JP2022016396A - 反射画像の収差を用いた極端紫外線リソグラフィーシステムのターゲット制御 - Google Patents

反射画像の収差を用いた極端紫外線リソグラフィーシステムのターゲット制御 Download PDF

Info

Publication number
JP2022016396A
JP2022016396A JP2021113921A JP2021113921A JP2022016396A JP 2022016396 A JP2022016396 A JP 2022016396A JP 2021113921 A JP2021113921 A JP 2021113921A JP 2021113921 A JP2021113921 A JP 2021113921A JP 2022016396 A JP2022016396 A JP 2022016396A
Authority
JP
Japan
Prior art keywords
euv
radiation
laser
zernike
droplet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021113921A
Other languages
English (en)
Inventor
定亞 鄭
Ding Ya Zheng
漢龍 張
Han Long Zhang
師涵 單
Shi Han Dan
立▲鋭▼ 陳
li rui Chen
▲彦▼碩 蘇
Yan Shuo Su
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Publication of JP2022016396A publication Critical patent/JP2022016396A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/008X-ray radiation generated from plasma involving a beam of energy, e.g. laser or electron beam in the process of exciting the plasma
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas
    • H05G2/005X-ray radiation generated from plasma being produced from a liquid or gas containing a metal as principal radiation generating component
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas
    • H05G2/006X-ray radiation generated from plasma being produced from a liquid or gas details of the ejection system, e.g. constructional details of the nozzle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/0014Monitoring arrangements not otherwise provided for

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • X-Ray Techniques (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

Figure 2022016396000001
【課題】極端紫外線(EUV)リソグラフィーシステムを制御する方法を提供する。
【解決手段】ターゲット液滴DPにEUV放射線を照射し、前記ターゲット液滴によって反射されたEUV放射線を検出し、検出されたEUV放射線の収差を決定し、前記収差に対応するゼルニケ多項式を決定し、そして前記ゼルニケ多項式のゼルニケ係数のシフトを減少させるために修正処置を実行することを含む。
【選択図】図1

