流量を得ることができる。 When the physical quantity is a voltage value or a current value, the voltage value or the current value immediately before switching from the previous closed circuit state to the target open circuit state is acquired as the first physical quantity, and the second physical quantity is obtained from the open circuit state. Acquires the voltage value or current value immediately after switching to the next closed circuit state. The difference between the first physical quantity and the second physical quantity is the decrease in the voltage value or current value that occurs during the open circuit state, that is, the storage state, and the self-discharge current amount is obtained from this decrease in the voltage value or current value. Can be done.

なお、本明細書において、「閉回路状態から開回路状態へ切り替わる直前の電圧値/電流値」とは、電気回路が閉回路状態から開回路状態となることにより、電圧値/電流値がゼロになる瞬間から0秒超0.5秒以内前の電圧値/電流値、又はその電圧値/電流値の平均値等とすることができる。また、「開回路状態から閉回路状態へ切り替わった直後の電圧値/電流値」とは、電気回路が開回路状態から閉回路状態となることにより、電圧値/電流値がゼロではなくなる瞬間から0秒以上0.5秒以内後の電圧値/電流値、又はその電圧値/電流値の平均値等とすることができる。 In the present specification, the "voltage value / current value immediately before switching from the closed circuit state to the open circuit state" means that the voltage value / current value is zero because the electric circuit changes from the closed circuit state to the open circuit state. It can be the voltage value / current value before 0 seconds or less and 0.5 seconds or less from the moment when the voltage value becomes, or the average value of the voltage value / current value or the like. The "voltage value / current value immediately after switching from the open circuit state to the closed circuit state" is from the moment when the voltage value / current value becomes non-zero due to the electric circuit changing from the open circuit state to the closed circuit state. It can be the voltage value / current value after 0 seconds or more and 0.5 seconds or less, or the average value of the voltage value / current value.

好ましい態様では、前記二次電池のライフサイクルは、複数の前記開回路状態を有し、前記複数の開回路状態の各々に関して算出された前記自己放電電流量は、時間的に前の前記開回路状態に比べて後の前記開回路状態となるほど減少する。 In a preferred embodiment, the life cycle of the secondary battery has a plurality of the open circuit states, and the self-discharge current amount calculated for each of the plurality of open circuit states is the time before the open circuit. It decreases as the circuit becomes open later than the state.

本願発明者らは、二次電池のライフサイクルにおける保存時間の積算量が長くなるにつれて、二次電池の自己放電電流量の増加率は減少することを見出した。言い換えると、保存時の自己放電電流量は、保存時間の増加に伴い徐々に減少する。本構成によれば、このような保存時間と自己放電電流量との関係が劣化特性の推定に反映されるから、精度の高い二次電池の寿命予測が可能となる。 The inventors of the present application have found that the rate of increase in the amount of self-discharge current of the secondary battery decreases as the integrated amount of storage time in the life cycle of the secondary battery increases. In other words, the amount of self-discharge current during storage gradually decreases as the storage time increases. According to this configuration, since the relationship between the storage time and the self-discharge current amount is reflected in the estimation of the deterioration characteristics, it is possible to predict the life of the secondary battery with high accuracy.

好ましい態様では、前記電気回路は、前記開回路状態の前後の少なくとも一方において、閉回路状態にあり、前記電気回路が前記閉回路状態である場合には、前記二次電池の充放電電流に基づいて、前記界面の界面抵抗の増加量を算出する工程をさらに備えている。 In a preferred embodiment, the electric circuit is in a closed circuit state at least one before and after the open circuit state, and when the electric circuit is in the closed circuit state, it is based on the charge / discharge current of the secondary battery. Therefore, a step of calculating the amount of increase in the interfacial resistance of the interface is further provided.

電気回路が閉回路状態、すなわちサイクル時には、電気回路には二次電池の充放電電流が流れる。従って、この充放電電流の情報に基づき、一般的なサイクル劣化モデルを用いて、二次電池の劣化特性を推定できる。本構成によれば、サイクル時にはサイクル劣化モデルを用いる一方、保存時には自己放電電流量に基づく保存劣化モデルを用いて二次電池の劣化特性を推定することにより、二次電池の寿命予測を精度よく行うことができる。 When the electric circuit is closed, that is, when it is cycled, the charge / discharge current of the secondary battery flows through the electric circuit. Therefore, based on this charge / discharge current information, the deterioration characteristics of the secondary battery can be estimated using a general cycle deterioration model. According to this configuration, the cycle deterioration model is used during cycling, while the deterioration characteristics of the secondary battery are estimated using the storage deterioration model based on the amount of self-discharge current during storage, thereby accurately predicting the life of the secondary battery. It can be carried out.

好ましい態様は、前記二次電池のライフサイクルは、複数の前記閉回路状態及び複数の前記開回路状態を有し、複数の前記閉回路状態及び複数の前記開回路状態の各々に関して算出された前記界面抵抗の増加量を積算する工程をさらに備え、前記二次電池の劣化特性を推定する工程では、前記界面抵抗の前記増加量の積算値に基づいて、前記二次電池のライフサイクル全体における劣化特性を推定する。 In a preferred embodiment, the life cycle of the secondary battery has a plurality of the closed circuit states and the plurality of the open circuit states, and the calculation is performed for each of the plurality of the closed circuit states and the plurality of the open circuit states. In the step of estimating the deterioration characteristic of the secondary battery, which further comprises a step of integrating the increase amount of the interfacial resistance, deterioration in the entire life cycle of the secondary battery based on the integrated value of the increase amount of the interfacial resistance. Estimate the characteristics.

本構成では、複数の閉回路状態についてはサイクル劣化モデルを用い、複数の開回路状態については保存劣化モデルを用い、閉回路状態及び開回路状態の各々で算出された界面抵抗の増加量を二次電池のライフサイクル全体に亘って積算する。本構成により、二次電池のライフサイクル全体に亘る寿命予測を短期間で精度よく行うことができる。 In this configuration, a cycle deterioration model is used for a plurality of closed circuit states, a storage deterioration model is used for a plurality of open circuit states, and the amount of increase in interfacial resistance calculated for each of the closed circuit state and the open circuit state is calculated. Accumulate over the entire life cycle of the next battery. With this configuration, it is possible to accurately predict the life of the entire life cycle of the secondary battery in a short period of time.

好ましくは、前記二次電池は、車両に搭載された二次電池である。また、好ましくは、前記二次電池は、リチウムイオン二次電池である。 Preferably, the secondary battery is a secondary battery mounted on a vehicle. Further, preferably, the secondary battery is a lithium ion secondary battery.

本構成によれば、車両に搭載された二次電池、好ましくはリチウムイオン二次電池の寿命予測を短期間で精度よく行うことができる。 According to this configuration, it is possible to accurately predict the life of a secondary battery mounted on a vehicle, preferably a lithium ion secondary battery, in a short period of time.

この場合、好ましくは、前記物理量は、時刻であり、前記第1物理量は、前記車両がイグニッションオフされた時刻であり、前記第2物理量は、前記車両が前記イグニッションオフされた後初めてイグニッションオンされた時刻であり、前記第1物理量と前記第2物理量との前記差は、前記車両の前記イグニッションオフから前記イグニッションオンまでの時間である。 In this case, preferably, the physical quantity is a time, the first physical quantity is the time when the vehicle is ignited off, and the second physical quantity is ignited only after the vehicle is ignited off. The difference between the first physical quantity and the second physical quantity is the time from the ignition off to the ignition on of the vehicle.

本構成によれば、車両のエンジンがオフの状態における二次電池の劣化特性を精度よく推定できる。 According to this configuration, the deterioration characteristics of the secondary battery when the engine of the vehicle is off can be estimated accurately.

好ましくは、前記副反応物は、前記活物質表面に不動態皮膜を形成し、前記界面抵抗の増加は、前記不動態皮膜を構成する分子中に含まれる低イオン伝導性分子の量の増加によるものである。 Preferably, the by-reactant forms a passivation film on the surface of the active material, and the increase in interfacial resistance is due to an increase in the amount of low ion conductive molecules contained in the molecules constituting the passivation film. It is a thing.

本構成によれば、不動態皮膜を構成する分子のうち低イオン伝導性分子の量の増加を考慮するから、精度よく且つ短期間で二次電池の電池寿命を予測することができる。 According to this configuration, since the increase in the amount of low-ion conductive molecules among the molecules constituting the passivation film is taken into consideration, the battery life of the secondary battery can be predicted accurately and in a short period of time.

ここに開示する二次電池の寿命予測装置は、二次電池の電池寿命を予測する装置であって、前記二次電池を含む電気回路の開回路状態が開始するときの前記二次電池の前記物理量である第1物理量と、前記電気回路の前記開回路状態が終了するときの前記二次電池の前記物理量である第2物理量とを取得する取得部と、前記第1物理量と前記第2物理量との差を算出する第1算出部と、前記差に基づいて、前記電気回路が前記開回路状態の間に放電した電流量である自己放電電流量を算出する第2算出部と、前記自己放電電流量に基づいて、前記二次電池の電極に含まれる活物質表面と電解液との界面において生成された副反応物の生成量を算出する第3算出部と、前記副反応物の前記生成量に基づいて、前記界面の界面抵抗の増加量を算出する第4算出部と、前記界面抵抗の前記増加量に基づいて、前記開回路状態における前記二次電池の劣化特性を推定する推定部と、を備えたことを特徴とする。 The secondary battery life prediction device disclosed herein is a device that predicts the battery life of the secondary battery, and is the device of the secondary battery when the open circuit state of the electric circuit including the secondary battery starts. An acquisition unit that acquires a first physical quantity that is a physical quantity and a second physical quantity that is the physical quantity of the secondary battery when the open circuit state of the electric circuit ends, and the first physical quantity and the second physical quantity. The first calculation unit that calculates the difference between the two, the second calculation unit that calculates the self-discharge current amount, which is the amount of current discharged by the electric circuit during the open circuit state, and the self. A third calculation unit that calculates the amount of by-reactant produced at the interface between the surface of the active material and the electrolytic solution contained in the electrode of the secondary battery based on the amount of discharge current, and the said by-product. A fourth calculation unit that calculates the amount of increase in the interfacial resistance of the interface based on the amount of generation, and an estimation that estimates the deterioration characteristics of the secondary battery in the open circuit state based on the amount of the increase in the interfacial resistance. It is characterized by having a part and.

本構成では、保存時における二次電池の劣化を電極活物質表面と電解液との界面における副反応物の増加によるものと想定し、自己放電電流量と副反応物の生成反応との関係を考慮した物理モデルを構築する。そして、当該物理モデルを用いて、保存時の二次電池の劣化特性を推定するから、短期間で精度の高い二次電池の寿命予測が可能となる。 In this configuration, it is assumed that the deterioration of the secondary battery during storage is due to an increase in side reactants at the interface between the surface of the electrode active material and the electrolytic solution, and the relationship between the amount of self-discharge current and the reaction of producing sidereactors is determined. Build a physical model that takes into account. Then, since the deterioration characteristics of the secondary battery during storage are estimated using the physical model, it is possible to predict the life of the secondary battery with high accuracy in a short period of time.

また、ここに開示する車両は、前記二次電池と、上述した二次電池の寿命予測装置と、を備えた車両である。 Further, the vehicle disclosed here is a vehicle including the secondary battery and the above-mentioned secondary battery life prediction device.

本構成によれば、車載二次電池の寿命予測を短期間で精度よく行うことができる車両をもたらすことができる。 According to this configuration, it is possible to provide a vehicle capable of accurately predicting the life of an in-vehicle secondary battery in a short period of time.

以上述べたように、本開示によると、保存時における二次電池の劣化を電極活物質表面と電解液との界面における副反応物の増加によるものと想定し、自己放電電流量と副反応物の生成反応との関係を考慮した物理モデルを構築する。そして、当該物理モデルを用いて、保存時の二次電池の劣化特性を推定するから、短期間で精度の高い二次電池の寿命予測が可能となる。 As described above, according to the present disclosure, it is assumed that the deterioration of the secondary battery during storage is due to an increase in side reactants at the interface between the surface of the electrode active material and the electrolytic solution, and the amount of self-discharge current and sidereactors. A physical model is constructed in consideration of the relationship with the generation reaction of. Then, since the deterioration characteristics of the secondary battery during storage are estimated using the physical model, it is possible to predict the life of the secondary battery with high accuracy in a short period of time.

