JP2022008353A - Method for producing electronic device - Google Patents

Method for producing electronic device Download PDF

Info

Publication number
JP2022008353A
JP2022008353A JP2021146539A JP2021146539A JP2022008353A JP 2022008353 A JP2022008353 A JP 2022008353A JP 2021146539 A JP2021146539 A JP 2021146539A JP 2021146539 A JP2021146539 A JP 2021146539A JP 2022008353 A JP2022008353 A JP 2022008353A
Authority
JP
Japan
Prior art keywords
polyamic acid
general formula
polyimide
structural unit
unit represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021146539A
Other languages
Japanese (ja)
Other versions
JP7157859B2 (en
Inventor
真理 宇野
Mari Uno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Publication of JP2022008353A publication Critical patent/JP2022008353A/en
Application granted granted Critical
Publication of JP7157859B2 publication Critical patent/JP7157859B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an electronic device that uses a polyimide having high heat resistance, low thermal expansion, and high transparency, and having moderate adhesion to glass as a support.
SOLUTION: In a method for producing an electronic device, a polyamide acid solution containing a constitutional unit of formula 1 and a constitutional unit of formula 2 is applied to a support, to form a polyimide film adhered and deposited on the support. An element is formed on the polyimide film, and then the polyimide film is peeled from the support.
SELECTED DRAWING: None
COPYRIGHT: (C)2022,JPO&INPIT

Description

本発明は、ポリアミド酸、ポリアミド酸溶液、ポリイミド、およびポリイミド基板に関する。 The present invention relates to polyamic acids, polyamic acid solutions, polyimides, and polyimide substrates.

ディスプレイ、タッチパネル、太陽電池等の電子デバイスにおいて、薄型化、軽量化、およびフレキシブル化が要求されており、ガラス基板に代えて樹脂フィルム基板の利用が検討されている。 Electronic devices such as displays, touch panels, and solar cells are required to be thinner, lighter, and more flexible, and the use of resin film substrates instead of glass substrates is being considered.

これらの電子デバイスの製造プロセスでは、基板上に、薄膜トランジスタ等の半導体等や電極等の電子素子が形成される。これらの素子の形成は高温プロセスを要するため、樹脂クフィルム基板に高い耐熱性が要求される。基板上に設けられる素子は一般に無機材料からなる。基板の線熱膨張係数と素子を構成する無機材料の線熱膨張係数とが大きく異なると、素子形成界面の応力等に起因して、基板の反りや素子の破壊が生じる場合がある。そのため、樹脂フィルム基板は、素子を構成する無機材料と同等の線熱膨張係数を有することが望まれる。液晶ディスプレイやボトムエミッション型の有機EL素子では、表示素子からの光が基板を透過して出射するため、樹脂フィルム基板には透明性が求められ、特に、可視光領域での光透過率が高いことが要求される。上記の理由により、電子デバイス用の樹脂フィルム基板材料には、高耐熱性、低熱膨張、および高透明性が求められる。 In the manufacturing process of these electronic devices, semiconductors such as thin film transistors and electronic elements such as electrodes are formed on the substrate. Since the formation of these elements requires a high temperature process, high heat resistance is required for the resin film substrate. The element provided on the substrate is generally made of an inorganic material. If the coefficient of linear thermal expansion of the substrate and the coefficient of linear thermal expansion of the inorganic material constituting the element are significantly different, the substrate may be warped or the element may be destroyed due to stress at the element forming interface or the like. Therefore, it is desired that the resin film substrate has a coefficient of linear thermal expansion equivalent to that of the inorganic material constituting the device. In liquid crystal displays and bottom emission type organic EL elements, the light from the display element is transmitted through the substrate and emitted, so transparency is required for the resin film substrate, and the light transmittance is particularly high in the visible light region. Is required. For the above reasons, resin film substrate materials for electronic devices are required to have high heat resistance, low thermal expansion, and high transparency.

電子デバイスの製造プロセスは、バッチタイプとロール・トゥ・ロールタイプに分けられる。樹脂フィルム基板は、ロール・トゥ・ロールプロセスにも適用できるが、ロール・トゥ・ロールプロセスによる電子デバイスの製造には、新たな設備が必要となることに加えて、ロール搬送に伴う新たな問題を克服しなければならない。一方、バッチプロセスでは、支持体上に樹脂溶液を塗布、乾燥してフィルム基板を形成し、その上に素子を形成すればよく、現行のガラス基板用プロセス設備を利用できるため、コスト面で優位である。 The manufacturing process of electronic devices is divided into batch type and roll-to-roll type. Resin film substrates can also be applied to roll-to-roll processes, but the manufacture of electronic devices by roll-to-roll processes requires new equipment and new problems associated with roll transfer. Must be overcome. On the other hand, in the batch process, a resin solution may be applied on the support and dried to form a film substrate, and an element may be formed on the film substrate. Since the current process equipment for glass substrates can be used, it is advantageous in terms of cost. Is.

ガラスに匹敵する高耐熱性、低熱膨張、および高透明性を実現可能な樹脂材料として、耐熱性に優れるポリイミド系材料が検討されている。剛直な構造のモノマーや脂環式モノマーを用いたポリイミドは、透明性が高く、低熱膨張性を示すことが知られている(特許文献1、特許文献2)。また、ポリイミド前駆体としてのポリアミド酸にシリコーンオイルを添加してイミド化を行うことにより、得られるポリイミドフィルムが基材への高い密着性を示すことが知られている(特許文献3)。 As a resin material capable of achieving high heat resistance, low thermal expansion, and high transparency comparable to glass, a polyimide-based material having excellent heat resistance is being studied. Polyimides using a monomer having a rigid structure or an alicyclic monomer are known to have high transparency and low thermal expansion (Patent Documents 1 and 2). Further, it is known that the obtained polyimide film exhibits high adhesion to a substrate by adding silicone oil to polyamic acid as a polyimide precursor to perform imidization (Patent Document 3).

特開2012-041530号公報Japanese Unexamined Patent Publication No. 2012-041530 特許第5660249号Patent No. 5660249 特開2015-229691号公報JP-A-2015-229691

ポリイミド基板をバッチプロセスに適用するためには、高耐熱性、低熱膨張、および高透明性に加えて、素子形成プロセスにおいて支持体として用いられるガラスとの適度の接着性を示し、かつ素子形成後にガラス支持体から容易に剥離できることが求められる。しかしながら、上記特許文献1~3に開示のポリイミド材料は、これらすべての要求特性を同時に満足することはできない。 In order to apply the polyimide substrate to the batch process, in addition to high heat resistance, low thermal expansion, and high transparency, it exhibits appropriate adhesion to glass used as a support in the element forming process, and after element forming. It is required that it can be easily peeled off from the glass support. However, the polyimide materials disclosed in Patent Documents 1 to 3 cannot satisfy all of these required characteristics at the same time.

上記に鑑みて、本発明は、高耐熱性、低熱膨張性、および高透明性を有し、かつ、支持体であるガラスと適度な密着性を示すポリイミド、およびその前駆体としてのポリアミド酸の提供を目的とする。 In view of the above, the present invention relates to polyimide having high heat resistance, low thermal expansion, and high transparency and exhibiting appropriate adhesion to glass as a support, and polyamic acid as a precursor thereof. The purpose is to provide.

本願発明者らは、ポリマー骨格中に剛直な構造および脂環構造を導入し、さらにシロキサン結合を有するモノマー成分を併用することにより、上記特性を満足するポリイミド、およびその前駆体としてのポリアミド酸が得られることを見出した。 The inventors of the present application have introduced a rigid structure and an alicyclic structure into the polymer skeleton, and by using a monomer component having a siloxane bond in combination, a polyimide satisfying the above characteristics and a polyamic acid as a precursor thereof can be obtained. I found that I could get it.

本発明のポリアミド酸は、一般式1で表される構成単位、および一般式2で表される構成単位を含有する。 The polyamic acid of the present invention contains a structural unit represented by the general formula 1 and a structural unit represented by the general formula 2.

Figure 2022008353000001
Figure 2022008353000001

Figure 2022008353000002
Figure 2022008353000002

本発明のポリイミドは、一般式Iで表される構成単位、および一般式IIで表される構成単位を端有する。 The polyimide of the present invention has a structural unit represented by the general formula I and a structural unit represented by the general formula II.

Figure 2022008353000003
Figure 2022008353000003

Figure 2022008353000004
Figure 2022008353000004

一般式1および一般式IにおけるA、ならびに一般式2および一般式IIにおけるBは、いずれも4価の芳香族基である。一般式2および一般式IIにおいて、RおよびRは、それぞれ独立に2価の炭化水素基であり、nは1~5の整数である。 A in the general formula 1 and I, and B in the general formula 2 and the general formula II are all tetravalent aromatic groups. In the general formula 2 and the general formula II, R 1 and R 2 are independently divalent hydrocarbon groups, and n is an integer of 1 to 5.

4価の芳香族基AおよびBは、いずれも芳香族テトラカルボン酸二無水物の残基であり、好ましくは、ビフェニル-3,3’,4,4’-テトライル基である。RおよびRは、それぞれ独立に、メチレン基、エチレン基、またはプロピレン基であることが好ましく、中でもプロピレン基であることが特に好ましい。nは1~3であることがより好ましく、1であることが最も好ましい。 The tetravalent aromatic groups A and B are both residues of the aromatic tetracarboxylic acid dianhydride, preferably a biphenyl-3,3', 4,4'-tetrayl group. Each of R 1 and R 2 is preferably a methylene group, an ethylene group, or a propylene group independently, and particularly preferably a propylene group. n is more preferably 1 to 3, and most preferably 1.

すなわち、本発明のポリアミド酸は、好ましくは、下記の式1Aで表される構成単位および下記の式2Cで表される構成単位を含有し、本発明のポリイミドは、好ましくは下記の式IAで表される構成単位および下記の式IICで表される構成単位を含有する。 That is, the polyamic acid of the present invention preferably contains a structural unit represented by the following formula 1A and a structural unit represented by the following formula 2C, and the polyimide of the present invention preferably contains the structural unit represented by the following formula IA. It contains a structural unit represented and a structural unit represented by the following formula IIC.

Figure 2022008353000005
Figure 2022008353000005

Figure 2022008353000006
Figure 2022008353000006

Figure 2022008353000007
Figure 2022008353000007

Figure 2022008353000008
Figure 2022008353000008

本発明は、上記のポリイミドを含有するポリイミド基板に関する。例えば、上記のポリアミド酸と有機溶媒とを含有するポリアミド酸溶液を支持体上に塗布し、有機溶媒の除去およびポリアミド酸のイミド化を行うことにより、ポリイミド基板が得られる。このポリイミド基板は、支持体に密着積層されたポリイミド膜として形成される。ポリアミド酸溶液を塗布する支持体としては、例えばガラスが用いられる。 The present invention relates to a polyimide substrate containing the above-mentioned polyimide. For example, a polyimide substrate can be obtained by applying a polyamic acid solution containing the above polyamic acid and an organic solvent onto a support, removing the organic solvent, and imidizing the polyamic acid. This polyimide substrate is formed as a polyimide film closely laminated on a support. As the support to which the polyamic acid solution is applied, for example, glass is used.