Description

半導体製造におけるリソグラフィーに用いられる放射線の波長は、紫外線から深紫外線(DUV)、最近では、極端紫外線(EUV)に減少する。部品のサイズをさらに小さくするには、極端紫外線リソグラフィー(EUVL)を使用して達成できるリソグラフィーの解像度をさらに改善する必要がある。EUVLは、約1~100nmの波長の放射線を用いる。
EUV放射線を生成する1つの方法は、レーザ生成プラズマ(LPP)である。LPPベースのEUV光源では、高出力レーザビームがスズなどの金属の小さな液滴ターゲットに集束し、13.5nmに最大の発光ピークを有するEUV放射線を放出する、高度にイオン化されたプラズマを形成する。LPPによって生成されるEUV放射の強度は、高出力レーザが液滴ターゲットからプラズマを生成できる有効性に依存する。LPPベースのEUV放射線源の効率を向上させるためには、高出力レーザのパルスと液滴ターゲットの生成及び移動とを正確に同期させることが望まれる。
本開示は、添付図面と共に読まれる場合に、以下の詳細な説明から最もよく理解される。業界の標準的な慣行に従って、さまざまな特徴は縮尺どおりに描かれておらず、説明のみを目的として使用されていることが強調される。実際、様々なフィーチャの寸法は、説明を明確にするために任意に増減できる。
本開示のいくつかの実施形態に係る、レーザ生成プラズマ(LPP)ベースのEUV放射線源を用いたEUVリソグラフィーシステムの概略図である。 X-Z及びX-Y平面におけるプレパルスによるターゲット液滴の移動を概略的に示す。 X-Z及びX-Y平面におけるプレパルスによるターゲット液滴の移動を概略的に示す。 X-Z及びX-Y平面におけるプレパルスによるターゲット液滴の移動を概略的に示す。 X-Z及びX-Y平面におけるプレパルスによるターゲット液滴の移動を概略的に示す。 X-Z及びX-Y平面におけるプレパルスによるターゲット液滴の移動を概略的に示す。 X-Z及びX-Y平面におけるプレパルスによるターゲット液滴の移動を概略的に示す。 一実施形態に係る、図1に示されるEUVリソグラフィーシステムで用いられるレーザガイド光学系及び集束装置を概略的に示す。 最初の15個のゼルニケ多項式を、垂直方向には半径方向の次数で、水平方向には方位角方向の周波数で並べたものを示す。 図1に示されるEUVリソグラフィーシステムの例示的な概略図を示す。 本開示の実施形態に係る、リターンビーム診断を用いた測定によって決定された第4のゼルニケ多項式の係数の変動を示すグラフである。 本開示の実施形態に係る、図5に示されるEUVリソグラフィーシステムにおける信号の流れを示す。 放射線源、傾斜制御機構、及びスリット制御機構を含む液滴照明モジュールを示す。 本開示の一実施形態に係る、EUVデータ分析装置を示す。 本開示の一実施形態に係る、EUVデータ分析装置を示す。 本開示の一実施形態に係る、極端紫外線(EUV)リソグラフィーシステムを制御する方法のフローチャートを示す。 本開示の一実施形態に係る、極端紫外線(EUV)リソグラフィーシステムを制御する方法のフローチャートを示す。 本開示の一実施形態に係る、極端紫外線(EUV)リソグラフィーシステムを制御する方法のフローチャートを示す。
以下の開示は、提供された主題の異なる特徴を実施するための多くの異なる実施形態又は例を提供する。以下、本開示を簡略化するために、コンポーネントおよび配置の特定の例を説明する。もちろん、これらは、一例に過ぎず、これらに限定するものではない。例えば、以下の説明における第2の特徴の上方又は上の第1の特徴の形成は、第1と第2の特徴が直接接触して形成される実施形態を含んでもよく、また、第1と第2の特徴が直接接触しないように、追加の特徴が第1と第2の特徴の間に形成され得る実施形態を含んでもよい。また、本開示は、様々な例において符号及び/又は文字を繰り返してもよい。この繰り返しは、単純さと明快さを目的としており、それ自体では、説明した様々な実施形態及び/又は構成の間の関係を示すものではない。
さらに、図示されているように、ここで、ある要素又は構造と別の要素又は構造との関係を説明しやすくするために、「下方」、「下」、「下部」、「上方」、「上部」などのような空間的に相対的な用語を使用することができる。空間的に相対的な用語は、図に示されている方向に加えて、使用中又は動作中の装置の異なる方向を包含することを意図している。装置は、他の方向に配向してもよく(90度又は他の配向に回転されてもよい)、本明細書で使用される空間的に相対的な記述子は、同様にそれに応じて解釈され得る。さらに、「でできている(made of)」という用語は、「含む(comprising)」または「からなる(consisting of)」のいずれかを意味し得る。本開示において、「A、BおよびCのうちの1つ」という句は、「A、Bおよび/またはC」(A、B、C、AおよびB、AおよびC、BおよびC、または、A、Bおよび/またはC)を意味し、特に明記しない限り、Aからの1つの要素、Bからの1つの要素、およびCからの1つの要素を意味するものではありません。
本開示は、一般に、極端紫外線(EUV)リソグラフィーシステム及び方法に関する。より具体的には、レーザ生成プラズマ(LPP)ベースのEUV放射源に用いられる励起レーザを制御することにより、増加したEUVエネルギーを得るための改善されたターゲット制御のための装置及び方法に関する。励起レーザは、LPPチャンバ内の金属(スズなど)のターゲット液滴を加熱して、EUV放射線を放出するプラズマに液滴をイオン化する。EUVエネルギーを増加させるためには、励起レーザの大部分をターゲット液滴に入射させて、EUV出力と変換効率を向上させる必要がある。したがって、増加したEUVエネルギーを得るためには、励起レーザの形状、励起レーザの入射角、及びレーザビームのプロファイルを考慮する必要がある。
既存の方法では、励起レーザの形状、励起レーザの入射角の変更(指向誤差とも呼ばれる)、及びレーザビームのプロファイルを考慮することなく、ターゲット液滴と励起レーザとの相対位置を考慮する。したがって、これらの問題によるEUVエネルギーの低下は検出されない。これらの問題を検出できないため、励起レーザ制御システム及び/又は液滴発生器を制御してこれらの問題に対処し、それによって減少したEUVエネルギーを補償することはできない。
本開示の実施形態は、ターゲット液滴へのレーザビームの入射角及びレーザのプロファイルに基づいて、励起レーザの相対位置(例えば、移動方向)及びターゲット液滴の位置を制御することを目的とする。
図1は、本開示のいくつかの実施形態に係る、レーザ生成プラズマ(LPP)ベースのEUV放射線源を用いたEUVリソグラフィーシステムの概略図である。EUVリソグラフィーシステムは、EUV放射線を生成するためのEUV放射線源100、スキャナなどの露光ツール200、及び励起レーザ源300を含む。図1に示すように、いくつかの実施形態では、EUV放射線源100及び露光ツール200は、クリーンルームのメインフロアMFに設置され、一方、励起レーザ源300は、メインフロアの下に位置するベースフロアBFに設置される。EUV放射線源100及び露光ツール200は、それぞれ、ダンパDMP1及びDMP2を介して台座プレートPP1及びPP2上に配置される。EUV放射線源100及び露光ツール200は、集束ユニットを含み得る結合機構によって互いに結合される。
リソグラフィーシステムは、EUV光(本明細書ではEUV放射線とも互換的に呼ばれる)によってレジスト層を露光するように設計された極端紫外線(EUV)リソグラフィーシステムである。レジスト層は、EUV光に敏感な材料である。EUVリソグラフィーシステムは、EUV放射線源100を用いて、約1nm~約100nmの範囲の波長を有するEUV光などのEUV光を生成する。一例では、EUV放射線源100は、約13.5nmを中心とする波長を有するEUV光を生成する。本実施形態では、EUV放射源100は、EUV放射を生成するために、レーザー生成プラズマ(LPP)のメカニズムを利用する。
露光ツール200は、凸面/凹面/平面ミラー、マスクステージを含むマスク保持機構、及びウェハ保持機構などの様々な反射光学部品を含む。EUV放射源100によって生成されたEUV放射は、反射光学部品によって、マスクステージ上に固定されたマスク上に導かれる。幾つかの実施形態では、マスクステージは、マスクを固定するための静電チャック(Eチャック)を含む。ガス分子はEUV光を吸収するため、EUVリソグラフィパターニング用のリソグラフィシステムは、EUV強度の損失を回避するために、真空または低圧環境で維持されます。
本開示では、マスク、フォトマスク、及びレチクルという用語は、互換的に使用される。本実施形態では、マスクは、反射型マスクである。一実施形態では、マスクは、低熱膨張材料又は溶融石英などの適切な材料を有する基板を含む。種々の例において、SiO2がドープされたTiO2の熱膨張の小さい材料が挙げられる。マスクは、基板上に堆積された複数の反射層(ML)を含む。MLは、複数のフィルム対、例えば、モリブデン-シリコン(Mo/Si)フィルム対(例えば、各膜対におけるシリコン層の上下のモリブデン層)を含む。あるいは、MLは、モリブデン-ベリリウム(Mo/Be)フィルム対、またはEUV光を高度に反射するように構成可能な他の適切な材料を含み得る。マスクは、保護のためにML上に配置されたルテニウム(Ru)などのキャップ層をさらに含んでいてもよい。マスクはさらに、ML上に堆積されたタンタル窒化ホウ素(TaBN)層などの吸収層を含む。吸収層は、集積回路(IC)の層を定義するようにパターニングされている。また、ML上に別の反射層を成膜し、これをパターニングして集積回路の層を形成し、EUV位相シフトマスクを形成してもよい。
