JP2022008913A - Processing method of liquid to be treated of and processing apparatus of liquid to be treated - Google Patents

Processing method of liquid to be treated of and processing apparatus of liquid to be treated Download PDF

Info

Publication number
JP2022008913A
JP2022008913A JP2021164925A JP2021164925A JP2022008913A JP 2022008913 A JP2022008913 A JP 2022008913A JP 2021164925 A JP2021164925 A JP 2021164925A JP 2021164925 A JP2021164925 A JP 2021164925A JP 2022008913 A JP2022008913 A JP 2022008913A
Authority
JP
Japan
Prior art keywords
liquid
treated
reaction
ions
reaction tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021164925A
Other languages
Japanese (ja)
Other versions
JP7301105B2 (en
Inventor
勝子 楠本
Katsuko Kusumoto
昌次郎 渡邊
Shojiro Watanabe
亜美 財前
Ami Zaizen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018099979A external-priority patent/JP7206061B2/en
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2021164925A priority Critical patent/JP7301105B2/en
Publication of JP2022008913A publication Critical patent/JP2022008913A/en
Application granted granted Critical
Publication of JP7301105B2 publication Critical patent/JP7301105B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a processing method of a liquid to be treated and a processing apparatus of a liquid to be treated, capable of suppression of formation of a short circuit flow to make flow conditions of a reaction tank more uniform and growing crystal grains of poorly-soluble salt to a size suitable for recovery while suppressing drain of an unreacted liquid to be treated and fine crystal grains to outside of the apparatus.
SOLUTION: The processing method of a liquid to be treated includes: allowing a liquid 2 to be treated to flow upwardly in a reaction tank 1 and to contact with a grain flowing in the reaction tank 1 for precipitation of an ion to be removed in the liquid 2 to be treated as crystals of poorly-soluble salt; withdrawing a part of the treated water in the reaction tank 1; and, by using the treated water withdrawn from the reaction tank 1 as a tower circulation liquid, and in a manner to form a rotational flow in the reaction tank 1, supplying a liquid containing the tower circulation liquid, the liquid 2 to be treated and an ion reactive with the ion to be removed from the lower part of the reaction tank 1 in a tangential direction with respect to a cross section of the reaction tank 1.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2022,JPO&INPIT

Description

本発明は、被処理液の処理方法及び被処理液の処理装置に関し、特に、被処理液中に含まれるリンなどの被除去イオンを晶析反応により析出させて除去するための被処理液の処理方法及び被処理液の処理装置に関する。 The present invention relates to a method for treating a liquid to be treated and a device for treating the liquid to be treated, and in particular, a liquid to be treated for precipitating and removing ions to be removed such as phosphorus contained in the liquid to be treated by a crystallization reaction. The present invention relates to a treatment method and a treatment apparatus for a liquid to be treated.

リン酸イオンを含有する被処理物とマグネシウム化合物とを反応させて、被処理物中のリンをリン酸マグネシウムアンモニウム(MAP)結晶の固体粒子として回収するための反応槽が知られている。 A reaction tank is known for reacting an object to be treated containing a phosphate ion with a magnesium compound to recover phosphorus in the object to be treated as solid particles of magnesium ammonium phosphate (MAP) crystals.

例えば、特開2016-175083号公報(特許文献1)には、反応塔の内部に筒状の反応筒体を設けた二重筒構造を備え、上向流となっている内筒部へ被処理液を投入し、反応筒体上部から注入されるマグネシウム塩及びアルカリ剤とともに被処理液を循環させることにより、反応筒内でMAP結晶を造粒することが記載されている。 For example, Japanese Patent Application Laid-Open No. 2016-175083 (Patent Document 1) has a double-cylinder structure in which a tubular reaction cylinder is provided inside the reaction tower, and covers the inner cylinder portion which is an upward flow. It is described that MAP crystals are granulated in the reaction cylinder by charging the treatment liquid and circulating the treatment liquid together with the magnesium salt and the alkaline agent injected from the upper part of the reaction cylinder.

特許第4101506号公報(特許文献2)には、流動層式晶析反応槽の下部から被処理水、被除去イオンと反応するイオン(ここではマグネシウムイオン)を含む液及び処理水の一部の循環水を供給し、被処理水中の被除去イオンを除去する構造が記載されている。 In Japanese Patent No. 4101506 (Patent Document 2), water to be treated, a liquid containing ions that react with ions to be removed (here, magnesium ions), and a part of the treated water are described from the lower part of the fluidized bed type crystallization reaction tank. A structure for supplying circulating water and removing ions to be removed in the water to be treated is described.

特開平11-267665号公報(特許文献3)では、原水を反応塔下部へ導入し、処理水を反応槽上部より取り出すとともに、循環手段により反応塔の上部から処理水の一部を反応塔の下部へ循環させる脱リン装置において、反応塔の下部に反応塔の水平断面積よりも小さい水平断面積を有した貯留部を設け、貯留部に対し、循環手段により水を循環させるようにした脱リン装置の例が記載されている。 In JP-A-11-267665 (Patent Document 3), raw water is introduced into the lower part of the reaction tower, the treated water is taken out from the upper part of the reaction tank, and a part of the treated water is taken out from the upper part of the reaction tower by a circulation means. In the derinsing device that circulates to the lower part, a storage section having a horizontal cross-sectional area smaller than the horizontal cross-sectional area of the reaction tower is provided at the lower part of the reaction tower, and water is circulated to the storage section by a circulation means. Examples of phosphorus devices are described.

特開2016-175083号公報Japanese Unexamined Patent Publication No. 2016-175083 特許第4101506号公報Japanese Patent No. 4101506 特開平11-267665号公報Japanese Unexamined Patent Publication No. 11-267665

しかしながら、特許文献1に記載される反応槽を用いた場合は、被処理液とマグネシウム塩及びアルカリ剤の適正な混合が難しい。混合状態を良好にするために上向流流速を上げると未反応の被処理水が外部へ流出することが懸念される。 However, when the reaction tank described in Patent Document 1 is used, it is difficult to properly mix the liquid to be treated with the magnesium salt and the alkaline agent. If the upward flow velocity is increased in order to improve the mixed state, there is a concern that unreacted water to be treated may flow out.

特許文献2に記載された発明は流動床式晶析反応槽に被処理水および被除去イオンと反応するイオンを含む液(ここではマグネシウムイオンを含む液)および処理水の一部の循環水を供給する構造となっている。被処理水と被除去イオンと反応するイオンを含む液がともに反応槽下部から流入され、結晶粒子を流動させながら結晶粒子表面でMAPを結晶化させるため、被処理水とマグネシウムイオンを含む液が混合されやすく、被処理水が未反応のまま流出するというリスクを低減できる。 In the invention described in Patent Document 2, a liquid bed containing water to be treated and a liquid containing ions that react with removed ions (here, a liquid containing magnesium ions) and a part of circulating water of the treated water are charged in a fluidized bed type crystallization reaction tank. It has a structure to supply. Both the water to be treated and the liquid containing ions that react with the ions to be removed flow in from the lower part of the reaction tank, and the MAP is crystallized on the surface of the crystal particles while flowing the crystal particles. It is easy to mix, and the risk that the water to be treated flows out unreacted can be reduced.

しかしながら、特許文献2に記載されるような反応槽を用いた場合、被処理水と被除去イオンと反応するイオンを含む液とが反応槽内に供給された直後に混合されるため、結晶が回収に適した大きさまで成長できずに微細な粒子のまま装置外部へ流出する懸念がある。また、反応槽において結晶粒子が適切に流動しないと結晶粒子同士が固着し、被処理水と被除去イオンと反応するイオンを含む液が粒子表面で反応できずに短絡流として反応槽外に流出する懸念もある。 However, when a reaction vessel as described in Patent Document 2 is used, the water to be treated and the liquid containing the ions that react with the ions to be removed are mixed immediately after being supplied into the reaction vessel, so that the crystals are mixed. There is a concern that fine particles cannot grow to a size suitable for recovery and will flow out to the outside of the device. In addition, if the crystal particles do not flow properly in the reaction tank, the crystal particles stick to each other, and the liquid containing the ions that react with the water to be treated and the ions to be removed cannot react on the particle surface and flows out of the reaction tank as a short-circuit flow. There is also a concern.

特許文献3に記載された発明では、反応槽の底部にある貯留部に対して処理水の一部を循環することにより、貯留されたMAP粒子が固形化して反応塔の底部から引き抜きやすくすることが記載又は示唆されているが、特許文献1と同じで、そもそもこの方式は被処理液とマグネシウム塩及びアルカリ剤の適正な混合が難しく、混合のために上向流の流速を上げると未反応の被処理液が流出する場合がある。 In the invention described in Patent Document 3, by circulating a part of the treated water to the storage portion at the bottom of the reaction tank, the stored MAP particles are solidified and easily pulled out from the bottom of the reaction tower. However, as in Patent Document 1, it is difficult to properly mix the liquid to be treated with the magnesium salt and the alkaline agent in the first place, and there is no reaction when the flow velocity of the upward flow is increased for mixing. The liquid to be treated may flow out.

上記課題を鑑み、本発明は、短絡流の発生を抑制して反応槽内の流動状態をより均一にすることができ、未反応の被処理液及び微細な結晶粒子の装置外部への流出を抑制しながら難溶性塩の結晶粒子を回収に適した大きさにまで成長させることが可能な被処理液の処理方法及び被処理液の処理装置を提供する。 In view of the above problems, the present invention can suppress the generation of a short-circuit flow to make the flow state in the reaction vessel more uniform, and prevent the unreacted liquid to be treated and fine crystal particles from flowing out to the outside of the apparatus. Provided are a method for treating a liquid to be treated and a device for treating the liquid to be treated, which can grow crystal particles of a poorly soluble salt to a size suitable for recovery while suppressing the pressure.