本発明のポリアミド酸から得られるポリイミドは、高耐熱性、低熱膨張性、および高透明性に加えて、ガラス等の支持体への適度な密着性を有する。そのため、バッチプロセスにおいて支持体への適度な密着性が要求される電子デバイス用基板材料として好適である。 The polyimide obtained from the polyamic acid of the present invention has high heat resistance, low thermal expansion, and high transparency, as well as appropriate adhesion to a support such as glass. Therefore, it is suitable as a substrate material for electronic devices, which requires appropriate adhesion to a support in a batch process.

[ポリアミド酸およびポリイミドの構造]
本発明のポリアミド酸は、以下の一般式1で表される構成単位および一般式2で表される構成単位を含む。
[Structure of polyamic acid and polyimide]
The polyamic acid of the present invention includes a structural unit represented by the following general formula 1 and a structural unit represented by the general formula 2.

Figure 2022008353000009
Figure 2022008353000009

Figure 2022008353000010
Figure 2022008353000010

本発明のポリイミドは、以下の一般式Iで表される構成単位および一般式IIで表される構成単位を含み、例えば上記の構造1および構造2を有するポリアミド酸をイミド化することにより得られる。 The polyimide of the present invention contains a structural unit represented by the following general formula I and a structural unit represented by the general formula II, and is obtained, for example, by imidizing a polyamic acid having the above structure 1 and structure 2. ..

Figure 2022008353000011
Figure 2022008353000011

Figure 2022008353000012
Figure 2022008353000012

上記一般式1および上記一般式IにおけるA、ならびに上記一般式2および上記一般式IIにおけるBは、いずれも4価の芳香族基である。芳香族基は、単一の芳香族環を有するものでもよく、複数の芳香族環が結合したものでもよく、縮合多環でもよい。上記一般式2および上記一般式IIにおいて、RおよびRはそれぞれ独立に2価の炭化水素基であり、nは1~5の整数である。 A in the general formula 1 and the general formula I, and B in the general formula 2 and the general formula II are all tetravalent aromatic groups. The aromatic group may have a single aromatic ring, may be a combination of a plurality of aromatic rings, or may be a fused polycycle. In the general formula 2 and the general formula II, R 1 and R 2 are independently divalent hydrocarbon groups, and n is an integer of 1 to 5.

上記一般式1の構成単位および上記一般式2の構成単位を有するポリアミド酸をイミド化することにより、一般式Iの構成単位および一般式IIの構成単位を有するポリイミドが得られる。この構造を有するポリイミドは、ガラスとの密着性に優れるため、バッチプロセスでの樹脂フィルム基板の形成、およびフィルム基板上への素子の形成プロセスへの利用に適している。 By imidizing the polyamic acid having the structural unit of the general formula 1 and the structural unit of the general formula 2, a polyimide having the structural unit of the general formula I and the structural unit of the general formula II can be obtained. Since the polyimide having this structure has excellent adhesion to glass, it is suitable for use in the process of forming a resin film substrate in a batch process and the process of forming an element on a film substrate.

上記AおよびBは、好ましくは芳香族テトラカルボン酸二無水物の残基である。芳香族テトラカルボン酸二無水物としては、ピロメリット酸二無水物、3,3’,4,4-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、4,4’-オキシジフタル酸無水物、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物、9,9’-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]フルオレン二無水物、3,3’,4,4′-ビフェニルエーテルテトラカルボン酸二無水物、2,3,5,6-ピリジンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、4,4’-スルホニルジフタル酸二無水物、パラテルフェニル-3,4,3’,4’-テトラカルボン酸二無水物、メタテルフェニル-3,3’,4,4’-テトラカルボン酸二無水物、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物等が挙げられるが、これらに限定されるものではない。一般式1および一般式IにおけるAと、一般式2および一般式IIにおけるBとは、同一でもよく異なっていてもよい。 The above A and B are preferably residues of aromatic tetracarboxylic dianhydride. Examples of the aromatic tetracarboxylic acid dianhydride include pyromellitic acid dianhydride, 3,3', 4,4-biphenyltetracarboxylic acid dianhydride, and 3,3', 4,4'-benzophenone tetracarboxylic dianhydride. Anhydride, 2,3,3', 4'-biphenyltetracarboxylic acid dianhydride, 3,3', 4,4'-diphenylsulfonetetracarboxylic acid dianhydride, 1,4,5,8-naphthalenetetra Carboxydic dianhydride, 2,3,6,7-naphthalenetetracarboxylic acid dianhydride, 1,2,5,6-naphthalenetetracarboxylic acid dianhydride, 4,4'-oxydiphthalic acid anhydride, 9, 9-bis (3,4-dicarboxyphenyl) fluorene dianhydride, 9,9'-bis [4- (3,4-dicarboxyphenoxy) phenyl] fluorene dianhydride, 3,3', 4,4 ′ -Biphenyl ether tetracarboxylic acid dianhydride, 2,3,5,6-pyridinetetracarboxylic acid dianhydride, 3,4,9,10-perylenetetracarboxylic acid dianhydride, 4,4'-sulfonyldi Phthalate dianhydride, paratelphenyl-3,4,3', 4'-tetracarboxylic acid dianhydride, metatelphenyl-3,3', 4,4'-tetracarboxylic acid dianhydride, 3, Examples thereof include, but are not limited to, 3', 4,4'-diphenyl ether tetracarboxylic acid dianhydride. A in general formulas 1 and I and B in general formulas 2 and II may be the same or different.

高透明性かつ低線膨張係数のポリイミドを得られることから、Aは、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物の残基(下記の化学式で表されるビフェニル-3,3’,4,4’-テトライル基)であることが特に好ましい。 Since a polyimide having high transparency and a low linear expansion coefficient can be obtained, A is a residue of 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride (biphenyl-3 represented by the following chemical formula). , 3', 4,4'-tetrayl group) is particularly preferable.

Figure 2022008353000013
Figure 2022008353000013

すなわち、一般式1の構成単位は、下記の式1Aで表されるアミド酸構成単位であることが好ましく、一般式Iの構成単位は、下記の式IAで表されるイミド構成単位であることが好ましい。これらの構成単位は、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物と1,4-シクロヘキサンジアミンとから得られる。 That is, the structural unit of the general formula 1 is preferably the amic acid structural unit represented by the following formula 1A, and the structural unit of the general formula I is the imide structural unit represented by the following formula IA. Is preferable. These building blocks are obtained from 3,3', 4,4'-biphenyltetracarboxylic dianhydride and 1,4-cyclohexanediamine.

Figure 2022008353000014
Figure 2022008353000014

Figure 2022008353000015
Figure 2022008353000015

高透明性かつ低線膨張係数のポリイミドを得られることから、Bは、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物の残基であることが特に好ましい。すなわち、一般式2で表される構成単位は、下記の一般式2Aで表されるアミド酸構成単位であることが好ましく、一般式IIで表される構成単位は、下記の一般式IIAで表されるイミド構成単位であることが好ましい。これらの構成単位は、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物とシロキサン構造含有ジアミンとから得られる。 It is particularly preferable that B is a residue of 3,3', 4,4'-biphenyltetracarboxylic dianhydride because a polyimide having high transparency and a low linear expansion coefficient can be obtained. That is, the structural unit represented by the general formula 2 is preferably the amic acid structural unit represented by the following general formula 2A, and the structural unit represented by the general formula II is represented by the following general formula IIA. It is preferable that it is an imide constituent unit to be formed. These building blocks are obtained from 3,3', 4,4'-biphenyltetracarboxylic dianhydride and siloxane structure-containing diamines.

Figure 2022008353000016
Figure 2022008353000016

Figure 2022008353000017
Figure 2022008353000017

前述のように、AとBは同一でもよい。ポリイミドフィルムの高透明性と低線膨張係数とを同時に実現する観点から、AおよびBは、いずれもビフェニル-3,3’,4,4’-テトライル基であることが好ましい。 As described above, A and B may be the same. From the viewpoint of simultaneously achieving high transparency and a low linear expansion coefficient of the polyimide film, A and B are preferably biphenyl-3,3', 4,4'-tetrayl groups.

ポリアミド酸の重合時の反応性に優れ、かつポリイミドが低熱膨張性を示すことから、上記一般式2および上記一般式IIにおけるRおよびRは、それぞれ独立に、メチレン基、エチレン基、またはプロピレン基であることが好ましく、中でもプロピレン基であることが特に好ましい。ポリアミド酸が高い溶解性を示し、かつポリイミドフィルムが高透明性を示すことから、上記一般式2および上記一般式IIにおけるnは、1~5であることが好ましく、1~3であることがより好ましく、1であることが最も好ましい。 Since the reactivity of the polyamic acid during polymerization is excellent and the polyimide exhibits low thermal expansion, R 1 and R 2 in the general formula 2 and the general formula II are independently methylene group, ethylene group, or It is preferably a propylene group, and particularly preferably a propylene group. Since the polyamic acid exhibits high solubility and the polyimide film exhibits high transparency, n in the general formula 2 and the general formula II is preferably 1 to 5, preferably 1 to 3. More preferably, it is most preferably 1.

すなわち、一般式2の構成単位は、下記の一般式2Bで表されるアミド酸構成単位であることが好ましく、一般式IIの構成単位は、下記の一般式IIBで表されるイミド構成単位であることが好ましい。これらの構成単位は、芳香族テトラカルボン酸二無水物とジアミン成分としての1,3-ビス(3-アミノプロピル)テトラメチルジシロキサンとから得られる。 That is, the structural unit of the general formula 2 is preferably the amic acid structural unit represented by the following general formula 2B, and the structural unit of the general formula II is the imide structural unit represented by the following general formula IIB. It is preferable to have. These building blocks are obtained from aromatic tetracarboxylic acid dianhydride and 1,3-bis (3-aminopropyl) tetramethyldisiloxane as a diamine component.

Figure 2022008353000018
Figure 2022008353000018

Figure 2022008353000019
Figure 2022008353000019

前述のように、一般式2および一般式IIにおける4価の芳香族基Bはビフェニル-3,3’,4,4’-テトライル基であることが好ましい。したがって、一般式2の構成単位は、下記の式2Cで表されるアミド酸構成単位であることが特に好ましく、一般式IIの構成単位は、下記の式IICで表されるイミド構成単位であることが特に好ましい。これらの構成単位は、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物と1,3-ビス(3-アミノプロピル)テトラメチルジシロキサンとから得られる。 As described above, the tetravalent aromatic group B in the general formula 2 and the general formula II is preferably a biphenyl-3,3', 4,4'-tetrayl group. Therefore, the structural unit of the general formula 2 is particularly preferably the amic acid structural unit represented by the following formula 2C, and the structural unit of the general formula II is the imide structural unit represented by the following formula IIC. Is particularly preferred. These building blocks are obtained from 3,3', 4,4'-biphenyltetracarboxylic dianhydride and 1,3-bis (3-aminopropyl) tetramethyldisiloxane.

