JP2020029486A - Polyimide powder, polyimide varnish, polyimide film and polyimide porous membrane - Google Patents

Polyimide powder, polyimide varnish, polyimide film and polyimide porous membrane Download PDF

Info

Publication number
JP2020029486A
JP2020029486A JP2018154269A JP2018154269A JP2020029486A JP 2020029486 A JP2020029486 A JP 2020029486A JP 2018154269 A JP2018154269 A JP 2018154269A JP 2018154269 A JP2018154269 A JP 2018154269A JP 2020029486 A JP2020029486 A JP 2020029486A
Authority
JP
Japan
Prior art keywords
polyimide
film
structural unit
powder
unit derived
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018154269A
Other languages
Japanese (ja)
Inventor
圭三 田中
Keizo Tanaka
圭三 田中
忠晴 河村
tadaharu Kawamura
忠晴 河村
山田 俊輔
Shunsuke Yamada
俊輔 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Sangyo Co Ltd
Original Assignee
Kawamura Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Sangyo Co Ltd filed Critical Kawamura Sangyo Co Ltd
Priority to JP2018154269A priority Critical patent/JP2020029486A/en
Priority to TW108123907A priority patent/TW202009255A/en
Priority to CN201910756456.3A priority patent/CN110845730A/en
Publication of JP2020029486A publication Critical patent/JP2020029486A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • C08J9/286Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum the liquid phase being a solvent for the monomers but not for the resulting macromolecular composition, i.e. macroporous or macroreticular polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/18Fireproof paints including high temperature resistant paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/05Elimination by evaporation or heat degradation of a liquid phase
    • C08J2201/0502Elimination by evaporation or heat degradation of a liquid phase the liquid phase being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Abstract

To provide polyimide powder and polyimide varnish which give a polyimide membrane excellent in heat resistance, transparency and mechanical properties, and exhibit lower color and have less impurities, and to provide a polyimide film and a polyimide porous membrane obtained by forming films by using the polyimide powder and the polyimide varnish.SOLUTION: The polyimide powder has a structural unit derived from at least one kind of aromatic diamine compound and a structural unit derived from two or more kinds of tetracarboxylic acids, and has an imidization ratio of 90% or more and is soluble in N,N-dimethylacetamide of 5 wt.% or more. A structural unit derived from 2,2'-bis(trifluoromethyl)-4,4'- diaminobiphenyl accounts for 50 mol% or more of the whole structural unit derived from the at least one aromatic diamine compound. A structural unit derived from 4,4'-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl) diphthalic dianhydride accounts for 30 to 70 mol% of the whole structural unit derived from the two or more kinds of tetracarboxylic acids. A structural unit derived from 3,3', 4,4'-biphenyltetracarboxylic dianhydride accounts for 30 to 60 mol% of the whole structural unit derived from the two or more kinds of tetracarboxylic acids.SELECTED DRAWING: None

Description

本発明は、ポリイミド粉体、ポリイミドワニス、ポリイミドフィルムおよびポリイミド多孔質膜に関し、特にディスプレイ用途や電子材料用途に好適に用いられる、極めて優れた耐熱性、透明性および機械的特性を兼ね備えたポリイミドフィルムや、電解液への良好な耐性および耐熱性を兼ね備えたリチウムイオン電池等のセパレータに好適に使用可能なポリイミド多孔質膜を与える、ポリイミド粉体およびポリイミドワニスに関するものである。   The present invention relates to a polyimide powder, a polyimide varnish, a polyimide film and a polyimide porous film, and particularly, a polyimide film having excellent heat resistance, transparency and mechanical properties, which is suitably used for display applications and electronic material applications. Also, the present invention relates to a polyimide powder and a polyimide varnish which provide a polyimide porous film which can be suitably used for a separator of a lithium ion battery or the like which has both good resistance to an electrolyte and heat resistance.

ポリイミド樹脂は耐熱性に優れるプラスチックとして、航空宇宙分野、電気絶縁分野、電子分野等の耐熱性や高信頼性が要求される幅広い分野で活用されている。また、近年では耐熱性と透明性を兼ね備えた透明ポリイミドが提案されてきており、例えば特許文献1には、フッ素原子を含有する特定のモノマーから合成される、光導波路に好適な透明性に優れた可溶性のポリイミドが提案されている。特許文献2には、特定の脂環式ジアミンを用いた有機溶剤に可溶な透明ポリイミドが提案されている。しかしながら、特許文献1に記載されたポリイミドは製膜後のポリイミドに対して300℃以上の温度で熱処理を行っているため、十分な透明性の確保が困難であり、特許文献2に記載されたポリイミドは脂環式のジアミンを原料として用いているため、耐熱性に乏しく、また加熱により着色するという問題があった。   Polyimide resin is used as a plastic having excellent heat resistance in a wide range of fields requiring heat resistance and high reliability, such as aerospace field, electric insulation field, and electronic field. In recent years, transparent polyimides having both heat resistance and transparency have been proposed. For example, Patent Literature 1 discloses an excellent transparency suitable for an optical waveguide, which is synthesized from a specific monomer containing a fluorine atom. Soluble polyimides have been proposed. Patent Document 2 proposes a transparent polyimide soluble in an organic solvent using a specific alicyclic diamine. However, since the polyimide described in Patent Document 1 is subjected to a heat treatment at a temperature of 300 ° C. or more with respect to the polyimide after film formation, it is difficult to ensure sufficient transparency, and the polyimide described in Patent Document 2 is described. Since polyimide uses an alicyclic diamine as a raw material, there is a problem that heat resistance is poor and the polyimide is colored by heating.

ポリイミドの粉体としては、可溶性ポリイミドのワニスに水やメタノールなどの貧溶媒を添加して塊状のポリイミド樹脂を析出させる方法が開示されている(特許文献3)。   As a polyimide powder, a method is disclosed in which a poor solvent such as water or methanol is added to a soluble polyimide varnish to precipitate a massive polyimide resin (Patent Document 3).

また、特許文献4にはジアミン類と酸二無水物類を重合して得られるポリアミド酸のイミド化物の粉末が提案されている。   Patent Document 4 proposes a powder of an imidized polyamic acid obtained by polymerizing a diamine and an acid dianhydride.

しかしながら、特許文献3や特許文献4に記載されたポリイミドの粉体は、そのポリイミド粉体から得られるポリイミドフィルムの機械的特性、特に弾性率に対して注意が払われておらず、そのためポリイミドフィルムに対して折り曲げや引っ張り等の応力が加わった場合に変形し易いという問題があった。   However, the polyimide powders described in Patent Literature 3 and Patent Literature 4 do not pay attention to the mechanical properties, particularly elastic modulus, of the polyimide film obtained from the polyimide powder, However, when a stress such as bending or pulling is applied, there is a problem that it is easily deformed.

また、特許文献5には、比較的低い線膨張係数を有する、ジアミン類と酸二無水物類を重合して得られるポリアミド酸のイミド化物を除膜して得られるポリイミドフィルムが開示されており、特に実施例1〜3には2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニルをジアミンとして用い、酸無水物として2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物(6FDA)と、ビフェニルテトラカルボン酸二無水物(BPDA)が、モル比率で6FDA:BPDA=80:20〜50:50になるように共重合したポリアミド酸を、溶液中でイミド化した後、メタノール中で沈殿、濾過及び乾燥して得られたポリイミドの固形分粉末をN,N−ジメチルアセトアミド溶媒に再溶解させ、次いでそのポリイミド溶液をステンレス板上に塗布して製膜し、最終的に300℃まで昇温させて得られるポリイミドフィルムが開示されている。しかしながら、特許文献5に開示された技術では、ポリイミド粉末の溶媒への溶解性を保つためにイミド化率が約80.5%と低く抑えられており、製膜後のフィルムの段階で300℃以上の温度で熱処理することでイミド化を完結させている。このように、ポリイミド粉体のイミド化率が低い場合には、ポリイミドワニスからポリイミド粉体にする際や、ポリイミド粉体として保管する際の経時的な分子量の低下とそれに伴う機械的特性の低下という問題が生じやすく、更にはフィルムの状態で高温で熱処理することに伴いフィルムの変色という問題が発生する。また、高温での熱処理を必要とすることから、ポリイミドを製膜して熱処理する場合に、ポリイミド単体で熱処理を行うか、もしくは耐熱性の高い基材を使用する必要が生じ、ポリイミドの塗工基材や熱処理方法の選定が難しいという問題があった。   Patent Document 5 discloses a polyimide film having a relatively low linear expansion coefficient and obtained by removing an imidized polyamic acid obtained by polymerizing diamines and acid dianhydrides. Particularly, in Examples 1 to 3, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl was used as a diamine, and 2,2-bis (3,4-dicarboxyphenyl) was used as an acid anhydride. A) a polyamic acid obtained by copolymerizing hexafluoropropane dianhydride (6FDA) and biphenyltetracarboxylic dianhydride (BPDA) in a molar ratio of 6FDA: BPDA = 80: 20 to 50:50; After imidation in methanol, the solid content powder of the polyimide obtained by precipitation, filtration and drying in methanol is redissolved in an N, N-dimethylacetamide solvent. As a polyimide solution was film is applied onto a stainless steel plate, a polyimide film obtained finally raised to 300 ° C. is disclosed. However, in the technique disclosed in Patent Document 5, the imidation ratio is suppressed to as low as about 80.5% in order to maintain the solubility of the polyimide powder in a solvent. Heat treatment at the above temperature completes imidization. Thus, when the imidation ratio of the polyimide powder is low, when the polyimide varnish is converted to a polyimide powder, or when stored as a polyimide powder, the molecular weight decreases with time and the mechanical properties decrease accordingly. In addition, the heat treatment at a high temperature in the state of the film causes a problem of discoloration of the film. In addition, since heat treatment at a high temperature is required, when a polyimide film is formed and heat-treated, it is necessary to heat-treat the polyimide alone or use a substrate having high heat resistance. There was a problem that it was difficult to select a base material and a heat treatment method.