露光ツール200は、露光ツール200の基板ステージ上に固定されたレジストがその上にコーティングされた半導体基板上にマスクのパターンを画像化するための投影光学系モジュールを含む。投影光学モジュールは、一般に、反射光学系を備えている。マスク上に定義されたパターンの像を担持したマスクからのEUV放射(EUV光)は、投影光学モジュールによって集光され、レジスト上に結像される。
本開示の様々な実施形態では、半導体基板は、パターン化されるシリコンウェハ又は他のタイプのウェハなどの半導体ウェハである。本発明では、半導体基板上には、EUV光に敏感なレジスト層がコーティングされている。上記のものを含む様々な構成要素が一緒に統合され、リソグラフィ露光プロセスを実行するように動作可能である。
リソグラフィーシステムは、他のモジュールをさらに含んでもよいし、他のモジュールと統合(又は結合)されてもよい。
図1に示すように、EUV放射線源100は、チャンバ105によって囲まれた、ターゲット液滴発生器115と、レーザ生成プラズマ(LPP)コレクタ110とを含む。ターゲット液滴発生器115は、ノズル117を介してチャンバ105内に供給される複数のターゲット液滴Dpを生成する。いくつかの実施形態では、ターゲット液滴DPは、スズ(Sn)、リチウム(Li)、または、SnとLiとの合金である。いくつかの実施形態では、ターゲット液滴DPの直径は、10ミクロン (μm)から100 μm.の範囲にある。例えば、一実施形態では、ターゲット液滴DPは、それぞれが約10μm、約25μm、約50μm、またはこれらの値の間の任意の直径を有するスズ液滴である。幾つかの実施形態では、ターゲット液滴Dpは、1秒あたり約50滴(すなわち、約50 Hzの吐出周波数)から約50、000液滴(すなわち、約50 kHzの吐出周波数)の速度でノズル117を介して供給される。例えば、一実施形態では、吐出周波数約50Hz、約100Hz、約500Hz、約1kHz、約10kHz、約25kHz、約50kHz、またはこれらの間の吐出周波数でターゲット液滴DPが供給される。様々な実施形態では、ターゲット液滴DPは、約10メートル/秒(m/s)~約100m/sの範囲の速度で、ノズル117を介して、励起ゾーンZEに放出される。例えば、一実施形態では、ターゲット液滴DPは、約10m/s、約25m/s、約50m/s、約75m/s、約100m/s、又はこれらの速度の間の任意の速度を有する。ターゲット液滴DPが励起レーザLR2と相互作用した後の残物(残留物)は、ターゲット液滴発生器115の下に配置されたスズキャッチャTCに集められる。
励起レーザ源300によって生成される励起レーザLR2は、パルスレーザである。レーザパルスLR2は、励起レーザ源300によって生成される。励起レーザ源300は、レーザ発生器310、レーザガイド光学系320、及び集束装置330を含む。いくつかの実施形態では、レーザ源310は、電磁スペクトルの赤外線領域に波長を有する二酸化炭素(CO2)又はネオジム・ドープ・イットリウム・アルミニウム・ガーネット(Nd: YAG)レーザ源を含む。例えば、一実施形態では、レーザ源310は、9.4μm又は10.6μmの波長を有する。レーザ発生器310によって生成されたレーザ光LR1は、レーザガイド光学系320によってガイドされ、集束装置330によって励起レーザLR2に集束され、そしてEUV放射線源100に導入される。
いくつかの実施形態では、励起レーザLR2は、予熱レーザ及びメインレーザを含む。そのような実施形態では、予熱レーザパルス(本明細書では「プレパルス」と互換的に呼ばれる)は、所定のターゲット液滴を加熱(又は予熱)して、複数の小さな液滴を有する低密度のターゲットプルームを作成するために使用され、その後、メインレーザからのパルスによって加熱(又は再加熱)されて、EUV光の発光を増加させる。
様々な実施形態において、予熱レーザーパルスは、約100μm以下のスポットサイズを有し、主レーザーパルスは、約150μmから約300μmの範囲のスポットサイズを有する。いくつかの実施形態では、予熱レーザーおよび主レーザーパルスは、約10nsから約50nsの範囲のパルス持続時間、および約1kHzから約100kHzの範囲のパルス周波数を有する。様々な実施形態において、予熱レーザーおよび主レーザーは、約1キロワット(kW)から約50kWの範囲の平均出力を有する。一実施形態では、励起レーザLR2のパルス周波数は、ターゲット液滴DPの放出周波数と一致する。
レーザ光LR2は、窓(又はレンズ)を通して励起ゾーンZEに導かれる。eウィンドウは、レーザービームに対して実質的に透明な適切な材料を採用している。レーザーパルスの生成は、ノズル117を介したターゲット液滴DPの放出と同期している。ターゲット液滴が励起帯を移動すると、プレパルスにより標的液滴が加熱され、低密度の標的プルームに変換される。プレパルスとメインパルスとの間の遅延を制御することにより、ターゲットプルームが形成され、最適な大きさ及び形状に拡張される。種々の実施形態において、プレパルスとメインパルスとは、同一のパルス幅及びピークパワーを有する。メインパルスがターゲットプルームを加熱すると、高温プラズマが生成される。プラズマは、コレクタミラー110によって集められる、EUV放射線EUVを放出する。コレクタ110は、露光ツール200を介して実行されるリソグラフィー露光プロセスのために、EUV放射線をさらに反射し、集束する。
図2Aは、プレパルスPPによって照射された後のターゲット液滴DPのコレクタ110に対する移動を概略的に示す。ターゲット液滴DPは、プレパルスPP及びメインパルスMPによって順次照射される。ターゲット液滴DPが液滴発生器DGから励起ゾーンZEに向かう方向「A」に沿ってX軸方向に移動するとき、ターゲット液滴DPを露光するプレパルスPPにより、ターゲット液滴DPは、例えば、パンケーキのような形状に変更し、X-Z平面内のその移動方向にZ軸成分が導入される。
ターゲット液滴DPにレーザビームPP、MPを照射して生成されるレーザ生成プラズマ(LPP)には、タイミング及び制御の問題がある。レーザビームPP、MPは、ターゲット液滴DPがターゲットとされる点を通過するときに交差するようにタイミングを合わせる必要がある。レーザビームPP、MPは、ターゲット液滴DPが通過する各集束位置にそれぞれ集束する必要がある。励起ゾーンZEの位置、及び例えば、レーザ出力、メインパルスとプレパルスとの間の時間遅延、プレパルス及び/又はメインパルスの焦点などのパラメータは、EUV放射線源100が設定されるときに決定され得る。そして、様々な実施形態では、励起ゾーンZEの実際の位置及び前述のパラメータは、フィードバック機構を用いて、ウェハ露光中に調整される。しかしながら、これらのパラメータは、例えば、メインパルスMPとプレパルスPPとの間の分離、励起レーザの形状、レーザビームのプロファイル、放射線源の機械的及び/又は電気的ドリフト、液滴発生器の不安定性、チャンバ環境の変更などの様々な要因により、経時的に変更し得る。
図2Bは、x軸OMXにおけるミスアライメントのための例示的な光学計測を示す。OMXは、液滴とプレパルスPPの焦点との間のx軸における距離によって定義される。同様に、図2Cは、y軸OMYにおけるミスアライメントのための例示的な光学的計測を示す。OMYは、液滴とプレパルスPPの焦点との間のy軸における距離によって定義される。図2Dは、z軸OMZにおけるミスアライメントのための例示的な光学的計測をさらに示す。OMX及びOMYと同様に、OMZは、液滴とプレパルスPPの焦点との間のz軸における距離によって定義される。図2Eは、半径OMRにおけるミスアライメントのための例示的な光学的計測を示す。x軸は、液滴発生器115からの液滴による運動の方向にある。z軸は、コレクタミラー110の光軸A1(図1)に沿っている。y軸は、x軸及びz軸に垂直である。
図2Fに示すように、ターゲット液滴DPは、スズキャッチャTCに向かう方向に移動する液滴発生器115から放出される。このような機械的及び/又は電気的なドリフトが放射線源に発生した場合、プリパルスレーザPPにより、ターゲット液滴DPは、プリパルスレーザビームの入射方向に対して角度を有する方向に膨張する。これにより、図2Eに示すようなサッカーボール状に膨張したターゲット液滴DP2が発生する。そのような実施形態では、プレパルスPPとメインパルスMPとの空間的な分離(MPPP分離)は、プレパルスPPの焦点とメインパルスMPの焦点との間の距離として定義され、この距離はx、y、z空間が寄与する3次元ベクトルである。例えば、図2Fに示すように、MPPPxは、MPPP分離のx軸に沿った距離であり、MPPPzは、MPPP分離のz軸に沿った距離である。
図3は、一実施形態に係る、図1に示されるEUVリソグラフィーシステムで使用されるレーザガイド光学系320及び集束装置330を概略的に示す。図示されるように、レーザガイド光学系320は、前方ビーム診断(FBD)302と、リターンビーム診断(RBD)304と、複数のミラーM301、M303、M300、及びM330とを含む。前方ビーム診断302及びリターンビーム診断304は、光波面の収差を測定するための波面センサなどのデバイスを含む。いくつかの非限定的なタイプの波面センサは、シャックハルトマン波面センサ、位相シフトシュリーレン法、波面曲率センサ、ピラミッド波面センサ、コモンパス干渉計、フーコーナイフエッジテスト、マルチラテラルシェアリング干渉計、ロンキテスタ、及びシェアリング干渉計を含む。