Figure 2022008353000020
Figure 2022008353000020

Figure 2022008353000021
Figure 2022008353000021

ポリイミドフィルムに、高耐熱性、低熱膨張性、高透明性、およびガラスとの適度な密着性を持たせる観点から、ポリイミド中の一般式Iで表される構成単位と一般式IIで表される構成単位との合計は、ポリイミド全量に対して、80モル%以上が好ましく、90モル%以上がより好ましく、95モル%以上が特に好ましい。一般式Iで表される構成単位と一般式IIで表される構成単位との合計を上記範囲とするためには、前駆体であるポリアミド酸中の一般式1で表される構成単位と一般式2で表される構成単位との合計が、ポリアミド酸全量に対して、80モル%以上であることが好ましく、90モル%以上であることがより好ましく、95モル%以上であることが特に好ましい。 From the viewpoint of giving the polyimide film high heat resistance, low thermal expansion, high transparency, and appropriate adhesion to glass, it is represented by the structural unit represented by the general formula I and the general formula II in the polyimide. The total with the constituent units is preferably 80 mol% or more, more preferably 90 mol% or more, and particularly preferably 95 mol% or more with respect to the total amount of polyimide. In order to make the total of the structural unit represented by the general formula I and the structural unit represented by the general formula II within the above range, the structural unit represented by the general formula 1 and the general formula 1 in the polyamic acid as a precursor are used. The total with the structural unit represented by the formula 2 is preferably 80 mol% or more, more preferably 90 mol% or more, and particularly preferably 95 mol% or more with respect to the total amount of polyamic acid. preferable.

ポリイミドのモル数とは、ポリイミドを構成する全ジアミン由来の構成単位のモル数である。ポリアミド酸のモル数とは、ポリアミド酸を構成する全ジアミン由来構成単位のモル数である。ポリイミドおよびポリアミド酸は、ジアミン由来の構成単位と酸二無水物由来の構成単位を等モル有するため、ポリイミドおよびポリアミド酸では、全ジアミン由来の構成単位のモル数は、全酸二無水物由来の構成単位のモル数に等しい。 The number of moles of polyimide is the number of moles of structural units derived from all diamines constituting polyimide. The number of moles of polyamic acid is the number of moles of all diamine-derived structural units constituting the polyamic acid. Since polyimide and polyamic acid have equimolars of diamine-derived structural units and acid dianhydride-derived structural units, in polyimide and polyamic acid, the number of moles of total diamine-derived structural units is derived from total acid dianhydride. Equal to the number of moles in the building block.

高透明性および低熱膨張性に加えて、支持体との適度の密着性を有するポリイミドを得る観点から、ポリイミド中の一般式Iで表される構成単位のモル数Mと一般式IIで表される構成単位のモル数Mとの比M/Mは、95.0/5.0~99.9/0.1の範囲であることが好ましい。すなわち、本発明のポリイミドは、ジアミン成分の大半が1,4-シクロヘキサンジアミンであり、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン等のシロキサン構造含有ジアミンを少量含むことが好ましい。ジアミン成分に少量のシロキサン構造を導入することにより、ガラス等の支持体へのポリイミドの密着性が向上する傾向がある。そのため、支持体上にポリアミド酸溶液を塗布してイミド化したとき、ポリイミドと支持体との間の剥離または浮きを抑制できる。 From the viewpoint of obtaining a polyimide having appropriate adhesion to a support in addition to high transparency and low thermal expansion, the number of moles MA of the structural unit represented by the general formula I in the polyimide and the general formula II are used. The ratio MA / MB to the number of moles MB of the constituent unit is preferably in the range of 95.0 / 5.0 to 99.9 / 0.1. That is, it is preferable that the polyimide of the present invention contains most of the diamine components of 1,4-cyclohexanediamine and contains a small amount of siloxane structure-containing diamine such as 1,3-bis (3-aminopropyl) tetramethyldisiloxane. By introducing a small amount of siloxane structure into the diamine component, the adhesion of polyimide to a support such as glass tends to be improved. Therefore, when the polyamic acid solution is applied onto the support and imidized, peeling or floating between the polyimide and the support can be suppressed.

シロキサン構造の含有量の増大に伴ってガラス等との密着性が向上する傾向がある。一方、密着性が過度に高いと、支持体からポリイミド膜の剥離が困難となったり、剥離時に寸法変化や不透明化を生じる場合がある。M/Mが95.0/5.0以上であれば、ポリイミド膜上に電子素子等を形成した後の支持体からのポリイミド膜の剥離を問題なく実施可能である。また、M/Mが95.0/5.0以上であれば、ポリイミド膜の低熱膨張特性および高透明性を維持できる。 As the content of the siloxane structure increases, the adhesion to glass or the like tends to improve. On the other hand, if the adhesion is excessively high, it may be difficult to peel the polyimide film from the support, or dimensional change or opacity may occur at the time of peeling. When M A / MB is 95.0 / 5.0 or more, it is possible to peel off the polyimide film from the support after forming an electronic element or the like on the polyimide film without any problem. Further, when MA / MB is 95.0 / 5.0 or more, the low thermal expansion characteristics and high transparency of the polyimide film can be maintained.

/Mは、96.0/4.0~99.8/0.2がより好ましく、97.0/3.0~99.7/0.3がさらに好ましく、98.0/2.0~99.6/0.4が特に好ましく、99.0/1.0~99.5/0.5が最も好ましい。 The MA / MB is more preferably 96.0 / 4.0 to 99.8 / 0.2, further preferably 97.0 / 3.0 to 99.7 / 0.3, and 98.0 / 2. 9.0 to 99.6 / 0.4 is particularly preferable, and 99.0 / 1.0 to 99.5 / 0.5 is most preferable.

ポリイミド中の一般式Iで表される構成単位と一般式IIで表される構成単位との比率を上記範囲とするためには、前駆体であるポリアミド酸中の一般式1で表される構成単位のモル数mと一般式2で表される構成単位のモル数mとの比m/mが、95.0/5.0~99.9/0.1の範囲であることが好ましく、96.0/4.0~99.8/0.2がより好ましく、97.0/3.0~99.7/0.3がさらに好ましく、98.0/2.0~99.6/0.4が特に好ましく、99.0/1.0~99.6/0.4が最も好ましい。 In order to keep the ratio of the structural unit represented by the general formula I in the polyimide and the structural unit represented by the general formula II within the above range, the configuration represented by the general formula 1 in the precursor polyamic acid is used. The ratio mA / MB of the number of moles mA of the unit to the number of moles mA B of the constituent unit represented by the general formula 2 is in the range of 95.0 / 5.0 to 99.9 / 0.1. It is preferably 96.0 / 4.0 to 99.8 / 0.2, more preferably 97.0 / 3.0 to 99.7 / 0.3, and even more preferably 98.0 / 2.0 to 9. 99.6 / 0.4 is particularly preferable, and 99.0 / 1.0 to 99.6 / 0.4 is most preferable.

本発明のポリアミド酸およびポリイミドは、ゲルパーミレーションクロマトグラフィー(GPC)によるポリエチレンオキシド換算の重量平均分子量が、10,000~500,000であることが好ましく、20,000~300,000あることがより好ましく、30,000~200,000であることがさらに好ましい。重量平均分子量が10,000以上であれば、ポリアミド酸およびポリイミドを塗膜またはフィルムとすることが可能となる。一方、重量平均分子量が500,000以下であると、溶媒に対して十分な溶解性を示すため、表面が平滑で膜厚が均一な塗膜またはフィルムが得られやすい。 The polyamic acid and polyimide of the present invention preferably have a polyethylene oxide equivalent weight average molecular weight of 10,000 to 500,000 by gel permeation chromatography (GPC), preferably 20,000 to 300,000. More preferably, it is more preferably 30,000 to 200,000. When the weight average molecular weight is 10,000 or more, the polyamic acid and the polyimide can be used as a coating film or a film. On the other hand, when the weight average molecular weight is 500,000 or less, sufficient solubility in a solvent is exhibited, so that a coating film or film having a smooth surface and a uniform film thickness can be easily obtained.

[ポリアミド酸およびポリイミドの合成]
上記の構造Iおよび構造IIを含むポリイミドは、公知の方法により得られる。ポリイミドは、ポリアミド酸やポリイミドエステル等の前躯体を経由する合成法、および前躯体を経由しない合成法により合成できる。モノマーの入手性および重合の簡便さから、前駆体としてのポリアミド酸のイミド化により、ポリイミドを合成することが好ましい。
[Synthesis of polyamic acid and polyimide]
The polyimide containing the above Structure I and Structure II can be obtained by a known method. Polyimide can be synthesized by a synthetic method via a precursor such as polyamic acid or a polyimide ester, or a synthetic method not via a precursor. From the viewpoint of the availability of the monomer and the ease of polymerization, it is preferable to synthesize the polyimide by imidizing the polyamic acid as a precursor.

上記の構造1および構造2を含むポリアミド酸は、有機溶媒中でジアミンとテトラカルボン酸二無水物とを反応させることにより得られる。例えば、ジアミンを、有機溶媒中に溶解またはスラリー状に分散させて、ジアミン溶液とし、テトラカルボン酸二無水物を、有機溶媒に溶解もしくはスラリー状に分散させた溶液または固体の状態で、上記ジアミン溶液中に添加すればよい。テトラカルボン酸二無水物溶液中に、ジアミンを添加してもよい。ジアミンおよびテトラカルボン酸二無水物の溶解および反応は、アルゴン、窒素等の不活性ガス雰囲気中で実施することが好ましい。 The polyamic acid containing the above structures 1 and 2 is obtained by reacting a diamine with a tetracarboxylic dianhydride in an organic solvent. For example, the diamine is dissolved in an organic solvent or dispersed in a slurry to form a diamine solution, and the tetracarboxylic acid dianhydride is dissolved in an organic solvent or dispersed in a slurry in a solution or solid state. It may be added to the solution. Diamine may be added to the tetracarboxylic dianhydride solution. The dissolution and reaction of the diamine and the tetracarboxylic dianhydride are preferably carried out in an atmosphere of an inert gas such as argon or nitrogen.

ポリアミド酸の合成においては、ジアミン成分全量のモル数と、テトラカルボン酸二無水物成分全量のモル数とを、実質上等モルに調整することが好ましい。複数種のジアミンおよび/または複数種のテトラカルボン酸二無水物を用いることにより、複数の構造を有するポリアミド酸が得られる。また、構造の異なるポリアミド酸をブレンドすることにより、構造の異なる複数種の構成単位を有するポリアミド酸を得ることもできる。 In the synthesis of polyamic acid, it is preferable to adjust the number of moles of the total amount of the diamine component and the number of moles of the total amount of the tetracarboxylic acid dianhydride component to substantially the same molar number. By using a plurality of diamines and / or a plurality of tetracarboxylic acid dianhydrides, a polyamic acid having a plurality of structures can be obtained. Further, by blending polyamic acids having different structures, it is also possible to obtain polyamic acids having a plurality of types of structural units having different structures.