特開平4−235505号公報JP-A-4-235505 特開2000−169579号公報JP 2000-169579 A 特開2004−285355号公報JP-A-2004-285355 特表2013−523939号公報JP-T-2013-523939 特開2011−208143号公報JP 2011-208143 A

本発明の目的は、耐熱性、透明性及び機械的性質に優れたポリイミド膜を与える、着色や不純物が少ないポリイミド粉体、ポリイミドワニス及びそれを製膜して得られるポリイミドフィルムやポリイミド多孔質膜を与えることにある。   An object of the present invention is to provide a polyimide film having excellent heat resistance, transparency and mechanical properties, a polyimide powder having little coloring and impurities, a polyimide varnish and a polyimide film or a polyimide porous film obtained by forming the same. Is to give.

本発明者らは、特定の構造を有するポリイミド粉体のイミド化率を高くすることで、透明性や溶媒への可溶性を維持したまま、機械的特性、特に弾性率の高いフィルムを与えること、更にはそのような粉体が耐熱性や耐電解液性もすぐれた多孔質膜を与えることを見出し、本発明を完成した。   The present inventors, by increasing the imidation rate of the polyimide powder having a specific structure, while maintaining transparency and solubility in a solvent, mechanical properties, particularly to give a film having a high elastic modulus, Further, they have found that such a powder gives a porous film having excellent heat resistance and electrolytic solution resistance, and completed the present invention.

本発明によれば、以下に示すポリイミド粉体、ポリイミドワニス、ポリイミドフィルムおよびポリイミド多孔質膜を得ることができる。
〔1〕 少なくとも1種類の芳香族ジアミン化合物に由来する構造単位と2種類以上のテトラカルボン酸に由来する構造単位とを有し、N,N−ジメチルアセトアミドに5重量%以上可溶なイミド化率が90%以上のポリイミド粉体であって、
2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニルに由来する構造単位が前記少なくとも1種類の芳香族ジアミン化合物に由来する構造単位全体の50モル%以上を占め、
4,4’−(1,1,1,3,3,3−ヘキサフルオロプロパン−2,2−ジイル)ジフタル酸二無水物に由来する構造単位が前記2種類以上のテトラカルボン酸に由来する構造単位全体の30〜70モル%を占め、
3,3’,4,4’−ビフェニルテトラカルボン酸二無水物に由来する構造単位が
前記2種類以上のテトラカルボン酸に由来する構造単位全体の30〜60モル%を占めることを特徴とする
ポリイミド粉体。
〔2〕 前記ポリイミド粉体が、少なくとも1種類の芳香族ジアミン化合物と2種類以上のテトラカルボン酸二無水物から、ポリアミド酸への重合、化学イミド化反応、生成ポリイミドの析出による粉体の形成、及び乾燥の工程を経て製造され、
芳香族ジアミン化合物として2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニルが芳香族ジアミン化合物全体の50モル%以上用いられ、
テトラカルボン酸二無水物として4,4’−(1,1,1,3,3,3−ヘキサフルオロプロパン−2,2−ジイル)ジフタル酸二無水物が全テトラカルボン酸のモル量に対して30〜70%、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物が30〜60%の範囲で用いられていることを特徴とする〔1〕に記載のポリイミド粉体。
〔3〕 還元粘度が2.0〜3.5dL/gの範囲にあることを特徴とする〔1〕又は〔2〕に記載のポリイミド粉体。
〔4〕 N,N−ジメチルアセトアミドに溶解して得られるポリイミド溶液を製膜して得られる50μm厚みのフィルムの全光線透過率が80%以上であり、黄色度が3以下であることを特徴とする〔1〕〜〔3〕の何れか一項に記載のポリイミド粉体。
〔5〕 N,N−ジメチルアセトアミドに溶解して得られるポリイミド溶液を製膜して得られる50μm厚みのフィルムの引張弾性率が4.0GPa以上であることを特徴とする〔1〕〜〔4〕の何れか一項に記載のポリイミド粉体。
〔6〕 溶剤中に、〔1〕〜〔5〕の何れか一項に記載のポリイミド粉体を1〜30重量%の濃度で含むポリイミドワニス。
〔7〕 〔6〕に記載のポリイミドワニスであって、ポリイミド100重量部に対して10〜100重量部の無機粒子を更に含むことを特徴とするポリイミドワニス。
〔8〕 〔6〕又は〔7〕に記載のポリイミドワニスを製膜して得られる、厚さ1〜200μmのポリイミドフィルム。
〔9〕 引張弾性率が4.0GPa以上であることを特徴とする〔8〕に記載のポリイミドフィルム。
〔10〕 〔6〕又は〔7〕に記載のポリイミドワニスを製膜して得られる、厚さ1〜200μmのポリイミド多孔質膜。
According to the present invention, the following polyimide powder, polyimide varnish, polyimide film and polyimide porous film can be obtained.
[1] An imidization having a structural unit derived from at least one kind of aromatic diamine compound and a structural unit derived from two or more kinds of tetracarboxylic acids and being soluble in N, N-dimethylacetamide in an amount of 5% by weight or more. A polyimide powder having a ratio of 90% or more,
The structural unit derived from 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl accounts for 50 mol% or more of the entire structural unit derived from the at least one aromatic diamine compound;
The structural unit derived from 4,4 ′-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl) diphthalic dianhydride is derived from the two or more kinds of tetracarboxylic acids. Accounts for 30-70 mol% of the total structural units,
The structural unit derived from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride occupies 30 to 60 mol% of the total structural units derived from the two or more kinds of tetracarboxylic acids. Polyimide powder.
[2] The polyimide powder is formed by polymerization of at least one kind of aromatic diamine compound and two or more kinds of tetracarboxylic dianhydride into polyamic acid, a chemical imidization reaction, and precipitation of the resulting polyimide to form a powder. , And manufactured through the process of drying,
2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl is used as the aromatic diamine compound in an amount of 50 mol% or more of the entire aromatic diamine compound;
4,4 ′-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl) diphthalic dianhydride is used as the tetracarboxylic dianhydride based on the molar amount of all tetracarboxylic acids. The polyimide powder according to [1], wherein 30 to 70% of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is used in the range of 30 to 60%.
[3] The polyimide powder according to [1] or [2], wherein the reduced viscosity is in a range of 2.0 to 3.5 dL / g.
[4] A 50 μm-thick film obtained by forming a polyimide solution obtained by dissolving in N, N-dimethylacetamide has a total light transmittance of 80% or more and a yellowness of 3 or less. The polyimide powder according to any one of [1] to [3].
[5] A 50 μm-thick film obtained by forming a polyimide solution obtained by dissolving in N, N-dimethylacetamide has a tensile modulus of 4.0 GPa or more, [1] to [4]. ] The polyimide powder according to any one of the above.
[6] A polyimide varnish containing the polyimide powder according to any one of [1] to [5] in a solvent at a concentration of 1 to 30% by weight.
[7] The polyimide varnish according to [6], further comprising 10 to 100 parts by weight of inorganic particles based on 100 parts by weight of the polyimide.
[8] A polyimide film having a thickness of 1 to 200 µm, obtained by forming the polyimide varnish of [6] or [7] into a film.
[9] The polyimide film according to [8], wherein the tensile elastic modulus is 4.0 GPa or more.
[10] A polyimide porous membrane having a thickness of 1 to 200 µm, obtained by forming the polyimide varnish of [6] or [7].

本発明により、耐熱性、透明性及び高弾性率等の機械特性に優れたポリイミドフィルムおよび耐電解液性や耐熱性に優れたポリイミド多孔質膜を与える、溶媒に可溶なポリイミド粉体及びポリイミドワニスを得ることができる。   The present invention provides a polyimide film having excellent mechanical properties such as heat resistance, transparency and high elastic modulus, and a polyimide porous film having excellent electrolytic solution resistance and heat resistance. Varnish can be obtained.

本発明の第一の実施態様であるポリイミド粉体は、後述される少なくとも1種類の芳香族ジアミン化合物と2種類以上のテトラカルボン酸二無水物から、ポリアミド酸への重合、化学イミド化反応、生成ポリイミドの析出による粉体の形成、及び乾燥の工程を経て製造される。   Polyimide powder of the first embodiment of the present invention, from at least one kind of aromatic diamine compound and two or more kinds of tetracarboxylic dianhydrides described below, polymerization to polyamic acid, chemical imidization reaction, It is manufactured through the steps of forming a powder by precipitation of the resulting polyimide and drying.

本発明の第二の実施態様であるポリイミドワニスは、前記ポリイミド粉体を1〜30%となるように有機溶媒に溶解させることで製造することができる。   The polyimide varnish according to the second embodiment of the present invention can be manufactured by dissolving the polyimide powder in an organic solvent so as to have a concentration of 1 to 30%.