上記目的を達成するために、本発明者らが鋭意検討した結果、反応槽内から処理水を引き抜くとともに、引き抜いた処理水を塔内循環液とし、反応槽内に旋回流を発生させるように、塔内循環液、被処理液及び被除去イオンと反応するイオンを含む液を、反応槽の下部から反応槽の横断面に対して接線方向に供給することが有効な手段の一つであることがわかった。 As a result of diligent studies by the present inventors in order to achieve the above object, the treated water is withdrawn from the reaction vessel, and the drawn treated water is used as the circulating fluid in the column to generate a swirling flow in the reaction vessel. It is one of the effective means to supply the circulating liquid in the column, the liquid to be treated, and the liquid containing ions that react with the ions to be removed from the lower part of the reaction tank in the tangential direction with respect to the cross section of the reaction tank. I understand.

以上の知見を基礎として完成した本発明の実施の形態に係る被処理液の処理方法は一側面において、被処理液を上向流で反応槽内に通水し、反応槽内で流動する粒子と接触させることにより、被処理液中の被除去イオンを難溶性塩の結晶として析出させることと、反応槽内の処理水の一部を引き抜くことと、反応槽内から引き抜いた処理水を塔内循環液とし、反応槽内に旋回流を発生させるように、塔内循環液、被処理液及び被除去イオンと反応するイオンを含む液を、反応槽の下部から反応槽の横断面に対して接線方向に供給することを含む被処理液の処理方法である。 The method for treating the liquid to be treated according to the embodiment of the present invention completed based on the above findings is one aspect in which the liquid to be treated is passed through the reaction vessel by an upward flow and the particles flow in the reaction vessel. By contacting with, the ions to be removed in the liquid to be treated are precipitated as crystals of a sparingly soluble salt, a part of the treated water in the reaction tank is withdrawn, and the treated water drawn from the reaction tank is drawn from the column. A liquid containing ions that react with the circulating liquid in the column, the liquid to be treated, and the ions to be removed is applied from the lower part of the reaction tank to the cross section of the reaction tank so as to be an internal circulating liquid and generate a swirling flow in the reaction tank. This is a method for treating a liquid to be treated, which includes supplying the liquid in the tangential direction.

本発明の実施の形態に係る被処理液の処理方法は一実施態様において、塔内循環液、被処理液及び被除去イオンと反応するイオンを含む液のうち、流速の大きい液から順に旋回流の上流側へ供給することと、塔内循環液、被処理液及び被除去イオンと反応するイオンを含む液の流速の合計が、反応槽の横断面の外周の長さよりも大きくなるように各流速を調整することとを含む。 In one embodiment, the method for treating the liquid to be treated according to the embodiment of the present invention is a swirling flow in order from the liquid containing the circulating liquid in the column, the liquid to be treated, and the liquid containing ions that react with the ions to be removed, in descending order of the flow velocity. So that the total flow velocity of the liquid containing the ions that react with the circulating liquid in the column, the liquid to be treated, and the ions to be removed is larger than the length of the outer circumference of the cross section of the reaction tank. Includes adjusting the flow velocity.

本発明の実施の形態に係る被処理液の処理方法は別の一実施態様において、反応槽として、塔内循環液、被処理液及び被除去イオンと反応するイオンを含む液を受け入れて結晶を生成させるための反応部と、反応部の上方に位置し、反応部で生成した結晶を反応部へと沈降させて分離する沈降分離部とを備える反応槽を用いることを含み、反応槽内の処理水の一部を引き抜くことが、沈降分離部の最下端又は最下端から上方に向かって3割以内の高さから処理水を引き抜くことを含む。 In another embodiment of the method for treating the liquid to be treated according to the embodiment of the present invention, as a reaction tank, a circulating liquid in a column, a liquid to be treated, and a liquid containing ions that react with ions to be removed are received to form crystals. Including the use of a reaction vessel having a reaction section for generation and a sedimentation separation section located above the reaction section and separating crystals generated in the reaction section by precipitating them into the reaction section. Extracting a part of the treated water includes extracting the treated water from a height of 30% or less from the lowermost end or the lowermost end of the sedimentation separation portion upward.

本発明の実施の形態に係る被処理液の処理方法は更に別の一実施態様において、沈降分離部の上方から得られる反応槽内の処理水の上澄液を引き抜き、被除去イオンと反応するイオンを含む液と混合して反応部へ循環させることを更に含む。 In still another embodiment, the method for treating the liquid to be treated according to the embodiment of the present invention draws out the supernatant of the treated water in the reaction tank obtained from above the sedimentation separation portion and reacts with the ions to be removed. It further includes mixing with a liquid containing ions and circulating it to the reaction part.

本発明の実施の形態に係る被処理液の処理方法は更に別の一実施態様において、反応部の通水速度を25~60m/Hとすることを含む。 In still another embodiment, the method for treating the liquid to be treated according to the embodiment of the present invention includes setting the water flow rate of the reaction section to 25 to 60 m / H.

本発明の実施の形態に係る被処理液の処理方法は更に別の一実施態様において、反応槽を2槽以上備え、第1の反応槽で得られた難溶性塩の結晶からなる粒子を第2の反応槽以降の反応槽へ導入し、第2の反応槽以降の反応槽で得られる難溶性塩の結晶からなる粒子を第1の反応槽へ返送することを含む。 In still another embodiment, the method for treating the liquid to be treated according to the embodiment of the present invention includes two or more reaction tanks, and particles made of crystals of a sparingly soluble salt obtained in the first reaction tank are the first. This includes introducing the particles into the reaction tanks after the second reaction tank and returning the particles composed of the crystals of the sparingly soluble salt obtained in the reaction tanks after the second reaction tank to the first reaction tank.

本発明の実施の形態に係る被処理液の処理装置は一側面において、被処理液を上向流で通水し、内部で流動する粒子と接触させることにより、被処理液中の被除去イオンを難溶性塩の結晶として析出させる反応槽と、反応槽内の処理水の一部を引き抜く引き抜き手段と、反応槽内から引き抜いた処理水を塔内循環液とし、反応槽内に旋回流を発生させるように、塔内循環液、被処理液及び被除去イオンと反応するイオンを含む液を、反応槽の下部から反応槽の横断面に対して接線方向に供給する複数の供給管とを備える。 The treatment device for the liquid to be treated according to the embodiment of the present invention has one side surface, in which the liquid to be treated is passed by an upward flow and brought into contact with particles flowing inside, so that the ions to be removed in the liquid to be treated are formed. A reaction tank that precipitates as crystals of poorly soluble salt, a drawing means for drawing out a part of the treated water in the reaction tank, and the treated water drawn out from the reaction tank as a circulating fluid in the column, and a swirling flow is created in the reaction tank. A plurality of supply pipes that supply the circulating liquid in the column, the liquid to be treated, and the liquid containing ions that react with the ions to be removed from the lower part of the reaction tank in a tangential direction with respect to the cross section of the reaction tank so as to generate the liquid. Be prepared.

本発明によれば、短絡流の発生を抑制して反応槽内の流動状態をより均一にすることができ、未反応の被処理液及び微細な結晶粒子の装置外部への流出を抑制しながら難溶性塩の結晶粒子を回収に適した大きさにまで成長させることが可能な被処理液の処理方法及び被処理液の処理装置が提供できる。 According to the present invention, the generation of a short-circuit flow can be suppressed to make the flow state in the reaction vessel more uniform, and the unreacted liquid to be treated and fine crystal particles can be suppressed from flowing out to the outside of the apparatus. It is possible to provide a method for treating a liquid to be treated and an apparatus for treating the liquid to be treated, which can grow crystal particles of a sparingly soluble salt to a size suitable for recovery.

本発明の第1の実施の形態に係る被処理液の処理装置の一例を示す概略図である。It is a schematic diagram which shows an example of the processing apparatus of the liquid to be treated which concerns on 1st Embodiment of this invention. 塔内循環液、被処理液及び被除去イオンと反応するイオンを含む液を供給する供給管の接続位置を説明する断面概略図である。It is sectional drawing explaining the connection position of the supply pipe which supplies the liquid containing an ion which reacts with a circulating liquid in a column, a liquid to be treated, and an ion to be removed. 本発明の第2の実施の形態に係る被処理液の処理装置の一例を示す概略図である。It is a schematic diagram which shows an example of the processing apparatus of the liquid to be treated which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る被処理液の処理装置の一例を示す概略図である。It is a schematic diagram which shows an example of the processing apparatus of the liquid to be treated which concerns on 3rd Embodiment of this invention. 図4に示す処理装置における塔内循環液、被処理液及び被除去イオンと反応するイオンを含む液を供給する供給管の接続位置を説明する断面概略図である。FIG. 3 is a schematic cross-sectional view illustrating a connection position of a supply pipe for supplying a liquid containing an ion that reacts with a circulating liquid in a column, a liquid to be treated, and an ion to be removed in the processing apparatus shown in FIG. 従来の供給管の反応槽への接続位置を説明する断面概略図である。It is sectional drawing which explains the connection position of the conventional supply pipe to the reaction tank. 本発明の第4の実施の形態に係る被処理液の処理装置の一例を示す概略図である。It is a schematic diagram which shows an example of the processing apparatus of the liquid to be treated which concerns on 4th Embodiment of this invention. 本発明の第5の実施の形態に係る被処理液の処理装置の一例を示す概略図である。It is a schematic diagram which shows an example of the processing apparatus of the liquid to be treated which concerns on 5th Embodiment of this invention.

以下、図面を参照しながら本発明の実施の形態について説明する。以下の図面の記載においては、同一又は類似の部分には同一又は類似の符号を付している。なお、以下に示す実施の形態はこの発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、構成部品の構造、配置等を下記のものに特定するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the drawings below, the same or similar parts are designated by the same or similar reference numerals. It should be noted that the embodiments shown below exemplify devices and methods for embodying the technical idea of the present invention, and the technical idea of the present invention describes the structure, arrangement, etc. of the components as follows. It is not specific to things.

