JP2022009524A - Weft for carbon fiber fabric and carbon fiber fabric using the same - Google Patents

Weft for carbon fiber fabric and carbon fiber fabric using the same Download PDF

Info

Publication number
JP2022009524A
JP2022009524A JP2021175097A JP2021175097A JP2022009524A JP 2022009524 A JP2022009524 A JP 2022009524A JP 2021175097 A JP2021175097 A JP 2021175097A JP 2021175097 A JP2021175097 A JP 2021175097A JP 2022009524 A JP2022009524 A JP 2022009524A
Authority
JP
Japan
Prior art keywords
melting point
weft
carbon fiber
fiber
thermoplastic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021175097A
Other languages
Japanese (ja)
Other versions
JP7236763B2 (en
Inventor
浩紀 室谷
Hironori Murotani
こゆ 田代
Koyu Tashiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017133227A external-priority patent/JP7033770B2/en
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2021175097A priority Critical patent/JP7236763B2/en
Publication of JP2022009524A publication Critical patent/JP2022009524A/en
Application granted granted Critical
Publication of JP7236763B2 publication Critical patent/JP7236763B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Multicomponent Fibers (AREA)
  • Woven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a weft for carbon fiber fabric, which is adequate for unidirectional fabric whose flatness is not inhibited, and a carbon fiber fabric using the weft.
SOLUTION: A weft for a fabric using carbon fiber for warp is formed of a conjugate type thermal bonding fibers 14 obtained by compounding a low melting point thermoplastic polymer and a high melting point thermoplastic polymer having higher melting point than the low melting point thermoplastic polymer. The conjugate type thermal bonding fiber 14 is a core-sheath type thermal bonding fiber in which a high melting point polyester having melting point of 240°C or higher is used for a core portion 15 and a low melting point polyester having melting point of 110 to 200°C is used for a sheath portion 16. The weft is multifilament formed by binding a plurality of conjugate type thermal bonding fibers together.
SELECTED DRAWING: Figure 2
COPYRIGHT: (C)2022,JPO&INPIT

Description

本発明は炭素繊維織物用緯糸およびこの緯糸を用いた炭素繊維織物に関し、特に、経糸に用いられる炭素繊維の総繊度が緯糸のそれに比べて極端に大きい一方向性織物に適した炭素繊維織物用緯糸と、この緯糸を用いた炭素繊維織物とに関する。 The present invention relates to a warp and weft for a carbon fiber fabric and a carbon fiber fabric using the weft, and particularly for a carbon fiber fabric suitable for a unidirectional fabric in which the total fineness of the carbon fiber used for the warp is extremely larger than that of the weft. It relates to a warp and a carbon fiber woven fabric using this warp and weft.

経糸に用いられる炭素繊維の総繊度が緯糸のそれに比べて極端に大きい一方向性織物として、特許文献1に記載されるものがある。このような一方向性織物は、炭素繊維強化樹脂を用いた成形品のための炭素繊維材料として好適に用いられる。 Patent Document 1 describes a unidirectional woven fabric in which the total fineness of carbon fibers used for warp is extremely larger than that of warp and weft. Such a unidirectional woven fabric is suitably used as a carbon fiber material for a molded product using a carbon fiber reinforced resin.

特許文献1に記載された一方向性織物は、総繊度の大きな経糸を扁平な炭素繊維糸条にて構成し、多数の経糸を横に並べた状態とし、これと細くかつ織密度の低い緯糸とを織り合わせることで、繊維強化成形品の成形に適したシート状の織物としたものである。緯糸としては、ガラス繊維糸条に熱融着繊維を付着させた糸条が用いられている(特に、特許文献1の段落0023など)。 In the unidirectional woven fabric described in Patent Document 1, warps having a large total fineness are composed of flat carbon fiber threads, and a large number of warps are arranged side by side, which is fine and has a low weave density. By weaving together with, a sheet-shaped woven fabric suitable for molding a fiber-reinforced molded product is obtained. As the weft, a yarn in which a heat-sealed fiber is attached to a glass fiber yarn is used (particularly, paragraph 0023 of Patent Document 1).

このような構成とすることで、たとえば同等の繊度を有する炭素繊維製の経糸と緯糸とを平織したような場合に比べて、出来上がった織物は平坦性に優れ、したがって炭素繊維強化樹脂を用いた成形品のためのシート状の炭素繊維材料として特に好ましい性状とすることができる。 With such a configuration, the finished woven fabric has excellent flatness as compared with the case where the warp and weft made of carbon fiber having the same fineness are woven in a plain weave, and therefore a carbon fiber reinforced resin is used. It can have particularly preferable properties as a sheet-shaped carbon fiber material for a molded product.

そして特許文献1の一方向性織物では、熱融着繊維の熱融着作用によって、緯糸としてのガラス繊維糸条が経糸の炭素繊維に接着されている(特に、特許文献1の段落0007など)。 In the unidirectional woven fabric of Patent Document 1, the glass fiber thread as a weft is adhered to the carbon fiber of the warp by the heat fusion action of the heat fusion fiber (particularly, paragraph 007 of Patent Document 1). ..