1.原料
1.1.芳香族ジアミン化合物
本発明において使用される芳香族ジアミン化合物としては、2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル(以下、TFMBともいう)を必須としており、その使用量は全芳香族ジアミンのモル量に対して50モル%以上であり、好ましくは70モル%以上であり、より好ましくは90モル%以上である。また、芳香族ジアミン化合物として、TFMBのみを用いても良い。TFMBの使用量が全芳香族ジアミン化合物の50モル%未満の場合は、得られるポリイミド粉体の透明性や溶媒への可溶性を得難くなる。
1. Raw materials 1.1. Aromatic diamine compound As the aromatic diamine compound used in the present invention, 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl (hereinafter, also referred to as TFMB) is essential. The amount is at least 50 mol%, preferably at least 70 mol%, more preferably at least 90 mol%, based on the molar amount of the wholly aromatic diamine. Further, only TFMB may be used as the aromatic diamine compound. When the amount of TFMB used is less than 50 mol% of the total aromatic diamine compound, it becomes difficult to obtain transparency and solubility in a solvent of the obtained polyimide powder.

TFMB以外の芳香族ジアミン化合物としては、芳香族ジアミン化合物全体の50モル%を超えない範囲で、任意の芳香族ジアミン化合物を使用することができ、例示するとm−フェニレンジアミン、p−フェニレンジアミン、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルスルフィド、3,4’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノベンゾフェノン、3,3’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、2,2−ビス(4−アミノフェニル)プロパン、2,2−ビス(3−アミノフェニル)プロパン、2−(3−アミノフェニル)−2−(4−アミノフェニル)プロパン、2,2−ビス(4−アミノフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス(3−アミノフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、2−(3−アミノフェニル)−2−(4−アミノフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、3,3’−ビス(4−アミノフェノキシ)ビフェニル、3,4’−ビス(3−アミノフェノキシ)ビフェニル、ビス〔4−(4−アミノフェノキシ)フェニル〕スルフィド、ビス〔3−(4−アミノフェノキシ)フェニル〕スルフィド、ビス〔4−(3−アミノフェノキシ)フェニル〕スルフィド、ビス〔3−(4−アミノフェノキシ)フェニル〕スルフィド、ビス〔3−(3−アミノフェノキシ)フェニル〕スルフィド、ビス〔3−(4−アミノフェノキシ)フェニル〕スルホン、ビス〔4−(4−アミノフェニル)スルホン、ビス〔3−(3−アミノフェノキシ)フェニル〕スルホン、ビス〔4−(3−アミノフェニル)スルホン、ビス〔4−(3−アミノフェノキシ)フェニル〕エーテル、ビス〔4−(4−アミノフェノキシ)フェニル〕エーテル、ビス〔3−(3−アミノフェノキシ)フェニル〕エーテル、ビス〔4−(3−アミノフェノキシ)フェニル〕メタン、ビス〔4−(4−アミノフェノキシ)フェニル〕メタン、ビス〔3−(3−アミノフェノキシ)フェニル〕メタン、ビス〔3−(4−アミノフェノキシ)フェニル〕メタン、2,2−ビス〔4−(3−アミノフェノキシ)フェニル〕プロパン、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕プロパン、2,2−ビス〔3−(3−アミノフェノキシ)フェニル〕プロパン、2,2−ビス〔4−(3−アミノフェノキシ)フェニル〕−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス〔3−(3−アミノフェノキシ)フェニル〕−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス〔3−(4−アミノフェノキシ)フェニル〕−1,1,1,3,3,3−ヘキサフルオロプロパン、1,3−ビス〔4−(4−アミノ−6−トリフルオロメチルフェノキシ)−α,α−ジメチルベンジル〕ベンゼン、1,3−ビス〔4−(4−アミノ−6−フルオロメチルフェノキシ)−α,α−ジメチルベンジル〕ベンゼン、2,2’−ジメチル−4,4’−ジアミノビフェニル、3,3’−ジメチル−4,4’−ジアミノビフェニル、3,3’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニルなどの芳香族ジアミン化合物が使用できる。本発明でいう芳香族ジアミン化合物とは、1以上の芳香族環と2個のアミノ基を有する化合物を指す。   As the aromatic diamine compound other than TFMB, any aromatic diamine compound can be used as long as it does not exceed 50 mol% of the entire aromatic diamine compound. For example, m-phenylenediamine, p-phenylenediamine, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl Sulfone, 3,4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminobenzophenone, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-diamino Diphenylmethane, 2,2-bi (4-aminophenyl) propane, 2,2-bis (3-aminophenyl) propane, 2- (3-aminophenyl) -2- (4-aminophenyl) propane, 2,2-bis (4-aminophenyl ) -1,1,1,3,3,3-hexafluoropropane, 2,2-bis (3-aminophenyl) -1,1,1,3,3,3-hexafluoropropane, 2- (3 -Aminophenyl) -2- (4-aminophenyl) -1,1,1,3,3,3-hexafluoropropane, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4 -Aminophenoxy) benzene, 1,4-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 4,4'-bis (4-aminophenoxy) biphenyl, 3,3 ' -Screw (4 Aminophenoxy) biphenyl, 3,4'-bis (3-aminophenoxy) biphenyl, bis [4- (4-aminophenoxy) phenyl] sulfide, bis [3- (4-aminophenoxy) phenyl] sulfide, bis [4 -(3-aminophenoxy) phenyl] sulfide, bis [3- (4-aminophenoxy) phenyl] sulfide, bis [3- (3-aminophenoxy) phenyl] sulfide, bis [3- (4-aminophenoxy) phenyl ] Sulfone, bis [4- (4-aminophenyl) sulfone, bis [3- (3-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenyl) sulfone, bis [4- (3-aminophenoxy) ) Phenyl] ether, bis [4- (4-aminophenoxy) phenyl] ether, bis [ 3- (3-aminophenoxy) phenyl] ether, bis [4- (3-aminophenoxy) phenyl] methane, bis [4- (4-aminophenoxy) phenyl] methane, bis [3- (3-aminophenoxy) Phenyl] methane, bis [3- (4-aminophenoxy) phenyl] methane, 2,2-bis [4- (3-aminophenoxy) phenyl] propane, 2,2-bis [4- (4-aminophenoxy) Phenyl] propane, 2,2-bis [3- (3-aminophenoxy) phenyl] propane, 2,2-bis [4- (3-aminophenoxy) phenyl] -1,1,1,3,3,3 -Hexafluoropropane, 2,2-bis [4- (4-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, 2,2-bis [3- ( -Aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, 2,2-bis [3- (4-aminophenoxy) phenyl] -1,1,1,3,3 3-hexafluoropropane, 1,3-bis [4- (4-amino-6-trifluoromethylphenoxy) -α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4-amino-6 -Fluoromethylphenoxy) -α, α-dimethylbenzyl] benzene, 2,2′-dimethyl-4,4′-diaminobiphenyl, 3,3′-dimethyl-4,4′-diaminobiphenyl, 3,3′- Aromatic diamine compounds such as bis (trifluoromethyl) -4,4'-diaminobiphenyl can be used. The aromatic diamine compound referred to in the present invention refers to a compound having one or more aromatic rings and two amino groups.

1.2.テトラカルボン酸二無水物
本発明において使用するテトラカルボン酸二無水物としては、4,4’−(1,1,1,3,3,3−ヘキサフルオロプロパン−2,2−ジイル)ジフタル酸二無水物(以下、6FDAともいう)が全テトラカルボン酸二無水物のモル量に対して30〜70モル%、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(以下、BPDAともいう)が30〜60モル%の範囲で用いられる。テトラカルボン酸二無水物として、6FDAとBPDAの2種類のみを用いてもよく、ピロメリット酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、1,4−ヒドロキノンジベンゾエート−3, 3’,4,4’−テトラカルボン酸二無水物、3,3’,4,4’−ジフェニルエーテルテトラカルボン酸二無水物などの他のテトラカルボン酸二無水物を更に共重合することも可能である。
1.2. Tetracarboxylic dianhydride The tetracarboxylic dianhydride used in the present invention includes 4,4 ′-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl) diphthalic acid The dianhydride (hereinafter, also referred to as 6FDA) is 30 to 70 mol% based on the molar amount of the total tetracarboxylic dianhydride, and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (hereinafter, referred to as 6FDA). BPDA) is used in the range of 30 to 60 mol%. As the tetracarboxylic dianhydride, only two kinds of 6FDA and BPDA may be used, and pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 1,4- Other tetracarboxylic dianhydrides such as hydroquinone dibenzoate-3,3 ', 4,4'-tetracarboxylic dianhydride and 3,3', 4,4'-diphenylethertetracarboxylic dianhydride are further added. Copolymerization is also possible.