(第1の実施の形態)
図1に示すように、本発明の実施の形態に係る被処理液2の処理装置は、反応槽1と、反応槽1の途中に設けられ、反応槽1内の処理水の一部を引き抜く引き抜き手段16と、反応槽1内から引き抜いた処理水を塔内循環液とし、反応槽1内に旋回流を発生させるように、塔内循環液、被処理液2及び被除去イオンと反応するイオンを含む液を、反応槽1の下部から反応槽1の横断面に対して接線方向に供給する複数の供給管21、22とを備える。
(First Embodiment)
As shown in FIG. 1, the treatment apparatus for the liquid to be treated 2 according to the embodiment of the present invention is provided in the middle of the reaction tank 1 and the reaction tank 1 and draws out a part of the treated water in the reaction tank 1. The drawing means 16 and the treated water drawn from the reaction tank 1 are used as the circulating fluid in the column, and react with the circulating fluid in the column, the liquid to be treated 2, and the ions to be removed so as to generate a swirling flow in the reaction vessel 1. A plurality of supply pipes 21 and 22 for supplying a liquid containing ions from the lower part of the reaction tank 1 in the tangential direction with respect to the cross section of the reaction tank 1 are provided.

反応槽1は、被処理液2を上向流で通水し、反応槽1内で流動する粒子と接触させることにより、被処理液2中の被除去イオンを難溶性塩の結晶として析出させる反応槽である。反応槽1内には、被除去イオンをその表面で結晶化させるための粒子(種晶)及び被除去イオンと反応するためのイオンを含む薬剤が装入されており、図示しないpH計などにより、反応槽1内が晶析反応に好適な条件に維持されている。難溶性塩の結晶は、反応槽1の底部に接続された配管24を介して外部へ排出することができる。 The reaction tank 1 allows the liquid to be treated 2 to pass in an upward flow and is brought into contact with the particles flowing in the reaction tank 1 to precipitate the ions to be removed in the liquid to be treated 2 as crystals of a sparingly soluble salt. It is a reaction tank. The reaction tank 1 is charged with particles (seed crystals) for crystallizing the ions to be removed on the surface thereof and a drug containing ions for reacting with the ions to be removed, using a pH meter (not shown) or the like. The inside of the reaction vessel 1 is maintained under conditions suitable for the crystallization reaction. The crystals of the sparingly soluble salt can be discharged to the outside through the pipe 24 connected to the bottom of the reaction tank 1.

反応槽1としては、例えば、被処理液を上向流で通水する流動層方式の晶析反応槽が用いられる。反応槽1における晶析反応によって、被処理液2中に含まれる所望の被除去イオン、例えば、リン酸イオン、カルシウムイオン、フッ素イオン、炭酸イオン、硫酸イオン等が除去される。 As the reaction tank 1, for example, a fluidized bed type crystallization reaction tank in which the liquid to be treated is passed in an upward flow is used. By the crystallization reaction in the reaction tank 1, desired removed ions contained in the liquid to be treated 2, for example, phosphate ion, calcium ion, fluorine ion, carbonate ion, sulfate ion and the like are removed.

反応槽1は、被処理液2と、被処理液2中の被除去イオンと反応するイオンを含む液と、引き抜き手段16から引き抜かれた処理水の一部である塔内循環液を受け入れて難溶性塩の結晶を生成させるための反応部11と、反応部11の上方に位置し、反応部11で生成した結晶を反応部11へと沈降させて分離する沈降分離部12とを備える。ここで「塔内循環液」とは、反応槽1から引き抜かれた処理水を直接、反応槽1へと戻す態様を表す。なお、必要に応じて、塔内循環液に対して、pH調整剤5等の薬剤を添加してもよい。 The reaction tank 1 receives the liquid to be treated 2, the liquid containing the ions that react with the ions to be removed in the liquid to be treated 2, and the circulating liquid in the column which is a part of the treated water drawn from the extraction means 16. It is provided with a reaction unit 11 for producing crystals of a sparingly soluble salt, and a sedimentation separation unit 12 located above the reaction unit 11 and precipitating and separating the crystals produced by the reaction unit 11 into the reaction unit 11. Here, the "circulating liquid in the column" represents an embodiment in which the treated water drawn from the reaction tank 1 is directly returned to the reaction tank 1. If necessary, a chemical such as a pH adjuster 5 may be added to the circulating fluid in the column.

なお、図1の例では、反応部11は、反応槽1の上部へ向けてその断面積が次第に大きくなるテーパー状部分とテーパー状部分に連続する円管状の管状部分を備える。沈降分離部12は反応部11の管状部分と連続し、反応槽1の上部に向けてその断面積が次第に大きくなるテーパー部分とテーパー部分に連続する円管状の管状部分を備える。 In the example of FIG. 1, the reaction unit 11 includes a tapered portion whose cross-sectional area gradually increases toward the upper part of the reaction vessel 1 and a circular tubular portion continuous with the tapered portion. The sedimentation separation portion 12 is continuous with the tubular portion of the reaction portion 11, and includes a tapered portion whose cross-sectional area gradually increases toward the upper part of the reaction tank 1 and a circular tubular portion continuous with the tapered portion.

引き抜き手段16は、沈降分離部12の最下端Bとなる反応部11の管状部分と沈降分離部のテーパー部分の境界部分、又は沈降分離部12の最下端Bを0%、最上端Tを100%とした場合に、最下端Bから反応槽1の上方に向かって3割(30%)以内の高さに接続されることが好ましい。このような位置に引き抜き手段16が接続されることにより、引き抜き手段16が、晶析反応はほぼ完了しているが、晶析反応で得られた難溶性の結晶の沈降分離が完了していない処理水を塔内循環水として引き抜くことができる。このような処理水を塔内循環水として用いることで、反応槽1下部の晶析反応を阻害することなく、且つ反応槽1下部の通水速度を増大させることができるようになる。 In the pulling means 16, the boundary portion between the tubular portion of the reaction portion 11 and the tapered portion of the sedimentation separation portion, which is the lowermost end B of the sedimentation separation portion 12, or the lowermost end B of the sedimentation separation portion 12 is 0% and the uppermost end T is 100. In the case of%, it is preferable that the connection is made to a height within 30% (30%) from the lowermost end B toward the upper side of the reaction tank 1. By connecting the extraction means 16 to such a position, the extraction means 16 has almost completed the crystallization reaction, but the sedimentation separation of the sparingly soluble crystals obtained by the crystallization reaction has not been completed. The treated water can be drawn out as circulating water in the tower. By using such treated water as circulating water in the column, the water flow rate in the lower part of the reaction tank 1 can be increased without inhibiting the crystallization reaction in the lower part of the reaction tank 1.

即ち、引き抜き手段16は、沈降分離部12の最下端B又は最下端Bから上方に向かって3割以内の高さから反応槽1内の処理水をポンプ61により引き抜くように構成されている。引き抜き手段16の引き抜き位置を適切にすることにより、塔内循環液の循環流量を大きくしても沈降分離部12を大きく変更することなく、反応槽1の上部から未反応の被処理液及び微細な結晶粒子の装置外部への流出を抑制でき、且つ難溶性塩の結晶粒子を回収に適した大きさにまで成長させることができる。 That is, the extraction means 16 is configured to extract the treated water in the reaction tank 1 from a height within 30% upward from the lowermost end B or the lowermost end B of the sedimentation separation portion 12 by the pump 61. By making the extraction position of the extraction means 16 appropriate, the unreacted liquid to be treated and fine particles are not significantly changed from the upper part of the reaction tank 1 even if the circulation flow rate of the circulating fluid in the column is increased. The outflow of the crystal particles to the outside of the apparatus can be suppressed, and the crystal particles of the sparingly soluble salt can be grown to a size suitable for recovery.

引き抜き手段16による処理水の引き抜き位置が低すぎると、反応部11に挿入された種晶を引き抜いてしまい、引き抜き手段16ないしポンプ61に閉塞等のトラブルを起こす懸念が生じる場合がある。一方、引き抜き手段16による処理水の引き抜き位置が高すぎると、沈降分離部12に昇向する流量が増加し、それらを最適に沈降分離するために沈降分離部12の形状を大きくする必要があり、装置コストの増大に繋がる懸念が生じる場合がある。引き抜き手段16による処理水の引き抜き位置は、沈降分離部12の最下端Bから20%の範囲の高さに接続されていることがより好ましく、沈降分離部12の最下端Bの高さとすることが更に好ましい。 If the drawing position of the treated water by the drawing means 16 is too low, the seed crystals inserted in the reaction unit 11 may be pulled out, which may cause troubles such as blockage in the drawing means 16 or the pump 61. On the other hand, if the drawing position of the treated water by the drawing means 16 is too high, the flow rate ascending to the settling separation section 12 increases, and it is necessary to increase the shape of the settling separation section 12 in order to optimally settle and separate them. , There may be a concern that it will lead to an increase in equipment cost. The drawing position of the treated water by the drawing means 16 is more preferably connected to a height in the range of 20% from the lowermost end B of the settling separation section 12, and is set to the height of the lowermost end B of the settling separation section 12. Is more preferable.

反応槽1の反応部11の下部には、複数の供給管21、22が接続されている。図2の例では、塔内循環液、被処理液2及び被除去イオンと反応するイオンを含む液を反応槽1内へ供給するための3本の供給管21、22、23が反応槽1の下部に接続されており、旋回流の上流側から順に供給管21、供給管22、供給管23が接続されている。塔内循環液、被処理液2及び被除去イオンと反応するイオンを含む液は、流速の大きい液から順に旋回流の上流側の供給管21、22、23へ接続されるようになっている。 A plurality of supply pipes 21 and 22 are connected to the lower part of the reaction unit 11 of the reaction tank 1. In the example of FIG. 2, three supply pipes 21, 22 and 23 for supplying the liquid containing the circulating liquid in the column, the liquid to be treated 2 and the ion to react with the ion to be removed into the reaction tank 1 are the reaction tank 1. The supply pipe 21, the supply pipe 22, and the supply pipe 23 are connected in this order from the upstream side of the swirling flow. The liquid containing the circulating liquid in the column, the liquid to be treated 2, and the liquid containing ions that react with the ions to be removed are connected to the supply pipes 21, 22, and 23 on the upstream side of the swirling flow in order from the liquid having the highest flow velocity. ..