特開2013-129936号公報Japanese Unexamined Patent Publication No. 2013-129936

しかし、特許文献1に用いられる緯糸は、ガラス繊維にて構成されているものであるために、経糸の炭素繊維に比べて硬く、このため出来上がった織物において、緯糸のガラス繊維と経糸の炭素繊維との交差点では、ガラス繊維が下に位置する交差領域は、炭素繊維が上方向へ大きく浮き上がり、一方、ガラス繊維が上に位置する交差領域は、炭素繊維が下方向へ大きく沈み込み、シート全体において炭素繊維が上下に浮き沈みして波打ちを発生し、その波打ちによってシートの平坦性が阻害される。 However, since the weft used in Patent Document 1 is composed of glass fibers, it is harder than the carbon fibers of the warp, and therefore, in the finished woven fabric, the glass fiber of the weft and the carbon fiber of the warp At the intersection with the glass fiber, the carbon fiber rises greatly upward in the intersection region where the glass fiber is located below, while in the intersection region where the glass fiber is located above, the carbon fiber sinks greatly downward and the entire sheet. The carbon fibers rise and fall up and down to generate waviness, and the waviness hinders the flatness of the sheet.

そこで本発明は、このような問題点を解決して、平坦性が阻害されることのない一方向性織物に適した炭素繊維織物用緯糸と、この緯糸を用いた炭素繊維織物を得ることを目的とする。 Therefore, the present invention solves such a problem and obtains a weft for carbon fiber woven fabric suitable for a unidirectional woven fabric whose flatness is not impaired and a carbon fiber woven fabric using this weft. The purpose.

この目的を達成するため本発明の炭素繊維織物用緯糸は、
経糸に炭素繊維を用いた織物のための緯糸であって、
低融点熱可塑性ポリマーと、この低融点熱可塑性ポリマーよりも高融点の高融点熱可塑性ポリマーとが複合化された複合型熱融着性繊維にて構成され、
前記複合型熱融着性繊維は、芯部に融点が240℃以上の高融点ポリエステルが配されるとともに、鞘部に融点が110~200℃の低融点ポリエステルが配されたフィラメントの形態の芯鞘型熱融着性繊維であり、
前記緯糸は、複数本の複合型熱融着性繊維が収束して形成されたマルチフィラメントであることを特徴とする。
In order to achieve this object, the warp and weft for carbon fiber woven fabric of the present invention is used.
Warp and weft for woven fabrics that use carbon fiber for the warp.
It is composed of a composite heat-sealing fiber in which a low melting point thermoplastic polymer and a high melting point thermoplastic polymer having a higher melting point than this low melting point thermoplastic polymer are composited.
The composite heat-fusing fiber has a core in the form of a filament in which a high melting point polyester having a melting point of 240 ° C. or higher is arranged in the core portion and a low melting point polyester having a melting point of 110 to 200 ° C. is arranged in the sheath portion. Sheath-type heat-sealing fiber,
The warp and weft is characterized by being a multifilament formed by converging a plurality of composite heat-sealing fibers.

本発明の炭素繊維織物は、炭素繊維が経糸に配され、上記の炭素繊維織物用緯糸が緯糸に配され、緯糸の低融点熱可塑性ポリマーの熱融着によって、繊維形成成分としての高融点熱可塑性ポリマーが経糸に接着された織物であることを特徴とする。 In the carbon fiber woven fabric of the present invention, carbon fibers are arranged on the warp, the above-mentioned weft for carbon fiber woven fabric is arranged on the weft, and the high melting point heat as a fiber forming component is obtained by heat fusion of the low melting point thermoplastic polymer of the weft. It is characterized in that the plastic polymer is a woven fabric adhered to warp and weft.

本発明の炭素繊維織物用緯糸によれば、低融点熱可塑性ポリマーと、この低融点熱可塑性ポリマーよりも高融点の高融点熱可塑性ポリマーとが複合化された複合型熱融着性繊維にて構成されているため、高融点熱可塑性ポリマーを繊維形成成分とし、低融点熱可塑性ポリマーを熱接着成分とした緯糸を構成することができ、このため従来のガラス繊維にて構成された緯糸に比べて柔軟であり、したがって出来上がった織物における波打ちの発生を良好に防止することができて、平坦性に優れた炭素繊維織物を得ることができる。また、複合型熱融着性繊維が、芯部に融点が240℃以上の高融点ポリエステルが配されるとともに、鞘部に融点が110~200℃の低融点ポリエステルが配された芯鞘型熱融着性繊維であることから、すなわち、芯部と鞘部とのいずれもがポリエステル系重合体にて構成されていることから、汎用性が高く、強度に優れるという利点がある。 According to the weft for carbon fiber woven fabric of the present invention, it is a composite type heat-sealing fiber in which a low melting point thermoplastic polymer and a high melting point thermoplastic polymer having a higher melting point than this low melting point thermoplastic polymer are composited. Since it is composed, it is possible to construct a weft with a high melting point thermoplastic polymer as a fiber forming component and a low melting point thermoplastic polymer as a heat bonding component, and therefore, compared with a weft made of a conventional glass fiber. Therefore, it is possible to satisfactorily prevent the occurrence of waviness in the finished woven fabric, and it is possible to obtain a carbon fiber woven fabric having excellent flatness. Further, the composite type heat-sealing fiber has a core-sheath type heat in which a high melting point polyester having a melting point of 240 ° C. or higher is arranged in the core portion and a low melting point polyester having a melting point of 110 to 200 ° C. is arranged in the sheath portion. Since it is a fused fiber, that is, since both the core portion and the sheath portion are made of a polyester-based polymer, it has the advantages of high versatility and excellent strength.

本発明の実施の形態の炭素繊維織物用緯糸を用いた炭素繊維織物を示す図である。It is a figure which shows the carbon fiber woven fabric which used the weft for carbon fiber woven fabric of embodiment of this invention. 同炭素繊維織物用緯糸の断面構造を示す図である。It is a figure which shows the cross-sectional structure of the weft for the carbon fiber woven fabric. 同炭素繊維織物用緯糸と炭素繊維の経糸との接着状態を示す図である。It is a figure which shows the adhesion state of the weft for carbon fiber woven fabric, and the warp and weft of carbon fiber. 炭素繊維織物の縦断面構造を模式的に示す図である。It is a figure which shows typically the vertical cross-sectional structure of a carbon fiber woven fabric.