2.ポリイミド粉体の製造方法
ポリイミド粉体は、上記芳香族ジアミン化合物とテトラカルボン酸二無水物を用いて、ポリアミド酸への重合、化学イミド化反応、生成ポリイミドの析出による粉体の形成、及び乾燥の工程を経て製造される。
2. Method for Producing Polyimide Powder Polyimide powder is prepared by using the above aromatic diamine compound and tetracarboxylic dianhydride to polymerize into polyamic acid, a chemical imidization reaction, forming a powder by precipitation of the resulting polyimide, and drying. It is manufactured through the steps of

2.1.ポリアミド酸への重合
ポリアミド酸への重合は、生成するポリアミド酸が可溶な溶媒への溶解下で、上記芳香族ジアミン化合物及びテトラカルボン酸二無水物を反応させることにより行うことができる。ポリアミド酸への重合に用いる溶媒としては、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドン、1,3−ジメチル−2−イミダゾリジノン、ジメチルスルホキシド等の溶媒を用いることができる。
2.1. Polymerization into polyamic acid Polymerization into polyamic acid can be performed by reacting the above aromatic diamine compound and tetracarboxylic dianhydride under dissolution in a solvent in which the generated polyamic acid is soluble. Solvents used for the polymerization into polyamic acid include N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, dimethylsulfoxide and the like. Can be used.

ポリアミド酸への重合反応は、攪拌装置を備えた反応容器で攪拌しながら行うことが好ましい。例えば、上記溶媒に所定量の芳香族ジアミン化合物を溶解させて、攪拌しながらテトラカルボン酸二無水物を投入して反応を行いポリアミド酸を得る方法、テトラカルボン酸二無水物を溶媒に溶解させて、攪拌しながら芳香族ジアミン化合物を投入して反応を行いポリアミド酸を得る方法、芳香族ジアミン化合物とテトラカルボン酸二無水物を交互に投入して反応させてポリアミド酸を得る方法などが挙げられる。   The polymerization reaction to the polyamic acid is preferably performed while stirring in a reaction vessel equipped with a stirring device. For example, a method in which a predetermined amount of an aromatic diamine compound is dissolved in the above solvent, a tetracarboxylic dianhydride is charged with stirring, and a reaction is performed to obtain a polyamic acid, and the tetracarboxylic dianhydride is dissolved in the solvent. A method for obtaining a polyamic acid by introducing an aromatic diamine compound while stirring and obtaining a polyamic acid, a method for obtaining a polyamic acid by alternately charging and reacting an aromatic diamine compound and a tetracarboxylic dianhydride, and the like. Can be

ポリアミド酸への重合反応の温度については特に制約はないが、0〜70℃の温度で行うことが好ましく、より好ましくは10〜60℃であり、更に好ましくは20〜50℃である。重合反応を上記範囲内で行うことで、着色が少なく透明性に優れた高分子量のポリアミド酸を得ることが可能となる。   The temperature of the polymerization reaction to the polyamic acid is not particularly limited, but is preferably performed at a temperature of 0 to 70 ° C, more preferably 10 to 60 ° C, and still more preferably 20 to 50 ° C. By performing the polymerization reaction within the above range, it becomes possible to obtain a high-molecular-weight polyamic acid with little coloring and excellent transparency.

また、ポリアミド酸への重合に使用するトータルの芳香族ジアミン化合物とトータルのテトラカルボン酸二無水物は概ね当モル量を使用するが、得られるポリアミド酸の重合度をコントロールするために、テトラカルボン酸二無水物のモル量/芳香族ジアミン化合物のモル量(モル比率)を0.95〜1.05の範囲で変化させることも可能である。そして、テトラカルボン酸二無水物と芳香族ジアミン化合物のモル比率は、1.001〜1.02の範囲であることが好ましく、1.001〜1.01であることがより好ましい。このようにテトラカルボン酸二無水物を僅かに過剰にすることで、得られるポリアミド酸の重合度を安定させることができるとともに、テトラカルボン酸二無水物由来のユニットをポリマーの末端に配置することができ、その結果、着色が少なく透明性に優れたポリイミドを与えることが可能となる。   The total amount of the aromatic diamine compound and the total amount of the tetracarboxylic dianhydride used for the polymerization into the polyamic acid are generally used in equimolar amounts. The molar amount of the acid dianhydride / the molar amount of the aromatic diamine compound (molar ratio) can be changed in the range of 0.95 to 1.05. The molar ratio between the tetracarboxylic dianhydride and the aromatic diamine compound is preferably in the range of 1.001 to 1.02, and more preferably 1.001 to 1.01. By slightly increasing the amount of tetracarboxylic dianhydride as described above, the degree of polymerization of the obtained polyamic acid can be stabilized, and the unit derived from tetracarboxylic dianhydride is arranged at the terminal of the polymer. As a result, it is possible to give a polyimide which is less colored and has excellent transparency.

生成するポリアミド酸溶液の濃度は、溶液の粘度を適正に保ち、その後の工程での取り扱いが容易になるよう、適切な濃度(例えば、10〜30重量%程度)に整えることが好ましい。   The concentration of the resulting polyamic acid solution is preferably adjusted to an appropriate concentration (for example, about 10 to 30% by weight) so that the viscosity of the solution is kept appropriate and the handling in the subsequent steps is facilitated.

2.2.化学イミド化反応
次に得られたポリアミド酸溶液にイミド化剤を加えて化学イミド化反応を行う。イミド化剤としては、無水酢酸、無水プロピオン酸、無水コハク酸、無水フタル酸、無水安息香酸などのカルボン酸無水物を用いることができ、コストや反応後の除去のしやすさの観点から無水酢酸を使用することが好ましい。使用するイミド化剤の当量は化学イミド化反応を行うポリアミド酸のアミド結合の当量以上であり、アミド結合の当量の1.2〜5倍であることが好ましく、1.5〜4.5倍であることがより好まく、2〜4倍であることが更に好ましい。このようにアミド結合に対して過剰のイミド化剤を使用することで、比較的低温でも効率的にイミド化反応を行うことができ、イミド化率が90%以上のポリイミドを得やすくなる。
2.2. Chemical imidization reaction Next, an imidizing agent is added to the obtained polyamic acid solution to perform a chemical imidization reaction. As the imidizing agent, carboxylic anhydrides such as acetic anhydride, propionic anhydride, succinic anhydride, phthalic anhydride, and benzoic anhydride can be used.From the viewpoint of cost and ease of removal after the reaction, anhydrides can be used. Preferably, acetic acid is used. The equivalent of the imidizing agent to be used is not less than the equivalent of the amide bond of the polyamic acid which undergoes the chemical imidization reaction, and is preferably 1.2 to 5 times, preferably 1.5 to 4.5 times the equivalent of the amide bond. Is more preferable, and more preferably 2 to 4 times. By using an excess of the imidizing agent with respect to the amide bond, the imidization reaction can be efficiently performed even at a relatively low temperature, and a polyimide having an imidization ratio of 90% or more can be easily obtained.

また、化学イミド化反応には、イミド化促進剤として、ピリジン、ピコリン、キノリン、イソキノリン、トリメチルアミン、トリエチルアミン等の脂肪族、芳香族又は複素環式第三級アミン類を使用することができる。このようなアミン類を使用することで、低温で効率的にイミド化反応を行うことができ、その結果イミド化反応時の着色を抑えることが可能となり、より透明なポリイミドを得ることができる。   In the chemical imidization reaction, aliphatic, aromatic or heterocyclic tertiary amines such as pyridine, picoline, quinoline, isoquinoline, trimethylamine and triethylamine can be used as an imidization accelerator. By using such amines, an imidization reaction can be efficiently performed at a low temperature, and as a result, coloring during the imidization reaction can be suppressed, and a more transparent polyimide can be obtained.

化学イミド化反応温度については特に制約はないが、10℃以上50℃未満で行うことが好ましく、15℃以上45℃未満で行うことがより好ましい。10℃以上50℃未満の温度で化学イミド化反応を行うことで、イミド化反応時の着色が抑えられ、透明性に優れたポリイミドを得ることができる。   Although there is no particular limitation on the temperature of the chemical imidization reaction, the reaction is preferably performed at 10 ° C or higher and lower than 50 ° C, more preferably at 15 ° C or higher and lower than 45 ° C. By performing the chemical imidization reaction at a temperature of 10 ° C. or more and less than 50 ° C., coloring during the imidization reaction is suppressed, and a polyimide having excellent transparency can be obtained.

2.3.粉体化
次にイミド化により得られたポリイミド溶液中のポリイミドの粉体化を行う。ポリイミドの粉体化は任意の方法で行うことが可能であるが、ポリイミドの貧溶媒を加えてポリイミドを析出させて粉体を形成させる方法が簡便であり好ましい。貧溶媒を加えてポリイミドの析出・粉体化を行う場合、貧溶媒としては、ポリイミドを析出することができる任意の貧溶媒が使用でき、ポリイミド溶液の溶媒とは混和性であることが望ましいので、具体的には、水、メタノール、エタノール等を用いることができる。そして、貧溶媒としてメタノールを用いることで安定した形状のポリイミド粉体を収率良く得ることができ好ましい。
2.3. Powderization Next, the polyimide in the polyimide solution obtained by imidization is powdered. The powderization of the polyimide can be performed by any method, but a method of adding a poor solvent for the polyimide to precipitate the polyimide to form a powder is simple and preferable. When a polyimide is precipitated and powdered by adding a poor solvent, any poor solvent that can precipitate the polyimide can be used as the poor solvent, and it is desirable that the solvent be miscible with the solvent of the polyimide solution. Specifically, water, methanol, ethanol and the like can be used. Then, it is preferable to use methanol as the poor solvent since a polyimide powder having a stable shape can be obtained with high yield.