テトラカルボン酸二無水物として芳香族テトラカルボン酸二無水物を用い、ジアミンとして1,4-シクロヘキサンジアミンおよびシロキサン構造含有ジアミンを用いることにより、一般式1で表される構成単位および一般式2で表される構成単位を含有するポリアミド酸が得られる。芳香族ジアミンとして3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を用い、シロキサン構造含有ジアミンとして1,3-ビス(3-アミノプロピル)テトラメチルジシロキサンを用いることにより、式1Aで表されるアミド酸構成単位および式1Cで表されるアミド酸構成単位を有するポリアミド酸が得られる。1,4-シクロヘキサンジアミンのモル数とシロキサン構造含有ジアミンのモル数の比を、95.0/5.0~99.9/0.1の範囲とすることにより、m/mが95.0/5.0~99.9/0.1の範囲のポリアミド酸が得られる。 By using an aromatic tetracarboxylic acid dianhydride as the tetracarboxylic acid dianhydride and using 1,4-cyclohexanediamine and a siloxane structure-containing diamine as the diamine, the structural unit represented by the general formula 1 and the general formula 2 can be used. A polyamic acid containing the represented building blocks is obtained. By using 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride as the aromatic diamine and 1,3-bis (3-aminopropyl) tetramethyldisiloxane as the siloxane structure-containing diamine, the formula A polyamic acid having an amidoic acid constituent unit represented by 1A and an amidoic acid constituent unit represented by the formula 1C can be obtained. By setting the ratio of the number of moles of 1,4 - cyclohexanediamine to the number of moles of siloxane structure - containing diamine in the range of 95.0 / 5.0 to 99.9 / 0.1, mA / MB is 95. Polyamic acids in the range of 0.0 / 5.0 to 99.9 / 0.1 can be obtained.

ポリアミド酸の合成反応に使用する有機溶媒は特に限定されない。有機溶媒は、使用するテトラカルボン酸二無水物およびジアミン類を溶解可能であり、かつ重合により生成するポリアミド酸を溶解可能であるものが好ましい。有機溶媒の具体例としては、テトラメチル尿素、N,N-ジメチルエチルウレア等のウレア系溶媒;ジメチルスルホキシド、ジフェニルスルホン、テトラメチルスルフォン等のスルホキシドまたはスルホン系溶媒;N,N-ジメチルアセトアミド(DMAC)、N,N-ジメチルホルムアミド(DMF)、N,N’-ジエチルアセトアミド、N-メチル-2-ピロリドン(NMP)、γ―ブチロラクトン等のエステル系溶媒;ヘキサメチルリン酸トリアミド等のアミド系溶媒;クロロホルム、塩化メチレン等のハロゲン化アルキル系溶媒;ベンゼン、トルエン等の芳香族炭化水素系溶媒;フェノール、クレゾール等のフェノール系溶媒;シクロペンタノン等のケトン系溶媒;テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、ジメチルエーテル、ジエチルエーテル、p-クレゾールメチルエーテル等のエーテル系溶媒が挙げられる。必要に応じて2種以上の有機溶媒を組合せて用いてもよい。ポリアミド酸の溶解性および反応性を高めるために、ポリアミド酸の合成に使用する有機溶媒は、アミド系溶媒、ケトン系溶媒、エステル系溶媒およびエーテル系溶媒より選択されることが好ましく、特にDMF、DMAC、NMP等のアミド系溶媒が好ましい。 The organic solvent used for the synthetic reaction of polyamic acid is not particularly limited. The organic solvent is preferably one that can dissolve the tetracarboxylic dianhydride and diamines to be used, and can dissolve the polyamic acid produced by the polymerization. Specific examples of the organic solvent include urea-based solvents such as tetramethylurea and N, N-dimethylethylurea; sulfoxide or sulfone-based solvents such as dimethylsulfoxide, diphenylsulfone and tetramethylsulphon; N, N-dimethylacetamide (DMAC). ), N, N-dimethylformamide (DMF), N, N'-diethylacetamide, N-methyl-2-pyrrolidone (NMP), γ-butyrolactone and other ester solvents; amide-based solvents such as hexamethylphosphate triamide. Alkyl halide solvents such as chloroform and methylene chloride; Aromatic hydrocarbon solvents such as benzene and toluene; Phenolic solvents such as phenol and cresol; Ketone solvents such as cyclopentanone; tetrahydrofuran, 1,3-dioxolane , 1,4-Dioxane, dimethyl ether, diethyl ether, p-cresol methyl ether and other ether solvents. If necessary, two or more kinds of organic solvents may be used in combination. In order to enhance the solubility and reactivity of the polyamic acid, the organic solvent used for the synthesis of the polyamic acid is preferably selected from an amide-based solvent, a ketone-based solvent, an ester-based solvent and an ether-based solvent, and in particular, DMF, Amide solvents such as DMAC and NMP are preferred.

ポリアミド酸の合成反応の温度条件は、特に限定されない。ジアミンとテトラカルボン酸二無水物との反応が進行するにつれてポリアミド酸が生成し、反応液の粘度が上昇する。1,4-シクロヘキサンジアミン等の脂環式ジアミンを用いると、塩形成が起こる場合があるため、合成反応の温度を、必要に応じて50℃~150℃の範囲としてもよい。塩が溶解し、重合反応が進行しはじめた後は、ポリアミド酸の解重合による分子量低下を抑制するために、温度を80℃以下とすることが好ましく、0℃~50℃とすることがより好ましい。反応時間は10分~30時間の範囲で任意に設定すればよい。 The temperature conditions for the synthetic reaction of polyamic acid are not particularly limited. As the reaction between the diamine and the tetracarboxylic dianhydride proceeds, polyamic acid is produced and the viscosity of the reaction solution increases. When an alicyclic diamine such as 1,4-cyclohexanediamine is used, salt formation may occur. Therefore, the temperature of the synthesis reaction may be in the range of 50 ° C to 150 ° C, if necessary. After the salt has dissolved and the polymerization reaction has begun to proceed, the temperature is preferably 80 ° C. or lower, more preferably 0 ° C. to 50 ° C., in order to suppress the decrease in molecular weight due to depolymerization of the polyamic acid. preferable. The reaction time may be arbitrarily set in the range of 10 minutes to 30 hours.

有機溶媒中でジアミンとテトラカルボン酸二無水物とを重合することにより、ポリアミド酸と有機溶媒とを含むポリアミド酸溶液が得られる。この重合溶液は、そのままポリアミド酸溶液として使用できる。また、重合溶液から溶媒の一部を除去したり、溶媒を添加することにより、ポリアミド酸の濃度および溶液の粘度を調整してもよい。添加する溶媒は、ポリアミド酸の重合に用いた溶媒と異なっていてもよい。また、重合溶液から溶媒を除去して得られた固体のポリアミド酸樹脂を溶媒に溶解してポリアミド酸溶液を調製してもよい。ポリアミド酸溶液の有機溶媒としては、ポリアミド酸の溶解性が高いものが好ましく、ポリアミド酸の合成に使用する有機溶媒として先に例示の有機溶媒を使用できる。中でも、DMF、DMAC、NMP等のアミド系溶媒が好ましい。 By polymerizing diamine and tetracarboxylic acid dianhydride in an organic solvent, a polyamic acid solution containing the polyamic acid and the organic solvent can be obtained. This polymerization solution can be used as it is as a polyamic acid solution. Further, the concentration of the polyamic acid and the viscosity of the solution may be adjusted by removing a part of the solvent from the polymerization solution or adding the solvent. The solvent to be added may be different from the solvent used for the polymerization of the polyamic acid. Alternatively, a solid polyamic acid resin obtained by removing the solvent from the polymerization solution may be dissolved in the solvent to prepare a polyamic acid solution. As the organic solvent of the polyamic acid solution, one having high solubility of the polyamic acid is preferable, and the organic solvent exemplified above can be used as the organic solvent used for the synthesis of the polyamic acid. Of these, amide-based solvents such as DMF, DMAC, and NMP are preferable.

ポリアミド酸を脱水閉環することにより、イミド化が行われる。脱水閉環は、共沸溶媒を用いた共沸法、熱的手法または化学的手法により行われる。溶液の状態でイミド化を行う場合は、イミド化剤および/または脱水触媒をポリアミド酸溶液に添加して、化学的イミド化を行うことが好ましい。イミド化剤は特に限定されないが、3級アミンを用いることが好ましく、中でも複素環式の3級アミンが好ましい。複素環式の3級アミンとしては、ピリジン、ピコリン、キノリン、イソキノリン、イミダゾール類等が挙げられる。脱水触媒としては、無水酢酸、プロピオン酸無水物、n-酪酸無水物、安息香酸無水物、トリフルオロ酢酸無水物、γ―バレロラクトン等が挙げられる。 Imidization is performed by dehydrating and ring-closing the polyamic acid. Dehydration ring closure is performed by an azeotropic method using an azeotropic solvent, a thermal method, or a chemical method. When imidization is performed in the state of a solution, it is preferable to add an imidizing agent and / or a dehydration catalyst to the polyamic acid solution to perform chemical imidization. The imidizing agent is not particularly limited, but it is preferable to use a tertiary amine, and a heterocyclic tertiary amine is particularly preferable. Examples of the heterocyclic tertiary amine include pyridine, picoline, quinoline, isoquinoline, and imidazoles. Examples of the dehydration catalyst include acetic anhydride, propionic anhydride, n-butyric anhydride, benzoic anhydride, trifluoroacetic anhydride, γ-valerolactone and the like.

ポリアミド酸溶液から溶媒を除去してイミド化を行う場合は、加熱により脱水閉環を行う熱イミド化が好ましい。ポリアミド酸を加熱する方法は特に制限されないが、例えば、ガラス板、金属板、PET(ポリエチレンテレフタレート)等の支持体に、ポリアミド酸溶液を塗布した後、80℃~500℃の範囲内で熱処理を行えばよい。加熱時間は、脱水閉環を行うポリアミド酸溶液の処理量や加熱温度により異なるが、一般的には、処理温度が最高温度に達してから1分~5時間加熱を行うことが好ましい。ポリアミド酸溶液にイミド化剤および/または脱水触媒を加えて、上記のような方法で加熱してイミド化を行ってもよい。 When imidization is performed by removing the solvent from the polyamic acid solution, thermal imidization in which dehydration ring closure is performed by heating is preferable. The method for heating the polyamic acid is not particularly limited, but for example, after applying the polyamic acid solution to a support such as a glass plate, a metal plate, or PET (polyethylene terephthalate), heat treatment is performed in the range of 80 ° C to 500 ° C. Just do it. The heating time varies depending on the treatment amount of the polyamic acid solution for dehydration ring closure and the heating temperature, but in general, it is preferable to heat for 1 minute to 5 hours after the treatment temperature reaches the maximum temperature. An imidizing agent and / or a dehydration catalyst may be added to the polyamic acid solution and heated by the method as described above for imidization.

ポリアミド酸からポリイミドへのイミド化は、1~100%の任意の割合で行うことができ、一部がイミド化されたポリアミド酸を合成してもよい。ポリアミド酸からポリイミドへのイミド化が進行すると、有機溶媒への溶解性や溶液の粘度が変化する傾向がある。また、特定のイミド化率でイミド化を停止することは一般に容易ではない。溶液の塗布および乾燥によりフィルムを形成する場合は、溶液の粘度やチクソトロピーが膜厚の均一性に影響を及ぼす。そのため、プロセスの安定性を考慮すると、ポリアミド酸にはイミド化剤および脱水触媒を添加せずに、イミド化率が略ゼロの状態で支持体上への塗布を行い、支持体上での加熱により溶媒の除去およびイミド化を行うことが好ましい。 The imidization of the polyamic acid to the polyimide can be performed at an arbitrary ratio of 1 to 100%, and a partially imidized polyamic acid may be synthesized. As the imidization of polyamic acid to polyimide progresses, the solubility in organic solvents and the viscosity of the solution tend to change. Also, it is generally not easy to stop imidization at a particular imidization rate. When a film is formed by applying and drying the solution, the viscosity and thixotropy of the solution affect the uniformity of the film thickness. Therefore, considering the stability of the process, the polyamic acid is applied onto the support with an imidization ratio of almost zero without adding an imidizing agent and a dehydration catalyst, and heated on the support. It is preferable to remove and imidize the solvent.