一実施形態に係る二次電池の寿命予測装置が組み込まれた電源システムの一例を示すブロック図である。It is a block diagram which shows an example of the power-source system which incorporated the life prediction device of the secondary battery which concerns on one Embodiment. 一実施形態に係る二次電池の寿命予測方法を説明するためのフロー図である。It is a flow chart for demonstrating the life prediction method of the secondary battery which concerns on one Embodiment. 寿命予測方法に用いる物理モデルの概念図である。It is a conceptual diagram of the physical model used for the life prediction method. 二次電池の構成を模式的に示す図である。It is a figure which shows typically the structure of the secondary battery. サイクル回数に対する内部抵抗の変化を示すグラフである。It is a graph which shows the change of the internal resistance with respect to the number of cycles. 二次電池の負極におけるサイクル時のリチウムイオンの伝導機構の一例を説明するための模式図である。It is a schematic diagram for demonstrating an example of the conduction mechanism of lithium ion at the time of a cycle in the negative electrode of a secondary battery. NMC系電池セルの保存試験前の充電曲線及び保存試験後の放電曲線を示すグラフである。It is a graph which shows the charge curve before the preservation test and the discharge curve after the preservation test of an NMC battery cell. 二次電池の負極において、保存時に自己放電電流が流れる機構を説明するための模式図である。It is a schematic diagram for demonstrating the mechanism which the self-discharge current flows in the negative electrode of a secondary battery at the time of storage. 自己放電電流モデルを用いる保存劣化解析工程のフロー図である。It is a flow chart of the storage deterioration analysis process using a self-discharge current model. 保存試験により算出した自己放電電流量の積算値を保存時間に対してプロットしたグラフである。It is a graph which plotted the integrated value of the self-discharge current amount calculated by the preservation test with respect to the preservation time. 二次電池の経時劣化の様子を模式的に示すグラフである。It is a graph which shows the state of deterioration with time of a secondary battery schematically. 実施例及び比較例の保存時間に対する内部抵抗増加率の変化を示すグラフである。It is a graph which shows the change of the internal resistance increase rate with respect to the storage time of an Example and a comparative example.

以下、本開示の実施形態を図面に基づいて詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本開示、その適用物或いはその用途を制限することを意図するものでは全くない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The following description of preferred embodiments is merely exemplary and is not intended to limit the disclosure, its application or its use at all.

(実施形態1)
<二次電池の寿命予測装置>
図1は、本実施形態に係る二次電池の寿命予測装置200の構成例を示している。寿命予測装置200は、二次電池100に対応する物理モデルを用いて当該二次電池100の電池寿命を予測する装置である。
(Embodiment 1)
<Secondary battery life prediction device>
FIG. 1 shows a configuration example of the secondary battery life prediction device 200 according to the present embodiment. The life prediction device 200 is a device that predicts the battery life of the secondary battery 100 by using a physical model corresponding to the secondary battery 100.

二次電池100は、特に限定されるものではなく、例えばNMC(Lithium Nichel Manganese Cobalt Oxide)系、コバルト酸リチウム系、マンガン酸リチウム系、ニッケル(NCA)系等のリチウムイオン二次電池や、ニッケル水素電池、鉛蓄電池等であってもよい。 The secondary battery 100 is not particularly limited, and is, for example, a lithium ion secondary battery such as NMC (Lithium Nichel Manganese Cobalt Oxide) type, lithium cobalt oxide type, lithium manganate type, nickel (NCA) type, or nickel. It may be a hydrogen battery, a lead storage battery, or the like.

寿命予測装置200は、例えば図1に示すような電源システム400に組み込まれ、二次電池100の寿命予測を行うために用いられる。電源システム400は、電気回路300を備える。電気回路300は、二次電池100と、二次電池100により駆動される例えば電動機等の負荷301と、電流値を検出する電流センサ310と、電圧値を検出する電圧センサ320と、電気回路300の閉回路状態330Aと開回路状態330Bとを切り替えるスイッチ330と、を含む。なお、電源システム400は、二次電池100の充電装置を含むが、簡単のため図示を省略している。二次電池100の充放電動作により電流センサ310及び電圧センサ320により検出された電流値及び電圧値情報が上述の充放電動作情報として寿命予測装置200に送られる。 The life prediction device 200 is incorporated in the power supply system 400 as shown in FIG. 1, for example, and is used to predict the life of the secondary battery 100. The power supply system 400 includes an electric circuit 300. The electric circuit 300 includes a secondary battery 100, a load 301 such as an electric motor driven by the secondary battery 100, a current sensor 310 for detecting a current value, a voltage sensor 320 for detecting a voltage value, and an electric circuit 300. Includes a switch 330 that switches between the closed circuit state 330A and the open circuit state 330B. The power supply system 400 includes a charging device for the secondary battery 100, but the illustration is omitted for the sake of simplicity. The current value and voltage value information detected by the current sensor 310 and the voltage sensor 320 by the charge / discharge operation of the secondary battery 100 are sent to the life prediction device 200 as the above-mentioned charge / discharge operation information.

電源システム400は、例えば、二次電池100によって駆動される電動機を駆動力源として備えたハイブリッド自動車や電気自動車等の車両に搭載され得る。また、二次電池100は、エンジン始動時のスターターモーターへの給電や、エンジン停止状態において車内照明やオーディオ機器が使用される際の給電を主な目的として、自動車等の車両に搭載される二次電池でもよい。さらに、二次電池100は、車両用に限らず、各種電子機器、各種携帯機器等に搭載される二次電池でもよい。 The power supply system 400 can be mounted on, for example, a vehicle such as a hybrid vehicle or an electric vehicle provided with an electric motor driven by a secondary battery 100 as a driving force source. Further, the secondary battery 100 is mounted on a vehicle such as an automobile for the main purpose of supplying power to the starter motor when the engine is started and when the interior lighting or audio equipment is used when the engine is stopped. The next battery may be used. Further, the secondary battery 100 is not limited to a vehicle, and may be a secondary battery mounted on various electronic devices, various portable devices, and the like.

寿命予測装置200は、例えば周知のコンピュータをベースとする装置であり、制御部210、入力部220、出力部230、記憶部240、演算部250(取得部、第1算出部、第2算出部、第3算出部、第4算出部、推定部)及び計時部260を備えている。なお、寿命予測装置200は、二次電池100が搭載される各種車両、各種電子機器、各種携帯機器等の対象物にすでに搭載されているコントローラと兼ねることができる。 The life prediction device 200 is, for example, a device based on a well-known computer, and is a control unit 210, an input unit 220, an output unit 230, a storage unit 240, and a calculation unit 250 (acquisition unit, first calculation unit, second calculation unit). , Third calculation unit, fourth calculation unit, estimation unit) and timekeeping unit 260. The life prediction device 200 can also serve as a controller already mounted on an object such as various vehicles, various electronic devices, and various mobile devices on which the secondary battery 100 is mounted.

寿命予測装置200には、上述の電流センサ310、電圧センサ320等の各種センサ、ディスプレイ等の各種表示手段及び各種制御対象が電気的に接続又はワイヤレス接続されている。入力部220には、各種センサからの検出信号が入力される。出力部230は、各種表示手段及び各種制御対象に信号を出力する。記憶部240には、寿命予測対象の二次電池100に関する情報、充放電条件に関する情報、充放電動作情報、演算部250における演算に関する情報、並びに演算処理を実行するプログラム等が格納されている。特に、記憶部240には、寿命予測に使用するための物理モデルとしての後述する電池モデルが格納されている。演算部250は、入力部220に入力された検出信号及び記憶部240に格納された情報に基づいて所定の演算を行う。制御部210は、演算部250の演算結果に基づいて、対象となる電池の寿命予測を行う。 Various sensors such as the above-mentioned current sensor 310 and voltage sensor 320, various display means such as a display, and various control targets are electrically or wirelessly connected to the life prediction device 200. Detection signals from various sensors are input to the input unit 220. The output unit 230 outputs signals to various display means and various control targets. The storage unit 240 stores information about the secondary battery 100 whose life is to be predicted, information about charge / discharge conditions, charge / discharge operation information, information about calculations in the calculation unit 250, a program for executing calculation processing, and the like. In particular, the storage unit 240 stores a battery model, which will be described later, as a physical model for use in life prediction. The calculation unit 250 performs a predetermined calculation based on the detection signal input to the input unit 220 and the information stored in the storage unit 240. The control unit 210 predicts the life of the target battery based on the calculation result of the calculation unit 250.

計時部260は、スイッチ330が閉回路状態330Aから開回路状態330Bに切り替わる瞬間の時刻(物理量)である第1時刻(第1物理量)とともに、開回路状態330Bから次の閉回路状態330Aに切り替わる瞬間の時刻(物理量)である第2時刻(第2物理量)を取得する。そして、計時部260は、第1時刻及び第2時刻の差、すなわち電気回路300が開回路状態330Bにある時間を保存時間として計測する。 The timing unit 260 switches from the open circuit state 330B to the next closed circuit state 330A together with the first time (first physical quantity) which is the moment (physical quantity) at which the switch 330 switches from the closed circuit state 330A to the open circuit state 330B. Acquires the second time (second physical quantity), which is the time of the moment (physical quantity). Then, the time measuring unit 260 measures the difference between the first time and the second time, that is, the time when the electric circuit 300 is in the open circuit state 330B as the storage time.

なお、本実施形態に係る寿命予測装置200が車両に搭載される場合、例えば、第1時刻は、車両がイグニッションオフされた時刻、第2時刻は、車両がイグニッションオフ後初めてイグニッションオンされた時刻とすることができる。この場合、第1時刻と第2時刻との差は、車両の前記イグニッションオフから前記イグニッションオンまでの時間になる。 When the life prediction device 200 according to the present embodiment is mounted on the vehicle, for example, the first time is the time when the vehicle is ignited off, and the second time is the time when the vehicle is ignited for the first time after the ignition is turned off. Can be. In this case, the difference between the first time and the second time is the time from the ignition off of the vehicle to the ignition on.

なお、図1には図示していないが、電源システム400には、二次電池100の温度を検出するための温度センサが搭載されてもよく、当該温度センサにより二次電池100の温度情報を取得して、寿命予測に反映させることができる。また、図1の電源システム400は例示にすぎず、本実施形態に係る寿命予測装置200が適用される電源システムはその他の構成を含んでもよい。 Although not shown in FIG. 1, the power supply system 400 may be equipped with a temperature sensor for detecting the temperature of the secondary battery 100, and the temperature sensor provides temperature information of the secondary battery 100. It can be acquired and reflected in the life prediction. Further, the power supply system 400 of FIG. 1 is merely an example, and the power supply system to which the life prediction device 200 according to the present embodiment is applied may include other configurations.

<二次電池の寿命予測方法>
寿命予測装置200を用いた二次電池100の寿命予測方法の一例を図2に示す。図2に示す寿命予測方法は、初期条件設定工程S100と、充放電解析工程S200と、物理量記録工程S300と、界面抵抗増加量算出工程S400と、サイクル回数判定工程S500と、界面抵抗増加量積算工程S600と、劣化特性推定工程S700と、電池寿命予測工程S800と、を備えている。
<Method of predicting the life of secondary batteries>
FIG. 2 shows an example of a life prediction method for the secondary battery 100 using the life prediction device 200. The life prediction method shown in FIG. 2 includes an initial condition setting step S100, a charge / discharge analysis step S200, a physical quantity recording step S300, an interface resistance increase amount calculation step S400, a cycle count determination step S500, and an interface resistance increase amount integration. It includes a step S600, a deterioration characteristic estimation step S700, and a battery life prediction step S800.