図1に示す本発明の実施の形態の炭素繊維織物用緯糸を用いた炭素繊維織物11は、経糸12と緯糸13とを用いて織製されたものである。 The carbon fiber woven fabric 11 using the weft for carbon fiber woven fabric according to the embodiment of the present invention shown in FIG. 1 is woven using the warp 12 and the weft 13.

経糸12は、複数本の炭素繊維がほぼ平行に引き揃えられて、撚りを有しないマルチフィラメントによって構成されている。例えば、複数本の炭素繊維からなるマルチフィラメントであって、800tex/12000f~3200tex/48000f程度のマルチフィラメントにより構成される。複数本の炭素繊維はほぼ平行に引き揃えられてなるため、幅3.0~5.0mm、厚み0.1~0.3mm程度の扁平なマルチフィラメント構造となる。それによって、上述の炭素繊維強化樹脂を用いた成形品のための炭素繊維材料として好適に用いることができる。なお、経糸は、隙間なく密接に配列していることが好ましく、その織密度は、密接に配列するように、炭素繊維からなるマルチフィラメントの幅に応じて適宜選択すればよい。なかでも、3本/2.54cm~10本/2.54cmが好適である。 The warp 12 is composed of a multifilament in which a plurality of carbon fibers are aligned substantially in parallel and have no twist. For example, it is a multifilament composed of a plurality of carbon fibers, and is composed of a multifilament of about 800tex / 12000f to 3200tex / 48000f. Since the plurality of carbon fibers are aligned substantially in parallel, a flat multifilament structure having a width of 3.0 to 5.0 mm and a thickness of about 0.1 to 0.3 mm is formed. Thereby, it can be suitably used as a carbon fiber material for a molded product using the above-mentioned carbon fiber reinforced resin. The warps are preferably closely arranged without gaps, and the weaving density may be appropriately selected according to the width of the multifilament made of carbon fibers so as to be closely arranged. Among them, 3 pieces / 2.54 cm to 10 pieces / 2.54 cm are preferable.

緯糸13は、低融点熱可塑性ポリマーと、この低融点熱可塑性ポリマーよりも高融点の高融点熱可塑性ポリマーとが複合化された複合型熱融着性繊維によって構成される。複合型熱融着性繊維の形態は、連続繊維であるフィラメントとされる。緯糸13は、複数本のフィラメントが収束したマルチフィラメントにより構成される。 The weft 13 is composed of a composite heat-sealing fiber in which a low melting point thermoplastic polymer and a high melting point thermoplastic polymer having a higher melting point than the low melting point thermoplastic polymer are composited. The form of the composite heat-fusing fiber is a filament which is a continuous fiber. The warp and weft 13 is composed of a multifilament in which a plurality of filaments are converged.

マルチフィラメントは、単繊維繊度が3~8デシテックスのフィラメント(熱融着繊維繊維)が30~80本程度集束してなるものであって、総繊度が150~400デシテックス程度がよい。 The multifilament is formed by focusing about 30 to 80 filaments (heat-fused fiber fibers) having a single fiber fineness of 3 to 8 decitex, and a total fineness of about 150 to 400 decitex is preferable.

経糸及び緯糸の繊度及び織密度をそれぞれ上記範囲に設定することで、図1に示すような、帯状の経糸12が横方向に複数並んだ状態で、これらの経糸12に比べて極端に細く構成された緯糸13が、その糸径に比べてかなり広い間隔のピッチで配された、炭素繊維織物11を得ることができる。 By setting the fineness and weaving density of the warp and weft to the above ranges, as shown in FIG. 1, a plurality of strip-shaped warp 12s are arranged in the horizontal direction, and the warp threads 12 are extremely thin as compared with these warp threads 12. It is possible to obtain a carbon fiber woven fabric 11 in which the warp and weft 13 is arranged at a pitch considerably wider than the yarn diameter.

この炭素繊維織物11は、上述のように炭素繊維強化樹脂を用いた成形品のためのシート状の炭素繊維材料として好適に使用することができる。その場合において、経糸12の炭素繊維は、同炭素繊維材料の主成分を構成するものである。これに対し、複合型熱融着性繊維により構成される緯糸13は、炭素繊維織物11が樹脂強化のためにこの樹脂中に取り込まれるまでの間において、炭素繊維織物11の形態が崩れないように経糸12同士を繋ぎ留めておく役割だけを果たせば足りる。このため、上述のような細径のものを広いピッチすなわち織密度を低くした状態で配すれば足りる。 As described above, the carbon fiber woven fabric 11 can be suitably used as a sheet-shaped carbon fiber material for a molded product using a carbon fiber reinforced resin. In that case, the carbon fiber of the warp 12 constitutes the main component of the carbon fiber material. On the other hand, the warp and weft 13 made of the composite heat-sealing fiber does not lose its shape until the carbon fiber woven fabric 11 is incorporated into the resin for reinforcing the resin. It suffices to fulfill only the role of holding the warp threads 12 together. Therefore, it is sufficient to arrange the small diameter ones as described above with a wide pitch, that is, with a low weaving density.

