JP2022020502A - 光検出装置、及びカメラシステム - Google Patents

光検出装置、及びカメラシステム Download PDF

Info

Publication number
JP2022020502A
JP2022020502A JP2020124037A JP2020124037A JP2022020502A JP 2022020502 A JP2022020502 A JP 2022020502A JP 2020124037 A JP2020124037 A JP 2020124037A JP 2020124037 A JP2020124037 A JP 2020124037A JP 2022020502 A JP2022020502 A JP 2022020502A
Authority
JP
Japan
Prior art keywords
light
photodetector
semiconductor substrate
chip lens
scattering structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020124037A
Other languages
English (en)
Inventor
淳 戸田
Atsushi Toda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Semiconductor Solutions Corp
Original Assignee
Sony Semiconductor Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Semiconductor Solutions Corp filed Critical Sony Semiconductor Solutions Corp
Priority to JP2020124037A priority Critical patent/JP2022020502A/ja
Priority to US18/005,030 priority patent/US20230238414A1/en
Priority to PCT/JP2021/023071 priority patent/WO2022019015A1/ja
Publication of JP2022020502A publication Critical patent/JP2022020502A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14629Reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

【課題】光吸収効率がより向上した光検出装置、及びカメラシステムを提供する。【解決手段】光電変換部を内部に含む半導体基板と、前記半導体基板の光の入射面側に周期的に設けられた散乱構造と、前記散乱構造のさらに前記光の入射面側に設けられ、前記光の入射面が平面である柱体形状のオンチップレンズとを備える、光検出装置。【選択図】図1