≪初期条件設定工程≫
初期条件設定工程S100では、予め記憶部240に格納されている二次電池100に関する電池構成、すなわち正極、負極、電解液を含むセパレータの仕様等のデータを読み出、当該データを初期条件として設定する。
≪Initial condition setting process≫
In the initial condition setting step S100, data such as the battery configuration related to the secondary battery 100 stored in the storage unit 240 in advance, that is, the specifications of the separator including the positive electrode, the negative electrode, and the electrolytic solution is read, and the data is set as the initial condition. do.

≪充放電解析工程≫
充放電解析工程S200では、任意のサイクルにおける二次電池100の充電及び放電を行い、当該充放電動作により得られた電流値及び電圧値等の充放電動作情報と、後述する電池モデルに含まれる充放電動作モデルとに基づいて、二次電池100の充放電解析を行う。
≪Charging / discharging analysis process≫
In the charge / discharge analysis step S200, the secondary battery 100 is charged and discharged in an arbitrary cycle, and the charge / discharge operation information such as the current value and the voltage value obtained by the charge / discharge operation is included in the battery model described later. The charge / discharge analysis of the secondary battery 100 is performed based on the charge / discharge operation model.

≪物理量記録工程≫
物理量記録工程S300では、充放電動作情報の一部として、二次電池100に関する物理量、具体的には例えば、計時部260により取得した時刻の情報、電流センサ310により検出された電流値、及び電圧センサ320により検出された電圧値等を記録し、記憶部240に格納する。
≪Physical quantity recording process≫
In the physical quantity recording step S300, as a part of the charge / discharge operation information, the physical quantity related to the secondary battery 100, specifically, the time information acquired by the measuring unit 260, the current value detected by the current sensor 310, and the voltage. The voltage value or the like detected by the sensor 320 is recorded and stored in the storage unit 240.

≪界面抵抗増加量算出工程≫
界面抵抗増加量算出工程S400では、上記充放電動作情報と、上記充放電解析工程S200で得られた充放電解析結果と、後述する電池モデルに含まれる劣化モデルとに基づいて、二次電池100の界面抵抗の増加量を算出する。
≪Process for calculating the amount of increase in interfacial resistance≫
In the interface resistance increase amount calculation step S400, the secondary battery 100 is based on the charge / discharge operation information, the charge / discharge analysis result obtained in the charge / discharge analysis step S200, and the deterioration model included in the battery model described later. Calculate the amount of increase in the interfacial resistance of.

具体的に、界面抵抗増加量算出工程S400は、回路状態判定工程S410と、サイクル劣化解析工程S420と、保存劣化解析工程S430と、を備える。 Specifically, the interface resistance increase amount calculation step S400 includes a circuit state determination step S410, a cycle deterioration analysis step S420, and a storage deterioration analysis step S430.

−回路状態判定工程−
回路状態判定工程S410は、電気回路300が閉回路状態330Aにあるか否か、すなわち閉回路状態330Aにあるか開回路状態330Bにあるかを判定する。
-Circuit state determination process-
The circuit state determination step S410 determines whether or not the electric circuit 300 is in the closed circuit state 330A, that is, whether or not it is in the closed circuit state 330A or the open circuit state 330B.

−サイクル劣化解析工程−
回路状態判定工程S410において電気回路300が閉回路状態であると判断された場合には、サイクル劣化解析工程S420に進む。そうして、上記充放電動作情報と、上記充放電解析結果と、サイクル時の劣化モデルであるサイクル劣化モデルと、に基づいて、サイクル時における界面抵抗の増加量を算出する。
-Cycle deterioration analysis process-
If it is determined in the circuit state determination step S410 that the electric circuit 300 is in the closed circuit state, the process proceeds to the cycle deterioration analysis step S420. Then, the amount of increase in the interfacial resistance during the cycle is calculated based on the charge / discharge operation information, the charge / discharge analysis result, and the cycle deterioration model which is a deterioration model during the cycle.

−保存劣化解析工程−
回路状態判定工程S410において電気回路300が開回路状態であると判断された場合には、保存劣化解析工程S430に進む。そうして、記録された上記物理量の情報と、保存時の劣化モデルである保存劣化モデルと、に基づいて、保存時における界面抵抗の増加量を算出する。
-Preservation deterioration analysis process-
If it is determined in the circuit state determination step S410 that the electric circuit 300 is in the open circuit state, the process proceeds to the storage deterioration analysis step S430. Then, the amount of increase in the interfacial resistance at the time of storage is calculated based on the recorded information of the physical quantity and the storage deterioration model which is a deterioration model at the time of storage.

≪サイクル回数判定工程≫
サイクル回数判定工程S500では、充放電サイクルのサイクル回数が、所定値に到達したか否かを判定する。サイクル回数が所定値に到達していないと判定された場合には、充放電解析工程S200に戻り、充放電解析工程S200〜サイクル回数判定工程S500を繰り返す。一方、サイクル回数が所定値に到達したと判定された場合には、次の界面抵抗増加量積算工程S600へ進む。
≪Cycle count determination process≫
In the cycle number determination step S500, it is determined whether or not the number of cycles of the charge / discharge cycle has reached a predetermined value. If it is determined that the number of cycles has not reached a predetermined value, the process returns to the charge / discharge analysis step S200, and the charge / discharge analysis step S200 to the cycle number determination step S500 are repeated. On the other hand, when it is determined that the number of cycles has reached a predetermined value, the process proceeds to the next interfacial resistance increase amount integration step S600.

≪界面抵抗増加量積算工程≫
二次電池100のライフサイクルは、複数の閉回路状態330A及び複数の開回路状態330Bを有する。界面抵抗増加量積算工程S600では、複数の閉回路状態330A及び開回路状態330Bの各々に関して算出された界面抵抗の増加量を積算する。
≪Process for integrating increase in interfacial resistance≫
The life cycle of the secondary battery 100 has a plurality of closed circuit states 330A and a plurality of open circuit states 330B. In the interface resistance increase amount integration step S600, the interface resistance increase amount calculated for each of the plurality of closed circuit states 330A and the open circuit state 330B is integrated.

≪劣化特性推定工程≫
劣化特性推定工程S700では、界面抵抗増加量積算工程S600で算出された界面抵抗の増加量の積算値に基づいて、二次電池100のライフサイクル全体における内部抵抗増加率、容量維持率等を算出し、その劣化特性を推定する。
<< Deterioration characteristic estimation process >>
In the deterioration characteristic estimation step S700, the internal resistance increase rate, capacity retention rate, etc. in the entire life cycle of the secondary battery 100 are calculated based on the integrated value of the interface resistance increase amount calculated in the interface resistance increase amount integration step S600. And estimate its deterioration characteristics.

≪電池寿命予測工程≫
電池寿命予測工程S800では、劣化特性推定工程S700で推定された劣化特性に基づき、二次電池100の電池寿命を予測する。
≪Battery life prediction process≫
In the battery life prediction step S800, the battery life of the secondary battery 100 is predicted based on the deterioration characteristics estimated in the deterioration characteristic estimation step S700.

なお、電池寿命予測工程S800は、電池寿命の予測結果をユーザに知らせる工程を含むことができる。具体的には例えば、残りの電池寿命の閾値を予め定めておき、その閾値を下回ったときに、ユーザに対して電池交換を促す信号を表示手段に対し出力するといった処理が考えられる。 The battery life prediction step S800 can include a step of notifying the user of the battery life prediction result. Specifically, for example, a process is conceivable in which a threshold value for the remaining battery life is set in advance, and when the threshold value falls below the threshold value, a signal prompting the user to replace the battery is output to the display means.

また、残りの電池寿命の閾値を下回ったときに、電気回路300のスイッチ330を強制的に開回路状態330Bとするようにしてもよい。この場合、例えば寿命予測装置200の出力部からスイッチ330に対して強制的に開回路状態330Bとする制御信号を出力するようにすればよい。 Further, when the threshold value of the remaining battery life is exceeded, the switch 330 of the electric circuit 300 may be forcibly set to the open circuit state 330B. In this case, for example, the output unit of the life prediction device 200 may output a control signal forcibly setting the open circuit state 330B to the switch 330.

なお、本実施形態に係る寿命予測方法は、保存劣化のみの予測にも使用できる。この場合、図2において、所定のサイクル回数を0回に設定し、初期条件設定工程S100後、例えば所定の時間毎に複数の開回路状態330Bを繰り返すと想定すればよい。そうして、対象の開回路状態330Bが開始する瞬間の時刻を第1時刻、終了する瞬間の時刻を第2時刻とし、複数の開回路状態330Bの各々について保存劣化モデルを用いて界面抵抗の増加量を算出する。そして、得られた界面抵抗の増加量を積算して劣化特性を推定し、電池寿命を予測できる。 The life prediction method according to the present embodiment can also be used for predicting only storage deterioration. In this case, in FIG. 2, it may be assumed that the predetermined number of cycles is set to 0, and after the initial condition setting step S100, for example, a plurality of open circuit states 330B are repeated at predetermined time intervals. Then, the time at the moment when the target open circuit state 330B starts is set to the first time, and the time at the moment when the target open circuit state 330B starts is set to the second time. Calculate the amount of increase. Then, the amount of increase in the obtained interface resistance can be integrated to estimate the deterioration characteristics, and the battery life can be predicted.

<電池モデル>
電池の寿命予測を行うための物理モデルとして、例えば図3に示す電池モデルを使用することができる。電池モデルは、電池の充放電動作モデルと、劣化モデルとにより構成されている。劣化モデルは、サイクル劣化モデルと、保存劣化モデルとにより構成されている。サイクル劣化モデルは、正極側の構造転移相成長モデルと、負極側のLi移動阻害モデルと、により構成されている。また、本実施形態において、保存劣化モデルとしては、自己放電電流モデルを採用する。
<Battery model>
As a physical model for predicting battery life, for example, the battery model shown in FIG. 3 can be used. The battery model is composed of a battery charge / discharge operation model and a deterioration model. The deterioration model is composed of a cycle deterioration model and a storage deterioration model. The cycle deterioration model is composed of a structural transition phase growth model on the positive electrode side and a Li movement inhibition model on the negative electrode side. Further, in the present embodiment, the self-discharge current model is adopted as the storage deterioration model.

≪充放電動作モデル≫
充放電動作モデルは、例えば図4に示す二次電池100の構造をモデル化したものである。
≪Charging / discharging operation model≫
The charge / discharge operation model is, for example, a model of the structure of the secondary battery 100 shown in FIG.

二次電池100として、例えばNMC系のリチウムイオン二次電池を例に挙げて説明する。二次電池100は、図4に示すように、正極110と、負極120と、セパレータ130とを備えている。セパレータ130は、例えば正極110及び負極120間に配置された樹脂に電解液140を浸透させることで構成される。 As the secondary battery 100, for example, an NMC-based lithium ion secondary battery will be described as an example. As shown in FIG. 4, the secondary battery 100 includes a positive electrode 110, a negative electrode 120, and a separator 130. The separator 130 is configured by, for example, infiltrating the electrolytic solution 140 into a resin arranged between the positive electrode 110 and the negative electrode 120.

正極110及び負極120は、それぞれ例えば球状の活物質の集合体で構成される。すなわち、図4に示すように、正極110は正極活物質112を含み、負極120は負極活物質122を含む(以下、正極活物質112及び負極活物質122をまとめて「活物質112,122」と称することがある)。セパレータ130に浸透させた電解液140は正極110及び負極120において、互いに隣り合う正極活物質112間及び互いに隣り合う負極活物質122間にまで浸透し、活物質112,122の表面と電解液140との界面が生じる。 The positive electrode 110 and the negative electrode 120 are each composed of, for example, an aggregate of spherical active materials. That is, as shown in FIG. 4, the positive electrode 110 contains the positive electrode active material 112, and the negative electrode 120 contains the negative electrode active material 122 (hereinafter, the positive electrode active material 112 and the negative electrode active material 122 are collectively referred to as “active material 112, 122”. May be called). In the positive electrode 110 and the negative electrode 120, the electrolytic solution 140 permeated into the separator 130 permeates between the positive electrode active materials 112 adjacent to each other and between the negative electrode active materials 122 adjacent to each other, and the surfaces of the active materials 112 and 122 and the electrolytic solution 140. An interface with is created.