図2は、織物11を構成する材料としての緯糸13の構成例を示す。この図2に例示された緯糸13は、織物11を構成する前の構成材料の段階では、図示のように複数の芯鞘型熱融着性繊維14がフィラメントの形態で集束されている。各芯鞘型熱融着性繊維14は、その芯部15に上述の高低融点熱可塑性ポリマーが配されるとともに、その鞘部16に、上述の低融点熱可塑性ポリマーが配された構成である。図1に示される炭素繊維織物11は、図3に示されるように、緯糸13の芯鞘型熱融着性繊維14の鞘部16の低融点熱可塑性ポリマーが熱により軟化又は溶融するとともに、その芯部15の高融点熱可塑性ポリマーが軟化溶融せずに繊維形態を保った状態で、この高融点熱可塑性ポリマーにより繊維形態を保った状態の芯部15が、鞘部16を構成していた低融点熱可塑性ポリマー17によって、マルチフィラメント炭素繊維にて構成された経糸12に接着された構成とされている。 FIG. 2 shows a configuration example of the weft 13 as a material constituting the woven fabric 11. In the weft 13 illustrated in FIG. 2, a plurality of core-sheath type heat-sealing fibers 14 are focused in the form of filaments as shown in the figure at the stage of the constituent material before forming the woven fabric 11. Each core-sheath type heat-sealing fiber 14 has a structure in which the above-mentioned high-low melting point thermoplastic polymer is arranged in the core portion 15 and the above-mentioned low-melting point thermoplastic polymer is arranged in the sheath portion 16. .. In the carbon fiber woven fabric 11 shown in FIG. 1, as shown in FIG. 3, the low melting point thermoplastic polymer in the sheath portion 16 of the core-sheath type heat-sealing fiber 14 of the weft 13 is softened or melted by heat, and at the same time, the carbon fiber woven fabric 11 is softened or melted by heat. The core portion 15 in a state in which the high melting point thermoplastic polymer of the core portion 15 maintains the fiber morphology without softening and melting, and the high melting point thermoplastic polymer in a state of maintaining the fiber morphology constitutes the sheath portion 16. The low melting point thermoplastic polymer 17 is used to bond the warp threads 12 made of multifilament carbon fibers.

緯糸13の複合型熱融着性繊維における低融点熱可塑性ポリマーと高融点熱可塑性ポリマーとの質量比率は、炭素繊維織物11において実質的に緯糸13を構成する芯部15の所要強度や、鞘部16を構成していた低融点熱可塑性ポリマー17の接着強度などの観点から、例えば、高融点熱可塑性ポリマー/低融点熱可塑性ポリマーの比率で2/8~8/2、特に3/1~5/5が好適である。 The mass ratio of the low melting point thermoplastic polymer and the high melting point thermoplastic polymer in the composite heat-fusing fiber of the weft 13 is the required strength of the core portion 15 substantially constituting the weft 13 in the carbon fiber woven fabric 11 and the sheath. From the viewpoint of the adhesive strength of the low melting point thermoplastic polymer 17 constituting the portion 16, for example, the ratio of the high melting point thermoplastic polymer / the low melting point thermoplastic polymer is 2/8 to 8/2, particularly 3/1 to 5/5 is preferable.

緯糸13の複合型熱融着性繊維における低融点熱可塑性ポリマーと高融点熱可塑性ポリマーとは、溶融紡糸による製糸性を有することが必要であり、また緯糸13を構成するための所要の特性を有することが必要であり、さらに経糸12の炭素繊維との接着性が良好であることが必要である。これらの点を考慮して、両ポリマーは、互いに同種類の重合体すなわちポリエステル系重合体である。両ポリマーがポリエステル系重合体であることで、汎用性が高く、強度に優れるという利点がある。 The low melting point thermoplastic polymer and the high melting point thermoplastic polymer in the composite heat-fusing fiber of the weft 13 need to have the yarn-making property by melt spinning, and also have the necessary characteristics for forming the weft thread 13. It is necessary to have it, and it is necessary that the warp and weft 12 has good adhesion to carbon fibers. In consideration of these points, both polymers are polymers of the same type as each other, that is, polyester-based polymers. Since both polymers are polyester-based polymers, they have the advantages of high versatility and excellent strength.

緯糸13を構成する複合型熱融着性繊維の断面形状は、所期の性能が損なわれない範囲であれば、丸断面、異形断面、中空断面等のいずれであってもよい。 The cross-sectional shape of the composite heat-sealing fiber constituting the weft 13 may be any of a round cross section, a modified cross section, a hollow cross section and the like as long as the desired performance is not impaired.

緯糸13を構成する複合型熱融着性繊維における低融点熱可塑性ポリマーおよび高融点熱可塑性ポリマーには、それぞれ独立して、熱安定剤、結晶核剤、艶消剤、顔料、耐光剤、耐候剤、滑剤、酸化防止剤、抗菌剤、香料、可塑剤、染料、界面活性剤、難燃剤、表面改質剤、各種無機、有機電解質などの添加剤が含有されていてもよい。 The low melting point thermoplastic polymer and the high melting point thermoplastic polymer in the composite heat-fusing fiber constituting the weft 13 are independently heat stabilizer, crystal nucleating agent, matting agent, pigment, light resistant agent, and weather resistant. Additives such as agents, lubricants, antioxidants, antibacterial agents, fragrances, plasticizers, dyes, surfactants, flame retardants, surface modifiers, various inorganics, organic electrolytes and the like may be contained.

複合型熱融着性繊維としての芯鞘型熱融着性繊維14は、市販品として入手可能である。たとえば、連続繊維から構成されるマルチフィラメントとしては、ユニチカ社製の「MELSET(登録商標)」が使用できる。 The core-sheath type heat-sealing fiber 14 as a composite type heat-sealing fiber is available as a commercially available product. For example, as the multifilament composed of continuous fibers, "MELSET (registered trademark)" manufactured by Unitika Ltd. can be used.