Description

本開示は、光検出装置、及びカメラシステムに関する。
近年、CMOS(Complementary Metal-Oxide-Semiconductor)イメージセンサ又はCCD(Charge Coupled Device)イメージセンサなどの光検出装置では、光電変換部における入射光の光路長を長くすることで、入射光の検出感度を向上させることが提案されている。
例えば、光検出装置の画素の受光面に凹凸構造を設け、入射光を散乱させることで、光電変換部における入射光の光路長をより長くすることが提案されている(例えば、特許文献1)。
特開2019-46960号公報
このような光検出装置では、入射光の検出感度のさらなる向上が望まれている。特に、長波長の入射光では、光吸収係数の波長依存性のために、光電変換部の単位厚み当たりの光吸収効率が低くなってしまう。そのため、光検出装置では、長波長の入射光をより効率的に光電変換部にて吸収させることが重要となる。
よって、光吸収効率がより向上した光検出装置、及びカメラシステムを提供することが望ましい。
本開示の一実施形態に係る光検出装置は、光電変換部を内部に含む半導体基板と、前記半導体基板の光の入射面側に周期的に設けられた散乱構造と、前記散乱構造のさらに前記光の入射面側に設けられ、前記光の入射面が平面である柱体形状のオンチップレンズとを備える。
本開示の一実施形態に係るカメラシステムは、光検出装置を含み、前記光検出装置は、光電変換部を内部に含む半導体基板と、前記半導体基板の光の入射面側に周期的に設けられた散乱構造と、前記散乱構造のさらに前記光の入射面側に設けられ、前記光の入射面が平面である柱体形状のオンチップレンズとを備える。
本開示の一実施形態に係る光検出装置、及びカメラシステムによれば、光電変換部を内部に含む半導体基板の光の入射面側に、周期的構造を有する散乱構造と、光の入射面が平面である柱体形状のオンチップレンズとが設けられる。これにより、例えば、光検出装置は、柱体形状のオンチップレンズにて、散乱構造に入射する入射光の最大入射角度をより大きくすることができるため、散乱構造にて入射光の回折をより強く発生させることができる。
本開示の一実施形態に係る光検出装置の断面構成を示す縦断面図である。 図1の散乱構造の平面構成を示す上面図である。 図1のオンチップレンズの平面構成を示す上面図である。 オンチップレンズによる集光の原理を説明する説明図である。 散乱構造による回折条件を説明する説明図である。 球面形状のオンチップレンズを備える光検出装置における入射光の波面のパワー分布を見積もったヒートマップ図である。 柱体形状のオンチップレンズを備える光検出装置における入射光の波面のパワー分布を見積もったヒートマップ図である。 球面形状又は柱体形状のオンチップレンズを備え、散乱構造を備える光検出装置の量子効率を見積もったグラフ図である。 球面形状又は柱体形状のオンチップレンズを備え、散乱構造を備えない光検出装置の量子効率を見積もったグラフ図である。 柱体形状のオンチップレンズの平面構成のバリエーションを示す上面図である。 四角柱形状又は八角柱形状のオンチップレンズを備える光検出装置の量子効率を見積もったグラフ図である。 四角柱形状のオンチップレンズのパターニングに用いられるマスクの一例を示す平面図である。 第1の変形例に係る光検出装置の断面構成を示す縦断面図である。 図10の散乱構造の平面構成を示す上面図である。 第2の変形例に係る光検出装置の断面構成を示す縦断面図である。 赤外線フィルタの光透過率スペクトルの一例を示すグラフ図である。 本開示の一実施形態に係る光検出装置を含むカメラシステムの概要を示す説明図である。
以下、本開示における実施形態について、図面を参照して詳細に説明する。以下で説明する実施形態は本開示の一具体例であって、本開示にかかる技術が以下の態様に限定されるわけではない。また、本開示の各構成要素の配置、寸法、及び寸法比等についても、各図に示す様態に限定されるわけではない。
なお、説明は以下の順序で行う。
1.構成例
2.作用効果
3.変形例
3.1.第1の変形例
3.2.第2の変形例
4.適用例
<1.構成例>
まず、図1~図2Bを参照して、本開示の一実施形態に係る光検出装置1の構成例について説明する。図1は、本実施形態に係る光検出装置1の断面構成を示す縦断面図である。
図1に示すように、光検出装置1は、例えば、配線層110と、光電変換部101及び素子分離部102を含む半導体基板100と、散乱構造121と、遮光膜132と、平坦化膜131と、オンチップレンズ140と、反射防止膜141とを備える。
半導体基板100は、例えば、シリコン(Si)基板である。半導体基板100は、半導体基板100の厚み方向に延在する素子分離部102と、半導体基板100の面内に画素ごとに設けられた光電変換部101とを含む。
光電変換部101は、例えば、光検出装置1に入射する入射光Lを光電変換するフォトダイオードである。光電変換部101は、半導体基板100に設けられたn型不純物領域と、n型不純物領域を半導体基板100の厚み方向に挟み込むように半導体基板100にそれぞれ設けられたp型不純物領域とで構成される。
素子分離部102は、絶縁性材料にて設けられ、光電変換部101を画素ごとに電気的に分離する。具体的には、素子分離部102は、半導体基板100の厚み方向に掘り込んだ溝構造を埋め込む絶縁性材料で構成されてもよい。例えば、素子分離部102は、半導体基板100よりも屈折率が低い絶縁性材料(例えば、SiOなど)で設けられてもよい。このような場合、素子分離部102は、光電変換部101から素子分離部102に向かう回折光を反射することで、光電変換部101の感度を向上させることができる。
または、素子分離部102は、半導体基板100の厚み方向に掘り込んだ溝構造の内部表面を覆う絶縁性材料と、絶縁性材料の上から溝構造を埋め込む金属材料とで構成されてもよい。金属材料は、例えば、光電変換部101から素子分離部102に向かう回折光を遮蔽する能力が高いタングステン(W)、アルミニウム(Al)、銅(Cu)、又はこれらの金属合金などである。これによれば、素子分離部102は、光電変換部101から素子分離部102に向かう回折光を遮蔽することで、画素間での光学混色を抑制することができるため、光検出装置1の解像度を向上させることができる。
配線層110は、光電変換部101にて生成された電荷を画素信号に変換する回路又は配線を含み、半導体基板100の光の入射面と反対側の面(すなわち、おもて面)に設けられる。具体的には、配線層110は、導電性材料で複数層に亘って設けられた配線と、配線を覆うように絶縁性材料で設けられた絶縁層とによる多層配線構造にて設けられてもよい。
これによれば、光電変換部101にて生成された電荷は、半導体基板100の光の入射面と反対側の面に設けられた転送トランジスタ(図示せず)にて光電変換部101から取り出される。光電変換部101から取り出された電荷は、例えば、転送トランジスタを覆う配線層110に設けられたアンプトランジスタ(図示せず)にて画素信号に変換される。
散乱構造121は、半導体基板100の光の入射面側に周期的に設けられた構造体であり、光検出装置1への入射光Lを散乱又は回折させる。具体的には、散乱構造121は、半導体基板100の光の入射面側の面(すなわち、裏面)に形成された周期的な凹凸構造であってもよい。
散乱構造121の具体的な構造について図2Aを参照して説明する。図2Aは、図1の散乱構造121の平面構成を示す上面図である。