二次電池100の放電時には、正極活物質112の界面上においてリチウムイオンLi及び電子eを吸収する化学反応が行われるとともに、負極活物質122の界面上においてリチウムイオンLi及び電子eを放出する化学反応が進行する。一方、充電時には、逆の反応が進行する。二次電池100では、セパレータ130を介したリチウムイオンLiの授受によって、充放電が行われ、充放電電流が発生する。 Two at the time of battery 100 of the discharge, the lithium ion Li + and electrons e on the interface of the positive electrode active material 112 - along with the chemical reaction of absorbing is performed, lithium ions Li + and electrons e on the interface of the negative electrode active material 122 - The chemical reaction that releases On the other hand, at the time of charging, the reverse reaction proceeds. In the secondary battery 100, charging / discharging is performed by the transfer of lithium ion Li + via the separator 130, and a charging / discharging current is generated.

充放電動作モデルは、例えば活物質112,122の粒径、電気伝導率、正極110及び負極120の開回路電位、電解液140中の塩拡散係数、塩濃度等の確定パラメータと、例えば活物質112,122のLi拡散係数、リチウムイオン濃度、正極110及び負極120における反応速度定数等の変動パラメータと決定し、公知の方法により構築することができる。 The charge / discharge operation model includes, for example, definite parameters such as the particle size of the active materials 112 and 122, the electrical conductivity, the open circuit potentials of the positive electrode 110 and the negative electrode 120, the salt diffusion coefficient in the electrolytic solution 140, and the salt concentration, and for example, the active material. It can be constructed by a known method by determining fluctuation parameters such as the Li diffusion coefficient of 112 and 122, the lithium ion concentration, and the reaction rate constants at the positive electrode 110 and the negative electrode 120.

≪劣化モデル≫
二次電池は、経時的に、またサイクル回数の増加に伴い、内部抵抗が増加し、出力が低下、すなわち劣化していくことが知られている。
≪Deteriorated model≫
It is known that the internal resistance of a secondary battery increases with time and as the number of cycles increases, and the output decreases, that is, deteriorates.

−サイクル劣化モデル−
図5は、後述する<分析試験>において得られた、サイクル回数に対する内部抵抗の値を示したものである。図5に示すように、電池の内部抵抗は、サイクル回数の増加に伴い増加することが判る。そして、この内部抵抗の増加は、電極に含まれる活物質112,122と電解液140との界面において発生する界面抵抗の増加が主要因となっていることが判る。すなわち、サイクル時における界面抵抗の増加を適切にモデル化した界面抵抗増加モデルを採用することにより、二次電池100の寿命予測を精度よく行うことができると考えられる。
-Cycle deterioration model-
FIG. 5 shows the value of the internal resistance with respect to the number of cycles obtained in the <analytical test> described later. As shown in FIG. 5, it can be seen that the internal resistance of the battery increases as the number of cycles increases. It can be seen that the increase in the internal resistance is mainly due to the increase in the interface resistance generated at the interface between the active materials 112 and 122 contained in the electrodes and the electrolytic solution 140. That is, it is considered that the life of the secondary battery 100 can be predicted accurately by adopting the interface resistance increase model that appropriately models the increase in the interface resistance during the cycle.

サイクル劣化モデルは、充放電に応じた二次電池100の劣化をモデル化したものである。サイクル劣化モデルは、正極110における界面抵抗の増加をモデル化した構造転移相成長モデルと、負極120における界面抵抗の増加をモデル化したLi移動阻害モデルとを含む。 The cycle deterioration model models the deterioration of the secondary battery 100 according to charging and discharging. The cycle deterioration model includes a structural transition phase growth model that models an increase in interfacial resistance at the positive electrode 110 and a Li movement inhibition model that models an increase in interfacial resistance at the negative electrode 120.

[構造転移相成長モデル]
正極110では、正極活物質112の表面に構造転移相が存在するが、充放電が繰り返されるのに応じて、この構造転移相が活物質内部に進行し、構造転移相の厚さが増加していく。構造転移相の厚さが増加することにより、正極における界面抵抗が増加し、二次電池100の劣化の原因となる。構造転移相成長モデルは、このような正極110における界面抵抗の増加を構造転移相の厚さの増加に起因するものとしてモデル化したものである。構造転移相成長モデルとしては、公知のモデルを採用することができる。
[Structural transition phase growth model]
In the positive electrode 110, a structural transition phase exists on the surface of the positive electrode active material 112, but as charging and discharging are repeated, this structural transition phase progresses inside the active material, and the thickness of the structural transition phase increases. To go. As the thickness of the structural transition phase increases, the interfacial resistance at the positive electrode increases, which causes deterioration of the secondary battery 100. The structural transition phase growth model models such an increase in interfacial resistance at the positive electrode 110 as a result of an increase in the thickness of the structural transition phase. A known model can be adopted as the structural transition phase growth model.

[Li移動阻害モデル]
図6に示すように、負極120では、負極活物質122表面と電解液140との界面に不動態皮膜124が形成される。不動態皮膜は、負極活物質122表面で起こる化学反応により生成した副反応物が負極活物質122表面に堆積してなる層である。
[Li migration inhibition model]
As shown in FIG. 6, in the negative electrode 120, a passivation film 124 is formed at the interface between the surface of the negative electrode active material 122 and the electrolytic solution 140. The passivation film is a layer formed by depositing a side reaction product generated by a chemical reaction occurring on the surface of the negative electrode active material 122 on the surface of the negative electrode active material 122.

本願発明者らは、上記副反応物の主成分として、リン酸リチウム、炭酸リチウム、フッ化リチウム、酸化リチウムが含まれ得ること、及び、これらのリチウム塩のうち、リン酸リチウムの増加が界面抵抗の増加に大きく寄与することを見出している(特願2018−174387号参照)。 The inventors of the present application may include lithium phosphate, lithium carbonate, lithium fluoride, and lithium oxide as the main components of the side reaction product, and among these lithium salts, an increase in lithium phosphate is an interface. It has been found that it greatly contributes to the increase in resistance (see Japanese Patent Application No. 2018-174387).

詳細には、炭酸リチウム、フッ化リチウム、酸化リチウム等の分子126は、リチウムイオンLiの伝導性が高いと考えられる(以下、分子126を「高イオン伝導性分子126」と称することがある。)。そして、図6中符号Lで示すように、Liは、高イオン伝導性分子126が存在する位置を通って負極活物質122に到達すると考えられる。一方、リン酸リチウム等の分子128は、Liの伝導性が低く(以下、分子128を「低イオン伝導性分子128」と称することがある。)、Liの移動を阻害すると考えられる。従って、不動態皮膜124中に含まれる低イオン伝導性分子128の割合が増加するにつれて、不動態皮膜124におけるリチウムイオンLiの伝導性が低下し、界面抵抗が増加すると考えられる。 Specifically, the molecule 126 such as lithium carbonate, lithium fluoride, and lithium oxide is considered to have high conductivity of lithium ion Li + (hereinafter, the molecule 126 may be referred to as "high ion conductive molecule 126". .). Then, as indicated by reference numeral L in FIG. 6, it is considered that Li + reaches the negative electrode active material 122 through the position where the highly ionic conductive molecule 126 exists. On the other hand, the molecule 128 such as lithium phosphate has low conductivity of Li + (hereinafter, the molecule 128 may be referred to as “low ion conductive molecule 128”), and is considered to inhibit the movement of Li +. Therefore, it is considered that as the proportion of the low ion conductive molecule 128 contained in the passivation film 124 increases, the conductivity of lithium ion Li + in the passivation film 124 decreases and the interfacial resistance increases.

Li移動阻害モデルは、このような負極120における界面抵抗の増加を、不動態皮膜124中における低イオン伝導性分子128の割合の増加に起因するものとしてモデル化したものである。Li移動阻害モデルとしては、例えば特願2018−174387号に記載のモデルを好適に採用することができる。 The Li movement inhibition model models such an increase in interfacial resistance in the negative electrode 120 as a result of an increase in the proportion of low ion conductive molecules 128 in the passivation film 124. As the Li movement inhibition model, for example, the model described in Japanese Patent Application No. 2018-174387 can be preferably adopted.

−保存劣化モデル−
保存劣化モデルは、保存状態の二次電池100の経時的な劣化をモデル化したものである。
-Preservation deterioration model-
The storage deterioration model is a model of deterioration of the secondary battery 100 in a stored state over time.

ここに、本実施形態に係る寿命予測方法は、保存劣化モデルとして、自己放電電流モデルを採用することを特徴とする。以下、自己放電電流モデルについて説明する。 Here, the life prediction method according to the present embodiment is characterized by adopting a self-discharge current model as a storage deterioration model. Hereinafter, the self-discharge current model will be described.

図7は、後述する<比較例>において行った保存試験を行う前のNMC系電池セルの充電曲線と、保存試験後の放電曲線とを示している。図7に示すように、保存試験前の充電曲線における充放電電流量に比較して、保存試験後の放電曲線における充放電電流量はIからIへと減少していることが判る。この充放電電流量の減少分ΔI(=I−I)は、電極に含まれる活物質表面と電解液との界面における副反応物生成の化学反応(本明細書において、「副反応」と称することがある。)により消費されたものと考えられる。 FIG. 7 shows the charge curve of the NMC-based battery cell before the storage test performed in <Comparative Example> described later, and the discharge curve after the storage test. As shown in FIG. 7, it can be seen that the charge / discharge current amount in the discharge curve after the storage test is reduced from I 1 to I 2 as compared with the charge / discharge current amount in the charge curve before the storage test. This decrease in the amount of charge / discharge current ΔI (= I 1 −I 2 ) is a chemical reaction (“side reaction” in the present specification) for producing a side reaction product at the interface between the surface of the active material contained in the electrode and the electrolytic solution. It is considered that it was consumed by.

具体的には例えば、二次電池100がNMC系電池セルの場合、正極活物質112の表面と電解液140との界面では、正極活物質112であるLi(Ni1/3Mn1/3Co1/3)Oと電解液140に含まれるLiとにより、例えば下記式(1)で示すような副反応が自発的に進行すると考えられる。 Specifically, for example, when the secondary battery 100 is an NMC battery cell, at the interface between the surface of the positive electrode active material 112 and the electrolytic solution 140, Li x (Ni 1/3 Mn 1/3) which is the positive electrode active material 112 It is considered that, for example, a side reaction as shown by the following formula (1) spontaneously proceeds due to Co 1/3 ) O 2 and Li + contained in the electrolytic solution 140.

Figure 2021162511
Figure 2021162511

また、負極活物質122の表面と電解液との界面においても、負極活物質122であるグラファイトと電解液140に含まれるLiPF、Liとにより、例えば下記式(2)で示すような副反応が自発的に進行すると考えられる。 Further, also at the interface between the surface of the negative electrode active material 122 and the electrolytic solution, depending on the graphite which is the negative electrode active material 122 and LiPF 6 and Li + contained in the electrolytic solution 140, for example, a sub-type as represented by the following formula (2) The reaction is thought to proceed spontaneously.

Figure 2021162511
Figure 2021162511

従って、正極110側の界面では上記式(1)における(x−2)e、及び、負極120側の界面では上記式(2)における(2y−1)/3eが、充放電電流量の減少分ΔIに相当すると考えられる。この充放電電流量の減少分Δは、電気回路300が開回路状態330Bの間、すなわち保存時に放電した電流量である「自己放電電流量」と定義づけることができる。 Therefore, at the interface on the positive electrode 110 side, (x-2) e in the above formula (1), and at the interface on the negative electrode 120 side, (2y-1) / 3e in the above formula (2) are the charge / discharge current amounts. It is considered that it corresponds to the decrease ΔI of. The decrease Δ of the charge / discharge current amount can be defined as the “self-discharge current amount” which is the amount of current discharged when the electric circuit 300 is in the open circuit state 330B, that is, during storage.