緯糸13を構成する複合型熱融着性繊維として、低融点熱可塑性ポリマーおよび高融点熱可塑性ポリマーの融点、両者の質量比率、繊度、強度および伸度等の物性がそれぞれ異なる2種類以上の複合型熱融着性繊維が使用されてもよい。 As the composite heat-fusing fiber constituting the weft 13, two or more types of composites having different physical properties such as melting point of low melting point thermoplastic polymer and high melting point thermoplastic polymer, mass ratio, fineness, strength and elongation of both. Molded thermoplastic fibers may be used.

熱接着成分としての低融点熱可塑性ポリマーの融点は、繊維形成成分としての高融点熱可塑性ポリマーの融点より20℃以上低いことが好ましい。このような温度特性とすることにより、後述の熱処理に付されても高融点熱可塑性ポリマーの物性は影響を受けず、繊維形態を良好に保持させることができるという利点がある。低融点熱可塑性ポリマーの融点は、加工性や各種物性等を考慮すると、80~200℃の範囲内であることが好ましい。低融点熱可塑性ポリマーが明確な融点を有さないときは、該低融点熱可塑性ポリマーの軟化点を融点とみなすことができる。 The melting point of the low melting point thermoplastic polymer as a thermal adhesion component is preferably 20 ° C. or higher lower than the melting point of the high melting point thermoplastic polymer as a fiber forming component. With such temperature characteristics, there is an advantage that the physical properties of the refractory thermoplastic polymer are not affected even if it is subjected to the heat treatment described later, and the fiber morphology can be well maintained. The melting point of the low melting point thermoplastic polymer is preferably in the range of 80 to 200 ° C. in consideration of processability, various physical properties and the like. When the low melting point thermoplastic polymer does not have a definite melting point, the softening point of the low melting point thermoplastic polymer can be regarded as the melting point.

低融点熱可塑性ポリマーと高融点熱可塑性ポリマーとの具体的な好ましい組み合わせは、両者の相溶性や熱接着性を考慮すると、低融点ポリエステルと高融点ポリエステルが挙げられる。 Specific preferred combinations of the low melting point thermoplastic polymer and the high melting point thermoplastic polymer include low melting point polyester and high melting point polyester in consideration of compatibility and thermal adhesion between the two.

芯鞘型の複合型熱融着性繊維1としては、具体的には、融点が240℃以上の高融点ポリエステルが芯部に配され、融点が110~200℃の低融点の共重合ポリエステルが鞘部に配された芯鞘型ポリエステル繊維が用いられる。 As the core-sheath type composite heat-sealing fiber 1, specifically, a high melting point polyester having a melting point of 240 ° C. or higher is arranged in the core portion, and a low melting point copolymerized polyester having a melting point of 110 to 200 ° C. is used. A core-sheath type polyester fiber arranged in a sheath is used.

熱融着成分である低融点熱可塑性ポリマーを溶融させる方法としては、熱処理が挙げられる。熱処理は、低融点熱可塑性ポリマーの融点より高い雰囲気温度を保持する処理である。これによって、熱融着成分である低融点熱可塑性ポリマーの溶融・固化により、図3に示すように経糸12と緯糸13とを接着させることができる。 As a method for melting the low melting point thermoplastic polymer which is a heat fusion component, heat treatment can be mentioned. The heat treatment is a process of maintaining an atmospheric temperature higher than the melting point of the low melting point thermoplastic polymer. As a result, the warp and weft 13 can be adhered to each other as shown in FIG. 3 by melting and solidifying the low melting point thermoplastic polymer which is a heat fusion component.

緯糸13として、別種の低融点熱可塑性ポリマーをそれぞれ含有する2種類以上の複合型の糸条を用いる場合は、融点が最も高い低融点熱可塑性ポリマーの融点を基準とし、この融点が最も高い低融点熱可塑性ポリマーの当該融点より高い雰囲気温度で熱処理を施せばよい。熱処理時における雰囲気温度は、低融点熱可塑性ポリマーの融点より高く、かつ高融点熱可塑性ポリマーの融点より低い温度が好ましい。雰囲気温度が高すぎると、コスト面で不利となるばかりでなく、高融点熱可塑性ポリマーが熱によるダメージを受け、緯糸13の強度の低下が起こる。雰囲気温度は、低融点熱可塑性ポリマーの融点をMpと表したとき、Mp+5℃以上、Mp+20℃未満が好ましい。 When two or more types of composite threads containing different types of low melting point thermoplastic polymers are used as the weft 13, the melting point of the low melting point thermoplastic polymer having the highest melting point is used as a reference, and the melting point is the highest. Melting point The heat treatment may be performed at an atmospheric temperature higher than the melting point of the thermoplastic polymer. The ambient temperature during the heat treatment is preferably higher than the melting point of the low melting point thermoplastic polymer and lower than the melting point of the high melting point thermoplastic polymer. If the atmospheric temperature is too high, not only is it disadvantageous in terms of cost, but also the refractory thermoplastic polymer is damaged by heat, resulting in a decrease in the strength of the weft 13. The atmospheric temperature is preferably Mp L + 5 ° C. or higher and Mp L + 20 ° C. or lower, when the melting point of the low melting point thermoplastic polymer is expressed as Mp L.