貧溶媒によるポリイミドの析出・粉体化を行う場合、使用する貧溶媒の量はポリイミドの析出粉体化を行うのに十分な量を投入する必要があり、ポリイミドの構造、ポリイミド溶液の溶媒、ポリイミドの溶液濃度等を考慮して決定するが、通常はポリイミド溶液重量の0.5倍以上、好ましくはポリイミド溶液重量の0.8倍以上、より好ましくはポリイミド溶液重量の1倍以上の重量の貧溶媒を使用する。ポリイミド溶液を重量の0.5倍以上の重量の貧溶媒を使用することで、安定した形状のポリイミド粉体を高収率で得ることができる。また、通常はポリイミド溶液重量の10倍以下、好ましくはポリイミド溶液重量の7倍以下、より好ましくはポリイミド溶液重量の5倍以下、更に好ましくはポリイミド溶液重量の4倍以下の重量の貧溶媒を使用する。   When depositing and pulverizing polyimide with a poor solvent, the amount of the poor solvent to be used needs to be charged in an amount sufficient to perform the deposition and powdering of the polyimide, the structure of the polyimide, the solvent of the polyimide solution, Determined in consideration of the solution concentration of the polyimide, etc., usually at least 0.5 times the weight of the polyimide solution, preferably at least 0.8 times the weight of the polyimide solution, more preferably at least 1 time the weight of the polyimide solution. Use a poor solvent. By using a poor solvent having a weight of 0.5 or more times the weight of the polyimide solution, a polyimide powder having a stable shape can be obtained at a high yield. In addition, usually, a poor solvent having a weight of 10 times or less of the polyimide solution weight, preferably 7 times or less of the polyimide solution weight, more preferably 5 times or less of the polyimide solution weight, and still more preferably 4 times or less of the polyimide solution weight is used. I do.

ポリイミドの粉体化を、上記のようにポリイミド溶液に貧溶媒を添加することで行う場合、ポリイミド溶液を攪拌しながら、貧溶媒を滴下する方法で行うことが好ましい。貧溶媒の拡散を容易にするため、ポリイミド溶液は予め好ましくは5〜30重量%、より好ましくは10〜20重量%程度の濃度に調整しておくことが望ましい。また、本発明により得られるポリイミド粉体の好ましい平均粒子径は0.02〜0.8mmであるが、平均粒子径はポリイミド溶液への貧溶媒の添加速度によりコントロールすることができる。   When the pulverization of the polyimide is performed by adding the poor solvent to the polyimide solution as described above, it is preferable to perform the method by dropping the poor solvent while stirring the polyimide solution. In order to facilitate the diffusion of the poor solvent, the polyimide solution is preferably adjusted in advance to a concentration of preferably 5 to 30% by weight, more preferably about 10 to 20% by weight. Further, the preferred average particle diameter of the polyimide powder obtained by the present invention is 0.02 to 0.8 mm, but the average particle diameter can be controlled by the addition rate of the poor solvent to the polyimide solution.

本発明において、ポリイミドの粉体化の温度に特に制約はないが、貧溶媒の添加により析出・粉体化を行う場合は、貧溶媒の蒸発を抑え、析出を効率的に行うという観点から、50℃以下の温度で行うことが好ましく、40℃以下で行うことがより好ましい。   In the present invention, there is no particular limitation on the temperature of powdering the polyimide, but when performing precipitation and powdering by adding a poor solvent, from the viewpoint of suppressing evaporation of the poor solvent and efficiently performing precipitation. It is preferably performed at a temperature of 50 ° C. or lower, more preferably at 40 ° C. or lower.

2.4.乾燥
次に得られたポリイミド粉体の乾燥を行い、溶媒、イミド化剤、イミド化促進剤、貧溶媒等を除去する。乾燥は、ポリイミド粉体を予め濾過装置により濾別し、更に必要に応じて洗浄することにより、上記ポリイミドの溶媒、イミド化剤、イミド化促進剤をあらかた取り除いた後に行うことが、乾燥を効率的に行う上で好ましい。
2.4. Drying Next, the obtained polyimide powder is dried to remove a solvent, an imidizing agent, an imidization accelerator, a poor solvent, and the like. Drying is carried out after removing the polyimide solvent, imidizing agent, and imidization accelerator by removing the polyimide powder by filtering the polyimide powder in advance with a filtration device and further washing as necessary. It is preferable in terms of performance.

上記ポリイミド粉体の乾燥は、ポリイミド溶媒、イミド化剤、イミド化促進剤、貧溶媒等の残渣を除去することができれば任意の温度で行うことができるが、例えば上記貧溶媒にメタノール、エタノール等のヒドロキシ基を有する貧溶媒を用いた場合に、いきなり100℃以上の温度で乾燥を行うと、ポリイミド中のカルボン酸基もしくはカルボン酸無水物基と上記貧溶媒が反応してエステル結合を生成してしまい、耐熱性の低下、着色更には分子量の低下といった問題を引き起こす可能性がある。従って乾燥工程は、100℃未満の温度と100〜350℃の温度の2段階以上もしくは、100℃未満の温度から、100℃以上350℃以下の温度まで昇温させて行うことが好ましい。また、ポリイミド粉体の乾燥は、常圧で行ってもよく、減圧下で行っても差し支えない。   Drying of the polyimide powder can be performed at any temperature as long as residues such as a polyimide solvent, an imidizing agent, an imidization accelerator, and a poor solvent can be removed. Examples of the poor solvent include methanol and ethanol. When a poor solvent having a hydroxy group is used, when drying is performed immediately at a temperature of 100 ° C. or more, the carboxylic acid group or carboxylic anhydride group in the polyimide reacts with the poor solvent to form an ester bond. This may cause problems such as a decrease in heat resistance, coloring, and a decrease in molecular weight. Therefore, it is preferable that the drying step is performed at two or more steps of a temperature of less than 100 ° C and a temperature of 100 to 350 ° C, or by increasing the temperature from a temperature of less than 100 ° C to a temperature of 100 ° C or more and 350 ° C or less. The drying of the polyimide powder may be performed under normal pressure or under reduced pressure.

3.ポリイミド粉体
本発明の第一の実施態様であるポリイミド粉体は、上記方法で得られる、N,N−ジメチルアセトアミドに5重量%以上可溶で、後述のIR法(ATR法)により得られる赤外吸収スペクトルから算定されるイミド化率が90%以上、好ましくは95%以上、より好ましくは97%以上、特に好ましくは99%以上のポリイミド粉体である。ポリイミド粉体のイミド化率が90%よりも低いと、粉体の状態でポリマーの解裂が起こり、ポリイミドの分子量が低下して、その機械特性などの特性が低下する虞がある。また、イミド化率の低いポリイミド粉体を溶媒に溶解させてポリイミドワニスとした後に製膜してポリイミドフィルムとする際に、イミド化を進めるために300℃以上の高温での熱処理が必要となり、ポリイミドフィルムの透明性が損なわれる虞がある。
3. Polyimide Powder The polyimide powder according to the first embodiment of the present invention is soluble in N, N-dimethylacetamide in an amount of 5% by weight or more obtained by the above method, and is obtained by an IR method (ATR method) described later. The polyimide powder has an imidization ratio calculated from an infrared absorption spectrum of 90% or more, preferably 95% or more, more preferably 97% or more, and particularly preferably 99% or more. If the imidation ratio of the polyimide powder is lower than 90%, the polymer may be cleaved in the powder state, and the molecular weight of the polyimide may be reduced, and its properties such as mechanical properties may be reduced. In addition, when a polyimide powder having a low imidization rate is dissolved in a solvent and formed into a polyimide film after being formed into a polyimide varnish, a heat treatment at a high temperature of 300 ° C. or higher is required to promote imidation, The transparency of the polyimide film may be impaired.

本発明のポリイミド粉体の重量平均分子量は好ましくは20,000以上1,000,000以下、より好ましくは50,000以上500,000以下、更に好ましくは10,000以上300,000以下である。重量平均分子量が上記の下限未満だと透明性や機械特性が損なわれる虞があり、重量平均分子量が上記の上限を超える場合には、ポリイミド粉体を溶媒への溶解性が悪化するとともに、溶解できた場合でも粘度が上昇しすぎて取扱いが難しくなることがある。ポリイミドの重量平均分子量は、サイズ排除クロマトグラフ装置により求めることができる。   The weight average molecular weight of the polyimide powder of the present invention is preferably from 20,000 to 1,000,000, more preferably from 50,000 to 500,000, even more preferably from 10,000 to 300,000. If the weight average molecular weight is less than the above lower limit, transparency and mechanical properties may be impaired, and if the weight average molecular weight exceeds the above upper limit, the solubility of the polyimide powder in the solvent is deteriorated and the polyimide powder is dissolved. Even if it is possible, the viscosity may be too high and handling may be difficult. The weight average molecular weight of the polyimide can be determined by a size exclusion chromatograph.

また、ポリイミド等の高分子の重合度を表す指標として還元粘度が用いられるが、本発明のポリイミド粉体においては、還元粘度が2.0〜3.5dL/gの範囲にあることが好ましく、2.2〜3.3dL/gの範囲にあることがより好ましい。還元粘度が上記の下限未満の場合には、透明性や機械特性が損なわれる虞があり、上記の上限を超える場合には、ポリイミド溶液の粘度が上昇しすぎて取扱いが難しくなることがある。   The reduced viscosity is used as an index indicating the degree of polymerization of a polymer such as polyimide. In the polyimide powder of the present invention, the reduced viscosity is preferably in the range of 2.0 to 3.5 dL / g, More preferably, it is in the range of 2.2 to 3.3 dL / g. If the reduced viscosity is less than the above lower limit, transparency and mechanical properties may be impaired. If the reduced viscosity is more than the above upper limit, the viscosity of the polyimide solution may be too high and handling may be difficult.