そして、正極110側の界面では、NiO、CoO、MnO、LiO等の副反応物、好ましくはNiO、CoO、MnO等の低イオン伝導性分子が生成することにより、副反応物層が不動態皮膜の一部として成長する。また、負極120側の界面では、図8に示すように、低イオン伝導性分子128であるLix−1PO4−x等の副反応物が生成することにより、、副反応物層が不動態皮膜124の一部として成長する。そうして、界面抵抗が上昇し、二次電池100の劣化が進行すると考えられる。 Then, at the interface on the positive electrode 110 side, a side reaction product such as NiO, CoO, MnO, Li 2 O, preferably a low ion conductive molecule such as NiO, CoO, MnO is generated, so that the side reaction product layer is not formed. It grows as part of a dynamic film. Further, at the interface on the negative electrode 120 side, as shown in FIG. 8, a side reaction product such as Li x-1 PO x F 4-x, which is a low ion conductive molecule 128, is generated, thereby forming a side reaction product layer. Grow as part of the passivation film 124. Then, it is considered that the interfacial resistance increases and the deterioration of the secondary battery 100 progresses.

自己放電電流モデルは、保存時に活物質112,122と電解液との界面に形成される不動態皮膜を構成する副反応物、好ましくは低イオン伝導性分子の生成量を考慮して、界面抵抗の増加をモデル化した界面抵抗増加モデルである。 The self-discharge current model considers the amount of side reactants, preferably low-ion conductive molecules, that form the passivation film formed at the interface between the active materials 112 and 122 and the electrolytic solution during storage, and the interfacial resistance. This is an interfacial resistance increase model that models the increase in.

具体的には、自己放電電流モデルを用いる保存劣化解析工程S430は、例えば図9に示すように、第1物理量と第2物理量との差を算出する物理量差算出工程S431と、前記差に基づいて、自己放電電流量を算出する自己放電電流量算出工程S432と、該自己放電電流量に基づいて副反応物の生成量を算出する副反応物生成量算出工程S433と、該生成量に基づいて、界面抵抗の増加量を算出する界面抵抗増加量算出工程S434と、を備える。 Specifically, the storage deterioration analysis step S430 using the self-discharge current model is based on the physical quantity difference calculation step S431 that calculates the difference between the first physical quantity and the second physical quantity, for example, as shown in FIG. Based on the self-discharge current amount calculation step S432 for calculating the self-discharge current amount, the side reactant production amount calculation step S433 for calculating the side reaction product production amount based on the self-discharge current amount, and the production amount. Therefore, the interfacial resistance increase amount calculation step S434 for calculating the interfacial resistance increase amount is provided.

[物理量差算出工程]
上述のごとく、計時部260は、電気回路300が閉回路状態330Aから開回路状態330Bへ切り替わるときの第1時刻と、電気回路300が開回路状態330Bから次の閉回路状態330Aへ切り替わるときの第2時刻とを取得する。そして、これらの第1時刻及び第2時刻は、記憶部240に格納されている。物理量差算出工程S431では、演算部250が、記憶部240に格納された第1物理量としての第1時刻と第2物理量としての第2時刻を取得し、これらの差を算出する。第1時刻と第2時刻との差は、二次電池100が開回路状態330Bにある時間、すなわち、保存時間である。
[Physical quantity difference calculation process]
As described above, the timekeeping unit 260 is used for the first time when the electric circuit 300 switches from the closed circuit state 330A to the open circuit state 330B and when the electric circuit 300 switches from the open circuit state 330B to the next closed circuit state 330A. Get the second time. The first time and the second time are stored in the storage unit 240. In the physical quantity difference calculation step S431, the calculation unit 250 acquires the first time as the first physical quantity and the second time as the second physical quantity stored in the storage unit 240, and calculates the difference between them. The difference between the first time and the second time is the time when the secondary battery 100 is in the open circuit state 330B, that is, the storage time.

[自己放電電流量算出工程]
例えば、記憶部240には、後述する<比較例>の保存試験や、寿命予測対象の二次電池100と類似の構成の二次電池に関するシミュレーション等の試験的手法を用いることにより予め試験的に求めておいた、二次電池100における保存時間と保存時の自己放電電流量との関係が格納されている。自己放電電流量算出工程S432では、第1時刻と第2時刻との差である保存時間の値と、当該関係と、に基づいて、電気回路300が開回路状態330Bにある保存時の自己放電電流量を算出する。
[Self-discharge current amount calculation process]
For example, the storage unit 240 may be tested in advance by using a test method such as a storage test of <Comparative Example> described later or a simulation of a secondary battery having a configuration similar to that of the secondary battery 100 whose life is predicted. The relationship between the desired storage time in the secondary battery 100 and the amount of self-discharge current during storage is stored. In the self-discharge current amount calculation step S432, the self-discharge during storage when the electric circuit 300 is in the open circuit state 330B based on the value of the storage time, which is the difference between the first time and the second time, and the relationship. Calculate the amount of current.

ここに、予め試験的に求めておいた保存時間と自己放電電流量との関係は、保存時間が増加するにつれて、自己放電電流量の増加率が漸減する傾向を有していることが望ましい。具体的に、図10は、後述する<比較例>の保存試験と同様の試験を行って自己放電電流量ΔIを算出し、保存時間に対して自己放電電流量ΔIの積算値をプロットしたものである。図10に示すように、保存時間がtからt+t+t+tまで増加すると、保存時間t1、t2、t3に対応する複数の開回路状態330Bの各々に関して算出した自己放電電流量ΔI、ΔI、ΔIは、時間的に前の開回路状態330Bの保存時間に比べて後の開回路状態330Bとなるほど減少していることが判る。すなわち、図10の例では、保存時間が増加するにつれて、自己放電電流量の増加率が漸減している。保存時間と自己放電電流量との関係がこのような傾向を有していることにより、寿命予測対象である二次電池100の実態をより精度よく反映したシミュレーションが可能となるから、二次電池の寿命予測を精度よく行うことができる。 Here, it is desirable that the relationship between the storage time and the self-discharge current amount obtained experimentally in advance has a tendency that the rate of increase of the self-discharge current amount gradually decreases as the storage time increases. Specifically, FIG. 10 shows a test in which the same test as the storage test of <Comparative Example> described later is performed to calculate the self-discharge current amount ΔI, and the integrated value of the self-discharge current amount ΔI is plotted against the storage time. Is. As shown in FIG. 10, when the storage time increases from t 0 to t 0 + t 1 + t 2 + t 3, the self-discharge current amount calculated for each of the plurality of open circuit states 330B corresponding to the storage times t1, t2, and t3. It can be seen that ΔI 1 , ΔI 2 , and ΔI 3 are temporally reduced so as to be in the later open circuit state 330B as compared with the storage time in the previous open circuit state 330B. That is, in the example of FIG. 10, the rate of increase in the amount of self-discharge current gradually decreases as the storage time increases. Since the relationship between the storage time and the amount of self-discharge current has such a tendency, it is possible to perform a simulation that more accurately reflects the actual condition of the secondary battery 100, which is the life prediction target, and thus the secondary battery. It is possible to accurately predict the life of the battery.

なお、自己放電電流量ΔIは、保存時に消費された電流量の絶対量であり、正極110及び負極120の大きさは互いに異なる場合がほとんどであるから、実際の計算式には、自己放電電流量ΔIを電極の断面積で除して得られる電流密度、すなわち自己放電電流密度iを用いることが好ましい。 The self-discharge current amount ΔI is an absolute amount of the current amount consumed during storage, and the sizes of the positive electrode 110 and the negative electrode 120 are almost always different from each other. It is preferable to use the current density obtained by dividing the quantity ΔI by the cross-sectional area of the electrode, that is, the self-discharge current density i 0.

[副反応物生成量算出工程]
副反応物生成量算出工程S433では、上記自己放電電流量ΔI、好ましくは自己放電電流密度iに基づいて、活物質112,122の表面と電解液140との界面で生成された副反応物、好ましくは低イオン伝導性分子の生成量を算出する。
[Vaccine production amount calculation process]
In byproducts generated amount calculation step S433, the self-discharge current [Delta] I, preferably based on the self-discharge current density i 0, side reaction products generated in the interface between the surface and the electrolyte solution 140 of active material 112, 122 , Preferably calculate the amount of low ion conductive molecules produced.

[界面抵抗増加量算出工程]
そして、界面抵抗増加量算出工程S434では、上記副反応物の生成量に基づいて、上記界面の界面抵抗の増加量を算出する。
[Process for calculating the amount of increase in interfacial resistance]
Then, in the interface resistance increase amount calculation step S434, the increase amount of the interface resistance at the interface is calculated based on the production amount of the side reaction product.

[具体例]
以下、副反応物生成量算出工程S433及び界面抵抗増加量算出工程S434の具体的な物理モデルの一例を示す。まず、副反応物の生成量を算出するための式を、下記式(3)〜式(5)のように定義できる。
[Concrete example]
Hereinafter, an example of a specific physical model of the by-product production amount calculation step S433 and the interfacial resistance increase amount calculation step S434 will be shown. First, the equations for calculating the amount of side reactants produced can be defined as the following equations (3) to (5).

Figure 2021162511
Figure 2021162511

Figure 2021162511
Figure 2021162511

Figure 2021162511
Figure 2021162511

但し、式(3)〜式(5)中、記号は以下を示す。 However, in the formulas (3) to (5), the symbols indicate the following.

:副反応電流[A]
η:副反応過電圧[V]
film:副反応物抵抗[Ω]
δ:副反応物層の厚み[m]
:自己放電電流密度[A/m
F:ファラデー定数[C/mol]
R:気体定数[J/mol/K]
α:移行係数[−]
J:界面電流密度[A/m
η:副反応初期過電圧[V]
M:副反応物の分子量[kg/mol]
ρ:副反応物の密度[kg/m
n:副反応電子数[−]
式(3)〜式(5)中、J、η、Rfilm、δは変動パラメータである。
J s : Vaccine reaction current [A]
η s : side reaction overvoltage [V]
R film : Vaccine resistance [Ω]
δ: Thickness of side reaction product layer [m]
i 0 : Self-discharge current density [A / m 2 ]
F: Faraday constant [C / mol]
R: Gas constant [J / mol / K]
α: Transition coefficient [-]
J: Interfacial current density [A / m 2 ]
η 0 : Initial overvoltage of side reaction [V]
M: Molecular weight of side reactant [kg / mol]
ρ: Vaccine density [kg / m 3 ]
n: Number of side reaction electrons [-]
In equations (3) to (5), J s , η s , R film , and δ are variable parameters.

式(3)及び式(4)は、副反応物の生成を記述している。式(3)は、電極活物質と電解液の界面において保存時に進行する副反応を引き起こす電流である副反応電流Jを求める式である。式(3)に対し、上述のごとく算出した自己放電電流密度iの値を入力する。なお、式(3)中のηは副反応の過電圧であり、式(4)で表せる。式(4)中Rfilmは、最終的に出力される副反応物による界面抵抗の増加量である。 Equations (3) and (4) describe the formation of side reactants. Equation (3) is an equation for obtaining a side reaction current J s , which is a current that causes a side reaction that proceeds during storage at the interface between the electrode active material and the electrolytic solution. The value of the self-discharge current density i 0 calculated as described above is input to the equation (3). Note that η s in the equation (3) is an overvoltage of a side reaction and can be expressed by the equation (4). In formula (4), R film is the amount of increase in interfacial resistance due to the final output by-product.

式(5)は、副反応物の生成量を、副反応物層の厚みδの増加量として記述する式である。なお、副反応物層の厚みδの増加量とは、保存時における不動態皮膜の膜厚の増加分に相当する。 Equation (5) is an equation that describes the amount of side reaction product produced as the amount of increase in the thickness δ of the side reaction product layer. The increase in the thickness δ of the side reaction product layer corresponds to the increase in the film thickness of the passivation film during storage.

式(3)〜(5)に対し、自己放電電流密度iの値を入力し、その計算結果として、下記式(6)により副反応物層の層厚みδの増加による界面抵抗の増加量Rfilmが出力される。 The value of the self-discharge current density i 0 is input to the equations (3) to (5), and as a result of the calculation, the amount of increase in the interfacial resistance due to the increase in the layer thickness δ of the side reaction product layer according to the following equation (6). The R film is output.