図1及び図2Aに示すように、散乱構造121は、四角錐形状又は四角錐台形状の凹部(すなわち、逆ピラミッド型形状の凹部)が半導体基板100の面内の二次元方向にそれぞれ周期的に配置された凹凸構造として設けられてもよい。例えば、画素が1.5μm四方の正方形である場合、散乱構造121の凹部は、400nm周期で設けられてもよい。これによれば、散乱構造121は、画素内に3行3列の行列状に配列された合計9個の四角錐形状の凹部として設けられる。
このような四角錐形状の凹部を含む散乱構造121は、例えば、シリコン基板の結晶面を利用することで形成することができる。具体的には、Siの(100)面を掘り込むようにシリコン基板をウェットエッチングした場合、シリコン基板に形成された開口は、表面再構成によってエネルギー的に安定な(7×7)構造(いわゆる、DASモデル)を形成し、Siの(111)面を露出させる。したがって、リソグラフィによって周期的な開口を形成したレジストパターンをマスクとしてシリコン基板の(100)面をウェットエッチングすることで、Siの(111)面を側面とし、四角錐形状となる凹部を形成することができる。
ただし、散乱構造121は、上記で例示した形状の凹凸構造に限定されない。散乱構造121は、略円柱形状のピラー又はホールを周期的に配置した凹凸構造であってもよい。
平坦化膜131は、透明な有機樹脂等で構成され、散乱構造121を埋め込んで半導体基板100の光の入射面側に設けられる。平坦化膜131は、例えば、スチレン系樹脂、アクリル系樹脂、スチレン-アクリル共重合系樹脂、又はシロキサン系樹脂等にて構成されてもよい。
遮光膜132は、遮光性材料で構成され、素子分離部102に対応して半導体基板100の光の入射面側に設けられる。遮光膜132は、画素の境界に設けられ、画素間を跨いで入射する入射光を遮光することで、画素間での光学混色を抑制することができる。遮光膜132は、例えば、タングステン(W)、アルミニウム(Al)、銅(Cu)、又はこれらの金属合金などで構成されてもよい。
オンチップレンズ140は、光の入射面が平面となる柱体形状で構成され、平坦化膜131の入射面側の面に設けられる。具体的には、オンチップレンズ140は、透明材料によって、半導体基板100の光の入射側の面に垂直な方向に延伸する柱体形状で構成されてもよい。
詳しくは後述するが、入射光Lの波長と同じオーダーのサイズの柱体形状で設けられたオンチップレンズ140は、オンチップレンズ140の内部を通過する光の速度が空気中を通過する光の速度よりも低下することを利用して入射光Lを集光することができる。また、オンチップレンズ140は、柱体形状の高さをより高くすることで、オンチップレンズ140の内部を通過する光と、空気中を通過する光との位相差をより大きくすることができるため、入射光Lをより強く曲げることができる。
本実施形態に係る光検出装置1は、柱体形状のオンチップレンズ140にて入射光Lをより強く曲げることで、光電変換部101への入射光Lの入射角を大きくすることができる。これによれば、本実施形態に係る光検出装置1は、長波長の入射光Lであっても、散乱構造121の回折条件をより容易に満たすようにすることができる。よって、実施形態に係る光検出装置1は、光電変換部101における入射光の光路長を回折によってより長くすることができるため、光吸収効率をより高めることができる。
オンチップレンズ140のより具体的な構造について図2Bを参照して説明する。図2Bは、図1のオンチップレンズ140の平面構成を示す上面図である。
図2Bに示すように、オンチップレンズ140は、Si等の透明材料を用いて底面が四角形である四角柱形状にて設けられてもよい。例えば、画素が1.5μm四方の正方形である場合、オンチップレンズ140は、1.3μm四方の正方形を底面とする四角柱形状にて設けられてもよい。
反射防止膜141は、オンチップレンズ140の光の入射面側の表面に設けられる。反射防止膜141は、例えば、入射光の波長λの1/(4×n)の厚みを有する膜(ただし、nは反射防止膜141を構成する材料の屈折率)、又は屈折率の異なる誘電体材料を交互に積層させた多層誘電体膜などで構成されてもよい。
<2.作用効果>
次に、図3~図9を参照して、本実施形態に係る光検出装置1の作用効果について説明する。
まず、図3を参照して、柱体形状のオンチップレンズ140による集光について具体的に説明する。図3は、オンチップレンズ140による集光の原理を説明する説明図である。
図3に示すように、オンチップレンズ140に入射する光は、それぞれ等位相面である+面及び-面の波面を順次繰り返すことで進行する。ここで、媒質中を進む光の速度Cは、真空中の光速Cと、媒質の屈折率nとを用いて、C=C/nと表すことができる。したがって、屈折率が1よりも大きいオンチップレンズ140を進行する光の速度は、空気中(屈折率はおおよそ1)を進行する光の速度よりも遅くなり、オンチップレンズ140を進行する光は、空気中を進行する光に対して位相差を生じることになる。ここで、オンチップレンズ140の大きさが入射光の波長のオーダーに近づいた場合、入射光の波面は連続的につながるため、入射光の波面は、オンチップレンズ140の中心に向かって湾曲した形状となる。これにより、オンチップレンズ140は、入射光をオンチップレンズ140の中心に集光することができる。
柱体形状のオンチップレンズ140は、オンチップレンズ140の高さをより高くすることで、オンチップレンズ140の内外における入射光の位相差をより大きくすることができるため、入射光の波面をより大きく湾曲させ、入射光をより強く曲げることができる。したがって、オンチップレンズ140は、オンチップレンズ140の高さによって入射光を曲げる強さが変わるため、オンチップレンズ140の焦点距離も変動すると考えられる。すなわち、柱体形状のオンチップレンズ140は、オンチップレンズ140の高さをより高くすることで、焦点距離をより短くすることができるため、より高い開口数(Numerical Aperture:NA)を実現することができる。
これによれば、柱体形状のオンチップレンズ140は、高開口数であるため、散乱構造121への入射光の最大入射角度をより大きくすることが可能である。また、柱体形状のオンチップレンズ140は、焦点位置におけるスポットサイズであるエアリーディスクの直径をより小さくすることができる。よって、柱体形状のオンチップレンズ140は、所望の画素に集光された入射光の一部が遮光膜132によって遮られてしまう(すなわち、ケラレが生じる)ことを抑制することも可能である。
次に、図4を参照して、散乱構造121による回折について具体的に説明する。図4は、散乱構造121による回折条件を説明する説明図である。
半導体基板100の光の入射面に設けられた周期的な凹凸構造である散乱構造121は、散乱体が周期的に配列された回折格子として機能する。回折格子は、散乱体で散乱された光を干渉させ、強め合わせることで、回折を生じさせることができる。
具体的には、図4に示すように、散乱体120が周期wにて配列された回折格子の格子面の法線に対して入射角αで入射した光は、散乱体120の各々で散乱され、格子面の法線に対して出射角βで出射される。このとき、回折格子の入射面側では、散乱体120の各々に入射する光は、隣接する散乱体120に入射する光に対して、w×sinαの光路差を生じる。また、回折格子の出射面側では、散乱体120の各々で散乱された光は、隣接する散乱体120で散乱された光に対して、w×sinβの光路差を生じる。
したがって、回折格子は、以下の式1で表される回折条件が満たされる場合、回折を生じさせ、回折光を強め合わせることができる。式1において、mは次数であり、λは入射光の真空中での波長であり、nは媒質の屈折率である。