塔内循環液、被処理液2及び被除去イオンと反応するイオンを含む液のうち、流速の大きい液から順に旋回流の上流側の供給管21、22、23へ接続されることにより、旋回流の流れをより長時間持続させることができ、反応槽1の反応部11内を流動する粒子をより均一に流動させることができる。 Of the liquids containing the circulating liquid in the column, the liquid to be treated 2, and the ions that react with the ions to be removed, the liquids having the highest flow velocity are connected to the supply pipes 21, 22, and 23 on the upstream side of the swirling flow in order to swirl. The flow of the flow can be sustained for a longer period of time, and the particles flowing in the reaction section 11 of the reaction vessel 1 can be made to flow more uniformly.

供給管21、22、23は反応槽1に対してそれぞれ水平方向に実質的に同一な高さに接続されているが、多少上下にずれて接続されていても構わない。供給管21、22、23は、反応部11のテーパー部分に沈積する粗大な粒子を流動させることができるような位置に配置されていることが好ましい。これにより、反応部11の底部の粒子を流動させて粒子同士の固着を抑制することができる。 The supply pipes 21, 22 and 23 are connected to the reaction tank 1 at substantially the same height in the horizontal direction, but they may be connected with a slight vertical deviation. It is preferable that the supply pipes 21, 22 and 23 are arranged at positions where the coarse particles deposited in the tapered portion of the reaction unit 11 can flow. As a result, the particles at the bottom of the reaction unit 11 can be made to flow and the adhesion between the particles can be suppressed.

塔内循環液、被処理液及び被除去イオンと反応するイオンを含む液の流速の合計は、供給管21、22、23が接続された反応槽1の横断面CS(図2参照)の外周の長さ(全長)よりも大きくなるように、各流速が調整されることが好ましい。反応槽1内に0.2~1.0mmの粒子を流動させる場合において塔内循環液、被処理液及び被除去イオンと反応するイオンを含む液を反応槽1内に水平方向に供給した場合、その水平方向の流れが失速して液流が上向流になる時間は、およそ0.1~0.3秒である。 The total flow velocity of the circulating liquid in the column, the liquid to be treated, and the liquid containing the ions that react with the ions to be removed is the outer circumference of the cross-sectional CS (see FIG. 2) of the reaction tank 1 to which the supply pipes 21, 22, and 23 are connected. It is preferable that each flow velocity is adjusted so as to be larger than the length (total length) of. When particles of 0.2 to 1.0 mm are allowed to flow in the reaction tank 1, and a liquid containing ions that react with the circulating liquid in the column, the liquid to be treated, and the ions to be removed is horizontally supplied into the reaction tank 1. The time for the horizontal flow to stall and the liquid flow to become an upward flow is approximately 0.1 to 0.3 seconds.

反応槽1下部の水平方向の液流の失速時間を考慮すると、塔内循環液、被処理液2及び被除去イオンと反応するイオンを含む液の流速の合計が、横断面CSの外周の長さよりも大きくなるように、より好ましくは1~8倍、別の態様では1~2倍、更に別の態様では4倍~6倍となるように、各液の流速を調整することが好ましい。これにより、反応槽1内の液及び粒子が流動しないデッドゾーンを発生させることなく、より均一な流動状態を達成することができ、難溶性塩の結晶粒子を回収に適した大きさにまで成長させ、被処理液中の被除去イオンの除去率を向上させることが可能となる。 Considering the stall time of the horizontal liquid flow in the lower part of the reaction tank 1, the total flow velocity of the circulating liquid in the column, the liquid to be treated 2, and the liquid containing the ions that react with the ions to be removed is the length of the outer circumference of the cross section CS. It is preferable to adjust the flow rate of each liquid so as to be larger than that, more preferably 1 to 8 times, in another embodiment 1 to 2 times, and still 4 times to 6 times. As a result, a more uniform flow state can be achieved without generating a dead zone in which the liquid and particles in the reaction vessel 1 do not flow, and the crystal particles of the poorly soluble salt grow to a size suitable for recovery. This makes it possible to improve the removal rate of ions to be removed in the liquid to be treated.

3本の供給管21、22、23は、それぞれ近接して配置されることが好ましい。以下に限定されるものではないが、旋回流の最も下流側に配置される供給管21の液の流入方向Xと、旋回流の最も上流側に配置される供給管23の液の流入方向Yとが、図2の実線で示される供給管21の場合のように180°異なるか、或いは、図2の点線で示される供給管21の場合のように、旋回流の最も下流側に配置される供給管21の液の流入方向Xと、Xから半時計方向側に配置した供給管23の液の流入方向Yとのなす角度θが180°以下であることが好ましく、より好ましくは150°以下であり、更に好ましくは120°以下、更には100°以下となるように、供給管21、22、23が互いに近接して配置されることが好ましい。供給管21、22、23を互いに近接させて配置することにより、各液の流入部分近傍において反応槽1の横断面の外周に沿って強い旋回流を発生させることができ、反応槽1内の液及び粒子が流動しないデッドゾーンを発生させることなく、より均一な流動状態を達成することができる。 It is preferable that the three supply pipes 21, 22 and 23 are arranged close to each other. Although not limited to the following, the inflow direction X of the liquid in the supply pipe 21 arranged on the most downstream side of the swirling flow and the inflow direction Y of the liquid in the supply pipe 23 arranged on the most upstream side of the swirling flow. Is 180 ° different as in the case of the supply pipe 21 shown by the solid line in FIG. 2, or is arranged on the most downstream side of the swirling flow as in the case of the supply pipe 21 shown by the dotted line in FIG. The angle θ formed by the liquid inflow direction X of the supply pipe 21 and the liquid inflow direction Y of the supply pipe 23 arranged counterclockwise from X is preferably 180 ° or less, more preferably 150 °. It is preferable that the supply pipes 21, 22 and 23 are arranged close to each other so as to be less than or equal to, more preferably 120 ° or less, and further preferably 100 ° or less. By arranging the supply pipes 21, 22 and 23 close to each other, a strong swirling flow can be generated along the outer periphery of the cross section of the reaction tank 1 in the vicinity of the inflow portion of each liquid, and the inside of the reaction tank 1 can be generated. A more uniform flow state can be achieved without creating a dead zone in which the liquid and particles do not flow.

図1に示す処理装置においては、反応槽1の反応部11の通水速度が10~80m/Hとなるように、塔内循環液、被処理液及び被除去イオンと反応するイオンを含む液の各流速を調整する。通水速度は、10~70m/Hとなるように調整することがより好ましく、更に好ましくは25~60m/Hであり、更に好ましくは25~40m/Hである。 In the treatment apparatus shown in FIG. 1, a liquid containing ions that react with the circulating liquid in the column, the liquid to be treated, and the ions to be removed so that the water flow rate of the reaction unit 11 of the reaction tank 1 is 10 to 80 m / H. Adjust each flow velocity. The water flow rate is more preferably adjusted to 10 to 70 m / H, more preferably 25 to 60 m / H, and even more preferably 25 to 40 m / H.

被除去イオンと反応するイオンを含む液は、処理槽3内で調整されて、ポンプ62を介して供給管21、22、23(図1では供給管22)から反応槽1内へ供給される。処理槽3内には被除去イオンと反応するイオン4、例えば、反応槽1内で被処理液中のリンを除去したい場合には、マグネシウムイオンが図示しない添加手段を介して添加される。マグネシウムイオンは水酸化マグネシウム又は塩化マグネシウムとして添加することが好ましい。また、反応槽1内の液のpHを調整するためのpH調整剤5が図示しない添加手段を介して添加される。pH調整剤5は、被処理液2中に添加してもよいし、塔内循環液中に添加することもできる。 The liquid containing the ions that react with the ions to be removed is adjusted in the treatment tank 3 and supplied into the reaction tank 1 from the supply pipes 21, 22 and 23 (supply pipe 22 in FIG. 1) via the pump 62. .. When it is desired to remove ions 4 that react with the ions to be removed in the treatment tank 3, for example, phosphorus in the liquid to be treated in the reaction tank 1, magnesium ions are added via an addition means (not shown). Magnesium ions are preferably added as magnesium hydroxide or magnesium chloride. Further, a pH adjuster 5 for adjusting the pH of the liquid in the reaction vessel 1 is added via an addition means (not shown). The pH adjuster 5 may be added to the liquid to be treated 2 or may be added to the circulating liquid in the column.

図示していないが、反応槽1の下部へ気体を供給し、反応槽1の下部に沈降した難溶性塩の結晶からなる粒子を流動させることもまた可能である。粒径の大きな粒子は、沈降しやすく流動しにくいため、被処理水、塔内循環液及び被除去イオンと反応するイオンを含む液を反応槽1の下部へ供給するだけでは、旋回流が十分得られない場合も考えられるため、反応槽1の下部から例えば圧縮空気などの気体を供給することで、反応槽1内に適切な旋回流及び粒子及び液の流動状態を作り出すことが容易になる。 Although not shown, it is also possible to supply a gas to the lower part of the reaction vessel 1 and allow particles composed of crystals of a sparingly soluble salt to flow in the lower part of the reaction vessel 1. Since particles with a large particle size tend to settle and do not flow easily, a swirling flow is sufficient simply by supplying a liquid containing ions that react with the water to be treated, the circulating liquid in the column, and the ions to be removed to the lower part of the reaction tank 1. Since it may not be possible to obtain it, by supplying a gas such as compressed air from the lower part of the reaction tank 1, it becomes easy to create an appropriate swirling flow and a flow state of particles and liquid in the reaction tank 1. ..

従来の晶析反応槽においては、図6に示すように、供給管211、221の反応槽1への接続位置が、反応槽1の高さ方向に垂直な断面に沿った円形状の反応槽断面の接線方向に対して垂直になるように接続されていた。そのため、従来の晶析反応槽内へ供給される液体は、晶析反応槽内部に供給された直後に混合され、微細な粒子が生成され、この微細な粒子が槽内部の上向流に乗って晶析反応槽の外部へ排出される場合があった。 In the conventional crystallization reaction tank, as shown in FIG. 6, the connection position of the supply pipes 211 and 221 to the reaction tank 1 is a circular reaction tank along a cross section perpendicular to the height direction of the reaction tank 1. It was connected so as to be perpendicular to the tangential direction of the cross section. Therefore, the liquid supplied into the conventional crystallization reaction tank is mixed immediately after being supplied into the crystallization reaction tank to generate fine particles, and these fine particles ride on the upward flow inside the tank. In some cases, the particles were discharged to the outside of the crystallization reaction tank.