[ポリアミド酸およびポリイミドの用途]
ポリアミド酸およびポリイミドは、そのまま製品や部材の作製に用いてもよい。ポリアミド酸およびポリイミドに、熱硬化性成分、光硬化性成分、非重合性バインダー樹脂、染料、界面活性剤、レベリング剤、可塑剤、シランカップリング剤、微粒子、増感剤等を添加して組成物としてもよい。これらの任意成分の配合割合は、ポリイミドの固形分全体に対し、0.1重量%~95重量%の範囲であることが好ましい。なお、組成物の固形分とは有機溶媒以外の全成分であり、液状のモノマー成分も固形分に含まれる。
[Use of polyamic acid and polyimide]
Polyamic acid and polyimide may be used as they are in the production of products and members. Composition by adding thermosetting component, photocurable component, non-polymerizable binder resin, dye, surfactant, leveling agent, plasticizer, silane coupling agent, fine particles, sensitizer, etc. to polyamic acid and polyimide. It may be a thing. The blending ratio of these optional components is preferably in the range of 0.1% by weight to 95% by weight with respect to the total solid content of the polyimide. The solid content of the composition is all components other than the organic solvent, and the liquid monomer component is also included in the solid content.

本発明のポリイミドは、透明性および耐熱性に優れるため、ガラス代替用途等の透明基板として使用可能であり、例えば、TFT基板、電極基板等の電子デバイス用基板への適用が期待できる。電子デバイスの中でも、液晶表示装置、有機EL素子、電子ペーパー、タッチパネル等の光透過性を必要とするデバイス用の基板としての使用が好ましい。本発明のポリイミドは、カラーフィルター、反射防止膜、ホログラム等の光学部材または建築材料や構造物の材料としても利用できる。本発明のポリイミドの表面に、金属酸化物や透明電極等の各種無機薄膜を形成していてもよい。無機薄膜は、例えば、スパッタリング法、真空蒸着法およびイオンプレーティング法等のPVD法、ならびにCVD法等のドライプロセスにより形成される。 Since the polyimide of the present invention is excellent in transparency and heat resistance, it can be used as a transparent substrate for glass substitute applications, and can be expected to be applied to, for example, a substrate for electronic devices such as a TFT substrate and an electrode substrate. Among electronic devices, it is preferable to use it as a substrate for devices that require light transmission such as liquid crystal displays, organic EL elements, electronic papers, and touch panels. The polyimide of the present invention can also be used as an optical member such as a color filter, an antireflection film, a hologram, or a material for a building material or a structure. Various inorganic thin films such as metal oxides and transparent electrodes may be formed on the surface of the polyimide of the present invention. The inorganic thin film is formed by, for example, a PVD method such as a sputtering method, a vacuum vapor deposition method and an ion plating method, and a dry process such as a CVD method.

[ポリイミド基板および電子デバイスの作製]
本発明のポリイミドは、耐熱性、低熱膨張性、および透明性に加えて、支持体との密着性が良いことから、バッチプロセスで製造される電子デバイスの基板として好ましく用いられる。バッチプロセスでは、支持体上にポリイミド膜(基板)を形成し、その上に素子を形成した後、素子が形成されたポリイミド基板を支持体から剥離することにより電子デバイスが得られる。
[Manufacturing of polyimide substrate and electronic device]
The polyimide of the present invention is preferably used as a substrate for an electronic device manufactured by a batch process because it has good adhesion to a support in addition to heat resistance, low thermal expansion, and transparency. In the batch process, an electronic device is obtained by forming a polyimide film (substrate) on a support, forming an element on the polyimide film, and then peeling off the polyimide substrate on which the element is formed from the support.

支持体上にポリアミド酸溶液を塗布し、加熱による乾燥およびイミド化を行うことにより、支持体上に密着積層されたポリイミド膜(ポリイミド基板)が得られる。ポリイミド基板の厚みは、1~200μm程度であり、5~100μm程度が好ましい。 By applying a polyamic acid solution on the support, drying and imidizing by heating, a polyimide film (polyimide substrate) closely laminated on the support can be obtained. The thickness of the polyimide substrate is about 1 to 200 μm, preferably about 5 to 100 μm.

ポリアミド酸溶液を塗布する支持体としては、ガラス基板;SUS等の金属基板または金属ベルト;ポリエチレンテレフタレート、ポリカーボネート、ポリアクリレート、ポリエチレンナフタレート、トリアセチルセルロース等の樹脂フィルム等が挙げられる。現行のバッチタイプのデバイス製造プロセスに適応させるためには、支持体としてガラス基板を用いることが好ましい。 Examples of the support to which the polyamic acid solution is applied include a glass substrate; a metal substrate such as SUS or a metal belt; a resin film such as polyethylene terephthalate, polycarbonate, polyacrylate, polyethylene naphthalate, and triacetyl cellulose. In order to adapt to the current batch type device manufacturing process, it is preferable to use a glass substrate as a support.

ガラス等の支持体にポリアミド酸溶液を塗布し、加熱すると、溶媒の蒸発とともにポリアミド酸のイミド化が始まり、有機溶媒およびイミド化(ポリアミド酸の脱水)により生成した水がポリアミド酸溶液から揮発する。このとき、一部の水および/または有機溶媒が揮発せずに、支持体とイミド化中の樹脂膜との間に滞留し、支持体と樹脂膜との界面での剥離の原因となる。支持体と樹脂膜との界面に滞留した水および/または有機溶媒は、その後、高温で加熱する工程において、ポリイミド膜を透過して排出され、剥離または浮きが生じた部分に気泡が残存する。このような気泡が生じると、ポリイミド基板上に素子を形成する際に不具合を生じる。特に、薄型化または小型化されたデバイスでは、細かい剥離または浮きでも、素子等の形成または実装に大きな影響を与える。 When a polyamic acid solution is applied to a support such as glass and heated, imidization of the polyamic acid begins with the evaporation of the solvent, and the organic solvent and the water produced by imidization (dehydration of the polyamic acid) volatilize from the polyamic acid solution. .. At this time, a part of the water and / or the organic solvent does not volatilize and stays between the support and the resin film being imidized, which causes peeling at the interface between the support and the resin film. The water and / or the organic solvent retained at the interface between the support and the resin film is subsequently discharged through the polyimide film in the step of heating at a high temperature, and bubbles remain in the portion where peeling or floating occurs. When such bubbles are generated, a problem occurs when the element is formed on the polyimide substrate. In particular, in a device that has been made thinner or smaller, even fine peeling or floating has a great influence on the formation or mounting of an element or the like.

シロキサン構造を有する本発明のポリアミド酸およびポリイミドは、ガラスとの密着性が高いため、支持体上での溶媒の乾燥およびイミド化の際に、ガラス支持体と樹脂膜との界面への有機溶媒や水の滞留に起因する浮きや剥離が生じ難い。そのため、支持体上に密着積層されたポリイミド基板上への素子の形成や実装を正確に実施できる。また、ポリイミド中の脂環式構造(一般式I)とシロキサン構造(一般式II)との比率を調整することにより、素子を形成後のポリイミド基板の支持体からの剥離を容易に実施できる。 Since the polyamic acid and polyimide of the present invention having a siloxane structure have high adhesion to glass, an organic solvent to the interface between the glass support and the resin film during drying and imidization of the solvent on the support It is unlikely that floating or peeling will occur due to the retention of water or water. Therefore, it is possible to accurately form and mount the element on the polyimide substrate closely laminated on the support. Further, by adjusting the ratio of the alicyclic structure (general formula I) and the siloxane structure (general formula II) in the polyimide, the polyimide substrate can be easily peeled off from the support after the element is formed.

支持体上に密着積層されたポリイミド膜(ポリイミド基板)は、支持体からの90°ピール強度が、0.08~5.00N/cmがあることが好ましく、0.09~4.00N/cmであることがより好ましく、0.10~3.5N/cmであることがさらに好ましい。上記の密着性を有する場合、素子の形成および実装プロセスにおいて剥離が生じ難く、かつ素子の形成および実装後の支持体からの剥離が容易である。90°ピール強度は、後述の実施例に記載の方法により測定できる。 The polyimide film (polyimide substrate) closely laminated on the support preferably has a 90 ° peel strength from the support of 0.08 to 5.00 N / cm, preferably 0.09 to 4.00 N / cm. Is more preferable, and 0.10 to 3.5 N / cm is further preferable. When the device has the above-mentioned adhesion, peeling is unlikely to occur in the process of forming and mounting the device, and peeling from the support after forming and mounting the device is easy. The 90 ° peel strength can be measured by the method described in Examples described later.

ポリイミド膜の透明性は、例えば、全光線透過率およびヘイズにより評価できる。ポリイミド膜の全光線透過率は、80%以上であることが好ましく、85%以上であることがより好ましい。ヘイズは、2.0%以下であることが好ましく、1.0%以下であることがより好ましい。ポリイミドは短波長側の光を吸収しやすい傾向があり、膜自体が黄色に着色することが多い。着色の少ない膜とするためには、ポリイミド膜の波長450nmでの光透過率は70%以上が好ましく、75%以上がより好ましい。本発明のポリイミドは、膜厚10μmの膜を形成した際の全光線透過率、ヘイズ、および波長450nmにおける光透過率が上記範囲であることが好ましい。 The transparency of the polyimide film can be evaluated by, for example, the total light transmittance and the haze. The total light transmittance of the polyimide film is preferably 80% or more, more preferably 85% or more. The haze is preferably 2.0% or less, more preferably 1.0% or less. Polyimide tends to absorb light on the short wavelength side, and the film itself is often colored yellow. In order to obtain a film having less coloring, the light transmittance of the polyimide film at a wavelength of 450 nm is preferably 70% or more, more preferably 75% or more. The polyimide of the present invention preferably has a total light transmittance, haze, and light transmittance at a wavelength of 450 nm when a film having a film thickness of 10 μm is formed in the above range.

本発明のポリイミドを含むポリイミド基板は、線熱膨張が小さく、加熱前後の寸法安定性に優れる。ポリイミド膜の線熱膨張係数は、30ppm/K以下が好ましく、20ppm/K以下がより好ましい。線熱膨張係数は、後述の実施例に記載の方法により測定できる。本発明のポリイミドは、膜厚10μmの膜を形成した際の線熱膨張係数が上記範囲であることが好ましい。 The polyimide substrate containing the polyimide of the present invention has a small linear thermal expansion and is excellent in dimensional stability before and after heating. The coefficient of linear thermal expansion of the polyimide film is preferably 30 ppm / K or less, more preferably 20 ppm / K or less. The coefficient of linear thermal expansion can be measured by the method described in Examples described later. The polyimide of the present invention preferably has a linear thermal expansion coefficient in the above range when a film having a film thickness of 10 μm is formed.