Figure 2021162511
Figure 2021162511

但し、式(6)中、κは副反応物の伝導度[S/m]である。 However, in the formula (6), κ is the conductivity [S / m] of the side reactant.

上記物理モデルの制御因子は、寿命予測対象である二次電池100の電極材料、電解液等の仕様、電極の面積、厚み等のサイズ、SOC等である。また、誤差因子は、外気温、初期抵抗のばらつき、接触抵抗等である。これら制御因子及び誤差因子を考慮し、上記物理モデルを用いて繰り返し計算を行うことにより、二次電池100の保存時における界面抵抗の増加を予測できる。 The control factors of the physical model are the electrode material of the secondary battery 100 whose life is predicted, the specifications of the electrolytic solution, the area of the electrode, the size such as the thickness, the SOC, and the like. The error factors are outside air temperature, variation in initial resistance, contact resistance, and the like. By taking these control factors and error factors into consideration and performing iterative calculations using the above physical model, it is possible to predict an increase in interfacial resistance during storage of the secondary battery 100.

なお、界面抵抗の増加量から、最終的には二次電池100のライフサイクル全体における内部抵抗の増加率、容量量維持率等を算出し、二次電池100の劣化特性を推定する。そうして、二次電池100の寿命予測を行う。具体的には例えば、二次電池100の内部抵抗値R及び内部抵抗増加率Rは、内部抵抗値の初期値をR、界面抵抗の増加量Rfilmの積算値をΣRfilmとすると、それぞれ下記式(7)及び式(8)で与えられる。 Finally, from the amount of increase in interfacial resistance, the rate of increase in internal resistance, the rate of capacity retention, etc. in the entire life cycle of the secondary battery 100 are calculated, and the deterioration characteristics of the secondary battery 100 are estimated. Then, the life of the secondary battery 100 is predicted. Specifically, for example, for the internal resistance value R t and the internal resistance increase rate R p of the secondary battery 100, the initial value of the internal resistance value is R 0 , and the integrated value of the increase amount R film of the interfacial resistance is ΣR film. , Are given by the following equations (7) and (8), respectively.

=R+ΣRfilm ・・・(7)
=R/R ・・・(8)
R t = R 0 + ΣR film ... (7)
R p = R t / R 0 ... (8)

<作用効果>
本実施形態に係る二次電池100の寿命予測方法及び装置では、電気回路300が閉回路状態330Aから開回路状態330Bに切り替わる瞬間の第1時刻と、開回路状態330Bから次の閉回路状態330Aに切り替わる瞬間の第2時刻との差を算出する。そして、第1時刻と第2時刻との差と、予め試験的に求めておいた当該差と自己放電電流量ΔIとの関係と、に基づいて、保存時における自己放電電流量ΔIを算出する。そして、自己放電電流量ΔIから、上記界面において生成した副反応物の生成量を算出する。さらに、当該生成量に基づいて、当該界面における界面抵抗の増加量を算出し、保存時における二次電池の劣化特性を推定する。
<Effect>
In the method and apparatus for predicting the life of the secondary battery 100 according to the present embodiment, the first time at the moment when the electric circuit 300 switches from the closed circuit state 330A to the open circuit state 330B and the next closed circuit state 330A from the open circuit state 330B Calculate the difference from the second time at the moment of switching to. Then, the self-discharge current amount ΔI at the time of storage is calculated based on the difference between the first time and the second time and the relationship between the difference and the self-discharge current amount ΔI obtained experimentally in advance. .. Then, from the self-discharge current amount ΔI, the amount of the side reaction product produced at the interface is calculated. Further, based on the amount of production, the amount of increase in interface resistance at the interface is calculated, and the deterioration characteristics of the secondary battery during storage are estimated.

すなわち、本構成では、保存時における二次電池100の劣化を活物質112,122の表面と電解液140との界面における副反応物の増加によるものと想定する。そうして、自己放電電流量ΔIと副反応との関係を考慮した自己放電電流モデルを構築する。そして、当該自己放電電流モデルを用いて、保存時の二次電池100の劣化特性を推定するから、短期間で精度の高い二次電池の寿命予測が可能となる。 That is, in this configuration, it is assumed that the deterioration of the secondary battery 100 during storage is due to an increase in side reactants at the interface between the surfaces of the active materials 112 and 122 and the electrolytic solution 140. Then, a self-discharge current model considering the relationship between the self-discharge current amount ΔI and the side reaction is constructed. Then, since the deterioration characteristics of the secondary battery 100 during storage are estimated using the self-discharge current model, it is possible to predict the life of the secondary battery with high accuracy in a short period of time.

なお、本構成では、電気回路300が閉回路状態330A、すなわちサイクル時にある場合には、一般的なサイクル劣化モデルを用いて、二次電池100の劣化特性を推定できる。従って、二次電池100のライフサイクルが複数の閉回路状態330A及び複数の開回路状態330Bを有する場合には、複数の閉回路状態330Aについてはサイクル劣化モデルを用い、複数の開回路状態330Bについては保存劣化モデルを用いる。そうして、複数の閉回路状態330A及び複数の開回路状態330Bの各々について界面抵抗の増加量を算出する。そして、界面抵抗の増加量を二次電池100のライフサイクル全体に亘って積算する。 In this configuration, when the electric circuit 300 is in the closed circuit state 330A, that is, during the cycle, the deterioration characteristics of the secondary battery 100 can be estimated by using a general cycle deterioration model. Therefore, when the life cycle of the secondary battery 100 has a plurality of closed circuit states 330A and a plurality of open circuit states 330B, a cycle deterioration model is used for the plurality of closed circuit states 330A, and the plurality of open circuit states 330B are used. Uses a storage deterioration model. Then, the amount of increase in the interfacial resistance is calculated for each of the plurality of closed circuit states 330A and the plurality of open circuit states 330B. Then, the amount of increase in the interfacial resistance is integrated over the entire life cycle of the secondary battery 100.

具体的に、図11は、二次電池100の経時劣化の様子を模式的にグラフ化したものである。保存時には二次電池100は外部に対して仕事をしない。この間にも二次電池100は徐々に劣化し得る。サイクル時には二次電池100は外部に対して仕事をする。この間に二次電池100は保存時よりも速いスピードで劣化し得る。保存時とサイクル時とを複数回繰り返すことにより、保存時及びサイクル時各々において進行した劣化度がライフサイクル全体に亘って積み重なっていく。 Specifically, FIG. 11 is a schematic graph showing the state of deterioration of the secondary battery 100 over time. At the time of storage, the secondary battery 100 does not work to the outside. During this time, the secondary battery 100 may gradually deteriorate. During the cycle, the secondary battery 100 works to the outside. During this time, the secondary battery 100 may deteriorate at a speed faster than that at the time of storage. By repeating the storage time and the cycle time a plurality of times, the degree of deterioration that has progressed during the storage time and the cycle time is accumulated over the entire life cycle.

本実施形態に係る寿命予測方法及び装置では、複数の閉回路状態330A及び開回路状態330Bの各々について算出された界面抵抗の増加量を積算することにより、二次電池100のライフサイクル全体に亘る劣化特性の推定が可能となる。そうして、短期間で精度の高い二次電池100の寿命予測が可能となる。 In the life prediction method and apparatus according to the present embodiment, the increase amount of the interfacial resistance calculated for each of the plurality of closed circuit states 330A and the open circuit state 330B is integrated to cover the entire life cycle of the secondary battery 100. Deterioration characteristics can be estimated. Then, it is possible to predict the life of the secondary battery 100 with high accuracy in a short period of time.

また、本実施形態に係る寿命予測方法及び装置では、物理量として時刻を用いる。保存時間の算出は容易且つ高精度であり、また安定性に優れているため、当該保存時間と予め試験的に求めておいた関係とに基づいて自己放電電流量を算出することにより、精度及び安定性に優れた寿命予測が可能となる。 Further, in the life prediction method and device according to the present embodiment, time is used as a physical quantity. Since the storage time is easy and highly accurate, and has excellent stability, the accuracy and accuracy can be calculated by calculating the self-discharge current amount based on the relationship between the storage time and the relationship obtained on a trial basis in advance. It is possible to predict the life with excellent stability.

(実施形態2)
以下、本開示に係る他の実施形態について詳述する。なお、これらの実施形態の説明において、実施形態1と同じ部分については同じ符号を付して詳細な説明を省略する。
(Embodiment 2)
Hereinafter, other embodiments according to the present disclosure will be described in detail. In the description of these embodiments, the same parts as those of the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.

上記実施形態1では、物理量として時刻を用いる場合を例に挙げて説明したが、物理量は時刻に限られるものではなく、電圧値、電流値等を用いてもよい。 In the first embodiment, the case where the time is used as the physical quantity has been described as an example, but the physical quantity is not limited to the time, and a voltage value, a current value, or the like may be used.

具体的には例えば、物理量として電圧値を用いる場合には、例えば、第1物理量は、電気回路300が閉回路状態330Aから開回路状態330Bへ切り替わる直前の電圧値である第1電圧値とすることができる。また、第2物理量は、電気回路300が開回路状態330Bから閉回路状態330Aへ切り替わった直後の電圧値である第2電圧値とすることができる。なお、第1電圧値及び第2電圧値は、例えば図7に示すV、Vである。 Specifically, for example, when a voltage value is used as the physical quantity, for example, the first physical quantity is the first voltage value which is the voltage value immediately before the electric circuit 300 switches from the closed circuit state 330A to the open circuit state 330B. be able to. Further, the second physical quantity can be a second voltage value which is a voltage value immediately after the electric circuit 300 is switched from the open circuit state 330B to the closed circuit state 330A. The first voltage value and the second voltage value are, for example, V 1 and V 2 shown in FIG. 7.

この場合、演算部250は、記憶部240に格納された第1電圧値及び第2電圧値を取得し、両者の差を算出する。当該差は、開回路状態330B、すなわち保存時に生じた電圧の減少分となり、この電圧の減少分から自己放電電流量ΔIを算出できる。 In this case, the calculation unit 250 acquires the first voltage value and the second voltage value stored in the storage unit 240, and calculates the difference between the two. The difference is the open circuit state 330B, that is, the decrease in voltage generated during storage, and the self-discharge current amount ΔI can be calculated from this decrease in voltage.

同様に、物理量として電流値を用いる場合には、例えば、第1物理量は、電気回路300が閉回路状態330Aから開回路状態330Bへ切り替わる直前の電流値(以下、「第1電流値」と称する。)とすることができる。また、第2物理量は、電気回路300が開回路状態330Bから閉回路状態330Aへ切り替わった直後の電流値(以下、「第2電流値」と称する。)とすることができる。なお、第1電流値及び第2電流値は、例えば図7に示すI、Iである。 Similarly, when a current value is used as the physical quantity, for example, the first physical quantity is the current value immediately before the electric circuit 300 switches from the closed circuit state 330A to the open circuit state 330B (hereinafter, referred to as "first current value"). .) Can be. Further, the second physical quantity can be a current value immediately after the electric circuit 300 is switched from the open circuit state 330B to the closed circuit state 330A (hereinafter, referred to as “second current value”). The first current value and the second current value are, for example, I 1 and I 2 shown in FIG.

この場合、演算部250は、記憶部240に格納された第1電流値及び第2電流値を取得し、両者の差を算出する。当該差は、開回路状態330B、すなわち保存時に生じた電流の減少分となり、自己放電電流量ΔIそのものに相当する。 In this case, the calculation unit 250 acquires the first current value and the second current value stored in the storage unit 240, and calculates the difference between the two. The difference is the open circuit state 330B, that is, the decrease in the current generated during storage, and corresponds to the self-discharge current amount ΔI itself.

物理量として電圧値又は電流値を用いることにより、モデル化が容易であり自己放電電流量ΔIの算出が容易となり得る。しかしながら、スイッチ330のオンオフ等に伴う電圧値/電流値の検出値の誤差が大きくなることによる、自己放電電流量の算出精度の低下を抑制する観点からは、実施形態1の時刻を物理量とする構成が望ましい。 By using a voltage value or a current value as a physical quantity, modeling can be easily performed and the self-discharge current amount ΔI can be easily calculated. However, from the viewpoint of suppressing a decrease in the calculation accuracy of the self-discharge current amount due to a large error in the detected value of the voltage value / current value due to the on / off of the switch 330, the time of the first embodiment is used as the physical quantity. The configuration is desirable.