更に、従来の晶析反応槽においては、被処理水と被除去イオンと反応するイオンを含む液と晶析反応槽で処理することにより得られた上澄液を、反応槽1への循環水として反応槽1の下部より流入させ、反応槽1内が晶析に適したイオン積となるように希釈させるような手法をとってきた。 Further, in the conventional crystallization reaction tank, the liquid containing the water to be treated and the ion to be removed and the supernatant obtained by the treatment in the crystallization reaction tank are circulated to the reaction tank 1. As a result, a method has been adopted in which the mixture is poured from the lower part of the reaction vessel 1 and diluted so that the inside of the reaction vessel 1 has an ion product suitable for crystallization.

しかしながら、上澄液の循環水量を多くすると、沈降分離部12において粒子の沈降処理が完全に終了していない処理水を引き抜いてしまう場合があり、結晶粒子の回収効率を十分に高くできない場合がある。一方で、沈降分離部12において粒子の沈降処理を完全に終了させることにより得られた上澄液を用いるとともに反応槽1の下部に旋回流を生じさせる程度の循環水量を確保するためには、沈降分離部12の容積を大きくしなければならないため、装置が大型化する。そのため、上澄液を反応槽1の下部に循環させるだけでは、反応槽1の下部を適切に流動させることが困難である。 However, if the amount of circulating water in the supernatant is increased, the treated water in which the sedimentation treatment of the particles has not been completely completed may be drawn out in the sedimentation separation section 12, and the recovery efficiency of the crystal particles may not be sufficiently high. be. On the other hand, in order to use the supernatant obtained by completely completing the sedimentation treatment of the particles in the sedimentation separation unit 12 and to secure a circulating water amount sufficient to generate a swirling flow in the lower part of the reaction tank 1. Since the volume of the settling separation portion 12 must be increased, the size of the device is increased. Therefore, it is difficult to properly flow the lower part of the reaction tank 1 only by circulating the supernatant liquid in the lower part of the reaction tank 1.

本発明の第1の実施の形態に係る被処理液の処理方法及び処理装置によれば、反応槽1内から処理水を引き抜くとともに、引き抜いた処理水を塔内循環液とし、反応槽1内に旋回流を発生させるように、塔内循環液、被処理液2及び被除去イオンと反応するイオンを含む液を、反応槽1の下部から反応槽1の横断面に対して接線方向に供給するとともに、流速の大きい液から順に旋回流の上流側へ供給する。これにより、装置を大型化させることなく、反応槽1の反応部11により確実に旋回流を発生させて反応槽1の反応部11の液及び流動する粒子の流動状態を均一にすることができる。 According to the method for treating the liquid to be treated and the treatment apparatus according to the first embodiment of the present invention, the treated water is withdrawn from the reaction tank 1, and the drawn treated water is used as the circulating liquid in the column, and the inside of the reaction tank 1 is used. A liquid containing an ion that reacts with the circulating liquid in the column, the liquid to be treated 2, and the ion to be removed is supplied from the lower part of the reaction tank 1 in the tangential direction with respect to the cross section of the reaction tank 1 so as to generate a swirling flow. At the same time, the liquid is supplied to the upstream side of the swirling flow in order from the liquid having the highest flow velocity. As a result, it is possible to reliably generate a swirling flow by the reaction unit 11 of the reaction tank 1 without increasing the size of the apparatus, and to make the flow state of the liquid and the flowing particles of the reaction unit 11 of the reaction tank 1 uniform. ..

更に、引き抜き手段16によって、特に反応槽1の晶析反応が進行する反応部11の直ぐ上方にある沈降分離部12の最下端B付近の処理水を引き抜くことによって、反応槽1の反応部11における粒子の均一な流動に必要な上向流の線速度(LV)を確保することができる。これにより、反応部11で生成される難溶性塩の結晶粒子を回収に適した大きさにまで成長させることができ、被処理液中の被除去イオンの除去率を向上させることができる。 Further, by drawing out the treated water near the lowermost end B of the sedimentation separation unit 12 immediately above the reaction unit 11 where the crystallization reaction of the reaction tank 1 proceeds, the reaction unit 11 of the reaction tank 1 is further extracted by the extraction means 16. It is possible to secure the linear velocity (LV) of the upward flow required for the uniform flow of particles in. As a result, the crystal particles of the poorly soluble salt produced in the reaction unit 11 can be grown to a size suitable for recovery, and the removal rate of the ions to be removed in the liquid to be treated can be improved.

(第2の実施の形態)
本発明の第2の実施の形態に係る被処理液の処理装置は、図3に示すように、沈降分離部12の上方から得られた上澄液を処理槽3へ循環させる循環手段25を更に備える点が、図1に示す処理装置と異なる。他は図1の処理装置と実質的に同様であるので記載を省略する。
(Second embodiment)
As shown in FIG. 3, the treatment device for the liquid to be treated according to the second embodiment of the present invention includes a circulation means 25 for circulating the supernatant liquid obtained from above the sedimentation separation unit 12 to the treatment tank 3. Further, it is different from the processing apparatus shown in FIG. Others are substantially the same as the processing apparatus of FIG. 1, and the description thereof will be omitted.

循環手段25により循環された上澄液の一部は処理槽3に供給され、ポンプ62を介して供給管21、22、23を介して反応槽1の下部へ再供給される。第2の実施の形態に係る被処理液の処理装置及び処理方法によれば、上澄み液を混合することにより被除去イオンと反応するイオンを含む液を希釈することができるため、被処理液2のリン濃度が高い場合などには処理槽3で希釈液を作製して反応槽1へ供給することができ、希釈水を新たに追加せずに処理を進めることができる。また、上澄液中に残存する未反応の被除去イオンをより確実に反応槽1内において除去することができるため、被除去イオンの回収効率が更に高まる。 A part of the supernatant liquid circulated by the circulation means 25 is supplied to the treatment tank 3 and resupplied to the lower part of the reaction tank 1 via the supply pipes 21, 22 and 23 via the pump 62. According to the treatment apparatus and treatment method for the liquid to be treated according to the second embodiment, the liquid containing ions that react with the ions to be removed can be diluted by mixing the supernatant liquid, so that the liquid to be treated 2 When the phosphorus concentration is high, a diluted solution can be prepared in the treatment tank 3 and supplied to the reaction tank 1, and the treatment can be proceeded without adding new diluted water. Further, since the unreacted ions to be removed remaining in the supernatant can be more reliably removed in the reaction tank 1, the recovery efficiency of the ions to be removed is further improved.

処理槽3内に希釈水として供給される上澄液は、沈降分離部12において粒子の沈降処理がほぼ完全に終了しているため、反応槽1の下部へ旋回流を発生させるための循環水として利用することもできる。しかしながら、希釈水として供給される上澄液を処理槽3から反応部11へ循環させるだけでは、反応部11の下部に旋回流を発生させるためのLVを確保することは困難な場合がある。反応部11の下部に旋回流を発生させるのに十分なLVを上澄液で補うためには、希釈水として必要な量以上の上澄液を供給することが必要であり、すなわち沈降分離部12の大きさを大きくする必要があるが、装置が大型化し、かつ安定した沈降分離ができない場合がある。 The supernatant liquid supplied as diluted water into the treatment tank 3 is circulating water for generating a swirling flow to the lower part of the reaction tank 1 because the sedimentation treatment of the particles is almost completely completed in the sedimentation separation unit 12. It can also be used as. However, it may be difficult to secure an LV for generating a swirling flow in the lower part of the reaction unit 11 only by circulating the supernatant liquid supplied as the diluted water from the treatment tank 3 to the reaction unit 11. In order to supplement the LV sufficient to generate a swirling flow in the lower part of the reaction unit 11 with the supernatant, it is necessary to supply more than the amount of the supernatant required as the diluted water, that is, the sedimentation separation unit. Although it is necessary to increase the size of 12, the apparatus may become large and stable sedimentation separation may not be possible.

本発明の第2の実施の形態に係る被処理液の処理装置では、晶析反応は完了しているが沈降分離が未完了の処理水を引き抜き手段16によって引き抜いて塔内循環水として反応部11へ循環させるとともに、更に、循環手段25により循環された上澄液を処理槽3において被除去イオンと反応するイオンを含む液と混合し、その混合液を、ポンプ62を介して供給管21、22、23を介して反応槽1の下部へ再供給する。 In the treatment device for the liquid to be treated according to the second embodiment of the present invention, the treated water in which the crystallization reaction is completed but the sedimentation separation is not completed is drawn out by the drawing means 16 and used as the circulating water in the column. In addition to circulating to 11, the supernatant liquid circulated by the circulation means 25 is further mixed with a liquid containing ions that react with the ions to be removed in the treatment tank 3, and the mixed liquid is mixed with the liquid containing the ions to react with the ions to be removed, and the mixed liquid is mixed with the supply pipe 21 via the pump 62. , 22 and 23 are re-supplied to the lower part of the reaction vessel 1.

これにより、沈降分離部12の大型化を図ることなく反応部11のLVをより確実に確保することができ、沈降分離部12における処理水の沈降分離処理も安定的に行うことができる。なお、反応部11へ循環させる塔内循環水と、反応部11へ循環させる上記の上澄液を含めた被除去イオンと反応するイオンを含む液の供給量は、体積比で9:1~6:4となるように、より好ましくは9:1~7:3となるように調節して反応部11の下部へ供給することが好ましい。 As a result, the LV of the reaction unit 11 can be more reliably secured without increasing the size of the sedimentation separation unit 12, and the sedimentation separation treatment of the treated water in the sedimentation separation unit 12 can be stably performed. The supply amount of the liquid containing the ions that react with the ions to be removed, including the circulating water in the column circulated to the reaction unit 11 and the above-mentioned supernatant liquid circulated to the reaction unit 11, is 9: 1 or more in volume ratio. It is preferable to adjust the ratio to 6: 4 and more preferably 9: 1 to 7: 3 to supply to the lower part of the reaction unit 11.