前方ビーム診断302、リターンビーム診断304、及びミラーM301、M303は、最終焦点計測(FFM)モジュール350を構成する。最終焦点計測(FFM)モジュール350からの信号は、制御信号として用いられ、集束装置330のミラーのうちの1つ、例えば、レーザがターゲット液滴DPに当たる前の光路にあるミラーM150などを制御するために、アクチュエータと接続され得る。いくつかの実施形態では、ミラーM150は、レーザがターゲット液滴DPに当たる前の最後のミラーである。ミラーM150は、操縦可能なミラーであり、3軸方向に調整可能である。
ミラーM301、M303、M300、及びM330は、入射したレーザ光を所望の方向にガイドするように配置(又は構成)される。集束装置330は、複数のミラーM310、M320、M130、M140、及びM150を含む。ミラーM310、M320、M130、M140、及びM150は、入射したレーザ光を所望の方向にガイドするように配置(又は構成)される。また、集束装置330は、窓W10、W20、及びW30を含む。窓W10、W20及びミラーM310、M320は、大気圧条件の環境下にある。ミラーM130、M140、及びM150は、真空にある。窓W10は、集束装置330への入口点に位置し、レーザガイド光学系320からのレーザ光を受ける。窓W20は、大気圧環境と真空の間に位置する。
前方ビーム診断302は、レーザ発生器310によって生成されたレーザ光LR1を受ける。前方ビーム診断部302は、レーザ発生器310によって発生されたレーザ光LR1を分析する。レーザ光LR1の一部は、集束装置330の窓W10からミラーM300にガイドされる。ミラーM300から、レーザ光LR1がミラーM301に入射する。レーザ光LR1は、ミラーM301によって前方ビーム診断302にガイドされる。したがって、前方ビーム診断302は、レーザ光LR1がターゲット液滴DPと相互作用する前に、レーザ光LR1を受ける。前方ビーム診断部302は、レーザ光LR1の波面を分析する。
図示されるように、レーザ光LR1は、集束装置330の窓W10及び窓W20を通過してミラーM130に入射する。ミラーM130は、レーザ光LR1がミラーM140に反射されるように配置(又は構成)される。ミラーM140は、ミラーM130から受けられたレーザ光LR1がミラーM150に反射されるように配置(又は構成)される。ミラーM150は、ミラーM140から得られたレーザ光LR1がターゲット液滴DPに反射するように配置(又は構成)されている。このように、ミラーM130、M140、及びM150によってガイドされたレーザ光は、集束装置330によって励起レーザLR2に集束された後、EUV放射線源100(図1)に導入される。
ターゲット液滴DPと相互作用した後、励起レーザLR2は分散され、励起レーザLR2のリターンビームは、ミラーM150、M140、及びM130及び窓W20を介して窓W10に戻るようにガイドされる。窓W10から、励起レーザLR2のリターンビームが窓W30を介してミラーM310に移動する。いくつかの実施形態では、窓W10は、ダイヤモンド窓である。ミラーM310は、ミラーM320及びM330を介して、リターンビームをミラーM303にガイドする。リターン光は、ミラーM303を用いて、リターンビーム診断304にガイドされる。リターンビーム診断304は、リターンビームを受け、リターンビームを分析し、より具体的には、リターンビームの光波面を分析する。
励起レーザLR2のリターンビームを分析する際に、リターンビーム診断304は、複数のゼルニケ多項式を生成する。各ゼルニケ多項式は、特定の形態の波面偏差(収差)に適合できる特定の形態の表面偏差を記述する。複数のゼルニケ多項式(一般に項と呼ばれる)を含むことにより、波面変形を所望の精度で記述することができる。
図4は、最初の15個のゼルニケ多項式を、垂直方向には半径方向の次数で、水平方向には方位角方向の周波数で並べたものを示す。以下の表1は、異なるゼルニケ多項式と、それぞれの多項式から得られる収差タイプをリストする。
Figure 2022016396000002
リターンビーム診断304は、励起レーザLR2のリターンビームの受けられた波面(放射線)の収差を測定し、ゼルニケ多項式を用いて収差を定量化するように構成される。リターンビーム診断304は、受けられた波面を分析して、特定の波面偏差に最も適合するゼルニケ多項式のゼルニケ係数を決定する。ゼルニケ係数のシフトに基づいて、ビームプロファイルの変更を判断することができる。図5は、図1に示されたEUVリソグラフィーシステムの例示的な概略図を示す。図示されるように、ビームプロファイルの変更に対応する制御信号501は、最終焦点計測(FFM)モジュール350によって生成される。上述したように、制御信号501は、レーザがターゲット液滴DPに当たる前の光路内の例えばミラーM150のような、集束装置330のミラーの1つを制御するためのアクチュエータ505と接続される。このように、制御信号501を用いることで、ターゲティング制御は、EUVエネルギーの生成が最大となるように最適化される。
いくつかの実施形態では、図5に示されるフィードバック機構はさらに、ビームプロファイルの変更に基づいて、通知を送信することができる。いくつかの実施形態では、通知は、プリパルスとメインパルスとの間の空間的分離を含む。いくつかの実施形態では、通知は、プリパルスとメインパルスとの間の時間遅延も含む。いくつかの実施形態では、通知は、放射線源に結合された操縦可能なミラーの角度も含む。いくつかの実施形態では、通知を生成することに基づいて、フィードバックはさらに、通知を、操縦可能なミラーコントローラに関連する第1の外部デバイスと、時間遅延コントローラに関連する第2の外部デバイスとに送信する。
図6は、本開示の実施形態に係る、リターンビーム診断304を用いた測定によって決定される第4ゼルニケ多項式のゼルニケ係数の変動を示すグラフ600である。図6に示される実施形態では、リターンビーム診断304は、励起レーザLR2のリターンビームの波面を分析し、ターゲット液滴DPに入射する励起レーザLR2が、第4ゼルニケ多項式に対応する非集束型の収差を有すると判定する。リターンビーム診断304は、第4ゼルニケ多項式のゼルニケ係数611の変動(ライン602)を判定する。所望の範囲内のゼルニケ係数611の変動は、許容可能であるとみなされ、修正措置は行われない。しかしながら、ライン602のディップ605によって示されるように、所望の範囲を超える変動に対しては、1つ以上の修正処置が行われる。修正処置は、制御信号501に基づいてミラーM150の位置を変更するように、アクチュエータ505を作動させることを含む。代替的又は追加的に、OMX、OMY、及びOMZの距離のうちの1つ以上を調整して、ビームプロファイルの変更を最小化し、それによって励起レーザLR2とターゲット液滴DPとの間の相互作用を改善することができる。
また、ディップ605の前と後にリターンビーム診断304で得られた画像606、608をそれぞれ示す。図示されているように、画像606で決定された非集束収差は、修正処置のため、画像608で減少している。図6の例は、実施形態に係る、どのように第4ゼルニケ多項式を用いて光波面の非集束収差を検出できるかということを示す。しかしながら、実施形態はこれに限定されない。他のゼルニケ多項式を使用して対応する収差を検出することができ、検出された収差を緩和するために1つ以上の修正処置を取ることができる。このように、ターゲット液滴と励起レーザLR2との間の相互作用を改善することで、変換効率を最大化し、EUVエネルギーの変動(ゆらぎ)を最小化することができる。
図7は、本開示の実施形態に係る、図5に示されたEUVリソグラフィーシステムにおける信号の流れを示す。励起ゾーンZEの所望の位置、及び例えば、レーザ出力、メインパルスとプレパルスとの間の時間遅延、プレパルス及び/又はメインパルスの焦点などのパラメータは、EUV放射線源100が設定されるときに決定され、それによってEUVリソグラフィーシステムの設定点702を定義することができる。
1つ以上のパラメータに対応する制御信号701は、励起ゾーンZEの位置を制御するために、EUVリソグラフィーシステムの1つ以上のコンポーネントに提供される。例えば、ターゲット液滴DPと励起レーザLR2との間の相互作用を最大化して、EUVエネルギーの生成を最大化するために、液滴発生器115の位置及び励起レーザLR2の軌道のうちの1つ以上が調整される。いくつかの実施形態では、制御信号701は、励起レーザLR2がターゲット液滴DPに当たる前の光路にある例えばミラーM150のような、集束装置330のミラーのうちの1つを制御するために、アクチュエータ505に提供される制御信号501である。
しかしながら、これらのパラメータは、例えば、メインパルスMPとプレパルスPPとの間の分離、励起レーザの形状、レーザビームのプロファイル、放射線源の機械的及び/又は電気的ドリフト、液滴発生器の不安定性、チャンバ環境の変更などの様々な要因により、経時的に変更し得る。
704では、励起レーザLR2とターゲット液滴DPの相互作用を分析する。ターゲット液滴DPは、それに入射した光(この場合は、励起レーザLR2)を反射及び/又は散乱させる。反射及び/又は散乱した光は、例えば、液滴検出モジュール420(図1)で検出される。いくつかの実施形態では、液滴検出モジュール420は、液滴照明モジュール410(図1)からの光の波長を有する光を検出するように設計されたフォトダイオードを含む。様々な実施形態では、液滴照明モジュール410は、所望の波長の発光を有する連続波レーザ又はパルスレーザである。