w(sinα±sinβ)=mλ/n ・・・式1
回折格子の周期wを400nmとし、入射光の波長λを940nmとし、媒質(例えば、SiO)の屈折率nを1.4とすると、1次(m=1)にて上記式1は、α≦43°で解を持たない。すなわち、入射光が長波長である場合、式1の右辺の値がより大きくなるため、式1が成立するためには、式1の左辺のα又はβが大きくなることが重要となる。よって、長波長の入射光では、1次の回折条件を満たすには、入射光は、より大きな入射角で回折格子に入射することが重要となる。
本実施形態に係る光検出装置1では、同じ高さの球面形状のオンチップレンズと比較して入射光Lをより強く曲げることができる柱体形状のオンチップレンズ140が設けられる。したがって、本実施形態に係る光検出装置1は、長波長の入射光Lであっても散乱構造121にて回折条件を満たすことが容易になる。
これによれば、散乱構造121は、入射光を効率よく回折させることで、光電変換部101における入射光の光路長をより長くすることができる。よって、本実施形態に係る光検出装置1は、入射光を効率的に光電変換部101で光電変換することができるため、入射光Lの光吸収効率をより高めることが可能である。
続いて、図5A及び図5Bを参照して、本実施形態に係る光検出装置における入射光の散乱をシミュレーションで確認した結果について説明する。図5Aは、球面形状のオンチップレンズを備える光検出装置における入射光の波面のパワー分布を3D-FDTD法で見積もったヒートマップ図である。図5Bは、柱体形状のオンチップレンズを備える光検出装置における入射光の波面のパワー分布を3D-FDTD法で見積もったヒートマップ図である。
図5A及び図5Bでは、基本的に明度が低いほど波面のパワーが高い(すなわち、光が集光されている)ことを示す。また、図5A及び図5Bは、光検出装置の画素中心を含む断面の入射光の波面のパワー分布を示し、図5A及び図5BのA-AA線は、各々のオンチップレンズの下面に対応する。
図5Aの左に示すように、球面形状のオンチップレンズを備え、散乱構造を備えない光検出装置では、入射光は、平面波成分が最も残った波面形状を含み、半導体基板の厚み方向に直進する平行ビームに近い状態となっている。また、図5Aの右に示すように、球面形状のオンチップレンズを備え、散乱構造を備える光検出装置では、入射光は、平面波成分が残った波面形状を含むものの、特有の乱れがある干渉パターンをも含む波面形状となっている。さらに、図5Bの左に示すように、柱体形状のオンチップレンズを備え、散乱構造を備えない光検出装置では、入射光は、図5Aの右と同様に、特有の乱れがある干渉パターンを含む波面形状となっている。
一方、図5Bの右に示すように、柱体形状のオンチップレンズを備え、散乱構造を備える光検出装置(本実施形態にかかる光検出装置に対応)では、入射光は、平面波をほとんど含まず、特有の乱れがある干渉パターンをより強く含む波面形状となっている。すなわち、柱体形状のオンチップレンズを備え、散乱構造を備える光検出装置では、散乱構造による回折によって、斜め方向に進む入射光の成分が増加し、入射光の角度分散がより大きくなっていることがわかる。このような光検出装置では、入射光の角度分散をより大きくすることができるため、入射光の光路長が長くなり、入射光の光吸収効率が高くなることが予測される。
次に、図6A及び図6Bを参照して、本実施形態に係る光検出装置における光吸収効率の向上をシミュレーションで確認した結果について説明する。図6Aは、球面形状又は柱体形状のオンチップレンズを備え、散乱構造を備える光検出装置の量子効率(光吸収効率)を3D-FDTD法で見積もったグラフ図である。図6Bは、球面形状又は柱体形状のオンチップレンズを備え、散乱構造を備えない光検出装置の量子効率(光吸収効率)を3D-FDTD法で見積もったグラフ図である。図6A及び図6Bでは、光検出装置の量子効率をオンチップレンズの高さ依存で見積もった。
3D-FDTD法を用いたシミュレーションでは、画素の形状は、1.5μm四方の正方形とし、画素の境界に配置される遮光膜の幅は、0.08μmとした。また、光電変換部の側面は、周期境界条件とし、光電変換部の上下面は、PML(Perfectly Matched Layer)の吸収条件とした。さらに、入射光は、波長940nmの近赤外線とし、散乱構造の構造周期は、400nmとした。
図6Aの試験例1~3は、1.3μm四方の正方形を底面とする柱体形状のSiで構成されたオンチップレンズと、散乱構造とを備える光検出装置における量子効率を示す。試験例1~3では、平坦化膜の厚みが互いに異なり、試験例1では、平坦化膜の厚みが0.82μmであり、試験例2では、平化膜の厚みが0.5μmであり、試験例3では、平坦化膜の厚みが0.3μmである。
図6Aの比較例1、2は、球面形状で構成されたオンチップレンズと、散乱構造とを備える光検出装置における量子効率を示す。比較例1、2では、球面形状のオンチップレンズの材質が互いに異なり、比較例1では、オンチップレンズの材質が有機樹脂であり、比較例2では、オンチップレンズの材質がSiである。
図6Bの比較例3、4は、球面形状で構成されたオンチップレンズを備え、散乱構造を備えない光検出装置における量子効率を示す。比較例3、4では、球面形状のオンチップレンズの材質が互いに異なり、比較例3では、オンチップレンズの材質が有機樹脂であり、比較例4では、オンチップレンズの材質がSiである。
図6Bの比較例5~7は、1.3μm四方の正方形を底面とする柱体形状のSiで構成されたオンチップレンズを備え、散乱構造を備えない光検出装置における量子効率を示す。比較例5~7では、平坦化膜の厚みが互いに異なり、比較例5では、平坦化膜の厚みが0.82μmであり、比較例6では、平化膜の厚みが0.5μmであり、比較例7では、平坦化膜の厚みが0.3μmである。
図6A及び図6Bの試験例1~3、及び比較例1~7からわかるように、本実施形態に係る光検出装置に対応する試験例1~3は、柱体形状のオンチップレンズを備えない比較例1~2、及び散乱構造を備えない比較例5~7と比較して、量子効率をより向上させることができる。すなわち、本実施形態に係る光検出装置は、柱体形状のオンチップレンズ、及び散乱構造を組み合わせて備えることによって、特に長波長の入射光に対して量子効率を向上させることができる。
以上の説明からわかるように、本実施形態に係る光検出装置1は、柱体形状のオンチップレンズ140により、散乱構造121への入射光Lの最大入射角度をより大きくすることができるため、散乱構造121にて回折光をより効率的に発生させることが可能である。よって、本実施形態に係る光検出装置1は、光電変換部101での入射光Lの光吸収効率を向上させることができるため、より画質の良好な画像を取得することができる。
さらに、図7~図9を参照して、本実施形態に係る光検出装置1が備えるオンチップレンズ140のバリエーションについて説明する。図7は、柱体形状のオンチップレンズ140の平面構成のバリエーションを示す上面図である。
図2Bを参照して上述したようにオンチップレンズ140は、例えば、底面が四角形である柱体形状にて設けられてもよい。また、図7に示すように、オンチップレンズ140は、例えば、底面が八角形である柱体形状にて設けられてもよい。オンチップレンズ140は、半導体基板100の光の入射面に対して、平行な1対の底面を備え、半導体基板100の光の入射側の面に垂直な方向に延伸する柱体形状であれば、底面の形状は特に限定されない。