(第3の実施の形態)
本発明の第3の実施の形態に係る被処理液の処理装置は、図4に示すように、引き抜き手段16が被処理液2を反応槽1へ供給する管に接続されており、引き抜き手段16により引き抜かれた塔内循環液を、反応槽1内に流入させる前に被処理液2と合流させることができるような構成になっている点が、図3に示す処理装置と異なる。他は図3の処理装置と実質的に同様であるので記載を省略する。
(Third embodiment)
As shown in FIG. 4, in the device for treating the liquid to be treated according to the third embodiment of the present invention, the drawing means 16 is connected to a pipe for supplying the liquid to be treated 2 to the reaction tank 1, and the drawing means It differs from the processing apparatus shown in FIG. 3 in that the circulating fluid in the column drawn by 16 can be merged with the liquid to be treated 2 before flowing into the reaction vessel 1. Others are substantially the same as the processing apparatus of FIG. 3, and the description thereof will be omitted.

第3の実施の形態に係る被処理液の処理装置及び処理方法によれば、図5に示すように、反応槽1へ供給する供給管21、22は2本で済むため、供給管21、22の数を少なくして装置の小型化及び簡略化を図ることができる。図5の例では、供給管21、22の供給方向が約180°異なる例を示しているが、反応槽1内でより大きい旋回流を確実に発生させるためには図2に示すように、供給管21、22を互いに近接させて配置してもよいことは勿論である。 According to the treatment apparatus and treatment method for the liquid to be treated according to the third embodiment, as shown in FIG. 5, since the supply pipes 21 and 22 to be supplied to the reaction tank 1 need only be two, the supply pipe 21 The number of 22 can be reduced to reduce the size and simplification of the device. In the example of FIG. 5, the supply directions of the supply pipes 21 and 22 differ by about 180 °, but in order to surely generate a larger swirling flow in the reaction vessel 1, as shown in FIG. Of course, the supply pipes 21 and 22 may be arranged close to each other.

(第4の実施の形態)
第4の実施の形態に係る被処理液の処理装置は、図7に示すように、反応槽1を2槽以上備える点が、図1~図5に示す処理装置と異なる。即ち、図7に示す処理装置は、2槽の反応槽1、7を備え、反応槽1(第1の反応槽)で得られた難溶性塩の結晶からなる粒子を反応槽7(第2の反応槽)へ導入し、反応槽7で得られる難溶性塩の結晶からなる粒子を反応槽1へ返送することができる。
(Fourth Embodiment)
As shown in FIG. 7, the treatment apparatus for the liquid to be treated according to the fourth embodiment is different from the treatment apparatus shown in FIGS. 1 to 5 in that it includes two or more reaction tanks 1. That is, the processing apparatus shown in FIG. 7 includes two reaction tanks 1 and 7, and particles composed of crystals of a sparingly soluble salt obtained in the reaction tank 1 (first reaction tank) are put into the reaction tank 7 (second reaction tank). The particles made of crystals of the sparingly soluble salt obtained in the reaction vessel 7 can be returned to the reaction vessel 1 by introducing the particles into the reaction vessel (1).

反応槽7は、反応槽1と実質的に同様の構成を備えることができる。反応槽7の下部には、被処理液2と塔内循環液と被除去イオンと反応するイオンを含む液を供給するための供給管71、72を備えることができる。これら供給管71、72も、反応槽7の横断面に対して接線方向に接続されており、反応槽7の横断面に対して接線方向に被処理液2と塔内循環液と被除去イオンと反応するイオンを含む液を供給することができる。 The reaction vessel 7 can have substantially the same configuration as the reaction vessel 1. In the lower part of the reaction tank 7, supply pipes 71 and 72 for supplying a liquid containing an ion to react with the liquid to be treated 2, the circulating liquid in the column, and the ion to be removed can be provided. These supply pipes 71 and 72 are also connected in the tangential direction to the cross section of the reaction tank 7, and the liquid to be treated 2, the circulating liquid in the column, and the ions to be removed are tangential to the cross section of the reaction tank 7. A liquid containing ions that react with can be supplied.

反応槽7にも反応槽7の反応部からの処理水を引き抜くための引き抜き手段76が設けられている。ポンプ81を介して引き抜かれた処理水が、塔内循環水として反応槽7の下部から供給される。 The reaction tank 7 is also provided with a drawing means 76 for drawing the treated water from the reaction section of the reaction tank 7. The treated water drawn through the pump 81 is supplied from the lower part of the reaction tank 7 as circulating water in the column.

反応槽7の上澄液は配管75を介して処理槽3へ供給されることができる。処理槽3では被除去イオンと反応するイオン4が添加されて、配管35を介して反応槽1、7の下部から反応槽1、7へ供給される。処理槽3で沈降した結晶粒子は配管34を介して反応槽7へ返送することができる。反応槽7で得られた結晶粒子は配管74を介して反応槽1へ供給することができる。第4の実施の形態に係る被処理液の処理装置及び処理方法によれば、反応槽1、7を2槽以上配置することにより、被除去イオンの除去率をより向上させることができる。 The supernatant liquid of the reaction tank 7 can be supplied to the treatment tank 3 via the pipe 75. In the treatment tank 3, ions 4 that react with the ions to be removed are added and supplied to the reaction tanks 1 and 7 from the lower part of the reaction tanks 1 and 7 via the pipe 35. The crystal particles settled in the treatment tank 3 can be returned to the reaction tank 7 via the pipe 34. The crystal particles obtained in the reaction tank 7 can be supplied to the reaction tank 1 via the pipe 74. According to the treatment apparatus and treatment method for the liquid to be treated according to the fourth embodiment, the removal rate of the ions to be removed can be further improved by arranging two or more reaction tanks 1 and 7.

(第5の実施の形態)
第5の実施の形態に係る被処理液の処理装置は、図8に示すように、反応槽1、7にそれぞれ各反応槽1、7で得られる粒子を反応槽1、7の外部へ排出可能なエアリフト管50a、50bがそれぞれ配置されている。
(Fifth Embodiment)
As shown in FIG. 8, in the treatment apparatus for the liquid to be treated according to the fifth embodiment, the particles obtained in the reaction tanks 1 and 7, respectively, are discharged to the outside of the reaction tanks 1 and 7, respectively. Possible air lift pipes 50a and 50b are arranged, respectively.

エアリフト管50a、50bは、エアリフト管50a、50bを洗浄するための洗浄水を受け入れる洗浄水受入部52a、52bと、洗浄水受入部52a、52bよりも下部に設けられたバルブと51a、51bと、洗浄水受入部よりも上部に設けられた気泡分離部53a、53bと、気泡分離部53a、53bに接続され、気泡分離部53a、53bにおいて気泡が分離された粒子を含む液体を反応槽1、7の外部へ排出するスラリー排出部54a、54bとを備える。 The air lift pipes 50a and 50b include wash water receiving portions 52a and 52b for receiving wash water for washing the air lift pipes 50a and 50b, and valves and 51a and 51b provided below the wash water receiving portions 52a and 52b. , A liquid containing particles connected to the bubble separation portions 53a and 53b provided above the washing water receiving portion and the bubble separation portions 53a and 53b and having bubbles separated in the bubble separation portions 53a and 53b is put into the reaction tank 1. , 7 is provided with a slurry discharging unit 54a, 54b for discharging to the outside.

洗浄水受入部52a、52bには循環水返送管39が接続され、反応槽1、7の処理水の一部の循環水を洗浄水として利用することが可能である。或いは、洗浄水受入部52a、52bから清水を供給し、この静水洗浄水として供給するようにしてもよい。エアリフト管50bは、反応槽7で得られる粒子を反応槽1内へ供給することができる。エアリフト管50aは、反応槽1で得られる粒子を反応槽1の外部へ排出することができる。 A circulating water return pipe 39 is connected to the washing water receiving portions 52a and 52b, and it is possible to use a part of the circulating water of the treated water of the reaction tanks 1 and 7 as the washing water. Alternatively, fresh water may be supplied from the washing water receiving portions 52a and 52b and supplied as the still water washing water. The air lift pipe 50b can supply the particles obtained in the reaction tank 7 into the reaction tank 1. The air lift pipe 50a can discharge the particles obtained in the reaction tank 1 to the outside of the reaction tank 1.

図8に示す被処理液の処理装置及び処理方法によれば、微細な結晶粒子の装置外部への流出を更に抑制することが更に可能となり、装置の洗浄及びメンテナンス作業も容易になる。 According to the treatment apparatus and treatment method for the liquid to be treated shown in FIG. 8, it is possible to further suppress the outflow of fine crystal particles to the outside of the apparatus, and the cleaning and maintenance work of the apparatus becomes easy.

本発明は上記の実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。本発明の実施の形態に係る被処理液の処理装置及び処理方法は本開示から種々の変形を加えることが可能であり、実施段階においては、その要旨を逸脱しない範囲において変形し具体化し得るものである。 Although the present invention has been described in accordance with the above embodiments, the statements and drawings that form part of this disclosure should not be understood as limiting the invention. The treatment apparatus and treatment method for the liquid to be treated according to the embodiment of the present invention can be modified in various ways from the present disclosure, and can be modified and embodied in the implementation stage without departing from the gist thereof. Is.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 Examples of the present invention are shown below together with comparative examples, but these examples are provided for a better understanding of the present invention and its advantages, and are not intended to limit the invention.

図1に示す反応槽1を模した流動層方式の模擬晶析反応槽において、沈殿分離部の最下端部に引き抜き手段を接続して模擬晶析反応槽内から引き抜いた処理水を塔内循環液とし、リンを含む被処理液を処理した。 In a fluidized bed type simulated crystallization reaction tank imitating the reaction tank 1 shown in FIG. 1, a drawing means is connected to the lowermost end of the precipitation separation part, and the treated water drawn from the simulated crystallization reaction tank is circulated in the column. It was prepared as a liquid, and a liquid to be treated containing phosphorus was treated.