[ポリアミド酸溶液の調製]
<実施例1>
ステンレス製撹拌翼を備える撹拌機および窒素導入管を取り付けた500mLのガラス製セパラブルフラスコに、トランス-1,4-シクロヘキサンジアミン(CHDA)8.38g、およびN-メチル-2-ピロリドン(NMP)170.0gを仕込み、室温(23℃)で攪拌して溶解させた。CHDAの溶解を目視で確認した後、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(PAM-E)を0.02g添加し、さらに撹拌した。この溶液に、3,3’,4,4’-ビフェニルテトラカルボン酸無水物(BPDA)21.61gを加え、80℃で1時間加熱した後、室温で5時間攪拌して、ポリアミド酸溶液を得た。この反応溶液におけるジアミンおよびテトラカルボン酸二無水物の仕込み濃度は、反応溶液全量に対して15重量%であった。
[Preparation of polyamic acid solution]
<Example 1>
8.38 g of trans-1,4-cyclohexanediamine (CHDA) and N-methyl-2-pyrrolidone (NMP) in a 500 mL glass separable flask equipped with a stirrer equipped with a stainless stirrer and a nitrogen inlet tube. 170.0 g was charged and stirred at room temperature (23 ° C.) to dissolve. After visually confirming the dissolution of CHDA, 0.02 g of 1,3-bis (3-aminopropyl) tetramethyldisiloxane (PAM-E) was added, and the mixture was further stirred. To this solution, 21.61 g of 3,3', 4,4'-biphenyltetracarboxylic dianhydride (BPDA) was added, heated at 80 ° C. for 1 hour, and then stirred at room temperature for 5 hours to prepare a polyamic acid solution. Obtained. The concentration of diamine and tetracarboxylic dianhydride in this reaction solution was 15% by weight based on the total amount of the reaction solution.

<実施例2>
CHDAの仕込み量を8.37g、PAM-Eの仕込み量を0.04g、BPDAの仕込み量を21.60gに変更したこと以外は、実施例1と同様にしてポリアミド酸溶液を得た。
<Example 2>
A polyamic acid solution was obtained in the same manner as in Example 1 except that the amount of CHDA charged was 8.37 g, the amount of PAM-E charged was 0.04 g, and the amount of BPDA charged was 21.60 g.

<実施例3>
CHDAの仕込み量を8.36g、PAM-Eの仕込み量を0.06g、BPDAの仕込み量を21.59gに変更したこと以外は、実施例1と同様にしてポリアミド酸溶液を得た。
<Example 3>
A polyamic acid solution was obtained in the same manner as in Example 1 except that the amount of CHDA charged was 8.36 g, the amount of PAM-E charged was 0.06 g, and the amount of BPDA charged was 21.59 g.

<実施例4>
CHDAの仕込み量を8.33g、PAM-Eの仕込み量を0.09g、BPDAの仕込み量を21.58gに変更したこと以外は、実施例1と同様にしてポリアミド酸溶液を得た。
<Example 4>
A polyamic acid solution was obtained in the same manner as in Example 1 except that the amount of CHDA charged was 8.33 g, the amount of PAM-E charged was 0.09 g, and the amount of BPDA charged was 21.58 g.

<実施例5>
CHDAの仕込み量を8.30g、PAM-Eの仕込み量を0.13g、BPDAの仕込み量を21.56gに変更したこと以外は、実施例1と同様にしてポリアミド酸溶液を得た。
<Example 5>
A polyamic acid solution was obtained in the same manner as in Example 1 except that the charging amount of CHDA was changed to 8.30 g, the charging amount of PAM-E was changed to 0.13 g, and the charging amount of BPDA was changed to 21.56 g.

<実施例6>
CHDAの仕込み量を8.28g、PAM-Eの仕込み量を0.18g、BPDAの仕込み量を21.54gに変更したこと以外は、実施例1と同様にしてポリアミド酸溶液を得た。
<Example 6>
A polyamic acid solution was obtained in the same manner as in Example 1 except that the charging amount of CHDA was changed to 8.28 g, the charging amount of PAM-E was changed to 0.18 g, and the charging amount of BPDA was changed to 21.54 g.

<実施例7>
CHDAの仕込み量を8.06g、PAM-Eの仕込み量を0.54g、BPDAの仕込み量を21.40gに変更したこと以外は、実施例1と同様にしてポリアミド酸溶液を得た。
<Example 7>
A polyamic acid solution was obtained in the same manner as in Example 1 except that the amount of CHDA charged was 8.06 g, the amount of PAM-E charged was 0.54 g, and the amount of BPDA charged was 21.40 g.

<実施例8>
CHDAの仕込み量を7.84g、PAM-Eの仕込み量を0.90g、BPDAの仕込み量を21.26gに変更したこと以外は、実施例1と同様にしてポリアミド酸溶液を得た。
<Example 8>
A polyamic acid solution was obtained in the same manner as in Example 1 except that the amount of CHDA charged was 7.84 g, the amount of PAM-E charged was 0.90 g, and the amount of BPDA charged was 21.26 g.

<比較例1>
CHDAの仕込み量を8.39gに変更し、PAM-Eを添加せずにBPDA21.61gを加えたこと以外は、実施例1と同様にしてポリアミド酸溶液を得た。
<Comparative Example 1>
A polyamic acid solution was obtained in the same manner as in Example 1 except that the amount of CHDA charged was changed to 8.39 g and 21.61 g of BPDA was added without adding PAM-E.

<比較例2>
比較例1で合成したポリアミド酸溶液に、ポリアミド酸に対して0.1重量%のシランカップリング剤:γ―アミノプロピルトリエトキシシランを添加し、24時間撹拌して、アルコキシシラン変性ポリアミド酸溶液を調製した。
<Comparative Example 2>
To the polyamic acid solution synthesized in Comparative Example 1, 0.1% by weight of a silane coupling agent: γ-aminopropyltriethoxysilane with respect to the polyamic acid was added, and the mixture was stirred for 24 hours to obtain an alkoxysilane-modified polyamic acid solution. Was prepared.

<比較例3>
CHDAの仕込み量を8.36gに変更し、PAM-Eを添加せずに、BPDA21.31gと、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン酸二無水物(以下、BPAF)0.335gとを同時に加えたこと以外は、実施例1と同様にしてポリアミド酸溶液を得た。
<Comparative Example 3>
The amount of CHDA charged was changed to 8.36 g, and without adding PAM-E, 21.31 g of BPDA and 9,9-bis (3,4-dicarboxyphenyl) fluorenic acid dianhydride (hereinafter, BPAF). A polyamic acid solution was obtained in the same manner as in Example 1 except that 0.335 g was added at the same time.

<比較例4>
ステンレス製撹拌翼を備える撹拌機および窒素導入管を取り付けた500mLのガラス製セパラブルフラスコに、パラフェニレンジアミン(PDA)7.98gおよびNMP170.0gを仕込み、室温で攪拌して溶解させた。PDAの溶解を目視で確認した後、PAM-Eを0.19g添加し、さらに撹拌した。その後、BPDA21.83gを加え、溶解するまで50℃で攪拌した後、溶液の温度を約90℃に調整して攪拌を続けて溶液の粘度を下げ、23℃における粘度が28,800mPa・sであるポリアミド酸溶液を得た。
<Comparative Example 4>
7.98 g of paraphenylenediamine (PDA) and 170.0 g of NMP were placed in a 500 mL glass separable flask equipped with a stirrer equipped with a stainless steel stirring blade and a nitrogen introduction tube, and stirred at room temperature to dissolve them. After visually confirming the dissolution of the PDA, 0.19 g of PAM-E was added, and the mixture was further stirred. Then, 21.83 g of BPDA was added and stirred at 50 ° C. until the solution was dissolved. Then, the temperature of the solution was adjusted to about 90 ° C. and stirring was continued to lower the viscosity of the solution, and the viscosity at 23 ° C. was 28,800 mPa · s. A polyamic acid solution was obtained.

<比較例5>
ステンレス製撹拌翼を備える撹拌機および窒素導入管を取り付けた500mLのガラス製セパラブルフラスコに、CHDA8.34gおよびNMP170.0gを仕込み、室温で攪拌して溶解させた。CHDAの溶解を目視で確認した後、信越シリコーン製の反応性シリコーンオイル:KF-8010(アミン当量:430g/mol)を0.13g添加し、さらに撹拌した。この溶液に、BPDA21.53gを加え、80℃で1時間加熱し、その後冷却し、室温(23℃)で5時間攪拌して、ポリアミド酸溶液を得た。
<Comparative Example 5>
8.34 g of CHDA and 170.0 g of NMP were placed in a 500 mL glass separable flask equipped with a stirrer equipped with a stainless stirrer blade and a nitrogen introduction tube, and the mixture was stirred and dissolved at room temperature. After visually confirming the dissolution of CHDA, 0.13 g of a reactive silicone oil made by Shinetsu Silicone: KF-8010 (amine equivalent: 430 g / mol) was added, and the mixture was further stirred. To this solution, 21.53 g of BPDA was added, heated at 80 ° C. for 1 hour, then cooled, and stirred at room temperature (23 ° C.) for 5 hours to obtain a polyamic acid solution.

<比較例6>
CHDAの仕込み量を8.36g、BPDAの仕込み量を21.50gに変更し、反応性シリコーンオイルとして、KF-8010に代えて信越シリコーン製の反応性シリコーンオイル:X-22-168AS(酸無水物当量:500g/mol)0.15gを添加した。これらの変更点以外は、比較例5と同様にしてポリアミド酸溶液を得た。
<Comparative Example 6>
The amount of CHDA charged was changed to 8.36 g, and the amount of BPDA charged was changed to 21.50 g. As the reactive silicone oil, Shinetsu Silicone's reactive silicone oil: X-22-168AS (acid anhydride) was used instead of KF-8010. Equivalent amount: 500 g / mol) 0.15 g was added. Except for these changes, a polyamic acid solution was obtained in the same manner as in Comparative Example 5.

[ポリアミド酸の評価]
<分子量>
表1の条件にて重量平均分子量(Mw)を求めた。
[Evaluation of polyamic acid]
<Molecular weight>
The weight average molecular weight (Mw) was determined under the conditions shown in Table 1.