4.ポリイミドワニス
本発明の第二の実施態様であるポリイミドワニスは、上記方法により得られたポリイミド粉体を、ポリイミドが可溶な任意の溶媒に1〜30重量%の濃度で溶解させることにより得ることができる。
4. Polyimide varnish The polyimide varnish according to the second embodiment of the present invention is obtained by dissolving the polyimide powder obtained by the above method in any solvent in which polyimide is soluble at a concentration of 1 to 30% by weight. Can be.

本発明のポリイミドワニスに使用する溶媒は、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、N―メチル−2−ピロリドン、テトラヒドロフラン、2−ブタノン、アセトン、酢酸エチル、γ−ブチロラクトン等、第一の実施態様のポリイミド粉体を溶解できる溶媒であれば任意の溶媒が使用可能である。また、ポリイミド粉体を溶媒に溶解させてポリイミドワニスを製造する方法は任意の方法が可能であり、攪拌翼を備えた容器中に所定量の溶媒を入れて、攪拌をしながらポリイミド粉体を添加する方法が簡便かつ均一なポリイミドワニスが得られ好ましい。   Solvents used for the polyimide varnish of the present invention include N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, tetrahydrofuran, 2-butanone, acetone, ethyl acetate, γ-butyrolactone and the like. Any solvent that can dissolve the polyimide powder of one embodiment can be used. In addition, a method of manufacturing a polyimide varnish by dissolving the polyimide powder in a solvent can be any method.Put a predetermined amount of a solvent in a container equipped with a stirring blade, and stir the polyimide powder while stirring. The addition method is preferred because a simple and uniform polyimide varnish can be obtained.

また、本発明においては、最終的に得られるポリイミドフィルムの高弾性率化、低熱膨張化及び熱伝導性の向上等の観点から、ワニス中に溶解しているポリイミド樹脂100重量部に対して、10〜100重量部の範囲で無機粒子を添加することが可能である。無機粒子としては、二酸化ケイ素(シリカ)、タルク、アルミナ、窒化ケイ素などの粒子が添加可能である。また、最終的に得られるフィルムの透明性や良好な機械特性を発現させるため、添加する無機粒子は粒子径が1〜100nmの範囲にあるナノ粒子を使用するのが好ましく、特に好ましくはナノシリカである。ナノシリカをワニス中のポリイミド100重量部に対して、10〜100重量部添加することで、透明性を維持したままポリイミドフィルムの高弾性率化等が可能となる。   Further, in the present invention, from the viewpoint of increasing the modulus of elasticity of the finally obtained polyimide film, lowering the thermal expansion and improving the thermal conductivity, based on 100 parts by weight of the polyimide resin dissolved in the varnish, It is possible to add inorganic particles in the range of 10 to 100 parts by weight. As the inorganic particles, particles such as silicon dioxide (silica), talc, alumina, and silicon nitride can be added. Further, in order to express the transparency and good mechanical properties of the finally obtained film, it is preferable to use nanoparticles having a particle diameter in the range of 1 to 100 nm as the inorganic particles to be added. is there. By adding 10 to 100 parts by weight of the nanosilica to 100 parts by weight of the polyimide in the varnish, it is possible to increase the modulus of the polyimide film while maintaining transparency.

5.ポリイミドフィルム
次に上記ポリイミドワニスをフィルムに製膜することにより、本発明の第三の実施態様であるポリイミドフィルムが得られる。本発明のポリイミドフィルムは、ポリイミド単体のフィルムでもよく、例えばポリエチレンテレフタレート(PET)、アクリル樹脂、ポリカーボネート、セルローストリアセテート等の基材上に塗膜して得られる複合フィルムの形態でもよい。
5. Polyimide film Next, a polyimide film according to the third embodiment of the present invention is obtained by forming the above-mentioned polyimide varnish into a film. The polyimide film of the present invention may be a polyimide film alone, or may be in the form of a composite film obtained by coating a film on a substrate such as polyethylene terephthalate (PET), acrylic resin, polycarbonate, and cellulose triacetate.

ポリイミド単体フィルムを製造する場合は、ステンレスドラムや離型フィルムの塗膜基材上に第二の実施態様のポリイミドワニスを流延し、ポリイミドワニスの溶媒を乾燥した後に塗膜基材からポリイミドを引き剥がすことで得ることができ、必要により引き剥がしたポリイミドに更に乾燥を行って、ポリイミド中の残存溶媒を除去することができる。また、ポリイミドと他の基材との複合フィルムを製造する場合は、ポリイミドと組み合わせる基材上にポリイミドワニスを流延し、溶媒を乾燥することで得ることができる。   When manufacturing a polyimide single film, the polyimide varnish of the second embodiment is cast on a coating substrate of a stainless steel drum or a release film, and the polyimide varnish is dried to remove the polyimide from the coating substrate. It can be obtained by peeling, and if necessary, the peeled polyimide can be further dried to remove the residual solvent in the polyimide. When a composite film of polyimide and another substrate is produced, the composite film can be obtained by casting a polyimide varnish on a substrate to be combined with polyimide and drying the solvent.

本発明のポリイミドフィルムの厚みは1〜200μmの範囲から、用途や目的に合わせて任意に選定することが可能であり、フィルム強度や製膜のやりやすさから、好ましい厚み範囲は5〜150μmであり、10〜120μmであることがより好ましく、25〜100μmであることが更に好ましい。   The thickness of the polyimide film of the present invention is in the range of 1 to 200 μm, and can be arbitrarily selected according to the application and purpose. Yes, it is more preferably from 10 to 120 μm, even more preferably from 25 to 100 μm.

また、ポリイミドフィルムの全光線透過率は、好ましくは80%以上であり、より好ましくは85%以上、更に好ましくは90%以上である。また、ポリイミドフィルムの黄色度(イエローインデックス)は、好ましくは3.0以下、より好ましくは2.5以下、更に好ましくは2.0以下である。ポリイミドフィルムの全光線透過率が80%未満の場合や黄色度が3.0を超える場合は、光学用途への適用において制約を受ける。   Further, the total light transmittance of the polyimide film is preferably 80% or more, more preferably 85% or more, and further preferably 90% or more. Further, the yellowness (yellow index) of the polyimide film is preferably 3.0 or less, more preferably 2.5 or less, and further preferably 2.0 or less. When the total light transmittance of the polyimide film is less than 80% or the yellowness exceeds 3.0, there is a limitation in application to optical applications.

また、ポリイミドフィルムの引張弾性率は4.0GPa以上であることが好ましく、4.2GPa以上であることがより好ましい。ポリイミドの引張弾性率を4.0GPa以上と高くすることで、ポリイミドフィルムに折り曲げや引っ張り等の応力が発生しても変形し難い上、後述の方法で無機フィラーの添加による弾性率向上の効果も大きくなるという特徴がある。   The tensile modulus of the polyimide film is preferably 4.0 GPa or more, more preferably 4.2 GPa or more. By increasing the tensile modulus of the polyimide to 4.0 GPa or more, even if a stress such as bending or tension is generated in the polyimide film, the polyimide film is not easily deformed, and the effect of improving the elastic modulus by adding an inorganic filler by a method described later is also obtained. There is a feature that it becomes larger.

また、上記ポリイミドワニスを塗工基材に流延後、溶剤乾燥速度をコントロールするなどの方法により、本発明の第四の実施態様であるポリイミド多孔質膜を得ることも可能である。本発明により得られたポリイミドはN,N−ジメチルアセトアミド等の溶剤に可溶である一方で、リチウムイオン電池の電解液等に一般的に使用されるエチレンカーボネートやプロピレンカーボネート等の溶剤に不溶なため、この多孔質膜はリチウムイオン電池等のセパレータに好適に用いることができる。   In addition, it is also possible to obtain a polyimide porous film according to the fourth embodiment of the present invention by a method such as controlling the solvent drying rate after casting the polyimide varnish on a coating substrate. The polyimide obtained according to the present invention is soluble in a solvent such as N, N-dimethylacetamide, but is insoluble in a solvent such as ethylene carbonate and propylene carbonate generally used for an electrolyte of a lithium ion battery. Therefore, this porous membrane can be suitably used for a separator of a lithium ion battery or the like.