処理槽3内でマグネシウムイオンとpH調整剤を添加して、模擬晶析反応槽への供給に適切な液を作製し、0.2~1.0mmのリン酸マグネシウムアンモニウムの結晶粒子が流動する模擬晶析反応槽の側面下部から被処理液、マグネシウムイオンを含む液、及び塔内循環液をそれぞれ接線方向に供給した。 Magnesium ions and a pH adjuster are added in the treatment tank 3 to prepare a liquid suitable for supply to the simulated crystallization reaction tank, and 0.2 to 1.0 mm magnesium ammonium phosphate crystal particles flow. The liquid to be treated, the liquid containing magnesium ions, and the circulating liquid in the column were supplied in the tangential direction from the lower part of the side surface of the simulated crystallization reaction tank.

模擬晶析反応槽内の反応部の通水速度を表1に示すように変化させた。反応部への被処理液、マグネシウムイオンを含む液及び塔内循環液の供給は、流速が大きい順に、旋回流を発生させる方向に対して上流側となる供給管へ接続するようにした。模擬晶析反応槽内の流動状態を観察した。結果を表1に示す。 The water flow rate of the reaction part in the simulated crystallization reaction tank was changed as shown in Table 1. The liquid to be treated, the liquid containing magnesium ions, and the circulating liquid in the column were supplied to the reaction section in descending order of the flow velocity, so as to be connected to the supply pipe on the upstream side in the direction of generating the swirling flow. The flow state in the simulated crystallization reaction tank was observed. The results are shown in Table 1.

Figure 2022008913000002
Figure 2022008913000002

表1中、「△1」は、反応部に旋回流が発生せず、流入液が短絡流を起こした場合があった場合を示す。「△2」は、反応部に旋回流が発生したが、流入液が短絡流を僅かに起こした場合があった場合を示す。「○」は、反応部の流動は均一で適正となり、反応部に充填したリン酸マグネシウムの反応槽上層からの流出も抑制できたものの僅かにリン酸マグネシウムが上層から流出したことを示す。「◎」は反応槽の流動が均一で適正で且つ通水速度が適正で、反応部に充填したリン酸マグネシウムアンモニウムの流出が生じなかった状態を示す。 In Table 1, "Δ1" indicates a case where a swirling flow did not occur in the reaction section and the inflow liquid caused a short-circuit flow. “Δ2” indicates a case where a swirling flow was generated in the reaction section, but the inflow liquid slightly caused a short-circuit flow. “◯” indicates that the flow of the reaction part was uniform and appropriate, and the outflow of magnesium phosphate filled in the reaction part from the upper layer of the reaction tank could be suppressed, but a slight amount of magnesium phosphate flowed out from the upper layer. “⊚” indicates a state in which the flow of the reaction vessel is uniform and appropriate, the water flow rate is appropriate, and the outflow of magnesium ammonium phosphate filled in the reaction unit does not occur.

1…反応槽
2…被処理液
3…処理槽
5…pH調整剤
7…反応槽
11…反応部
12…沈降分離部
16…引き抜き手段
21、22、23…供給管
24…配管
25…循環手段
34…配管
35…配管
39…循環水返送管
50a、50b…エアリフト管
52a、52b…洗浄水受入部
53a、53b…気泡分離部
54a、54b…スラリー排出部
61、62…ポンプ
71…供給管
74、75…配管
76…引き抜き手段
1 ... Reaction tank 2 ... Liquid to be treated 3 ... Treatment tank 5 ... pH adjuster 7 ... Reaction tank 11 ... Reaction unit 12 ... Precipitation separation unit 16 ... Extraction means 21, 22, 23 ... Supply pipe 24 ... Piping 25 ... Circulation means 34 ... Piping 35 ... Piping 39 ... Circulating water return pipes 50a, 50b ... Air lift pipes 52a, 52b ... Washing water receiving parts 53a, 53b ... Bubble separation parts 54a, 54b ... Slurry discharge parts 61, 62 ... Pump 71 ... Supply pipe 74 , 75 ... Piping 76 ... Pulling out means

Claims (5)

被処理液と、被処理液中の被除去イオンと反応するイオンを含む液と、塔内循環液とを受け入れて上向流で通水し、前記被処理液を内部で流動する種晶を含む粒子と接触させることにより、前記被処理液中の被除去イオンを難溶性塩の結晶として析出させる反応部と、前記反応部の上方に位置し、前記反応部で生成した前記結晶を前記反応部へと沈降させて分離する沈降分離部と、を備える反応槽と、
前記沈降分離部の最下端又は前記最下端から上方に向かって3割以内の高さに接続され、前記反応槽内の処理水の一部を前記塔内循環液として引き抜く引き抜き手段と、
前記反応部に接続され、前記反応槽内に旋回流を発生させるように、前記塔内循環液、前記被処理液及び前記被除去イオンと反応するイオンを含む液を、前記反応槽の下部から前記反応槽の横断面に対して接線方向に供給する複数の供給管と、
前記沈降分離部の上方から得られる前記反応槽内の上澄液を引き抜き、前記被除去イオンと反応するイオンを含む液と混合して前記反応槽へ循環させる循環手段と
を備える被処理液の処理装置。
A seed crystal that accepts the liquid to be treated, the liquid containing ions that react with the ions to be removed in the liquid to be treated, and the circulating liquid in the column and passes water in an upward flow, and the liquid to be treated flows inside. The reaction section, which precipitates the ions to be removed in the liquid to be treated as crystals of a sparingly soluble salt by contacting with the contained particles, and the crystals located above the reaction section and generated in the reaction section are subjected to the reaction. A reaction vessel provided with a sedimentation separation section that is settled into a section and separated.
A drawing means connected to a height of 30% or less from the lowermost end of the sedimentation separation portion or upward from the lowermost end, and drawing out a part of the treated water in the reaction tank as the circulating liquid in the column.
A liquid containing the circulating liquid in the column, the liquid to be treated, and the liquid containing ions that react with the ions to be removed is discharged from the lower part of the reaction tank so as to be connected to the reaction unit and generate a swirling flow in the reaction tank. A plurality of supply pipes that supply tangentially to the cross section of the reaction vessel,
A liquid to be treated provided with a circulation means for drawing out the supernatant liquid in the reaction tank obtained from above the sedimentation separation portion, mixing it with a liquid containing ions that react with the ions to be removed, and circulating the liquid in the reaction tank. Processing equipment.
被処理液と、被処理液中の被除去イオンと反応するイオンを含む液と、塔内循環液とを受け入れて上向流で通水し、前記被処理液を内部で流動する種晶を含む粒子と接触させることにより、前記被処理液中の被除去イオンを難溶性塩の結晶として析出させる反応部と、前記反応部の上方に位置し、前記反応部で生成した前記結晶を前記反応部へと沈降させて分離する沈降分離部と、を備える反応槽と、
前記沈降分離部の最下端又は前記最下端から上方に向かって3割以内の高さに接続され、前記反応槽内の処理水の一部を前記塔内循環液として引き抜く引き抜き手段と、
前記反応部に接続され、前記反応槽内に旋回流を発生させるように、前記塔内循環液、前記被処理液及び前記被除去イオンと反応するイオンを含む液を、前記反応槽の下部から前記反応槽の横断面に対して接線方向に供給する複数の供給管と、
前記塔内循環液に薬剤を供給するための添加手段と
を備える被処理液の処理装置。
A seed crystal that accepts the liquid to be treated, the liquid containing ions that react with the ions to be removed in the liquid to be treated, and the circulating liquid in the column and passes water in an upward flow, and the liquid to be treated flows inside. The reaction section, which precipitates the ions to be removed in the liquid to be treated as crystals of a sparingly soluble salt by contacting with the contained particles, and the crystals located above the reaction section and generated in the reaction section are subjected to the reaction. A reaction vessel provided with a sedimentation separation section that is settled into a section and separated.
A drawing means connected to a height of 30% or less from the lowermost end of the sedimentation separation portion or upward from the lowermost end, and drawing out a part of the treated water in the reaction tank as the circulating liquid in the column.
A liquid containing the circulating liquid in the column, the liquid to be treated, and the liquid containing ions that react with the ions to be removed is discharged from the lower part of the reaction tank so as to be connected to the reaction unit and generate a swirling flow in the reaction tank. A plurality of supply pipes that supply tangentially to the cross section of the reaction vessel,
A device for treating a liquid to be treated, which comprises an addition means for supplying a drug to the circulating liquid in the column.
被処理液を上向流で種晶を有する反応槽内に通水し、前記反応槽内で流動する粒子と接触させることにより、前記被処理液中の被除去イオンを難溶性塩の結晶として析出させることと、
前記反応槽内の処理水の一部を引き抜くことと、
前記反応槽内から引き抜いた処理水を塔内循環液とし、前記反応槽内に旋回流を発生させるように、前記塔内循環液、前記被処理液及び前記被除去イオンと反応するイオンを含む液を、前記反応槽の下部から前記反応槽の横断面に対して接線方向に供給することと、
前記反応槽として、前記塔内循環液、前記被処理液及び前記被除去イオンと反応するイオンを含む液を受け入れて前記結晶を生成させるための反応部と、前記反応部の上方に位置し、前記反応部で生成した前記結晶を前記反応部へ沈降させて分離する沈降分離部とを備える反応槽を用いることと、
前記沈降分離部の上方から得られる前記反応槽内の上澄液を引き抜き、前記被除去イオンと反応するイオンを含む液と混合して前記反応部へ循環させることと、
を含み、
前記反応槽内の処理水の一部を引き抜くことが、前記沈降分離部の最下端又は前記最下端から上方に向かって3割以内の高さから前記処理水を引き抜くことを含み、
前記被除去イオンが、リン酸イオン、カルシウムイオン、フッ素イオン、炭酸イオン、硫酸イオンのいずれかを含む被処理液の処理方法。
By passing water through the reaction vessel having seed crystals in an upward flow and bringing it into contact with the particles flowing in the reaction vessel, the ions to be removed in the solution to be treated are used as crystals of a sparingly soluble salt. Precipitating and
By drawing out a part of the treated water in the reaction tank,
The treated water drawn out from the reaction vessel is used as the circulating fluid in the column, and contains the circulating fluid in the column, the liquid to be treated, and ions that react with the ions to be removed so as to generate a swirling flow in the reaction vessel. The liquid is supplied from the lower part of the reaction vessel in the tangential direction with respect to the cross section of the reaction vessel.
The reaction tank is located above the reaction section and a reaction section for receiving the circulating fluid in the column, the solution to be treated, and the solution containing ions that react with the ions to be removed to generate the crystals. Using a reaction vessel provided with a settling and separating section for precipitating and separating the crystals generated in the reaction section in the reaction section.
The supernatant liquid in the reaction vessel obtained from above the sedimentation separation part is drawn out, mixed with a liquid containing ions that react with the ion to be removed, and circulated to the reaction part.
Including
Extracting a part of the treated water in the reaction vessel includes extracting the treated water from the lowermost end of the sedimentation separation portion or from a height within 30% upward from the lowermost end.
A method for treating a liquid to be treated, wherein the ion to be removed contains any one of phosphate ion, calcium ion, fluorine ion, carbonate ion and sulfate ion.
被処理液を上向流で種晶を有する反応槽内に通水し、前記反応槽内で流動する粒子と接触させることにより、前記被処理液中の被除去イオンを難溶性塩の結晶として析出させることと、
前記反応槽内の処理水の一部を引き抜くことと、
前記反応槽内から引き抜いた処理水を塔内循環液とし、前記反応槽内に旋回流を発生させるように、前記塔内循環液、前記被処理液及び前記被除去イオンと反応するイオンを含む液を、前記反応槽の下部から前記反応槽の横断面に対して接線方向に供給することと、
前記反応槽として、前記塔内循環液、前記被処理液及び前記被除去イオンと反応するイオンを含む液を受け入れて前記結晶を生成させるための反応部と、前記反応部の上方に位置し、前記反応部で生成した前記結晶を前記反応部へ沈降させて分離する沈降分離部とを備える反応槽を用いることと、
前記塔内循環液に薬剤を添加することと
を含み、
前記反応槽内の処理水の一部を引き抜くことが、前記沈降分離部の最下端又は前記最下端から上方に向かって3割以内の高さから前記処理水を引き抜くことを含む被処理液の処理方法。
By passing water through the reaction vessel having seed crystals in an upward flow and bringing it into contact with the particles flowing in the reaction vessel, the ions to be removed in the solution to be treated are used as crystals of a sparingly soluble salt. Precipitating and
By drawing out a part of the treated water in the reaction tank,
The treated water drawn out from the reaction vessel is used as the circulating fluid in the column, and contains the circulating fluid in the column, the liquid to be treated, and ions that react with the ions to be removed so as to generate a swirling flow in the reaction vessel. The liquid is supplied from the lower part of the reaction vessel in the tangential direction with respect to the cross section of the reaction vessel.
The reaction tank is located above the reaction section and a reaction section for receiving the circulating fluid in the column, the solution to be treated, and the solution containing ions that react with the ions to be removed to generate the crystals. Using a reaction vessel provided with a settling and separating section for precipitating and separating the crystals generated in the reaction section in the reaction section.
Including adding a drug to the circulating fluid in the column,
Extracting a part of the treated water in the reaction vessel includes extracting the treated water from a height within 30% from the lowermost end of the sedimentation separation portion or the lowermost end upward. Processing method.
前記反応部へ供給される前記塔内循環水と、前記被除去イオンと反応するイオンを含む液の供給量が体積比で9:1~6:4となるように調整することを含む請求項3に記載の被処理液の処理方法。 The claim comprising adjusting the supply amount of the liquid containing the ion to react with the ion to be removed and the circulating water in the column supplied to the reaction unit to be 9: 1 to 6: 4 in volume ratio. 3. The method for treating a liquid to be treated according to 3.
JP2021164925A 2018-05-24 2021-10-06 Method for treating liquid to be treated and apparatus for treating liquid to be treated Active JP7301105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021164925A JP7301105B2 (en) 2018-05-24 2021-10-06 Method for treating liquid to be treated and apparatus for treating liquid to be treated