ただし、光電変換部101での光吸収効率をより高めるためには、オンチップレンズ140の底面の形状は、四角形であることが好ましい。
例えば、リソグラフィを用いてオンチップレンズ140が形成される場合、露光の際の回折によって、オンチップレンズ140の底面の多角形形状の角が精度良く形成されないことがあり得る。このような場合、オンチップレンズ140は、円形に近い多角形を底面とする柱体形状にて形成され得る。しかしながら、本実施形態に係る光検出装置1は、画素形状に近い四角形を底面とする柱体形状でオンチップレンズ140を設けることで、光電変換部101での光吸収効率をより向上させることできる。
ここで、四角柱形状のオンチップレンズを備える光検出装置の光吸収効率と、八角柱形状のオンチップレンズを備える光検出装置の光吸収効率とをシミュレーションで見積もった結果を図8に示す。図8は、四角柱形状又は八角柱形状のオンチップレンズを備える光検出装置の量子効率(光吸収効率)を3D-FDTD法で見積もったグラフ図である。図8では、光検出装置の量子効率をオンチップレンズの高さ依存で見積もった。
3D-FDTD法を用いたシミュレーションでは、画素の形状は、1.5μm四方の正方形とし、画素の境界に配置される遮光膜の幅は、0.08μmとした。また、光電変換部の側面は、周期境界条件とし、光電変換部の上下面は、PML(Perfectly Matched Layer)の吸収条件とした。さらに、入射光は、波長940nmの近赤外線とし、散乱構造の構造周期は、400nmとした。
図8の試験例4は、1.3μm四方の四角形を底面とする四角柱形状のオンチップレンズを備える光検出装置における量子効率を示す。試験例5は、1.3μm四方の四角形から4隅を0.375μmずつ切断した八角形を底面とする八角柱形状のオンチップレンズを備える光検出装置における量子効率を示す。
図8の試験例4及び5からわかるように、四角柱形状のオンチップレンズを備える光検出装置(試験例4)は、八角柱形状のオンチップレンズを備える光検出装置(試験例5)に対して、量子効率が向上していることがわかる。したがって、光検出装置は、画素形状に近い四角形を底面とする柱体形状のオンチップレンズを設けることで、光電変換部での光吸収効率をより向上させることできる。
このような四角柱形状のオンチップレンズ140は、例えば、図9に示すような一方向に延在するマスク301を用いた露光を、マスク301を90度回転させて2回行うことで形成することができる。図9は、四角柱形状のオンチップレンズ140のパターニングに用いられるマスク301の一例を示す平面図である。
具体的には、リソグラフィの露光では、光近接効果のために、多角形の角などのパターンで回折が生じやすく、マスクに忠実なパターンが形成されにくい。そのため、多角形の角などのパターンを含まない一方向に延在するマスク301を用いて、互いに90度回転した向きで2回露光を行うことで、四角形状にパターニングされたレジストを形成することができる。これによれば、より高い精度で四角柱形状のオンチップレンズ140を形成することができる。なお、マスク301のライン及びスペースのパターンは、レジストの特性によっては反転していてもよい。
<3.変形例>
(3.1.第1の変形例)
次に、図10及び図11を参照して、本実施形態の第1の変形例に係る光検出装置について説明する。図10は、第1の変形例に係る光検出装置2の断面構成を示す縦断面図である。
図10に示すように、光検出装置2は、例えば、配線層110と、光電変換部101及び素子分離部102を含む半導体基板100と、散乱構造122と、遮光膜132と、平坦化膜131と、オンチップレンズ140と、反射防止膜141とを備える。
第1の変形例に係る光検出装置2は、図1に示す光検出装置1に対して、散乱構造122が複数の散乱体120を周期的に配列させた回折格子構造で設けられる点が異なる。その他の構成については、第1の変形例に係る光検出装置2と、図1に示す光検出装置1とで実質的に同様であるのでここでの説明は省略する。
散乱構造122は、平坦化膜131の内部に散乱体120を周期的に設けた回折格子構造である。散乱構造122は、半導体基板100に形成された周期的な凹凸構造と同様に、光検出装置2への入射光Lを散乱又は回折させることができる。
散乱体120は、平坦化膜131と光の屈折率又は吸収率が異なる材料で構成される。例えば、平坦化膜131が有機樹脂等で構成される場合、散乱体120は、Si、poly-Si、マイクロクリスタルSi、アモルファスSi、TiO、又はAlなどで構成されてもよい。
散乱構造122の具体的な構造について図11を参照して説明する。図11は、図10の散乱構造122の平面構成を示す上面図である。
図10及び図11に示すように、散乱構造122は、四角形形状の散乱体120が半導体基板100の面内の二次元方向にそれぞれ周期的に配置された回折格子構造として設けられてもよい。例えば、画素が1.5μm四方の正方形である場合、散乱体120は、400nm周期で設けられてもよい。これによれば、散乱構造122は、画素内に3行3列の行列状に散乱体120を互いに離隔して配置した回折格子構造として設けられる。
第1の変形例に係る光検出装置2によれば、図1に示す光検出装置1と同様に、光電変換部101に入射する光を散乱構造122によって効率的に回折させることができる。したがって、第1の変形例に係る光検出装置2は、入射光を効率的に光電変換部101で光電変換することができるため、入射光Lの光吸収効率をより高めることが可能である。
ただし、散乱構造122は、上記で例示した形状の回折格子構造に限定されない。散乱構造122は、入射光Lに対して回折を生じさせることができれば、長手形状の散乱体120を一方向に周期的に配置した回折格子構造であってもよい。
(3.2.第2の変形例)
続いて、図12及び図13を参照して、本実施形態の第2の変形例に係る光検出装置について説明する。図12は、第2の変形例に係る光検出装置3の断面構成を示す縦断面図である。
図12に示すように、光検出装置3は、例えば、配線層110と、光電変換部101及び素子分離部102を含む半導体基板100と、散乱構造121と、遮光膜132と、平坦化膜131と、赤外線フィルタ150と、オンチップレンズ140と、反射防止膜141とを備える。
第2の変形例に係る光検出装置3は、図1に示す光検出装置1に対して、赤外線フィルタ150が設けられる点が異なる。その他の構成については、第2の変形例に係る光検出装置3と、図1に示す光検出装置1とで実質的に同様であるのでここでの説明は省略する。
なお、第2の変形例に係る光検出装置3は、半導体基板100に形成された周期的な凹凸構造である散乱構造121に替えて、複数の散乱体120を周期的に配列させた回折格子構造である散乱構造122を備えてもよい。
赤外線フィルタ150は、可視光線を吸収し、近赤外線(例えば、700nm~2500nmの波長の光)を透過させる光学フィルタである。例えば、赤外線フィルタ150は、図13に示す光透過率スペクトルを有する光学フィルタであってもよい。図13は、赤外線フィルタ150の光透過率スペクトルの一例を示すグラフ図である。図13に示す光透過率スペクトルを有する光学フィルタによれば、850nm以上の波長の近赤外線を選択的に透過させることができる。