熱処理を施す時間は、低融点熱可塑性ポリマーが充分に溶融する時間であればよい。ただし、熱処理時間が長すぎると、コスト面で不利となるばかりでなく、高融点熱可塑性ポリマーが熱によるダメージを受け、緯糸13全体として強度の低下を起こすようになる。このため、熱処理時間は、30秒間~5分間が好ましく、より好ましくは1分間~3分間である。熱処理を施すための加熱の方法は、特に限定されないが、アイロン、熱風溶接機、熱風乾燥機、テンターマシーン、熱ローラー、熱プレスなど周知の手段を用いることができる。 The time for applying the heat treatment may be any time as long as the low melting point thermoplastic polymer is sufficiently melted. However, if the heat treatment time is too long, not only is it disadvantageous in terms of cost, but also the refractory thermoplastic polymer is damaged by heat, and the strength of the weft 13 as a whole is lowered. Therefore, the heat treatment time is preferably 30 seconds to 5 minutes, more preferably 1 minute to 3 minutes. The heating method for applying the heat treatment is not particularly limited, but a well-known means such as an iron, a hot air welder, a hot air dryer, a tenter machine, a hot roller, and a hot press can be used.

上述の緯糸13を用いた炭素繊維織物11によれば、この緯糸13は従来のガラス繊維にて構成された緯糸に比べて柔軟であり、したがって出来上がった織物11における波打ちの発生を良好に防止することができて、平坦性に優れた炭素繊維織物11を得ることができる。 According to the carbon fiber woven fabric 11 using the above-mentioned weft 13, the weft 13 is more flexible than the weft made of conventional glass fibers, and therefore the occurrence of waviness in the finished woven fabric 11 is satisfactorily prevented. It is possible to obtain a carbon fiber woven fabric 11 having excellent flatness.

図4は、従来のガラス繊維にて構成された緯糸を用いた場合と、本発明にもとづく緯糸を用いた場合との、炭素繊維織物の平坦性を模式的に比較したものである。同図(a)は従来の構成を示し、12は経糸、13は緯糸である。緯糸13は、複数のガラス繊維を含むガラス繊維糸と、複数のバインダ繊維を含むバインダ糸とで構成されていたのであるが、熱処理によってバインダ繊維が軟化溶融し、繊維形態をとどめない状態のバインダ21となって、ガラス繊維22を、炭素繊維にて構成された経糸12に接着している。しかし、緯糸13のガラス繊維22は経糸12の炭素繊維に比べて硬い。このため出来上がった織物においては、図示のように、緯糸13のガラス繊維22と経糸12の炭素繊維との交差点において、ガラス繊維22が下に位置する交差領域では経糸12の炭素繊維が上方向へ大きく浮き上がり、一方、ガラス繊維22が上に位置する交差領域では経糸12の炭素繊維が下方向へ大きく沈み込む。これによって、図示のようにシート全体において経糸12の炭素繊維が上下に浮き沈みして波打ちを発生し、その波打ちによってシートすなわち織物の平坦性が阻害されている。 FIG. 4 is a schematic comparison of the flatness of a carbon fiber woven fabric when a conventional weft made of glass fiber is used and when a weft based on the present invention is used. FIG. 2A shows a conventional configuration, in which 12 is a warp and 13 is a weft. The weft 13 was composed of a glass fiber yarn containing a plurality of glass fibers and a binder yarn containing a plurality of binder fibers. However, the binder fibers are softened and melted by the heat treatment, and the binder does not retain its fiber morphology. 21 is obtained, and the glass fiber 22 is adhered to the warp thread 12 composed of carbon fibers. However, the glass fiber 22 of the weft 13 is harder than the carbon fiber of the warp thread 12. Therefore, in the finished woven fabric, as shown in the figure, at the intersection of the glass fiber 22 of the weft 13 and the carbon fiber of the warp 12, the carbon fiber of the warp 12 moves upward in the intersection region where the glass fiber 22 is located below. On the other hand, in the crossing region where the glass fiber 22 is located above, the carbon fiber of the warp 12 sinks greatly downward. As a result, as shown in the figure, the carbon fibers of the warp 12 rise and fall up and down in the entire sheet to generate waviness, and the waviness hinders the flatness of the sheet, that is, the woven fabric.

これに対し図4(b)は、本発明の緯糸13を用いた場合の構成を示す。上述のように緯糸13は従来のガラス繊維にて構成された緯糸に比べて柔軟であるため、図示のように、出来上がった織物11における波打ちの発生を良好に防止することができて、平坦性に優れた炭素繊維織物11を得ることができる。 On the other hand, FIG. 4B shows a configuration when the weft 13 of the present invention is used. As described above, since the warp and weft 13 is more flexible than the conventional warp and weft made of glass fiber, as shown in the figure, it is possible to satisfactorily prevent the occurrence of waviness in the finished woven fabric 11 and to have flatness. It is possible to obtain an excellent carbon fiber woven fabric 11.