検出された光(すなわち、ターゲット液滴によって反射及び/又は散乱された光)の強度が許容範囲内にあるか否が判定される。いくつかの実施形態では、判定は、液滴検出モジュール420のフォトダイオードがターゲット液滴DPによって反射及び/又は散乱された光を受けたときに生成された電流及び/又は電圧の値に基づいて行われる。いくつかの実施形態では、液滴検出モジュール420は、検出された強度が許容範囲内にない場合に、所定の信号706を生成するようにプログラムされた論理回路を含む。例えば、所定の信号706は、検出された強度がある閾値よりも小さい場合に生成される。所定の信号706は、励起レーザLR2とターゲット液滴DPとの相対位置を示す。
検出された光の強度が許容範囲内にない場合、液滴照明モジュール410のパラメータが(例えば、自動的に)調整されて、検出された光の強度が最終的に許容範囲内になるように、ターゲット液滴を照射する光の強度を増加又は減少させる。
様々な実施形態では、液滴照明モジュール410のパラメータは、例えば、液滴照明モジュール410内の光源(例えば、レーザ)への入力電圧及び/又は電流、液滴照明モジュール410から出る光の量を制御するスリットの幅、液滴照明モジュール410の開口部、及び液滴照明モジュール410の角度及び/又は傾斜の値を含む。いくつかの実施形態では、パラメータは、液滴照明モジュール410の様々なパラメータを制御するようにプログラムされたコントローラを用いて調整される。例えば、ある実施形態では、コントローラは、液滴照明モジュール410から出る光の量を制御するスリット、及び/又は、液滴照明モジュール410の傾斜/角度を制御する機構に結合される。そのような実施形態では、コントローラは、液滴検出モジュール420に結合され、検出された光の強度が許容範囲内にない場合、液滴検出モジュール420によって生成された所定の信号706に応答して、スリットの幅及び/又は液滴照明モジュール410の傾斜を調整する。他の実施形態では、コントローラは、アクチュエータ505に結合され、アクチュエータ505に制御信号701を提供してレーザがターゲット液滴DPに当たる前に、集束装置330のミラーの1つ、例えば、光路内のミラーM150を制御する。
いくつかの実施形態では、コントローラは、液滴検出モジュール420から所定の信号706を受信し、所定の信号706に応じて、液滴照明モジュール410の1つ以上の部品(例えば、本明細書の他の箇所で説明したスリット及び/又は傾斜制御機構)に制御信号を送信して、液滴照明モジュール410の1つ以上のパラメータを自動的に調整するように、及び/又は、集束装置330のミラーのうちの1つを調整するようにプログラムされた論理回路である。
図8を簡単に参照すると、放射線源415、傾斜制御機構413、及びスリット制御機構417を含む液滴照明モジュール410が示される。傾斜制御機構413(本明細書では「自動傾斜」とも呼ばれる)は、放射線源415の傾斜を制御する。様々な実施形態では、自動傾斜413は、液滴照明モジュール410の放射線源415(例えば、レーザ)に結合されたステッピングモータであり、放射線源415を移動させて、光(又は放射線)Lがターゲット液滴DPに入射する入射角を変更する(そして実質的に、ターゲット液滴DPによって反射及び/又は散乱されて液滴検出モジュール420に入る光Rの量を変更する)ことができる。いくつかの実施形態では、自動傾斜413は、圧電アクチュエータを含む。
スリット制御機構417(本明細書では「オートスリット」とも呼ばれる)は、放射線源415から出る光の量を制御する。実施形態では、スリット又は開口部414は、放射線源415と、ターゲット液滴DPが照射される励起ゾーンZEとの間に配置される。例えば、液滴検出モジュール420で検出された光の強度が許容範囲よりも低いとコントローラ450が判定した場合、コントローラ450は、放射線源415を出た光の経路に広いスリットが設けられるように、スリット制御機構417を移動させ、より多くの光をターゲット液滴DPに照射することを可能にし、検出された強度を増加させる。一方、液滴検出モジュール420で検出された光の強度が許容範囲よりも高いと判定した場合、コントローラ450は、放射線源415から出る光の経路に狭いスリットが設けられるように、スリット制御機構417を移動させ、検出された強度を減少させる。そのような実施形態では、コントローラ450によって調整される液滴照明モジュール410のパラメータは、ターゲット液滴DPを照射する光Lの経路における開口部414の幅である。
図7に戻り、所定の信号706の生成により、EUVリソグラフィーシステムの設定点702が変更される。制御信号701は、設定点702の変更に基づいて、対応して変更される。したがって、制御信号701の変更、スリット制御機構、傾斜制御機構、及び/又はアクチュエータ505を作動させて、放射線源415から出る光の量と、ターゲット液滴DPに光が入射する入射角とに対応する変更を引き起こす。
EUVエネルギーの生成を最大化するための上記技術に加えて、本開示の実施形態はまた、励起レーザLR2とターゲット液滴DPとの相互作用後に反射される光の波面のゼルニケシフトを利用することを目的とする。より具体的には、実施形態は、反射された波面のゼルニケシフトを得るために、受けられた波面(放射線)の収差を測定し、ゼルニケ多項式を用いて収差を定量化する。したがって、704では、リターンビーム診断304は、反射された波面におけるゼルニケシフトを決定し、対応する制御信号708が生成される。いくつかの実施形態では、制御信号708は、ビームプロファイルの変更に対応する制御信号501(図5に示される)であり、最終焦点計測(FFM)モジュール350によって生成される。上述したように、制御信号501は、アクチュエータ505と接続されて、レーザがターゲット液滴DPに当たる前の光路にある例えばミラーM150のような、集束装置330のミラーのうちの1つを制御する。このように、ターゲティング制御は、EUVエネルギーの生成を最大化するように最適化される。
図9A及び図9Bは、本開示の一実施形態に係る、EUVデータ分析装置を示す。図9Aは、リターン画像における1つ以上の収差を検出し、上述した1つ以上の修正処置を実行するために、最終焦点計測(FFM)モジュール350及びリターンビーム診断304の動作を制御するコンピュータシステムの概略図である。前述の実施形態は、コンピュータハードウェア及びその上で実行されるコンピュータプログラムを用いて実現することができる。図9Aでは、コンピュータシステム900は、光ディスク読み取り専用メモリ(例えば、CD-ROM又はDVD-ROM)ドライブ905及び磁気ディスクドライブ906を含むコンピュータ901と、キーボード902と、マウス903と、モニタ904とを備える。
図9Bは、コンピュータシステム900の内部構成を示す図である。図9Bでは、コンピュータ901は、光ディスクドライブ905及び磁気ディスクドライブ906に加えて、マイクロプロセッシングユニット(MPU)などの1つ以上のプロセッサ911と、起動プログラムなどのプログラムが記憶されているROM912と、MPU911に接続され、アプリケーションプログラムのコマンドが一時的に記憶され、一時記憶領域が設けられるランダムアクセスメモリ(RAM)913と、アプリケーションプログラム、システムプログラム、及びデータが記憶されているハードディスク914と、MPU911、ROM912などを接続するバス915とを備える。なお、コンピュータ901は、LANへの接続を提供するためのネットワークカード(図示せず)を含むことができる。
前述の実施形態におけるEUVデータ分析装置の機能をコンピュータシステム900に実行させるためのプログラムは、光ディスクドライブ905又は磁気ディスクドライブ906に挿入される光ディスク921又は磁気ディスク922に記憶され、ハードディスク914に送信されてもよい。あるいは、プログラムは、ネットワーク(図示せず)を介してコンピュータ901に送信され、ハードディスク914に記憶されてもよい。実行時には、プログラムはRAM913にロードされる。なお、プログラムは、光ディスク921又は磁気ディスク922からロードされてもよいし、ネットワークから直接ロードされてもよい。
プログラムにおいて、プログラムによって実現される機能には、いくつかの実施形態ではハードウェアのみで実現可能な機能は含まれない。例えば、情報を取得する取得ユニット又は情報を出力する出力ユニットにおいて、ネットワークインタフェースなどのハードウェアによってのみ実現可能な機能は、上述したプログラムによって実現される機能には含まれない。さらに、プログラムを実行するコンピュータは、単一のコンピュータであってもよいし、複数のコンピュータであってもよい。
本開示の実施形態は、既存のシステム及び方法に比べて、多数の利点を提供する。励起ビームのX、Y及び/又はZ方向及び/又はターゲット液滴方向のシフト及びビームプロファイルの変更に相関するゼルニケ項は、ビームの形状と収差の変更を定量化するために用いられる。これをフィードバックとして用いることにより、相対的なターゲティング位置のみを考慮するのではなく、リターン画像からシフト誤差を補正するための追加のフィードバックループが生成される。また、励起レーザの入射角を検出して最小化することで、より安定したEUVエネルギーを得ることができる。
すべての利点が必ずしも本明細書で論じられるわけではなく、すべての実施形態又は実施例に特定の利点は必要ではなく、他の実施形態又は実施例は異なる利点を提供してよいことが理解される。