これによれば、光検出装置3は、オンチップレンズ140と、平坦化膜131との間に、近赤外線を選択的に透過させる赤外線フィルタ150を設けることで、散乱構造121に可視光線が入射することを抑制することができる。したがって、光検出装置3は、近赤外線を検出する場合に、近赤外線の検出結果に含まれるノイズを低減することができる。よって、第2の変形例に係る光検出装置3は、近赤外線(例えば、700nm~2500nmの波長の光)を検出する際のノイズを低減することができるため、良好な画質の近赤外線画像を取得することができる。
<4.適用例>
ここで、図14を参照して、本実施形態に係る光検出装置1の適用例について説明する。図14は、本実施形態に係る光検出装置1を含むカメラシステム5の概要を示す説明図である。
図14に示すように、カメラシステム5は、例えば、光源20と、撮像装置10とを備える。光源20は、例えば、被写体30に近赤外線(特に、波長940nmの光)の照射光LLを照射する半導体レーザである。光源20は、例えば、AlGaAs系の半導体レーザであってもよい。光源20は、半導体レーザで構成されることで、被写体30に指向性が高い光を効率的に照射することができる。撮像装置10は、本実施形態に係る光検出装置1を含み、照射光LLを照射された被写体30からの反射光RLを検出する撮像装置である。
これによれば、カメラシステム5は、例えば、ToF(Time of Flight)又はパターン投影(Structured light)によって、被写体30との距離測定、又は被写体30の形状把握を行うことができる。
具体的には、ToFとして用いられる場合、カメラシステム5は、まず、光源20から被写体30に照射光LLを照射する。次に、カメラシステム5は、照射光LLを照射された被写体30からの反射光RLを撮像装置10で検出するまでの時間を計測する。これにより、カメラシステム5は、iToF(Indirect ToF)又はdToF(Direct ToF)にて被写体30までの距離を算出することができる。
iToFによれば、カメラシステム5は、1つの画素にて2つ以上の分割された信号を時間差で読み出すことで、信号強度比(位相差)から被写体30までの距離を算出することができる。また、dToFによれば、カメラシステム5は、照射光LLが被写体30で反射して反射光RLとして戻ってくるまでの時間差から被写体30までの距離を算出することができる。
パターン投影(Structured light)として用いられる場合、カメラシステム5は、まず、光源20からパターンを含む照射光LLを被写体30に照射する。次に、カメラシステム5は、照射光LLを照射された被写体30から反射された反射光RLに含まれるパターンを撮像装置10で検出する。これにより、カメラシステム5は、照射光LLにおけるパターンと、反射光RLにおけるパターンとのずれから被写体30までの距離、又は被写体30の形状を算出することができる。
以上、実施形態及び変形例を挙げて、本開示にかかる技術を説明した。ただし、本開示にかかる技術は、上記実施形態等に限定されるわけではなく、種々の変形が可能である。
さらに、実施形態で説明した構成および動作の全てが本開示の構成および動作として必須であるとは限らない。たとえば、各実施形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素は、任意の構成要素として理解されるべきである。
本明細書および添付の特許請求の範囲全体で使用される用語は、「限定的でない」用語と解釈されるべきである。例えば、「含む」又は「含まれる」という用語は、「含まれるとして記載された様態に限定されない」と解釈されるべきである。「有する」という用語は、「有するとして記載された様態に限定されない」と解釈されるべきである。
本明細書で使用した用語には、単に説明の便宜のために用いており、構成及び動作を限定する目的で使用したわけではない用語が含まれる。たとえば、「右」、「左」、「上」、「下」などの用語は、参照している図面上での方向を示しているにすぎない。また、「内側」、「外側」という用語は、それぞれ、注目要素の中心に向かう方向、注目要素の中心から離れる方向を示しているにすぎない。これらに類似する用語や同様の趣旨の用語についても同様である。
なお、本開示にかかる技術は、以下のような構成を取ることも可能である。以下の構成を備える本開示にかかる技術によれば、光検出装置は、柱体形状のオンチップレンズにて、散乱構造に入射する入射光の最大入射角度をより大きくすることができるため、散乱構造にて入射光の回折をより強く発生させることができる。よって、光検出装置は、入射光の回折によって、光電変換部における入射光の光路長をより長くすることができるため、光電変換部にて入射光をより効率的に吸収することができる。したがって、光検出装置は、入射光の光吸収効率をより向上させることができる。本開示にかかる技術が奏する効果は、ここに記載された効果に必ずしも限定されるわけではなく、本開示中に記載されたいずれの効果であってもよい。
(1)
光電変換部を内部に含む半導体基板と、
前記半導体基板の光の入射面側に周期的に設けられた散乱構造と、
前記散乱構造のさらに前記光の入射面側に設けられ、前記光の入射面が平面である柱体形状のオンチップレンズと
を備える、光検出装置。
(2)
前記散乱構造は、前記半導体基板に形成された周期的な凹凸構造である、上記(1)に記載の光検出装置。
(3)
前記凹凸構造の凹部は、四角錐形状又は四角錐台形状である、上記(2)に記載の光検出装置。
(4)
前記散乱構造は、複数の散乱体が周期的に配列された回折格子構造である、上記(1)に記載の光検出装置。
(5)
前記回折格子構造は、前記半導体基板と、前記オンチップレンズとの間の平坦化膜の内部に設けられ、
前記散乱体は、前記平坦化膜と前記光の屈折率、又は前記光の吸収率が異なる材料で設けられる、上記(4)に記載の光検出装置。
(6)
前記散乱構造の構造周期は、前記光の波長に対して回折条件を満たす、上記(1)~(5)のいずれか一項に記載の光検出装置。
(7)
前記光は、近赤外線である、上記(1)~(6)のいずれか一項に記載の光検出装置。
(8)
前記散乱構造は、前記半導体基板の面内の二次元方向にそれぞれ周期的に設けられる、上記(1)~(7)のいずれか一項に記載の光検出装置。
(9)
前記オンチップレンズは、四角柱形状である、上記(1)~(8)のいずれか一項に記載の光検出装置。
(10)
前記半導体基板には、前記半導体基板の厚み方向に延在し、前記半導体基板の面内を画素ごとに分離する素子分離部が設けられる、上記(1)~(9)のいずれか一項に記載の光検出装置。
(11)
前記素子分離部は、前記半導体基板よりも屈折率が小さい材料で設けられる、上記(10)に記載の光検出装置。
(12)
光検出装置を含み、
前記光検出装置は、
光電変換部を内部に含む半導体基板と、
前記半導体基板の光の入射面側に周期的に設けられた散乱構造と、
前記散乱構造のさらに前記光の入射面側に設けられ、前記光の入射面が平面である柱体形状のオンチップレンズと
を備える、カメラシステム。
(13)
被写体にレーザ光を照射する光源をさらに含み、
前記光検出装置は、前記被写体からの前記レーザ光の反射光を検出する、上記(12)に記載のカメラシステム。
1,2,3…光検出装置、5…カメラシステム、10…撮像装置、20…光源、30…被写体、100…半導体基板、101…光電変換部、102…素子分離部、110…配線層、120…散乱体、121,122…散乱構造、131…平坦化膜、132…遮光膜、140…オンチップレンズ、141…反射防止膜、150…赤外線フィルタ