(実施形態3)
正極110の界面抵抗増加モデルは、上述の構造転移相成長モデルに限られず、他の物理モデルであってもよい。具体的には例えば、負極120に適用した上記Li移動阻害モデルや、例えば界面抵抗の増加を不動態皮膜の膜厚の増加に起因するものとしてモデル化した不動態皮膜成長モデル等の公知のモデル、又はこれらを組み合わせたモデルであってもよい。
(Embodiment 3)
The model for increasing the interfacial resistance of the positive electrode 110 is not limited to the above-mentioned structural transition phase growth model, and may be another physical model. Specifically, for example, a known model such as the Li movement inhibition model applied to the negative electrode 120, or a passivation film growth model in which an increase in interfacial resistance is modeled as a result of an increase in the film thickness of the passivation film. , Or a model in which these are combined.

具体的には、例えばNMC系電池では、サイクル時においても、正極活物質112と電解液140の界面では、上記式(1)と類似の反応が進行し、低イオン伝導性分子としてのNiO、CoO、MnO等が生成する。そうして、不動態皮膜が成長する。従って、正極110における界面抵抗の増加を、不動態皮膜中における低イオン伝導性分子の割合の増加に起因するものとしてモデル化できるから、正極110の界面抵抗増加モデルとしてLi移動阻害モデルを採用できる。 Specifically, for example, in an NMC-based battery, a reaction similar to the above formula (1) proceeds at the interface between the positive electrode active material 112 and the electrolytic solution 140 even during the cycle, and NiO as a low ion conductive molecule, CoO, MnO, etc. are generated. Then, the passivation film grows. Therefore, since the increase in the interfacial resistance of the positive electrode 110 can be modeled as a result of the increase in the proportion of low ion conductive molecules in the passivation film, the Li movement inhibition model can be adopted as the model for increasing the interfacial resistance of the positive electrode 110. ..

なお、負極120の界面抵抗増加モデルも、実施形態1のLi移動阻害モデルに限らず、上述の構造転移相成長モデルや、上記不動態皮膜成長モデル等の他の公知のモデルであってもよい。 The model for increasing the interfacial resistance of the negative electrode 120 is not limited to the Li movement inhibition model of the first embodiment, and may be another known model such as the above-mentioned structural transition phase growth model or the above-mentioned passivation film growth model. ..

正極110及び負極120における界面抵抗増加モデルは、想定される電池の構成に応じて適切なものを適宜選択するようにすればよい。 As the interface resistance increase model for the positive electrode 110 and the negative electrode 120, an appropriate one may be appropriately selected according to the assumed battery configuration.

次に、具体的に実施した実施例及び比較例について説明する。 Next, a specific example and a comparative example will be described.

<比較例>
表1に示すNMC系電池セルについて、保存試験を行った。具体的には、温度45℃、SOC100%の状態で、試験開始から0時間、290時間、570時間、1050時間、1350時間、1470時間経過後の、電池セルの内部抵抗値をIV試験により測定した。IV試験は、温度25℃、SOC50%の状態から10秒間、0.5C、0.7C、1C、2Cの電流を流すという条件により行った。結果を図12に示す。なお、図12では、0時間の内部抵抗値を100%とし、それぞれの保存時間の内部抵抗値を0時間の内部抵抗値との比較値としての内部抵抗増加率(%)で示している。
<Comparison example>
A storage test was conducted on the NMC battery cells shown in Table 1. Specifically, the internal resistance value of the battery cell is measured by the IV test after 0 hours, 290 hours, 570 hours, 1050 hours, 1350 hours, and 1470 hours have passed from the start of the test at a temperature of 45 ° C. and 100% SOC. bottom. The IV test was carried out under the condition that a current of 0.5C, 0.7C, 1C and 2C was passed for 10 seconds from a state of a temperature of 25 ° C. and a SOC of 50%. The results are shown in FIG. In FIG. 12, the internal resistance value at 0 hours is set to 100%, and the internal resistance value at each storage time is shown by the internal resistance increase rate (%) as a comparison value with the internal resistance value at 0 hours.

Figure 2021162511
Figure 2021162511

<実施例>
表1に示すNMC系電池セルについて、実施形態1において記載した方法により、自己放電電流モデルを作成した。なお、電池セルの保存時間と自己放電電流との関係は、<比較例>と同様の保存試験により求めた。当該自己放電電流モデルを用いたシミュレーションにより得られた、保存時間に対する内部抵抗増加率の変化曲線を図12中実線で示す。なお、自己放電電流モデルのモデル開発期間、すなわち自己放電電流モデルの作成開始から完成までに要した期間は、約0.1年であった。
<Example>
For the NMC battery cells shown in Table 1, a self-discharge current model was created by the method described in the first embodiment. The relationship between the storage time of the battery cell and the self-discharge current was determined by the same storage test as in <Comparative Example>. The change curve of the internal resistance increase rate with respect to the storage time obtained by the simulation using the self-discharge current model is shown by the solid line in FIG. The model development period of the self-discharge current model, that is, the period required from the start of creation of the self-discharge current model to the completion was about 0.1 year.

<考察>
図12に示すように、実施例の予測結果は、比較例の実機試験結果と高い整合性を有していることが判る(誤差2.0%)。なお、比較例において、290時間の内部抵抗値は、0時間のセルの内部抵抗値に比べて低くなっているが、このことは、例えば二次電池製造時のエージング処理が不十分であったこと等が原因と考えられる。二次電池の電池寿命を予測する上では、例えば10年後等の劣化特性を推定することが重要であるから、初期における内部抵抗値のばらつきが与える影響は小さいと考えられる。
<Discussion>
As shown in FIG. 12, it can be seen that the prediction results of the examples have high consistency with the actual test results of the comparative examples (error 2.0%). In the comparative example, the internal resistance value at 290 hours was lower than the internal resistance value of the cell at 0 hours, which means that, for example, the aging process at the time of manufacturing the secondary battery was insufficient. It is thought that this is the cause. In predicting the battery life of a secondary battery, it is important to estimate the deterioration characteristics such as after 10 years, so it is considered that the influence of the variation in the internal resistance value at the initial stage is small.

また、従来の統計モデルは、例えば、試験条件等を調整しつつ、複数の電池セルについて、比較例に示すデータと同様のデータを収集し、最小二乗法等を用いて作成される。このような統計モデルのモデル開発期間、すなわち保存試験の開始から統計モデルの完成までに要する期間は、少なくとも約2年に及び得る。 Further, the conventional statistical model is created by collecting the same data as the data shown in the comparative example for a plurality of battery cells while adjusting the test conditions and the like, and using the least squares method or the like. The model development period for such a statistical model, that is, the period required from the start of the storage test to the completion of the statistical model, can extend to at least about two years.

実施例の電池モデルは、このような従来の統計モデルに比べて、モデル開発期間が極めて短期間である。 The battery model of the embodiment has an extremely short model development period as compared with such a conventional statistical model.

このように、本開示に係る二次電池の寿命予測方法及び装置によれば、二次電池の寿命予測を非常に短期間且つ低コストで、精度よく行うことができる。 As described above, according to the method and apparatus for predicting the life of the secondary battery according to the present disclosure, the life of the secondary battery can be predicted accurately in a very short period of time and at low cost.

<分析試験>
表2に示す電池セルについて、温度55℃、充電/放電電流5.8A(1C)/5.8A(1C)の条件で充放電動作を所定回数(0回、400回、800回)繰り返す充放電試験を行った。
<Analytical test>
The battery cells shown in Table 2 are charged and discharged by repeating the charging / discharging operation a predetermined number of times (0 times, 400 times, 800 times) under the conditions of a temperature of 55 ° C. and a charging / discharging current of 5.8A (1C) / 5.8A (1C). A discharge test was performed.

Figure 2021162511
Figure 2021162511

充放電試験後の電池セルについて、交流インピーダンス測定を行い、得られたナイキストプロットについてフィッティング解析を行って電池セルの内部抵抗を算出した(図5)。なお、図5に示す界面抵抗の値は、当該交流インピーダンス測定及びそのフィッティング解析結果から算出される正極及び負極の各界面抵抗の合算値である。 The AC impedance of the battery cell after the charge / discharge test was measured, and the obtained Nyquist plot was subjected to fitting analysis to calculate the internal resistance of the battery cell (FIG. 5). The value of the interfacial resistance shown in FIG. 5 is the total value of the interfacial resistance of the positive electrode and the negative electrode calculated from the AC impedance measurement and the fitting analysis result thereof.

本開示は、物理モデルを用いた保存劣化の推定を可能とし、二次電池の電池寿命をより短期間で精度よく予測可能な方法、その装置及び当該装置を備えた車両を提供することができるので、極めて有用である。 The present disclosure enables estimation of storage deterioration using a physical model, and can provide a method capable of accurately predicting the battery life of a secondary battery in a shorter period of time, the device thereof, and a vehicle equipped with the device. So it is extremely useful.

100 二次電池
110 正極
112 正極活物質
120 負極
122 負極活物質
124 (負極の)不動態皮膜
126 高イオン伝導性分子
128 低イオン伝導性分子
130 セパレータ
140 電解液
200 寿命予測装置
210 制御部
220 入力部
230 出力部
240 記憶部
250 演算部
260 計時部
300 電気回路
301 負荷
310 電流センサ
320 電圧センサ
330 スイッチ
330A 閉回路状態
330B 開回路状態
400 電源システム
100 Secondary battery 110 Positive electrode 112 Positive electrode active material 120 Negative electrode 122 Negative electrode active material 124 (Negative electrode) Immobility film 126 High ion conductive molecule 128 Low ion conductive molecule 130 Separator 140 Electrolyte 200 Life predictor 210 Control unit 220 Input Unit 230 Output unit 240 Storage unit 250 Calculation unit 260 Measuring unit 300 Electric circuit 301 Load 310 Current sensor 320 Voltage sensor 330 Switch 330A Closed circuit state 330B Open circuit state 400 Power supply system

Claims (11)