以下、実施例により、本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。
(ポリイミドの還元粘度の測定方法)
0.5dL/gの濃度でN,N−ジメチルアセトアミド(DMAC)にポリイミド粉体を溶解して、ポリイミド溶液とした。ウベローデ粘度計を用いて、30℃の温度でポリイミド溶液の流出時間(T)と溶媒のDMACのみでの流出時間(T0)を測定し、下記の式から還元粘度を求めた。
還元粘度(dL/g)=(T−T0)/T0/0.5
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples.
(Method of measuring reduced viscosity of polyimide)
Polyimide powder was dissolved in N, N-dimethylacetamide (DMAC) at a concentration of 0.5 dL / g to obtain a polyimide solution. Using a Ubbelohde viscometer, the outflow time (T) of the polyimide solution and the outflow time (T0) of the solvent only with DMAC were measured at a temperature of 30 ° C., and the reduced viscosity was determined from the following equation.
Reduced viscosity (dL / g) = (T-T0) /T0/0.5

(ポリイミドの全光線透過率および黄色度の測定方法)
(1)測定用フィルムサンプルの作成方法
ポリイミド粉体を下記実施例や比較例で指定された量となるようにN,N−ジメチルアセトアミドに溶解させた。つぎにアプリケータを用いて、平滑なガラス板上に乾燥後厚みが50μmとなるように製膜して、熱風オーブン内で、130℃で60分保持した後、130℃から260℃まで5℃/分で昇温し、更に260℃で10分間保持して乾燥して、その後熱風オーブンから取り出し、室温まで冷却した後に、ガラス板から引き剥がして測定用のポリイミドフィルムサンプルとした。
(Method of measuring total light transmittance and yellowness of polyimide)
(1) Method of preparing film sample for measurement Polyimide powder was dissolved in N, N-dimethylacetamide so as to have the amount specified in the following Examples and Comparative Examples. Next, using an applicator, a film is formed on a smooth glass plate so as to have a thickness of 50 μm after drying, and is kept in a hot air oven at 130 ° C. for 60 minutes, and then 5 ° C. from 130 ° C. to 260 ° C. / Min, dried at 260 ° C. for 10 minutes, and then taken out of the hot air oven, cooled to room temperature, and peeled off from the glass plate to obtain a polyimide film sample for measurement.

(2)全光線透過率の測定
分光色彩計(コニカミノルタ株式会社製、CM−5)を用いて、ASTM E 1164に基づき、光源C、視野2°の条件で、フィルム厚さ50μm時の全光線透過率を求めた。
(2) Measurement of total light transmittance Using a spectral colorimeter (manufactured by Konica Minolta, Inc., CM-5), based on ASTM E 1164, under the condition of a light source C and a visual field of 2 °, a total of 50 μm in film thickness Light transmittance was determined.

(3)黄色度(YI)の測定
分光色彩計(コニカミノルタ株式会社製、CM−5)を用いて、ASTM D 1925に基づき、光源C、視野2°の条件で360〜740nmの波長範囲でスキャンして、フィルム厚さ50μm時の黄色度(YI)を求めた。
(3) Measurement of Yellowness (YI) Using a spectral colorimeter (manufactured by Konica Minolta, Inc., CM-5), based on ASTM D 1925, with a light source C and a visual field of 2 ° in a wavelength range of 360 to 740 nm. By scanning, the yellowness (YI) at a film thickness of 50 μm was determined.

(イミド化率の測定方法)
ポリイミドの光線透過率測定用と同じ方法で作成した50μm厚みのフィルムサンプルを測定用サンプルとし、当該フィルムに更に380℃30分の条件で熱処理を施してイミド化を完結させたフィルムを比較サンプルとして、フーリエ変換赤外分光光度計(株式会社島津製作所製FT−IR)を用いて、ATR法により赤外吸収スペクトルを得て、そのスペクトルに基づき、以下の方法によりイミド化率を算定した。
(Method of measuring imidation ratio)
A film sample having a thickness of 50 μm prepared by the same method as that for measuring the light transmittance of the polyimide was used as a measurement sample, and the film subjected to a heat treatment at 380 ° C. for 30 minutes to complete imidization was used as a comparative sample. Using a Fourier transform infrared spectrophotometer (FT-IR manufactured by Shimadzu Corporation), an infrared absorption spectrum was obtained by the ATR method, and based on the spectrum, the imidation ratio was calculated by the following method.

上記比較サンプルの赤外吸収スペクトルについて、イミドの特性吸収のひとつである1,365cm−1付近の吸収(イミド環C−N基の変角振動)と、ベンゼン環の特性吸収1,500cm−1との吸光度比をAとし、測定用サンプルの赤外吸収スペクトルの、1,365cm−1と1,500cm−1の吸光度比をBとして、以下の式よりイミド化率を求めた。
ポリイミドのイミド化率(%)=(B/A)×100
Regarding the infrared absorption spectrum of the comparative sample, absorption near 1,365 cm −1 (deformation vibration of the CN group of the imide ring), which is one of the characteristic absorptions of the imide, and characteristic absorption of the benzene ring of 1,500 cm −1. the absorbance ratio of the a, the infrared absorption spectrum of the measurement sample, a B absorbance ratio of 1,365Cm -1 and 1,500Cm -1, was determined imidization ratio from the following equation.
Polyimide imidation ratio (%) = (B / A) × 100

(ポリイミドフィルムの引張弾性率の測定方法)
ポリイミドの全光線透過率及び黄色度の測定に使用するポリイミドフィルムの製造方法と同様の方法により、ポリイミドフィルムに異物や気泡等の欠点が入らないように注意して、厚さ50μmのポリイミドフィルムを作成した。次に得られたポリイミドフィルムを、フェザー刃(安全剃刀刃)を用いて5mm×120mmのサイズに切断して、10本の試験片を作成し、次いでJISK7161:2014に規定される方法に準じて、得られた試験片を引張試験機(株式会社島津製作所製 オートグラフAGS−H ロードセル50N)を用いて、チャック間距離50mm、引張速度50mm/分の速度で引張試験を行い、ひずみε1=0.0005(0.05%)のときの応力σ1(GPa)と、ひずみε2=0.0025(0.25%)のときの応力σ2(GPa)から、以下の式に基づきそれぞれの試験片の引張弾性率を算定し、10本の試験片での平均値を引張弾性率とした。
引張弾性率E=(σ2−σ1)/(ε2−ε1)
(Method of measuring tensile modulus of polyimide film)
By the same method as the method of manufacturing the polyimide film used for the measurement of the total light transmittance and yellowness of the polyimide, be careful not to enter defects such as foreign matter and bubbles in the polyimide film, and a polyimide film having a thickness of 50 μm. Created. Next, the obtained polyimide film is cut into a size of 5 mm × 120 mm using a feather blade (safety razor blade) to form ten test pieces, and then according to the method specified in JIS K7161: 2014. The obtained test piece was subjected to a tensile test using a tensile tester (Autograph AGS-H load cell 50N manufactured by Shimadzu Corporation) at a distance between chucks of 50 mm and a tensile speed of 50 mm / min, and strain ε1 = 0. From the stress σ1 (GPa) at .0005 (0.05%) and the stress σ2 (GPa) at a strain ε2 = 0.0025 (0.25%), each of the test pieces was calculated based on the following equation. The tensile modulus was calculated, and the average value of ten test pieces was defined as the tensile modulus.
Tensile modulus E = (σ2−σ1) / (ε2−ε1)

(実施例1)
攪拌装置と攪拌翼を備えたガラス製の2Lのセパラブルフラスコに、溶剤N,N−ジメチルアセトアミド(DMAC)424gと2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル(TFMB)64.048g(0.2000モル)を入れて攪拌し、TFMBをDMAC中に溶解させた。次いで、セパラブルフラスコ内を攪拌しながら、窒素気流下で、テトラカルボン酸二無水物である4,4’−(1,1,1,3,3,3−ヘキサフルオロプロパン−2,2−ジイル)ジフタル酸二無水物(6FDA)53.575g(0.1206モル)を10分程度かけて投入し、その後3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)23.655g(0.0804モル)を投入して、そのまま温度が20〜40℃の温度範囲となるように調整しながら6時間攪拌を続けて重合反応を行い、粘稠なポリアミド酸溶液を得た。使用した6FDA:BPDAのモル比率は60:40、テトラカルボン酸二無水物(6FDAとBPDAの合計)/芳香族ジアミン化合物のモル比率は1.005であり、ポリアミド酸溶液の濃度は25重量%であった。
(Example 1)
In a 2 L separable glass flask equipped with a stirrer and a stirring blade, 424 g of a solvent N, N-dimethylacetamide (DMAC) and 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl ( (TFMB) 64.048 g (0.2000 mol) was added and stirred, and TFMB was dissolved in DMAC. Next, the tetracarboxylic dianhydride 4,4 ′-(1,1,1,3,3,3-hexafluoropropane-2,2-) was stirred under a nitrogen stream while stirring the inside of the separable flask. Diyl) diphthalic dianhydride (6FDA) 53.575 g (0.1206 mol) was added over about 10 minutes, and then 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA) 23 .655 g (0.0804 mol) was added thereto, and the polymerization reaction was carried out by continuing stirring for 6 hours while adjusting the temperature to a temperature range of 20 to 40 ° C. to obtain a viscous polyamic acid solution. . The molar ratio of 6FDA: BPDA used was 60:40, the molar ratio of tetracarboxylic dianhydride (total of 6FDA and BPDA) / aromatic diamine compound was 1.005, and the concentration of the polyamic acid solution was 25% by weight. Met.

次に、得られたポリアミド酸溶液にDMAC377gを加えてポリアミド酸の濃度が15重量%になるように希釈した後、イミド化促進剤としてイソキノリン25.83gを加えて、ポリアミド酸溶液を攪拌しながら30〜40℃の温度範囲に保ち、そこにイミド化剤として、無水酢酸122.5gを約10分間かけてゆっくりと滴下しながら投入し、その後更に液温を30〜40℃に保って12時間攪拌を続けて化学イミド化反応を行って、ポリイミド溶液を得た。   Next, 377 g of DMAC was added to the obtained polyamic acid solution to dilute the polyamic acid to a concentration of 15% by weight, and then 25.83 g of isoquinoline was added as an imidization accelerator, and the polyamic acid solution was stirred. Maintain the temperature range of 30 to 40 ° C., and slowly add 122.5 g of acetic anhydride as an imidizing agent dropwise over about 10 minutes, and then further maintain the liquid temperature at 30 to 40 ° C. for 12 hours. Stirring was continued to perform a chemical imidization reaction to obtain a polyimide solution.