Claims (13)

  1. 光電変換部を内部に含む半導体基板と、
    前記半導体基板の光の入射面側に周期的に設けられた散乱構造と、
    前記散乱構造のさらに前記光の入射面側に設けられ、前記光の入射面が平面である柱体形状のオンチップレンズと
    を備える、光検出装置。
  2. 前記散乱構造は、前記半導体基板に形成された周期的な凹凸構造である、請求項1に記載の光検出装置。
  3. 前記凹凸構造の凹部は、四角錐形状又は四角錐台形状である、請求項2に記載の光検出装置。
  4. 前記散乱構造は、複数の散乱体が周期的に配列された回折格子構造である、請求項1に記載の光検出装置。
  5. 前記回折格子構造は、前記半導体基板と、前記オンチップレンズとの間の平坦化膜の内部に設けられ、
    前記散乱体は、前記平坦化膜と前記光の屈折率、又は前記光の吸収率が異なる材料で設けられる、請求項4に記載の光検出装置。
  6. 前記散乱構造の構造周期は、前記光の波長に対して回折条件を満たす、請求項1に記載の光検出装置。
  7. 前記光は、近赤外線である、請求項1に記載の光検出装置。
  8. 前記散乱構造は、前記半導体基板の面内の二次元方向にそれぞれ周期的に設けられる、請求項1に記載の光検出装置。
  9. 前記オンチップレンズは、四角柱形状である、請求項1に記載の光検出装置。
  10. 前記半導体基板には、前記半導体基板の厚み方向に延在し、前記半導体基板の面内を画素ごとに分離する素子分離部が設けられる、請求項1に記載の光検出装置。
  11. 前記素子分離部は、前記半導体基板よりも屈折率が小さい材料で設けられる、請求項10に記載の光検出装置。
  12. 光検出装置を含み、
    前記光検出装置は、
    光電変換部を内部に含む半導体基板と、
    前記半導体基板の光の入射面側に周期的に設けられた散乱構造と、
    前記散乱構造のさらに前記光の入射面側に設けられ、前記光の入射面が平面である柱体形状のオンチップレンズと
    を備える、カメラシステム。
  13. 被写体にレーザ光を照射する光源をさらに含み、
    前記光検出装置は、前記被写体からの前記レーザ光の反射光を検出する、請求項12に記載のカメラシステム。
JP2020124037A 2020-07-20 2020-07-20 光検出装置、及びカメラシステム Pending JP2022020502A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020124037A JP2022020502A (ja) 2020-07-20 2020-07-20 光検出装置、及びカメラシステム
US18/005,030 US20230238414A1 (en) 2020-07-20 2021-06-17 Photodetector and camera system
PCT/JP2021/023071 WO2022019015A1 (ja) 2020-07-20 2021-06-17 光検出装置、及びカメラシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020124037A JP2022020502A (ja) 2020-07-20 2020-07-20 光検出装置、及びカメラシステム