二次電池の電池寿命を予測する方法であって、
前記二次電池を含む電気回路の開回路状態が開始するときの前記二次電池の物理量である第1物理量と、前記開回路状態が終了するときの前記二次電池の前記物理量である第2物理量とを取得し、前記第1物理量と前記第2物理量との差を算出する工程と、
前記第1物理量と前記第2物理量との前記差に基づいて、前記電気回路が前記開回路状態の間に放電した電流量である自己放電電流量を算出する工程と、
前記自己放電電流量に基づいて、前記二次電池の電極に含まれる活物質表面と電解液との界面において生成された副反応物の生成量を算出する工程と、
前記副反応物の前記生成量に基づいて、前記二次電池の界面抵抗の増加量を算出する工程と、
前記界面抵抗の前記増加量に基づいて、前記開回路状態における前記二次電池の劣化特性を推定する工程と、を備えた
ことを特徴とする二次電池の寿命予測方法。
It is a method of predicting the battery life of a secondary battery.
The first physical quantity, which is the physical quantity of the secondary battery when the open circuit state of the electric circuit including the secondary battery starts, and the second physical quantity, which is the physical quantity of the secondary battery when the open circuit state ends. A step of acquiring a physical quantity and calculating the difference between the first physical quantity and the second physical quantity, and
A step of calculating the self-discharge current amount, which is the amount of current discharged by the electric circuit during the open circuit state, based on the difference between the first physical quantity and the second physical quantity.
Based on the self-discharge current amount, a step of calculating the amount of by-product produced at the interface between the active material surface and the electrolytic solution contained in the electrode of the secondary battery, and
A step of calculating the amount of increase in the interfacial resistance of the secondary battery based on the amount of the side reaction product produced, and
A method for predicting the life of a secondary battery, which comprises a step of estimating deterioration characteristics of the secondary battery in the open circuit state based on the increase amount of the interfacial resistance.
請求項1において、
前記電気回路は、前記開回路状態の前後は、閉回路状態であり、
前記開回路状態が開始するときとは、前記電気回路が前の閉回路状態から前記開回路状態へ切り替わるときであり、
前記開回路状態が終了するときとは、前記電気回路が前記開回路状態から後の閉回路状態へ切り替わるときである
ことを特徴とする二次電池の寿命予測方法。
In claim 1,
The electric circuit is in a closed circuit state before and after the open circuit state.
The time when the open circuit state starts is when the electric circuit switches from the previous closed circuit state to the open circuit state.
A method for predicting the life of a secondary battery, wherein the end of the open circuit state is a time when the electric circuit is switched from the open circuit state to a later closed circuit state.
請求項1又は請求項2において、
前記物理量は、時刻であり、
前記物理量が前記時刻の場合は、前記第1物理量と前記第2物理量との前記差は、前記二次電池が前記開回路状態にある時間としての保存時間であり、
前記自己放電電流量を算出する工程では、前記差を算出する工程において算出された前記保存時間と、予め試験的に求めておいた前記二次電池の保存時間と自己放電電流量との関係と、に基づいて前記自己放電電流量を算出する
ことを特徴とする二次電池の寿命予測方法。
In claim 1 or 2,
The physical quantity is time and
When the physical quantity is the time, the difference between the first physical quantity and the second physical quantity is the storage time as the time when the secondary battery is in the open circuit state.
In the step of calculating the self-discharge current amount, the relationship between the storage time calculated in the step of calculating the difference and the storage time of the secondary battery and the self-discharge current amount obtained in advance on a trial basis. A method for predicting the life of a secondary battery, which comprises calculating the self-discharge current amount based on.
請求項2において、
前記物理量は、電圧値又は電流値であり、
前記第1物理量は、前記電気回路が前記前の閉回路状態から前記開回路状態へ切り替わる直前の前記電圧値又は前記電流値であり、
前記第2物理量は、前記電気回路が前記開回路状態から前記次の閉回路状態へ切り替わった直後の前記電圧値又は前記電流値である
ことを特徴とする二次電池の寿命予測方法。
In claim 2,
The physical quantity is a voltage value or a current value, and is
The first physical quantity is the voltage value or the current value immediately before the electric circuit switches from the previous closed circuit state to the open circuit state.
A method for predicting the life of a secondary battery, wherein the second physical quantity is the voltage value or the current value immediately after the electric circuit is switched from the open circuit state to the next closed circuit state.
請求項1〜4のいずれか1つにおいて、
前記二次電池のライフサイクルは、複数の前記開回路状態を有し、
前記複数の開回路状態の各々に関して算出された前記自己放電電流量は、時間的に前の前記開回路状態に比べて後の前記開回路状態となるほど減少する
ことを特徴とする二次電池の寿命予測方法。
In any one of claims 1 to 4,
The life cycle of the secondary battery has a plurality of the open circuit states.
The amount of self-discharge current calculated for each of the plurality of open circuit states is reduced in time from the previous open circuit state to the later open circuit state. Life prediction method.
請求項1〜5のいずれか1つにおいて、
前記電気回路は、前記開回路状態の前後の少なくとも一方において、閉回路状態にあり、
前記電気回路が前記閉回路状態である場合には、前記二次電池の充放電電流に基づいて、前記界面の界面抵抗の増加量を算出する工程をさらに備えた
ことを特徴とする二次電池の寿命予測方法。
In any one of claims 1 to 5,
The electric circuit is in a closed circuit state at least one before and after the open circuit state.
When the electric circuit is in the closed circuit state, the secondary battery is further provided with a step of calculating the amount of increase in the interfacial resistance at the interface based on the charge / discharge current of the secondary battery. Life prediction method.
請求項6において、
前記二次電池のライフサイクルは、複数の前記閉回路状態及び複数の前記開回路状態を有し、
複数の前記閉回路状態及び複数の前記開回路状態の各々に関して算出された前記界面抵抗の増加量を積算する工程をさらに備え、
前記二次電池の劣化特性を推定する工程では、前記界面抵抗の前記増加量の積算値に基づいて、前記二次電池のライフサイクル全体における劣化特性を推定する
ことを特徴とする二次電池の寿命予測方法。
In claim 6,
The life cycle of the secondary battery has a plurality of the closed circuit states and a plurality of the open circuit states.
A step of integrating the increase amount of the interfacial resistance calculated for each of the plurality of closed circuit states and the plurality of open circuit states is further provided.
In the step of estimating the deterioration characteristics of the secondary battery, the deterioration characteristics of the secondary battery over the entire life cycle of the secondary battery are estimated based on the integrated value of the increase amount of the interfacial resistance. Life prediction method.
請求項1〜7のいずれか1つにおいて、
前記二次電池は、車両に搭載された二次電池である
ことを特徴とする二次電池の寿命予測方法。
In any one of claims 1 to 7,
A method for predicting the life of a secondary battery, wherein the secondary battery is a secondary battery mounted on a vehicle.
請求項8において、
前記物理量は、時刻であり、
前記第1物理量は、前記車両がイグニッションオフされた時刻であり、
前記第2物理量は、前記車両が前記イグニッションオフされた後初めてイグニッションオンされた時刻であり、
前記第1物理量と前記第2物理量との前記差は、前記車両の前記イグニッションオフから前記イグニッションオンまでの時間である
ことを特徴とする二次電池の寿命予測方法。
In claim 8.
The physical quantity is time and
The first physical quantity is the time when the vehicle is ignited off.
The second physical quantity is the time when the ignition is turned on for the first time after the vehicle is turned off.
A method for predicting the life of a secondary battery, wherein the difference between the first physical quantity and the second physical quantity is the time from the ignition off to the ignition on of the vehicle.
二次電池の電池寿命を予測する装置であって、
前記二次電池を含む電気回路の開回路状態が開始するときの前記二次電池の前記物理量である第1物理量と、前記電気回路の前記開回路状態が終了するときの前記二次電池の前記物理量である第2物理量とを取得する取得部と、
前記第1物理量と前記第2物理量との差を算出する第1算出部と、
前記差に基づいて、前記電気回路が前記開回路状態の間に放電した電流量である自己放電電流量を算出する第2算出部と、
前記自己放電電流量に基づいて、前記二次電池の電極に含まれる活物質表面と電解液との界面において生成された副反応物の生成量を算出する第3算出部と、
前記副反応物の前記生成量に基づいて、前記界面の界面抵抗の増加量を算出する第4算出部と、
前記界面抵抗の前記増加量に基づいて、前記開回路状態における前記二次電池の劣化特性を推定する推定部と、を備えた
ことを特徴とする二次電池の寿命予測装置。
A device that predicts the battery life of a secondary battery.
The first physical amount, which is the physical amount of the secondary battery when the open circuit state of the electric circuit including the secondary battery starts, and the secondary battery of the secondary battery when the open circuit state of the electric circuit ends. An acquisition unit that acquires a second physical quantity, which is a physical quantity,
A first calculation unit that calculates the difference between the first physical quantity and the second physical quantity, and
Based on the difference, the second calculation unit that calculates the self-discharge current amount, which is the amount of current discharged by the electric circuit during the open circuit state,
A third calculation unit that calculates the amount of by-reactants produced at the interface between the surface of the active material and the electrolytic solution contained in the electrodes of the secondary battery based on the amount of self-discharge current.
A fourth calculation unit that calculates the amount of increase in interfacial resistance at the interface based on the amount of the side reaction product produced.
A secondary battery life prediction device including an estimation unit that estimates deterioration characteristics of the secondary battery in the open circuit state based on the increase in the interfacial resistance.
前記二次電池と、請求項10に記載の二次電池の寿命予測装置と、を備えた車両。
A vehicle including the secondary battery and the life prediction device for the secondary battery according to claim 10.
JP2020066186A 2020-04-01 2020-04-01 Rechargeable battery life prediction method, life prediction device, and vehicle Active JP7447639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020066186A JP7447639B2 (en) 2020-04-01 2020-04-01 Rechargeable battery life prediction method, life prediction device, and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020066186A JP7447639B2 (en) 2020-04-01 2020-04-01 Rechargeable battery life prediction method, life prediction device, and vehicle

Publications (2)

Publication Number Publication Date
JP2021162511A true JP2021162511A (en) 2021-10-11
JP7447639B2 JP7447639B2 (en) 2024-03-12

Family

ID=78003128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020066186A Active JP7447639B2 (en) 2020-04-01 2020-04-01 Rechargeable battery life prediction method, life prediction device, and vehicle

Country Status (1)

Country Link
JP (1) JP7447639B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114325407A (en) * 2021-12-31 2022-04-12 珠海冠宇电池股份有限公司 Battery self-discharge test method, device, equipment and computer storage medium

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3705703B2 (en) 1998-09-18 2005-10-12 松下電器産業株式会社 Method for controlling electrochemical element
JP5163229B2 (en) 2008-03-28 2013-03-13 新神戸電機株式会社 Battery state detection system and automobile equipped with the same
JP6148498B2 (en) 2013-02-28 2017-06-14 積水化学工業株式会社 Battery model construction method and storage battery deterioration estimation device
US20160239586A1 (en) 2013-08-28 2016-08-18 Hitachi, Ltd. Lifetime prediction method and system of lithium-ion battery
CN103901351B (en) 2014-03-18 2016-10-05 浙江大学城市学院 A kind of monomer lithium ion battery SOC method of estimation based on sliding window filtering
CN109143106A (en) 2018-08-09 2019-01-04 南京卡耐新能源技术发展有限公司 A method of battery consistency is quickly detected by ac impedance measurement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114325407A (en) * 2021-12-31 2022-04-12 珠海冠宇电池股份有限公司 Battery self-discharge test method, device, equipment and computer storage medium
CN114325407B (en) * 2021-12-31 2023-08-22 珠海冠宇电池股份有限公司 Battery self-discharge test method, device, equipment and computer storage medium

Also Published As

Publication number Publication date
JP7447639B2 (en) 2024-03-12

Similar Documents

Publication Publication Date Title
CN110168389B (en) Apparatus and method for obtaining degradation information of lithium ion battery cell
JP5537236B2 (en) Lithium ion secondary battery deterioration determination device and deterioration determination method
CN111801870B (en) Charging apparatus and charging method for secondary battery
KR101903225B1 (en) Apparatus for Estimating Degree-of-Aging of Secondary Battery and Method thereof
JP5761378B2 (en) Secondary battery control device and control method
JP5862836B2 (en) Battery system
JP3669673B2 (en) Electrochemical element degradation detection method, remaining capacity detection method, and charger and discharge control device using the same
CN110678765B (en) Apparatus and method for testing performance of battery cell
JP6668905B2 (en) Battery deterioration estimation device
Guha et al. Remaining useful life estimation of lithium-ion batteries based on the internal resistance growth model
JP6284824B2 (en) Secondary battery monitoring device, secondary battery deterioration prediction device, and method for predicting battery capacity of secondary battery
JP5768754B2 (en) Estimation apparatus and estimation method
CN104813179A (en) Device for estimating post-deterioration functionality of storage element, method for estimating post-deterioration functionality, and storage system
JP2012122817A (en) Reversible capacity estimation method of nonaqueous electrolyte secondary battery, life prediction method, reversible capacity estimation method, life prediction device and power storage system
CN112534283B (en) Battery management system, battery management method, battery pack, and electric vehicle
CN102540085B (en) The optimization method of electric component parameter and system in energy-storage system model
Li et al. Real-time peak power prediction for zinc nickel single flow batteries
US20230273263A1 (en) Battery Diagnosing Apparatus, Method and System
JP2021163632A (en) Secondary battery deterioration estimation method, life estimation method and control device
JP7447639B2 (en) Rechargeable battery life prediction method, life prediction device, and vehicle
US11251472B2 (en) System and method for operating batteries based on electrode crystal structure change
CN108963354B (en) State estimation device and state estimation method for lithium ion battery
CN110687460A (en) Soc estimation method
JP7103105B2 (en) Secondary battery life prediction method and its equipment
CN110687459B (en) Soc estimation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240212

R150 Certificate of patent or registration of utility model

Ref document number: 7447639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150