本開示の一実施形態は、図10に示されるフローチャートに従って極端紫外線(EUV)リソグラフィーシステムを動作させる方法1000である。方法の追加の実施形態のために、図10で議論されるプロセスの前、間、及び後に追加の操作を提供することができ、以下に説明されるいくつかの操作は、置換されたり、除去されたりすることができることが理解される。操作/プロセスの順序は交換可能であり、少なくともいくつかの操作/プロセスは異なる順序で実行されてもよい。また、少なくとも2つ以上の操作/プロセスを時間的に重複して、あるいはほぼ同時に行ってもよい。
この方法は、ターゲット液滴にレーザ放射線を照射する操作S1010を含む。操作S1020では、ターゲット液滴によって反射されたレーザ放射線が検出される。操作S1030では、検出されたレーザ放射線の収差が決定される。操作S1040では、収差に対応するゼルニケ多項式が決定される。操作S1050では、ゼルニケ多項式のゼルニケ係数のうちの少なくとも1つのゼルニケ係数のシフトを減少させるための修正処置が実行される。
本開示の別の実施形態は、図11に示されるフローチャートに従って極端紫外線(EUV)リソグラフィーシステムを動作させる方法1100である。方法の追加の実施形態のために、図11で議論されるプロセスの前、間、及び後に追加の操作を提供することができ、以下に説明されるいくつかの操作は、置換されたり、除去されたりすることができることが理解される。操作/プロセスの順序は交換可能であり、少なくともいくつかの操作/プロセスは異なる順序で実行されてもよい。少なくとも2つ以上の操作/プロセスを時間的に重複して、あるいはほぼ同時に行ってもよい。
この方法は、EUVリソグラフィーシステムの液滴発生器によって生成されたターゲット液滴によって反射された励起放射線を検出する操作S1110を含む。また、EUVリソグラフィーシステムは、励起放射線源を含むEUV放射線を生成するためのEUV放射線源を含む。励起放射線源からの励起放射線は、ターゲット液滴と相互作用する。操作S1120では、検出された励起放射線の収差が決定される。操作S1130では、複数のゼルニケ多項式が生成される。操作S1140では、複数のゼルニケ多項式から、収差に対応する1つ以上のゼルニケ多項式が決定される。操作S1150では、1つ以上のゼルニケ多項式のゼルニケ係数のうちの少なくとも1つのゼルニケ係数のシフトを減少させるための修正処置が実行される。
本開示の別の実施形態は、図12に示されるフローチャートに従って極端紫外線(EUV)リソグラフィーシステムを動作させる方法1200である。方法の追加の実施形態のために、図12で議論されるプロセスの前、間、及び後に追加の操作を提供することができ、以下に説明されるいくつかの操作は、置換されたり、除去されたりすることができることが理解される。操作/プロセスの順序は交換可能であり、少なくともいくつかの操作/プロセスは異なる順序で実行されてもよい。また、少なくとも2つ以上の操作/プロセスを時間的に重複して、あるいはほぼ同時に行ってもよい。
この方法は、EUVリソグラフィーシステムの液滴発生器によって生成されたターゲット液滴によって反射された励起放射線を検出する操作S1210を含む。操作S1220では、検出された励起放射線の収差が決定される。操作S1230では、複数のゼルニケ多項式が生成される。操作S1240では、複数のゼルニケ多項式から、収差に対応する1つ以上のゼルニケ多項式が決定される。操作S1250では、1つ以上のゼルニケ多項式のゼルニケ係数のうちの少なくとも1つのゼルニケ係数のシフトが決定される。操作S1260では、ゼルニケ係数のシフトに基づいて、励起放射線のビームプロファイルの変更が検出される。
本開示の一態様によれば、極端紫外線(EUV)リソグラフィーシステムを制御する方法は、ターゲット液滴にレーザ放射線を照射し、ターゲット液滴によって反射されたレーザ放射線を検出することを含む。また、この方法は、検出されたレーザ放射線の収差を決定し、収差に対応するゼルニケ多項式を決定し、ゼルニケ多項式のゼルニケ係数のうちの少なくとも1つのゼルニケ係数のシフトを減少させるための修正処置を実行することを含む。1つ以上の他の実施形態では、修正処置は、EUVリソグラフィーシステムの1つ以上の部品を作動させて、レーザ放射線とターゲット液滴との間の相互作用を調整するための制御信号を生成することを含む。1つ以上の他の実施形態では、レーザ放射線とターゲット液滴との間の相互作用は、EUVリソグラフィーシステムの液滴発生器の位置を変更すること、レーザ放射線の軌道を変更すること、又はその両方によって調整される。1つ以上の他の実施形態では、1つ以上の部品は、アクチュエータを含み、レーザ放射線とターゲット液滴との間の相互作用を調整することは、アクチュエータを使用してレーザ放射線の焦点を制御することを含む。1つ以上の他の実施形態では、アクチュエータは操縦可能なミラーに接続され、修正処置は、アクチュエータを用いて操縦可能なミラーを調整して、レーザ放射線とターゲット液滴との間の相互作用を調整することを含む。1つ以上の他の実施形態では、修正処置は、レーザ放射線の入射角を調整することを含む。1つ以上の他の実施形態では、方法は、複数のゼルニケ多項式を生成し、複数のゼルニケ多項式からゼルニケ多項式を選択することをさらに含む。選択されたゼルニケ多項式は前記収差に対応する。1つ以上の他の実施形態では、方法はさらに、ゼルニケ係数のシフトに基づいて、励起放射線のビームプロファイルの変更を検出することを含む。1つ以上の他の実施形態では、方法はさらに、ビームプロファイルの変更に対応する制御信号を生成し、制御信号を用いてEUVリソグラフィーシステムのアクチュエータを制御し、そしてアクチュエータを用いてEUVリソグラフィーシステムの操縦可能なミラーを調整して、レーザ放射線の光路を変更することを含む。1つ以上の他の実施形態では、ゼルニケ係数のシフトは、レーザ放射線とターゲット液滴との相互作用によって生成されるEUVエネルギーが増加するように減少する。1つ以上の他の実施形態では、レーザ照射は、CO2レーザを含む。
本開示のさらに別の態様によれば、極端紫外線(EUV)リソグラフィーのための装置は、ターゲット液滴を生成するように構成された液滴発生器と、励起放射源を含むEUV放射線を生成するためのEUV放射源とを含む。励起放射源からの励起放射は、ターゲット液滴と相互作用する。また、装置はさらに、ターゲット液滴によって反射された励起放射線を検出し、検出された励起放射線の収差を決定し、複数のゼルニケ多項式を生成し、複数のゼルニケ多項式から、収差に対応する1つ以上のゼルニケ多項式を決定し、1つ以上のゼルニケ多項式のゼルニケ係数のうちの少なくとも1つのゼルニケ係数のシフトを減少させるための修正処置を実行するように構成された最終焦点モジュールを含む。1つ以上の他の実施形態では、装置はさらに、操縦可能なミラーを含む。操縦可能なミラーは、励起放射線がターゲット液滴と相互作用する前に、励起放射線の光路内の最後のミラーである。装置はさらに、操縦可能なミラーを制御するように構成されたアクチュエータを含む。最終焦点モジュールはさらに、アクチュエータを用いて操縦可能なミラーを調整して、励起放射線とターゲット液滴との間の相互作用を調整するように構成される。1つ以上の他の実施形態では、操縦可能なミラーは、3軸で調整可能である。1つ以上の他の実施形態では、最終焦点モジュールはさらに、ゼルニケ係数のシフトに基づいて、励起放射線のビームプロファイルの変更を検出するように構成される。1つ以上の他の実施形態では、最終焦点モジュールはさらに、励起放射線とターゲット液滴との相互作用によって生成されるEUVエネルギーが増加するように、ゼルニケ係数のシフトを減少させるように構成される。
本開示の別の態様によれば、非一時的なコンピュータ可読媒体は、コンピュータのプロセッサによって実行されると、方法を実行するために極端紫外線(EUV)リソグラフィー装置の最終焦点モジュールを制御するようにコンピュータに指示する、メモリに記憶されたコンピュータ可読命令を含む。方法は、ターゲット液滴によって反射された励起放射線を検出し、検出された励起放射線の収差を決定し、複数のゼルニケ多項式を生成し、複数のゼルニケ多項式から収差に対応する1つ以上のゼルニケ多項式を決定し、1つ以上のゼルニケ多項式のゼルニケ係数のうちの少なくとも1つのゼルニケ係数のシフトを決定し、そしてゼルニケ係数のシフトに基づいて、励起放射線のビームプロファイルの変更を検出することを含む。1つ以上の他の実施形態では、方法はさらに、ビームプロファイルの変更に対応する制御信号を生成し、制御信号を用いてEUVリソグラフィーシステムのアクチュエータを制御し、そしてアクチュエータを用いてEUVリソグラフィーシステムの操縦可能なミラーを調整して、励起放射線の光路を変更することを含む。1つ以上の他の実施形態では、操縦可能なミラーは、励起放射線がターゲット液滴に当たる前の光路内の最後のミラーである。1つ以上の他の実施形態では、操縦可能なミラーは、3軸で調整可能である。
前述は、当業者が本開示の態様をよりよく理解できるように、いくつかの実施形態又は実施例の特徴を概説している。当業者であれば、本開示に導入される実施形態又は実施例の同じ目的を実行するか及び/又は同じ利点を達成するための、他の工程及び構造を設計又は変更するための根拠として、本開示を容易に用いることができることを理解できる。当業者であれば、またそのような同等の構造が本開示の精神及び範囲から逸脱せず、本開示の精神及び範囲から逸脱することなく本明細書において様々な変更、置換、及び改変を行うことができることを理解できる。