緯糸13を柔軟な構成とするためには、本発明のほかに、この緯糸13を、従来のガラス繊維に代えて合成樹脂繊維にて構成し、この合成樹脂繊維からなる糸と低融点のバインダ繊維からなる糸とを併用して経糸に熱接着させる構成を考えることもできる。しかし、その場合は、緯糸として合成樹脂繊維からなる糸とバインダ繊維からなる糸との複数種類の繊維を用いなければならない。これに対し本発明の緯糸13は、低融点熱可塑性ポリマーと、この低融点熱可塑性ポリマーよりも高融点の高融点熱可塑性ポリマーとが複合化された複合型熱融着性繊維であるために、ただ一種類の複合型繊維を用いるだけで足りる。さらには、複合型熱融着性繊維のみによって構成されるため、経糸の炭素繊維との接着性に優れるという効果も奏する。また、この一種類の繊維の一部を構成する高融点熱可塑性ポリマーだけが繊維構成成分として機能するため、取扱い性などの観点からバインダにて接着する方式の一般的な合成樹脂繊維と同程度の繊度の繊維を用いた場合でも、一般的な合成樹脂繊維を用いた場合に比べて出来上がった織物における緯糸の繊度を低くすることができる。すなわち、緯糸をより細くすることができて、その点からも織物11における波打ちの発生を効果的に防止し、織物の平滑性が向上することができる。 In order to make the weft 13 flexible, in addition to the present invention, the weft 13 is made of synthetic resin fiber instead of the conventional glass fiber, and the yarn made of this synthetic resin fiber and the binder having a low melting point are used. It is also possible to consider a configuration in which a yarn made of fibers is used in combination to heat-adhere to the warp and weft. However, in that case, a plurality of types of fibers, that is, a yarn made of synthetic resin fibers and a yarn made of binder fibers, must be used as the weft. On the other hand, the weft 13 of the present invention is a composite heat-fused fiber in which a low melting point thermoplastic polymer and a high melting point thermoplastic polymer having a higher melting point than the low melting point thermoplastic polymer are composited. , It is enough to use only one kind of composite fiber. Furthermore, since it is composed of only composite heat-sealing fibers, it also has an effect of excellent adhesion of warp threads to carbon fibers. In addition, since only the refractory thermoplastic polymer that constitutes a part of this one type of fiber functions as a fiber component, it is about the same as a general synthetic resin fiber that is bonded with a binder from the viewpoint of handleability and the like. Even when the fiber having the fineness of the above is used, the fineness of the weft in the finished woven fabric can be lowered as compared with the case where the general synthetic resin fiber is used. That is, the weft can be made thinner, and from that point as well, the occurrence of waviness in the woven fabric 11 can be effectively prevented, and the smoothness of the woven fabric can be improved.

(実施例1)
経糸に炭素繊維が複数本引き揃えられてなる2310texの炭素繊維ロービング糸を配し、緯糸にポリエステル系芯鞘型連続繊維からなるマルチフィラメント(280dtex/48f、芯部がポリエチレンテレフタレート、鞘部が融点160℃の共重合ポリエステルにより構成、ユニチカ社製 商品名「MELSET」)を用い、経糸密度6.8本/2.54cm、緯糸密度3.7本/2.54cmの織物を作製した。作製した織物を熱ロールプレス機にて180℃の熱処理を行い、厚さ0.2mmのシートを得た。
(Example 1)
A 2310tex carbon fiber roving yarn in which a plurality of carbon fibers are aligned is arranged in the warp and weft, and a multifilament (280dtex / 48f, polyethylene terephthalate in the core and melting point in the sheath) made of polyester core-sheath type continuous fiber is arranged in the weft. A woven fabric having a warp and weft density of 6.8 / 2.54 cm and a warp and weft density of 3.7 / 2.54 cm was produced using a copolymerized polyester at 160 ° C. and a trade name “MELSET” manufactured by Unitica. The produced woven fabric was heat-treated at 180 ° C. with a hot roll press to obtain a sheet having a thickness of 0.2 mm.

(比較例1)
実施例1に比べ、68texのガラス繊維(ユニチカ社製「G150S/1/0-1Z」)と、ポリアミド系の全融タイプの熱融着繊維からなり総繊度が330dexのマルチフィラメント糸(ユニチカトレーディング社製 商品名「フロールM」)とを50T/mでS撚りした合撚糸を緯糸に用いた点を相違させた。そして、それ以外は実施例1と同様にしてシートを得た。
(Comparative Example 1)
Compared to Example 1, a multifilament yarn (Unitika Trading) consisting of 68tex glass fiber (Unitika "G150S / 1 / 0-1Z") and polyamide-based fully fused type heat-fused fiber with a total fineness of 330 dex. The difference from the company's product name "Flor M") was that a synthetic twisted yarn that was S-twisted at 50 T / m was used as the weft. Then, a sheet was obtained in the same manner as in Example 1 except for the above.

実施例1および比較例1のシートすなわち炭素繊維織物の外観を目視にて確認したところ、実施例1のシートは、波打ちの発生がわずかで、平坦性に優れたものであった。これに対し比較例1のシートは、緯糸にガラス繊維を用いたものであったため、顕著な波打ちが発生しており、実施例1,2のシートに比べて平坦性に劣るものであった。 When the appearance of the sheets of Example 1 and Comparative Example 1, that is, the carbon fiber woven fabric was visually confirmed, the sheet of Example 1 had little waviness and was excellent in flatness. On the other hand, since the sheet of Comparative Example 1 used glass fiber for the weft, remarkable waviness occurred, and the sheet was inferior in flatness to the sheets of Examples 1 and 2.

Claims (2)