Figure 2022008353000022
Figure 2022008353000022

[ポリイミド膜の作製]
上記の実施例および比較例で得られたポリアミド酸溶液を、固形分濃度が10%になるようにNMPで希釈した。希釈した溶液を、バーコーターを用いて、150mm×150mmの無アルカリガラス板(コーニング社製 イーグルXG、厚さ0.7mm)上に、乾燥後の厚みが10μmになるように流延し、熱風オーブン内で80℃にて30分乾燥して、ガラス板上にポリアミド酸の塗膜を形成した。ガラス板とポリアミド酸塗膜との積層体を、窒素雰囲気下で、20℃から350℃まで5℃/分で昇温した後、350℃で1時間加熱して、塗膜のイミド化を行い、ポリイミド膜とガラスとの積層体を得た。比較例4のみ、乾燥後の厚みが20μmとなるようにポリアミド酸溶液の流延を行い、熱風オーブンでの乾燥温度を120℃とし、窒素雰囲気下で昇温速度7℃/分で450℃まで昇温を行った後、450℃で10分間加熱してイミド化を実施した。
[Preparation of polyimide film]
The polyamic acid solutions obtained in the above Examples and Comparative Examples were diluted with NMP so that the solid content concentration was 10%. Using a bar coater, the diluted solution is poured onto a 150 mm × 150 mm non-alkali glass plate (Eagle XG manufactured by Corning Inc., thickness 0.7 mm) so that the thickness after drying becomes 10 μm, and hot air is blown. It was dried in an oven at 80 ° C. for 30 minutes to form a coating of polyamic acid on a glass plate. The laminate of the glass plate and the polyamic acid coating film was heated from 20 ° C. to 350 ° C. at 5 ° C./min under a nitrogen atmosphere, and then heated at 350 ° C. for 1 hour to imidize the coating film. , A laminate of a polyimide film and glass was obtained. Only in Comparative Example 4, the polyamic acid solution was cast so that the thickness after drying was 20 μm, the drying temperature in a hot air oven was set to 120 ° C, and the temperature was raised to 450 ° C at a heating rate of 7 ° C / min under a nitrogen atmosphere. After raising the temperature, imidization was carried out by heating at 450 ° C. for 10 minutes.

比較例1では、ガラスとポリイミド膜との間に多数の気泡が確認された。比較例1以外では、ポリイミド膜の剥離による気泡は確認されなかった。一方、実施例8では、ガラスとポリイミド膜との密着性が高く、ガラスから剥離することができなかったため、下記の物性評価は実施しなかった。 In Comparative Example 1, a large number of bubbles were confirmed between the glass and the polyimide film. Except for Comparative Example 1, no bubbles due to peeling of the polyimide film were confirmed. On the other hand, in Example 8, since the adhesion between the glass and the polyimide film was high and the glass could not be peeled off, the following physical property evaluation was not performed.

[ポリイミド膜の評価]
<ピール強度>
ガラス板とポリイミド膜との積層体を、23℃55%RHの環境下で24時間静置して調湿した後、ASTM D1876-01規格に従い、90°ピール強度を測定した。ポリイミド膜にカッターナイフにて10mm幅の切り込みを入れ、東洋精機製引張試験機(ストログラフVES1D)を用いて、23℃55%RH条件下、引張速度50mm/分、剥離長さ50mmにて90°ピール試験を実施し、剥離強度の平均値をピール強度とした。実施例6および実施例7では、ピール強度がロードセルの最大荷重(5.0N)を上回っていた。
[Evaluation of polyimide film]
<Peel strength>
The laminate of the glass plate and the polyimide film was allowed to stand for 24 hours in an environment of 23 ° C. and 55% RH to control the humidity, and then the 90 ° peel strength was measured according to the ASTM D1876-01 standard. Make a 10 mm wide notch in the polyimide film with a cutter knife, and use a tensile tester (Strograph VES1D) manufactured by Toyo Seiki Co., Ltd. under 23 ° C. 55% RH conditions, a tensile speed of 50 mm / min, and a peeling length of 50 mm. ° A peel test was carried out, and the average peel strength was taken as the peel strength. In Examples 6 and 7, the peel strength exceeded the maximum load (5.0 N) of the load cell.

<線熱膨張係数(CTE)>
線熱膨張係数の測定は、日立ハイテクサイエンス社製TMA/SS7100を用いて(サンプルサイズ:幅3mm×長さ10mm;膜厚を測定し、フィルムの断面積を算出)、荷重29.4mNとし、10℃/分で10℃から350℃まで一旦昇温させた後、40℃/分で降温させ、降温時の100~300℃における単位温度あたりの試料の歪の変化量から線膨張係数を求めた。
<Coefficient of linear thermal expansion (CTE)>
The linear thermal expansion coefficient was measured using TMA / SS7100 manufactured by Hitachi High-Tech Science Co., Ltd. (sample size: width 3 mm x length 10 mm; measuring the film thickness and calculating the cross-sectional area of the film) with a load of 29.4 mN. After raising the temperature from 10 ° C to 350 ° C at 10 ° C / min and then lowering the temperature at 40 ° C / min, the linear expansion coefficient is obtained from the amount of change in the strain of the sample per unit temperature at 100 to 300 ° C when the temperature is lowered. rice field.

<光透過率>
日本分光社製紫外可視近赤外分光光度計(V-650)を用いて、200~800nmにおける光透過率を測定し、450nmの波長における光透過率をポリイミド膜の透過率とした。
<Light transmittance>
The light transmittance at 200 to 800 nm was measured using an ultraviolet-visible near-infrared spectrophotometer (V-650) manufactured by JASCO Corporation, and the light transmittance at a wavelength of 450 nm was taken as the transmittance of the polyimide film.

<ポリイミド膜の全光線透過率(TT)およびヘイズ>
日本電色工業製の積分球式ヘイズメーター300Aにより、JIS K7105-1981記載の方法により測定した。
<Total light transmittance (TT) and haze of polyimide film>
It was measured by the method described in JIS K7105-1981 with an integrating sphere type haze meter 300A manufactured by Nippon Denshoku Kogyo.

実施例および比較例のポリアミド酸重合時のモノマー仕込み量(酸二無水物およびジアミンのそれぞれのモル比)、ポリアミド酸の重量平均分子量および変性の有無、ポリイミド膜の膜厚、イミド化時のガラス板からの剥離の有無、ポリイミド膜のガラス板からのピール強度、ならびにポリイミド膜の特性の評価結果を、表2に示す。 Amount of monomer charged during polyamic acid polymerization in Examples and Comparative Examples (molar ratio of acid dianhydride and diamine), weight average molecular weight of polyamic acid and presence / absence of modification, polyimide film film thickness, glass during imidization Table 2 shows the presence or absence of peeling from the plate, the peel strength of the polyimide film from the glass plate, and the evaluation results of the characteristics of the polyimide film.

Figure 2022008353000023
Figure 2022008353000023

酸二無水物としてのBPDAとジアミンとしてのCHDAから得られた比較例1のポリアミド酸溶液は、ガラス板上への塗布後の熱イミド化の際にガラス板とポリイミド膜との間に多数の気泡が発生し、塗布面積の25%以上がガラス板から剥離していた。比較例1のポリアミド酸をシランカップリング剤により変性した比較例2では、比較例1に比べるとガラス板との密着性が向上していたが、ピール強度が小さく、密着性は十分といえるものではなかった。酸二無水物として、BPDAに1モル%のBPAFを添加した比較例3においても同様であった。 The polyamic acid solution of Comparative Example 1 obtained from BPDA as an acid dianhydride and CHDA as a diamine had a large number between the glass plate and the polyimide film during thermal imidization after coating on the glass plate. Bubbles were generated, and 25% or more of the coated area was peeled off from the glass plate. In Comparative Example 2 in which the polyamic acid of Comparative Example 1 was modified with a silane coupling agent, the adhesion to the glass plate was improved as compared with Comparative Example 1, but the peel strength was small and the adhesion could be said to be sufficient. It wasn't. The same was true in Comparative Example 3 in which 1 mol% BPAF was added to BPDA as the acid dianhydride.

モノマー成分に反応性シリコーンオイルを添加した比較例5および比較例6では、比較例1に比べるとガラス板との密着性が向上していたが、ピール強度が小さく、密着性は十分ではなかった。また、比較例5および比較例6では、得られたポリイミド膜の線熱膨張係数(CTE)が高く寸法安定性が劣っており、透明性が低下していた。 In Comparative Example 5 and Comparative Example 6 in which the reactive silicone oil was added to the monomer component, the adhesion to the glass plate was improved as compared with Comparative Example 1, but the peel strength was small and the adhesion was not sufficient. .. Further, in Comparative Example 5 and Comparative Example 6, the linear thermal expansion coefficient (CTE) of the obtained polyimide film was high, the dimensional stability was inferior, and the transparency was lowered.

ジアミン成分として、CHDAに加えてシロキサン構造を有するPAM-Eを用いた実施例1~8は、いずれもガラスに対して良好な密着性を示していた。CHDA/PAM-Eのモル数の比m/mが97/3~99.0/0.1である実施例1~7は、いずれも比較例1と同等の低CTEおよび高透明性を維持していた。CHDA/PAM-Eのモル数の比m/mが95/5である実施例8では、ポリイミド膜の特性評価を行っていないが、ガラス板上に形成されたポリイミド膜の目視では、実施例1~7と同様の透明性を有していた。また、実施例8は実施例7とポリアミド酸およびポリイミドの組成が類似であるため、実施例7と同様の低CTEおよび高透明性を維持していると推測される。CHDAに代えてPDAを用いた比較例4では、実施例1,2等と同等のピール強度を示したが、透明性(特に可視光短波長側)が大幅に低下しており、着色がみられた。 In Examples 1 to 8 in which PAM-E having a siloxane structure was used as the diamine component in addition to CHDA, all showed good adhesion to glass. Examples 1 to 7 in which the ratio mA / MB of the number of moles of CHDA / PAM- E is 97/3 to 99.0 / 0.1 are all the same as those of Comparative Example 1 in low CTE and high transparency. Was maintained. In Example 8 in which the ratio mA / MB of the number of moles of CHDA / PAM - E is 95/5, the characteristics of the polyimide film are not evaluated, but the polyimide film formed on the glass plate is visually observed. It had the same transparency as in Examples 1-7. Further, since the composition of polyamic acid and polyimide is similar to that of Example 7, it is presumed that the same low CTE and high transparency as in Example 7 are maintained. In Comparative Example 4 in which PDA was used instead of CHDA, the peel strength was equivalent to that in Examples 1 and 2, but the transparency (particularly on the short wavelength side of visible light) was significantly reduced, and the coloration was observed. Was done.

実施例1~8では、PAM-Eの仕込み量の増加に伴ってピール強度が増加し、ガラスとの密着性が向上する傾向がみられた。ガラス板上にポリイミド膜を形成し、必要に応じてポリイミド膜上への素子の形成や実装を行った後に、ガラス板からポリイミド膜を剥離する際の剥離の容易性を考慮すると、シロキサン構造含有ジアミンの使用量は、ジアミン全量に対して5モル%以下が好ましく、1モル%以下が特に好ましいといえる。 In Examples 1 to 8, the peel strength increased as the amount of PAM-E charged increased, and the adhesion to the glass tended to improve. After forming the polyimide film on the glass plate and forming and mounting the element on the polyimide film as necessary, considering the ease of peeling when the polyimide film is peeled from the glass plate, the siloxane structure is contained. It can be said that the amount of diamine used is preferably 5 mol% or less, and particularly preferably 1 mol% or less, based on the total amount of diamine.