Claims (20)

  1. ターゲット液滴にレーザ放射線を照射し、
    前記ターゲット液滴によって反射されたレーザ放射線を検出し、
    前記検出されたレーザ放射線の収差を決定し、
    前記収差に対応するゼルニケ多項式を決定し、そして
    前記ゼルニケ多項式のゼルニケ係数の少なくとも1つのシフトを減少させるための修正処置を実行することを含む、極端紫外線(EUV)リソグラフィーシステムを制御する方法。
  2. 前記修正処置は、前記EUVリソグラフィーシステムの1つ以上の部品を作動させて、前記レーザ放射線と前記ターゲット液滴との間の相互作用を調整するための制御信号を生成することを含む、請求項1に記載の方法。
  3. 前記レーザ放射線と前記ターゲット液滴との間の前記相互作用は、前記EUVリソグラフィーシステムの液滴発生器の位置を変更すること、前記レーザ放射線の軌道を変更すること、又はその両方によって調整される、請求項2に記載の方法。
  4. 前記1つ以上の部品は、アクチュエータを含み、前記レーザ放射線と前記ターゲット液滴との間の前記相互作用を調整することは、前記アクチュエータを使用して前記レーザ放射線の焦点を制御することを含む、請求項2に記載の方法。
  5. 前記アクチュエータは操縦可能なミラーに接続され、前記修正処置は、前記アクチュエータを用いて前記操縦可能なミラーを調整して、前記レーザ放射線と前記ターゲット液滴との間の前記相互作用を調整することを含む、請求項3に記載の方法。
  6. 前記修正処置は、前記レーザ放射線の入射角を調整することを含む、請求項1に記載の方法。
  7. 複数のゼルニケ多項式を生成し、
    前記複数のゼルニケ多項式から、ゼルニケ多項式を選択することを含み、ここで選択されたゼルニケ多項式は前記収差に対応する、請求項1に記載の方法。
  8. 前記ゼルニケ係数の前記シフトに基づいて、前記EUV放射線のビームプロファイルの変更を検出することをさらに含む、請求項1に記載の方法。
  9. 前記ビームプロファイルの前記変更に対応する制御信号を生成し、
    前記制御信号を用いて前記EUVリソグラフィーシステムのアクチュエータを制御し、そして
    前記アクチュエータを用いて前記EUVリソグラフィーシステムの操縦可能なミラーを調整して、前記レーザ放射線の光路を変更することをさらに含む、請求項8に記載の方法。
  10. 前記ゼルニケ係数の前記シフトは、前記レーザ放射線と前記ターゲット液滴との相互作用によって生成されるEUVエネルギーが増加するように減少する、請求項1に記載の方法。
  11. 前記レーザ照射は、CO2レーザを含む、請求項1に記載の方法。
  12. ターゲット液滴を生成するように構成された液滴発生器と、
    励起放射線源及び前記励起放射線源からの、前記ターゲット液滴と相互作用する励起放射線を含むEUV放射線を生成するためのEUV放射線源と、
    前記ターゲット液滴によって反射された前記励起放射線を検出し、
    前記検出された励起放射線の収差を決定し、
    複数のゼルニケ多項式を生成し、
    前記複数のゼルニケ多項式から、前記収差に対応する1つ以上のゼルニケ多項式を決定し、そして
    前記1つ以上のゼルニケ多項式のゼルニケ係数のうちの少なくとも1つの係数のシフトを減少させるための修正処置を実行するように構成された最終焦点モジュールと、を含む、極端紫外線(EUV)リソグラフィーのための装置。
  13. 前記励起放射線が前記ターゲット液滴と相互作用する前に、前記励起放射線の光路内の最後のミラーである操縦可能なミラーと、
    前記操縦可能なミラーを制御するように構成されたアクチュエータと、を含み、
    ここで、前記最終焦点モジュールはさらに、前記アクチュエータを用いて前記操縦可能なミラーを調整して、前記励起放射線と前記ターゲット液滴との間の相互作用を調整するように構成される請求項12に記載の装置。
  14. 前記操縦可能なミラーは、3軸方向に調整可能である、請求項13に記載の装置。
  15. 前記最終焦点モジュールはさらに、前記ゼルニケ係数の前記シフトに基づいて、前記励起放射線のビームプロファイルの変更を検出するように構成される、請求項12に記載の装置。
  16. 前記最終焦点モジュールはさらに、前記励起放射線と前記ターゲット液滴との相互作用によって生成されるEUVエネルギーが増加するように、前記ゼルニケ係数の前記シフトを減少させるように構成される、請求項12に記載の装置。
  17. コンピュータのプロセッサによって実行されると、方法を実行するために極端紫外線(EUV)リソグラフィー装置の最終焦点モジュールを制御するように前記コンピュータに指示する、メモリに記憶されたコンピュータ可読命令を含む、非一時的なコンピュータ可読媒体であって、前記方法は、
    ターゲット液滴によって反射された励起放射線を検出し、
    前記検出された励起放射線の収差を決定し、
    複数のゼルニケ多項式を生成し、
    前記複数のゼルニケ多項式から、前記収差に対応する1つ以上のゼルニケ多項式を決定し、
    前記1つ以上のゼルニケ多項式のゼルニケ係数のうちの少なくとも1つの係数のシフトを決定し、そして
    前記ゼルニケ係数の前記シフトに基づいて、前記励起放射線のビームプロファイルの変更を検出することを含む、非一時的なコンピュータ可読媒体。
  18. 前記ビームプロファイルの前記変更に対応する制御信号を生成し、
    前記制御信号を用いて前記EUVリソグラフィーシステムのアクチュエータを制御し、そして
    前記アクチュエータを用いて前記EUVリソグラフィーシステムの操縦可能なミラーを調整して、前記励起放射線の光路を変更することを含む、請求項17に記載の非一時的なコンピュータ可読媒体。
  19. 前記操縦可能なミラーは、前記励起放射線が前記ターゲット液滴に当たる前の前記光路内の最後のミラーである、請求項18に記載の非一時的なコンピュータ可読媒体。
  20. 前記操縦可能なミラーは、3軸で調整可能である、請求項19に記載の非一時的なコンピュータ可読媒体。
JP2021113921A 2020-07-10 2021-07-09 反射画像の収差を用いた極端紫外線リソグラフィーシステムのターゲット制御 Pending JP2022016396A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/926,489 2020-07-10
US16/926,489 US11340531B2 (en) 2020-07-10 2020-07-10 Target control in extreme ultraviolet lithography systems using aberration of reflection image