Publications (1)

Publication Number Publication Date
JP2022020502A true JP2022020502A (ja) 2022-02-01

Family

ID=79729449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020124037A Pending JP2022020502A (ja) 2020-07-20 2020-07-20 光検出装置、及びカメラシステム

Country Status (3)

Country Link
US (1) US20230238414A1 (ja)
JP (1) JP2022020502A (ja)
WO (1) WO2022019015A1 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5487686B2 (ja) * 2009-03-31 2014-05-07 ソニー株式会社 固体撮像装置、固体撮像装置の製造方法、及び電子機器
CN108604590A (zh) * 2016-01-29 2018-09-28 Towerjazz松下半导体有限公司 固体摄像装置
JP6987529B2 (ja) * 2017-05-15 2022-01-05 ソニーセミコンダクタソリューションズ株式会社 撮像素子、撮像素子の製造方法、電子機器、及び、撮像モジュール
JP7362198B2 (ja) * 2018-07-18 2023-10-17 ソニーセミコンダクタソリューションズ株式会社 受光素子、測距モジュール、および、電子機器

Also Published As

Publication number Publication date
US20230238414A1 (en) 2023-07-27
WO2022019015A1 (ja) 2022-01-27

Similar Documents

Publication Publication Date Title
US11257856B2 (en) Lens-free compound eye cameras based on angle-sensitive meta-surfaces
JP4455677B2 (ja) 撮像用光検出装置
JP3821614B2 (ja) 画像入力装置
JP4264465B2 (ja) 撮像用光検出装置
JP6551485B2 (ja) 赤外線変換素子及び撮像装置
TWI593094B (zh) 光學感測器
WO2012001930A1 (ja) 固体撮像装置
KR20100122058A (ko) 2차원 고체 촬상 장치, 및 2차원 고체 촬상 장치에서의 편광광 데이터 처리 방법
US20110128405A1 (en) Optical element, image sensor including the optical element, and image pickup apparatus including the image sensor
JP2010524012A (ja) 電磁エネルギーを選別して集めるデバイス、及び、そのようなデバイスを少なくとも1つ備える装置
KR20130101972A (ko) 고체 촬상 소자, 고체 촬상 장치, 촬상 기기 및 편광 소자의 제조 방법
JP2008010773A (ja) 固体撮像素子およびその製造方法
JP5342821B2 (ja) 固体撮像素子
TWI588981B (zh) 影像感測器
JP2014138142A (ja) 固体撮像素子および撮像装置
JP6083538B2 (ja) 集光装置、固体撮像素子および撮像装置
KR20060006202A (ko) 씨모스 이미지 센서 및 그의 제조 방법
WO2017038542A1 (ja) 固体撮像素子、および電子装置
KR20120125600A (ko) 고체 촬상 장치
WO2022019015A1 (ja) 光検出装置、及びカメラシステム
JP5975229B2 (ja) カラー撮像装置
JP2006018256A (ja) レンズアレイ
WO2023132133A1 (ja) 光検出装置及び電子機器
US11976968B2 (en) Light detector
JP6931161B2 (ja) 化合物半導体装置、赤外線検知器及び撮像装置