上記の実施例と比較例との対比から理解できるように、本発明のポリアミド酸は、ガラス支持体上への膜形成および加熱イミド化の際の加工性が良好であり、ガラス支持体との密着性に優れている。本発明のポリアミド酸のイミド化により得られるポリイミド膜は、100~300℃の高温領域においても低熱膨張性を有しており、かつ高透明性を有することから、ガラス代替の透明基板材料としての応用が期待できる。 As can be understood from the comparison between the above Examples and Comparative Examples, the polyamic acid of the present invention has good processability at the time of film formation on the glass support and heat imidization, and has good processability with the glass support. Has excellent adhesion. The polyimide film obtained by imidization of the polyamic acid of the present invention has low thermal expansion even in a high temperature region of 100 to 300 ° C. and has high transparency, so that it can be used as a transparent substrate material as a substitute for glass. Expected to be applied.

Claims (6)

一般式1で表される構成単位および一般式2で表される構成単位を含有し、且つ一般式1で表される構成単位のモル数mと一般式2で表される構成単位のモル数mとの比m/mが97.0/3.0~99.9/0.1の範囲であるポリアミド酸と、有機溶媒とを含有するポリアミド酸溶液を支持体上に塗布し、前記有機溶媒の除去および前記ポリアミド酸のイミド化を行い、前記支持体上に密着積層されたポリイミド膜を形成し、前記ポリイミド膜の上に素子を形成した後、前記素子が形成された前記ポリイミド膜を前記支持体から剥離する、電子デバイスの製造方法。
Figure 2022008353000024
Figure 2022008353000025
一般式1のAおよび一般式2のBはそれぞれ独立に4価の芳香族基であり;一般式2のRおよびRはそれぞれ独立に2価の炭化水素基であり;nは1~5の整数である。
It contains the structural unit represented by the general formula 1 and the structural unit represented by the general formula 2, and has the number of moles mA of the structural unit represented by the general formula 1 and the molar of the structural unit represented by the general formula 2. A polyamic acid solution containing a polyamic acid having a ratio mA / MB of several mbs in the range of 97.0 / 3.0 to 99.9 / 0.1 and an organic solvent is applied onto the support. Then, the organic solvent was removed and the polyamic acid was imidized to form a polyimide film closely laminated on the support, an element was formed on the polyimide film, and then the element was formed. A method for manufacturing an electronic device, which peels off the polyimide film from the support.
Figure 2022008353000024
Figure 2022008353000025
A of general formula 1 and B of general formula 2 are independently tetravalent aromatic groups; R 1 and R 2 of general formula 2 are independently divalent hydrocarbon groups; n is 1 to 1 to 1. It is an integer of 5.
前記比m/mが、99.3/0.7~99.9/0.1の範囲である、請求項1に記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to claim 1, wherein the ratio mA / MB is in the range of 99.3 / 0.7 to 99.9 / 0.1. 前記ポリアミド酸は、構成単位として、前記一般式1で表される構成単位および前記一般式2で表される構成単位のみを含有する、請求項1または2に記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to claim 1 or 2, wherein the polyamic acid contains only the structural unit represented by the general formula 1 and the structural unit represented by the general formula 2 as structural units. 前記一般式2で表される構成単位が式2Bで表される構成単位である、請求項1~3のいずれか一項に記載の電子デバイスの製造方法。
Figure 2022008353000026
The method for manufacturing an electronic device according to any one of claims 1 to 3, wherein the structural unit represented by the general formula 2 is the structural unit represented by the formula 2B.
Figure 2022008353000026
前記一般式1で表される構成単位が式1Aで表される構成単位であり、前記一般式2で表される構成単位が式2Cで表される構成単位である、請求項1~4のいずれか一項に記載の電子デバイスの製造方法。
Figure 2022008353000027
Figure 2022008353000028
Claims 1 to 4, wherein the structural unit represented by the general formula 1 is a structural unit represented by the formula 1A, and the structural unit represented by the general formula 2 is a structural unit represented by the formula 2C. The method for manufacturing an electronic device according to any one of the following items.
Figure 2022008353000027
Figure 2022008353000028
前記支持体がガラスである、請求項1~5のいずれか一項に記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to any one of claims 1 to 5, wherein the support is glass.
JP2021146539A 2016-03-17 2021-09-09 Electronic device manufacturing method Active JP7157859B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016054094 2016-03-17
JP2016054094 2016-03-17
PCT/JP2017/009485 WO2017159538A1 (en) 2016-03-17 2017-03-09 Polyamide acid, polyamide acid solution, polyimide, polyimide substrate and method for producing polyimide substrate
JP2018505879A JPWO2017159538A1 (en) 2016-03-17 2017-03-09 Polyamic acid, polyamic acid solution, polyimide, polyimide substrate, and production method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018505879A Division JPWO2017159538A1 (en) 2016-03-17 2017-03-09 Polyamic acid, polyamic acid solution, polyimide, polyimide substrate, and production method thereof

Publications (2)

Publication Number Publication Date
JP2022008353A true JP2022008353A (en) 2022-01-13
JP7157859B2 JP7157859B2 (en) 2022-10-20

Family

ID=59850768

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018505879A Pending JPWO2017159538A1 (en) 2016-03-17 2017-03-09 Polyamic acid, polyamic acid solution, polyimide, polyimide substrate, and production method thereof
JP2021146539A Active JP7157859B2 (en) 2016-03-17 2021-09-09 Electronic device manufacturing method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018505879A Pending JPWO2017159538A1 (en) 2016-03-17 2017-03-09 Polyamic acid, polyamic acid solution, polyimide, polyimide substrate, and production method thereof

Country Status (3)

Country Link
JP (2) JPWO2017159538A1 (en)
TW (1) TWI735550B (en)
WO (1) WO2017159538A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7027867B2 (en) * 2016-12-22 2022-03-02 大日本印刷株式会社 Surface material for flexible displays
WO2018117145A1 (en) * 2016-12-22 2018-06-28 大日本印刷株式会社 Polyimide film, polyimide, polyimide precursor, laminate and surface material for displays
JP7281887B2 (en) 2017-10-19 2023-05-26 日鉄ケミカル&マテリアル株式会社 Polyimide precursor and polyimide
US10982048B2 (en) * 2018-04-17 2021-04-20 Jiaxing Super Lighting Electric Appliance Co., Ltd Organosilicon-modified polyimide resin composition and use thereof
JP7139715B2 (en) * 2018-06-26 2022-09-21 大日本印刷株式会社 Polyimide film, laminate, display surface material, touch panel member, liquid crystal display device, and organic electroluminescence display device
CN111732910B (en) * 2020-06-30 2022-05-27 晶科绿能(上海)管理有限公司 Composite encapsulating material and photovoltaic module encapsulated therewith

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170713A (en) * 1996-12-13 1998-06-26 Toray Ind Inc Color paste, color filter, and production thereof
JPH1138620A (en) * 1997-07-23 1999-02-12 Toray Ind Inc Semiconductor device and its manufacture
JP2008107766A (en) * 2006-07-21 2008-05-08 Toray Ind Inc Resin composition for retardation thin film, color filter substrate for liquid crystal display device, liquid crystal display device, and method for production of color filter substrate for liquid crystal display device having retardation thin film
WO2014162734A1 (en) * 2013-04-03 2014-10-09 三井化学株式会社 Polyamic acid, varnish comprising same and polyimide film
WO2015046019A1 (en) * 2013-09-27 2015-04-02 東レ株式会社 Polyimide precursor, polyimide resin film produced from said polyimide precursor, display element, optical element, light-receiving element, touch panel and circuit board each equipped with said polyimide resin film, organic el display, and methods respectively for producing organic el element and color filter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101490607B (en) * 2006-07-21 2011-06-01 东丽株式会社 Resin composition for retardation thin film, color filter substrate for liquid crystal display device, liquid crystal display device, and method for production of color filter substrate for liquid cry
JP6420064B2 (en) * 2014-06-03 2018-11-07 旭化成株式会社 Polyimide precursor composition and polyimide film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170713A (en) * 1996-12-13 1998-06-26 Toray Ind Inc Color paste, color filter, and production thereof
JPH1138620A (en) * 1997-07-23 1999-02-12 Toray Ind Inc Semiconductor device and its manufacture
JP2008107766A (en) * 2006-07-21 2008-05-08 Toray Ind Inc Resin composition for retardation thin film, color filter substrate for liquid crystal display device, liquid crystal display device, and method for production of color filter substrate for liquid crystal display device having retardation thin film
WO2014162734A1 (en) * 2013-04-03 2014-10-09 三井化学株式会社 Polyamic acid, varnish comprising same and polyimide film
WO2015046019A1 (en) * 2013-09-27 2015-04-02 東レ株式会社 Polyimide precursor, polyimide resin film produced from said polyimide precursor, display element, optical element, light-receiving element, touch panel and circuit board each equipped with said polyimide resin film, organic el display, and methods respectively for producing organic el element and color filter

Also Published As

Publication number Publication date
WO2017159538A1 (en) 2017-09-21
TW201800445A (en) 2018-01-01
JP7157859B2 (en) 2022-10-20
TWI735550B (en) 2021-08-11
JPWO2017159538A1 (en) 2019-01-24

Similar Documents

Publication Publication Date Title
JP7157859B2 (en) Electronic device manufacturing method
KR102562652B1 (en) Polyamic acid, polyimide, polyamic acid solution, polyimide laminate, flexible device substrate and their manufacturing method
JP5650458B2 (en) LAMINATE MANUFACTURING METHOD AND FLEXIBLE DEVICE MANUFACTURING METHOD
TWI664212B (en) Alkoxysilane-modified polyamic acid solution, laminate and flexible device made by using same, and method for producing polyimide film and laminate
CN107531902B (en) Polyimide resin and film using the same
JP2018522105A (en) Polyamide-imide precursor, polyamide-imide film, and display element including the same
JP5695276B2 (en) Use of polyamic acid, polyimide, polyamic acid solution, and polyimide
TWI785224B (en) Polyamic acid and its manufacturing method, polyamic acid solution, polyimide, polyimide film, laminate and its manufacturing method, flexible device and its manufacturing method
TWI762635B (en) Polyimide, polyimide solution, polyimide, polyimide film, laminate and flexible device, and method for producing polyimide film
KR20160095910A (en) Poly(imide-amide)copolymer, article contatining poly(imide-amide)copolymer, and display device including same
JP6687442B2 (en) Utilization of polyamic acid, polyimide, polyamic acid solution, and polyimide
KR20130003358A (en) Polyamic acid and polyamic acid solution, polyimide protecive layer, polyimide film
JP2020029486A (en) Polyimide powder, polyimide varnish, polyimide film and polyimide porous membrane
KR20230027146A (en) Polyamic acid, polyamic acid solution, polyimide, polyimide film, laminate, method for manufacturing laminate and electronic device
JP6336194B2 (en) Method for producing polyimide laminate and use thereof
TWI709592B (en) Polyimide film, and manufacturing method of polyimide film
WO2022202769A1 (en) Poly(amic acid), poly(amic acid) solution, polyimide, polyimide substrate and layered product, and methods for producing these
WO2023063202A1 (en) Polyamic acid, polyamic acid composition, polyimide, polyimide film, laminate, method for producing laminate, and electronic device
CN115991874A (en) Composition comprising polyamideimide precursor or polyamideimide and polyamideimide film prepared using the same
TW202409147A (en) Polyamide composition, method for manufacturing polyimide, method for manufacturing laminated body, and method for manufacturing electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221007

R150 Certificate of patent or registration of utility model

Ref document number: 7157859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150