経糸に炭素繊維を用いた織物のための緯糸であって、
低融点熱可塑性ポリマーと、この低融点熱可塑性ポリマーよりも高融点の高融点熱可塑性ポリマーとが複合化された複合型熱融着性繊維にて構成され、
前記複合型熱融着性繊維は、芯部に融点が240℃以上の高融点ポリエステルが配されるとともに、鞘部に融点が110~200℃の低融点ポリエステルが配されたフィラメントの形態の芯鞘型熱融着性繊維であり、
前記緯糸は、複数本の複合型熱融着性繊維が収束して形成されたマルチフィラメントであることを特徴とする炭素繊維織物用緯糸。
Warp and weft for woven fabrics that use carbon fiber for the warp.
It is composed of a composite heat-sealing fiber in which a low melting point thermoplastic polymer and a high melting point thermoplastic polymer having a higher melting point than this low melting point thermoplastic polymer are composited.
The composite heat-fusing fiber has a core in the form of a filament in which a high melting point polyester having a melting point of 240 ° C. or higher is arranged in the core portion and a low melting point polyester having a melting point of 110 to 200 ° C. is arranged in the sheath portion. Sheath-type heat-sealing fiber,
The warp and weft is a weft for carbon fiber woven fabric, which is a multifilament formed by converging a plurality of composite heat-sealing fibers.
炭素繊維が経糸に配され、請求項1記載の炭素繊維織物用緯糸が緯糸に配され、緯糸の低融点熱可塑性ポリマーの熱融着によって、繊維形成成分としての高融点熱可塑性ポリマーが経糸に接着された織物であることを特徴とする炭素繊維織物。 Carbon fibers are arranged in the warp, the weft for carbon fiber fabric according to claim 1 is arranged in the weft, and the high melting point thermoplastic polymer as a fiber forming component becomes the warp by heat fusion of the low melting point thermoplastic polymer of the weft. A carbon fiber woven fabric characterized by being a bonded woven fabric.
JP2021175097A 2017-07-07 2021-10-27 Weft for carbon fiber fabric and carbon fiber fabric using this weft Active JP7236763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021175097A JP7236763B2 (en) 2017-07-07 2021-10-27 Weft for carbon fiber fabric and carbon fiber fabric using this weft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017133227A JP7033770B2 (en) 2017-07-07 2017-07-07 Warp and weft for carbon fiber woven fabric and carbon fiber woven fabric using this weft
JP2021175097A JP7236763B2 (en) 2017-07-07 2021-10-27 Weft for carbon fiber fabric and carbon fiber fabric using this weft

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017133227A Division JP7033770B2 (en) 2017-07-07 2017-07-07 Warp and weft for carbon fiber woven fabric and carbon fiber woven fabric using this weft

Publications (2)

Publication Number Publication Date
JP2022009524A true JP2022009524A (en) 2022-01-14
JP7236763B2 JP7236763B2 (en) 2023-03-10

Family

ID=87699479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021175097A Active JP7236763B2 (en) 2017-07-07 2021-10-27 Weft for carbon fiber fabric and carbon fiber fabric using this weft

Country Status (1)

Country Link
JP (1) JP7236763B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217450A (en) * 1997-05-15 1999-08-10 Toray Ind Inc Prepreg of reinforcing fibrous textile and its production
JP2002138344A (en) * 2000-10-25 2002-05-14 Nippon Mitsubishi Oil Corp Unidirectional carbon fiber woven fabric, method for producing the same, and reinforced concrete structure
JP2005105492A (en) * 2003-10-01 2005-04-21 Kurabo Ind Ltd Reinforcing nonwoven fabric
JP2005179845A (en) * 2003-12-22 2005-07-07 Nippon Oil Corp Unidirectional woven carbon fiber fabric and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217450A (en) * 1997-05-15 1999-08-10 Toray Ind Inc Prepreg of reinforcing fibrous textile and its production
JP2002138344A (en) * 2000-10-25 2002-05-14 Nippon Mitsubishi Oil Corp Unidirectional carbon fiber woven fabric, method for producing the same, and reinforced concrete structure
JP2005105492A (en) * 2003-10-01 2005-04-21 Kurabo Ind Ltd Reinforcing nonwoven fabric
JP2005179845A (en) * 2003-12-22 2005-07-07 Nippon Oil Corp Unidirectional woven carbon fiber fabric and method for producing the same

Also Published As

Publication number Publication date
JP7236763B2 (en) 2023-03-10

Similar Documents

Publication Publication Date Title
US10703069B2 (en) Stab and ballistic resistant articles and the process of making
KR101183146B1 (en) non-woven fabric with high elasticity and recoverability, and material for cushion utilizing the same
JP4772124B2 (en) Reinforcing fiber cord having excellent adhesion and method for producing the same
JP2015006798A (en) Fiber sheet
JP2022009524A (en) Weft for carbon fiber fabric and carbon fiber fabric using the same
JP7033770B2 (en) Warp and weft for carbon fiber woven fabric and carbon fiber woven fabric using this weft
JP2006233341A (en) Method for producing reinforced fiber woven fabric
JP5277077B2 (en) Fabric manufacturing method
JP5059927B2 (en) Textile wallpaper and textile wallpaper adhesive board
JP2006001035A (en) Polypropylene resin laminating and molding material and laminate thereof
JP6642141B2 (en) Method and apparatus for manufacturing reinforced fiber fabric
JP2018048432A (en) Method for producing mesh woven fabric for molding
WO2019156033A1 (en) Filamentary tape and composite material including said tape
JP6851613B2 (en) Method of manufacturing fabric reinforcement
JPH0625939A (en) Thermally shrinkable woven or knit fabric
JPH08246244A (en) Heat adhesive conjugate filament yarn and sheet
KR101269893B1 (en) Composite fiber consisting rayon filament and heat melted synthetic filament with excellent volume and cooling feel, and fabric manufactured thereby
JP2018150633A (en) Resin-reinforcing woven fabric and resin molding using the same
JP2019088266A (en) Fishing net manufacturing method
JP6915306B2 (en) Reinforced fiber woven fabric and method for manufacturing preforms using the reinforced fiber woven fabric
JP7281185B2 (en) Blind fabric with cloud dragon pattern and method for producing the same
JP2604464B2 (en) Thermoplastic resin sheet
JP6435199B2 (en) Reinforcing material for thermoplastic resin molded article and thermoplastic resin molded article using the same
JP2023161911A (en) Repair method of mesh sheet for construction work
CN115584586A (en) Preparation method of thermoplastic fiber blended yarn weft yarn setting fiber cord fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230220

R150 Certificate of patent or registration of utility model

Ref document number: 7236763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150