Publications (1)

Publication Number Publication Date
JP2022016396A true JP2022016396A (ja) 2022-01-21

Family

ID=77042694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021113921A Pending JP2022016396A (ja) 2020-07-10 2021-07-09 反射画像の収差を用いた極端紫外線リソグラフィーシステムのターゲット制御

Country Status (5)

Country Link
US (3) US11340531B2 (ja)
EP (1) EP3937595A1 (ja)
JP (1) JP2022016396A (ja)
CN (1) CN113391523A (ja)
TW (1) TWI766625B (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11650508B2 (en) * 2020-06-12 2023-05-16 Taiwan Semiconductor Manufacturing Co., Ltd. Plasma position control for extreme ultraviolet lithography light sources
US11340531B2 (en) * 2020-07-10 2022-05-24 Taiwan Semiconductor Manufacturing Company, Ltd. Target control in extreme ultraviolet lithography systems using aberration of reflection image

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7230964B2 (en) 2001-04-09 2007-06-12 Cymer, Inc. Lithography laser with beam delivery and beam pointing control
US7439530B2 (en) 2005-06-29 2008-10-21 Cymer, Inc. LPP EUV light source drive laser system
US7164144B2 (en) 2004-03-10 2007-01-16 Cymer Inc. EUV light source
US7098466B2 (en) 2004-06-30 2006-08-29 Intel Corporation Adjustable illumination source
CN101002305A (zh) 2005-01-12 2007-07-18 株式会社尼康 激光等离子euv光源、靶材构件、胶带构件、靶材构件的制造方法、靶材的提供方法以及euv曝光装置
US8829477B2 (en) 2010-03-10 2014-09-09 Asml Netherlands B.V. Droplet generator with actuator induced nozzle cleaning
NL1036613A1 (nl) 2008-03-03 2009-09-07 Asml Netherlands Bv Lithographic apparatus, plasma source, and reflecting method.
JP5603135B2 (ja) 2009-05-21 2014-10-08 ギガフォトン株式会社 チャンバ装置におけるターゲット軌道を計測及び制御する装置及び方法
US9265136B2 (en) 2010-02-19 2016-02-16 Gigaphoton Inc. System and method for generating extreme ultraviolet light
US9072153B2 (en) 2010-03-29 2015-06-30 Gigaphoton Inc. Extreme ultraviolet light generation system utilizing a pre-pulse to create a diffused dome shaped target
JP5926521B2 (ja) 2011-06-15 2016-05-25 ギガフォトン株式会社 チャンバ装置
US8648999B2 (en) 2010-07-22 2014-02-11 Cymer, Llc Alignment of light source focus
JP5921548B2 (ja) 2010-09-08 2016-05-24 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置、euv放射発生装置、およびデバイス製造方法
US9075322B2 (en) 2010-09-10 2015-07-07 Nikon Corporation Reflective imaging optical system, exposure apparatus, and method for producing device
JP6125525B2 (ja) 2011-12-06 2017-05-10 エーエスエムエル ネザーランズ ビー.ブイ. 放射源
US9097978B2 (en) 2012-02-03 2015-08-04 Taiwan Semiconductor Manufacturing Company, Ltd. Method and apparatus to characterize photolithography lens quality
US9093530B2 (en) 2012-12-28 2015-07-28 Taiwan Semiconductor Manufacturing Company, Ltd. Fin structure of FinFET
US9052595B2 (en) 2013-03-15 2015-06-09 Taiwan Semiconductor Manufacturing Company, Ltd. Lithography process
US9310675B2 (en) 2013-03-15 2016-04-12 Taiwan Semiconductor Manufacturing Company, Ltd. Extreme ultraviolet light (EUV) photomasks, and fabrication methods thereof
US8796666B1 (en) 2013-04-26 2014-08-05 Taiwan Semiconductor Manufacturing Company, Ltd. MOS devices with strain buffer layer and methods of forming the same
JP6364002B2 (ja) 2013-05-31 2018-07-25 ギガフォトン株式会社 極端紫外光生成システム
US9497840B2 (en) 2013-09-26 2016-11-15 Asml Netherlands B.V. System and method for creating and utilizing dual laser curtains from a single laser in an LPP EUV light source
US9261774B2 (en) 2013-11-22 2016-02-16 Taiwan Semiconductor Manufacturing Company, Ltd. Extreme ultraviolet lithography process and mask with reduced shadow effect and enhanced intensity
US9377693B2 (en) 2014-03-13 2016-06-28 Taiwan Semiconductor Manufacturing Company, Ltd. Collector in an extreme ultraviolet lithography system with optimal air curtain protection
US9548303B2 (en) 2014-03-13 2017-01-17 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET devices with unique fin shape and the fabrication thereof
US9529268B2 (en) 2014-04-03 2016-12-27 Taiwan Semiconductor Manufacturing Company, Ltd. Systems and methods for improving pattern transfer
US9256123B2 (en) 2014-04-23 2016-02-09 Taiwan Semiconductor Manufacturing Co., Ltd. Method of making an extreme ultraviolet pellicle
US9184054B1 (en) 2014-04-25 2015-11-10 Taiwan Semiconductor Manufacturing Company, Ltd. Method for integrated circuit patterning
WO2016116147A1 (de) 2015-01-21 2016-07-28 Trumpf Lasersystems For Semiconductor Manufacturing Gmbh Strahlführungseinrichtung, euv-strahlungserzeugungsvorrichtung und verfahren zum einstellen eines strahldurchmessers und eines öffnungswinkels eines laserstrahls
GB201520398D0 (en) 2015-11-19 2016-01-06 Realeyes Oü Method and apparatus for immediate prediction of performance of media content
US10969690B2 (en) 2017-09-29 2021-04-06 Taiwan Semiconductor Manufacturing Co., Ltd. Extreme ultraviolet control system for adjusting droplet illumination parameters
US10747119B2 (en) 2018-09-28 2020-08-18 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus and method for monitoring reflectivity of the collector for extreme ultraviolet radiation source
US11340531B2 (en) * 2020-07-10 2022-05-24 Taiwan Semiconductor Manufacturing Company, Ltd. Target control in extreme ultraviolet lithography systems using aberration of reflection image

Also Published As

Publication number Publication date
US11860544B2 (en) 2024-01-02
US11340531B2 (en) 2022-05-24
EP3937595A1 (en) 2022-01-12
TW202202822A (zh) 2022-01-16
US20220011675A1 (en) 2022-01-13
TWI766625B (zh) 2022-06-01
US20220283507A1 (en) 2022-09-08
US20240085797A1 (en) 2024-03-14
CN113391523A (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
KR101710433B1 (ko) 액적 가속기를 포함하는 euv 방사선 소스 및 리소그래피 장치
EP2853139B1 (en) Radiation source
US20240085797A1 (en) Target control in extreme ultraviolet lithography systems using aberration of reflection image
JP2017509000A (ja) 放射源装置およびリソグラフィ装置
US10747119B2 (en) Apparatus and method for monitoring reflectivity of the collector for extreme ultraviolet radiation source
US11630393B2 (en) Apparatus and method for generating extreme ultraviolet radiation
WO2019192841A1 (en) Spatial modulation of a light beam
US20230236511A1 (en) Laser interference fringe control for higher euv light source and euv throughput
US11153959B2 (en) Apparatus and method for generating extreme ultraviolet radiation
US20220124901A1 (en) Apparatus and method for generating extreme ultraviolet radiation
US20220206397A1 (en) Laser focussing module
US20200178380A1 (en) Method and device for measuring contamination in euv source
US20220260927A1 (en) Method for controlling extreme ultraviolet light
US20230408930A1 (en) Tool mismatch reduction using aberration map of the tools
WO2020205883A1 (en) Controlling conversion efficiency in an extreme ultraviolet light source
NL2009061A (en) Radiation source.