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018099979A JP7206061B2 (en) 2018-05-24 2018-05-24 Method for treating liquid to be treated
JP2021164925A JP7301105B2 (en) 2018-05-24 2021-10-06 Method for treating liquid to be treated and apparatus for treating liquid to be treated

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018099979A Division JP7206061B2 (en) 2018-05-24 2018-05-24 Method for treating liquid to be treated

Publications (2)

Publication Number Publication Date
JP2022008913A true JP2022008913A (en) 2022-01-14
JP7301105B2 JP7301105B2 (en) 2023-06-30

Family

ID=86938346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021164925A Active JP7301105B2 (en) 2018-05-24 2021-10-06 Method for treating liquid to be treated and apparatus for treating liquid to be treated

Country Status (1)

Country Link
JP (1) JP7301105B2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5881402A (en) * 1981-11-11 1983-05-16 Nishimura Watanabe Chiyuushiyutsu Kenkyusho:Kk Crystallization apparatus
JPS60168587A (en) * 1984-02-14 1985-09-02 Ebara Infilco Co Ltd Fluidized bed type catalytic dephosphorization
JPH11267664A (en) * 1998-03-20 1999-10-05 Kurita Water Ind Ltd Dephosphorizing method
JPH11277071A (en) * 1998-03-27 1999-10-12 Kurita Water Ind Ltd Removal of phosphorus
WO2004067139A1 (en) * 2003-01-31 2004-08-12 Ebara Corporation Method and apparatus for removing ion in fluid by crystallization
JP2005205357A (en) * 2004-01-26 2005-08-04 Ngk Insulators Ltd Absorption apparatus of ammonia and/or ammonium ion
JP2006122896A (en) * 2004-09-28 2006-05-18 Mitsubishi Materials Corp Method of treatment with reactional crystallization and apparatus therefor
JP2008073662A (en) * 2006-09-25 2008-04-03 Hitachi Plant Technologies Ltd Recycling method of hydroxyapatite crystal
CN101941752A (en) * 2010-09-05 2011-01-12 中南大学 Method and device for treating fluorine-containing waste water
CN104162288A (en) * 2014-08-15 2014-11-26 四川大学 Rotational flow type fluidized bed crystallizer
US20150017085A1 (en) * 2013-07-12 2015-01-15 Ostara Nutrient Recovery Technologies Inc. Reactor apparatus and methods for fines control
CN207169089U (en) * 2017-07-18 2018-04-03 四川思特瑞科技有限公司 Circulation crystallization system

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5881402A (en) * 1981-11-11 1983-05-16 Nishimura Watanabe Chiyuushiyutsu Kenkyusho:Kk Crystallization apparatus
JPS60168587A (en) * 1984-02-14 1985-09-02 Ebara Infilco Co Ltd Fluidized bed type catalytic dephosphorization
JPH11267664A (en) * 1998-03-20 1999-10-05 Kurita Water Ind Ltd Dephosphorizing method
JPH11277071A (en) * 1998-03-27 1999-10-12 Kurita Water Ind Ltd Removal of phosphorus
WO2004067139A1 (en) * 2003-01-31 2004-08-12 Ebara Corporation Method and apparatus for removing ion in fluid by crystallization
JP2005205357A (en) * 2004-01-26 2005-08-04 Ngk Insulators Ltd Absorption apparatus of ammonia and/or ammonium ion
JP2006122896A (en) * 2004-09-28 2006-05-18 Mitsubishi Materials Corp Method of treatment with reactional crystallization and apparatus therefor
JP2008073662A (en) * 2006-09-25 2008-04-03 Hitachi Plant Technologies Ltd Recycling method of hydroxyapatite crystal
CN101941752A (en) * 2010-09-05 2011-01-12 中南大学 Method and device for treating fluorine-containing waste water
US20150017085A1 (en) * 2013-07-12 2015-01-15 Ostara Nutrient Recovery Technologies Inc. Reactor apparatus and methods for fines control
CN104162288A (en) * 2014-08-15 2014-11-26 四川大学 Rotational flow type fluidized bed crystallizer
CN207169089U (en) * 2017-07-18 2018-04-03 四川思特瑞科技有限公司 Circulation crystallization system

Also Published As

Publication number Publication date
JP7301105B2 (en) 2023-06-30

Similar Documents

Publication Publication Date Title
JP4748584B2 (en) Method and apparatus for removing ions in liquid by crystallization method
JP4892212B2 (en) Reaction crystallizer
CA2829113C (en) Reactor for precipitating solutes from wastewater and associated methods
JP7206061B2 (en) Method for treating liquid to be treated
JP2022008913A (en) Processing method of liquid to be treated of and processing apparatus of liquid to be treated
JP2007244995A (en) Treatment equipment of digestion sludge
JP7142800B1 (en) Apparatus for treating liquid to be treated and method for treating liquid to be treated
JP5808638B2 (en) Method and apparatus for treating wastewater containing high concentration calcium and alkali
JP6797053B2 (en) Crystallization method and crystallization equipment
JP4025037B2 (en) Dephosphorization method and apparatus
JP2000117005A (en) Flocculating and settling method and device
JP2019202284A (en) Treatment apparatus of liquid to be treated and treatment method of liquid to be treated
JPH08155469A (en) Apparatus for granulating and removing phosphorus compound
JP5222596B2 (en) Crystallization reactor
JPH11300369A (en) Dephosphorizing device and dephosphorizing equipment
JP2008183562A (en) Dephosphorization apparatus
JP2003117306A (en) Reaction crystallizing method and apparatus
JP5917917B2 (en) Crystallization reactor
WO2014207837A1 (en) Crystallization reactor
JPH1157748A (en) Method of removing phosphorus
JP2018126699A (en) Crystallization method and crystallizer
JP5043306B2 (en) Method for producing slaked lime aqueous solution
TWI566827B (en) Crystallization reaction device
JP2005239457A (en) Method and apparatus for preparation of slaked lime aqueous solution
JPH11267663A (en) Dephosphorizing device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211007

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230620

R150 Certificate of patent or registration of utility model

Ref document number: 7301105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150