次に、得られたイミド化剤およびイミド化促進剤を含むポリイミド溶液500gを、攪拌装置と攪拌翼を備えた3Lのセパラブルフラスコに移し変え、120rpmの速度で攪拌しながら15〜25℃の温度に保ち、そこにメタノール750gを5g/分の速度で滴下させた。約400gのメタノールを投入したところでポリイミド溶液の濁りが確認され、粉体状のポリイミドの析出が確認された。引き続き750g全量のメタノールを投入し、ポリイミドの析出を完了させた。   Next, 500 g of the obtained polyimide solution containing the imidizing agent and the imidization accelerator was transferred to a 3 L separable flask equipped with a stirrer and stirring blades, and stirred at a speed of 120 rpm at 15 to 25 ° C. The temperature was maintained, and 750 g of methanol was dropped at a rate of 5 g / min. When about 400 g of methanol was charged, turbidity of the polyimide solution was confirmed, and deposition of powdery polyimide was confirmed. Subsequently, 750 g of the entire amount of methanol was added to complete the precipitation of the polyimide.

次にセパラブルフラスコの内容物を、吸引濾過装置により濾別し、更に500gのメタノールを用いて洗浄・濾別した。   Next, the contents of the separable flask were separated by filtration with a suction filtration device, and further washed and filtered with 500 g of methanol.

その後、濾別した揮発分の残渣を含むポリイミド粉体25gを局所排気装置のついた乾燥機も用いて、50℃で24時間乾燥させ、更に260℃で2時間乾燥させて、揮発成分を除去して目的とするポリイミド粉体を得た。   Thereafter, 25 g of the polyimide powder containing the residue of the volatile matter separated by filtration was dried at 50 ° C. for 24 hours using a dryer equipped with a local exhaust device, and further dried at 260 ° C. for 2 hours to remove volatile components. Thus, the desired polyimide powder was obtained.

得られたポリイミド粉体の還元粘度は2.5dL/gであり、イミド化率は99.6%であった。   The reduced viscosity of the obtained polyimide powder was 2.5 dL / g, and the imidation ratio was 99.6%.

次に、得られたポリイミド粉体15gを60gのDMACに溶解させて均一なポリイミドワニスとした後、アプリケータを用いてガラス板上に塗膜し、所定の条件でDMACを乾燥させた後にガラス板から引き剥がして50μm厚みのポリイミドフィルムを作成した。得られたポリイミドフィルムの全光線透過率は90%と高く、黄色度は1.9であって、目視でも変色は見られず、極めて透明性に優れたものであった。また引張弾性率は4.0GPaであった。   Next, 15 g of the obtained polyimide powder is dissolved in 60 g of DMAC to form a uniform polyimide varnish, and then coated on a glass plate using an applicator, and the DMAC is dried under predetermined conditions. The polyimide film was peeled off from the plate to form a polyimide film having a thickness of 50 μm. The total light transmittance of the obtained polyimide film was as high as 90%, the yellowness was 1.9, no discoloration was visually observed, and the film was extremely excellent in transparency. The tensile modulus was 4.0 GPa.

(実施例2)
ポリアミド酸の重合反応に使用するDMACの量を415gとし、テトラカルボン酸二無水物である6FDAとBPDAの使用量をそれぞれ44.646g(0.1005モル)、29.569g(0.1005モル)として、化学イミド化反応前の希釈用DMACの量を369gとした以外は実施例1と同様に行い、使用した6FDA:BPDAのモル比率が50:50であるポリイミド粉体を得た。
(Example 2)
The amount of DMAC used for the polyamic acid polymerization reaction was 415 g, and the amounts of tetracarboxylic dianhydride 6FDA and BPDA used were 44.646 g (0.1005 mol) and 29.569 g (0.1005 mol), respectively. In the same manner as in Example 1 except that the amount of the DMAC for dilution before the chemical imidization reaction was 369 g, a polyimide powder having a used 6FDA: BPDA molar ratio of 50:50 was obtained.

得られたポリイミド粉体の還元粘度は2.9dL/gであり、イミド化率は99.9%であった。   The reduced viscosity of the obtained polyimide powder was 2.9 dL / g, and the imidation ratio was 99.9%.

次に得られたポリイミド粉体15gを60gのDMACに溶解させて均一なポリイミドワニスとした後、アプリケータを用いてガラス板上に塗膜し、所定の条件でDMACを乾燥させた後にガラス板から引き剥がして50μm厚みのポリイミドフィルムを作成した。得られたポリイミドフィルムの全光線透過率は90%と高く、黄色度は2.3であって、目視でも変色は見られず、透明性に優れたものであった。また引張弾性率は4.2GPaであった。   Next, 15 g of the obtained polyimide powder is dissolved in 60 g of DMAC to form a uniform polyimide varnish, and then coated on a glass plate using an applicator, and the DMAC is dried under predetermined conditions. To give a polyimide film having a thickness of 50 μm. The total light transmittance of the obtained polyimide film was as high as 90%, the yellowness was 2.3, the discoloration was not observed by visual inspection, and the film was excellent in transparency. The tensile modulus was 4.2 GPa.

(実施例3)
ポリアミド酸の重合反応に使用するDMACの量を406gとし、テトラカルボン酸二無水物である6FDAとBPDAの使用量をそれぞれ35.717g(0.0804モル)、35.483g(0.1206モル)として、化学イミド化反応前の希釈用DMACの量を361gとした以外は実施例1と同様に行い、テトラカルボン酸二無水物のモル比率が6FDA:BPDA=40:60であるポリイミド粉体を得た。
(Example 3)
The amount of DMAC used for the polyamic acid polymerization reaction was 406 g, and the amounts of tetracarboxylic dianhydride 6FDA and BPDA used were 35.717 g (0.0804 mol) and 35.483 g (0.1206 mol), respectively. A polyimide powder having a molar ratio of tetracarboxylic dianhydride of 6FDA: BPDA = 40: 60 was prepared in the same manner as in Example 1 except that the amount of DMAC for dilution before the chemical imidization reaction was 361 g. Obtained.

得られたポリイミド粉体の還元粘度は3.3dL/gであり、イミド化率は99.9%であった。   The reduced viscosity of the obtained polyimide powder was 3.3 dL / g, and the imidation ratio was 99.9%.

次に、得られたポリイミド粉体15gを60gのDMACに溶解させて均一なポリイミドワニスとした後、アプリケータを用いてガラス板上に塗膜し、所定の条件でDMACを乾燥させた後にガラス板から引き剥がして50μm厚みのポリイミドフィルムを作成した。得られたポリイミドフィルムの全光線透過率は90%と高く、黄色度は2.5であって、目視でも変色は見られず、透明性に優れたものであった。また引張弾性率は4.5GPaであった。   Next, 15 g of the obtained polyimide powder is dissolved in 60 g of DMAC to form a uniform polyimide varnish, and then coated on a glass plate using an applicator, and the DMAC is dried under predetermined conditions. The polyimide film was peeled off from the plate to form a polyimide film having a thickness of 50 μm. The total light transmittance of the obtained polyimide film was as high as 90%, the yellowness was 2.5, the discoloration was not visually observed, and the polyimide film was excellent in transparency. The tensile modulus was 4.5 GPa.

(実施例4)
ポリアミド酸の重合反応に使用するDMACの量を407gとし、テトラカルボン酸二無水物として、6FDAを35.717g(0.0804モル)、BPDAを29.569g(0.1005モル)並びに3,3’,4,4’−ジフェニルエーテルテトラカルボン酸二無水物(ODPA)6.235g(0.0201モル)を用い、化学イミド化反応前の希釈用DMACの量を362gとした以外は実施例1と同様に行い、テトラカルボン酸二無水物のモル比率が6FDA:BPDA:ODPA=40:50:10であるポリイミド粉体を得た。
(Example 4)
The amount of DMAC used in the polymerization reaction of the polyamic acid was 407 g, and as a tetracarboxylic dianhydride, 35.717 g (0.0804 mol) of 6FDA, 29.569 g (0.1005 mol) of BPDA, and 3,3 Example 1, except that 6.235 g (0.0201 mol) of ', 4,4'-diphenylethertetracarboxylic dianhydride (ODPA) was used and the amount of DMAC for dilution before the chemical imidization reaction was 362 g. The same operation was performed to obtain a polyimide powder having a molar ratio of tetracarboxylic dianhydride of 6FDA: BPDA: ODPA = 40: 50: 10.

得られたポリイミド粉体の還元粘度は2.6dL/gであり、イミド化率は99.5%であった。   The reduced viscosity of the obtained polyimide powder was 2.6 dL / g, and the imidation ratio was 99.5%.

次に、得られたポリイミド粉体15gを60gのDMACに溶解させて均一なポリイミドワニスとした後、アプリケータを用いてガラス板上に塗膜し、所定の条件でDMACを乾燥させた後にガラス板から引き剥がして50μm厚みのポリイミドフィルムを作成した。得られたポリイミドフィルムの全光線透過率は90%と高く、黄色度は2.4であって、目視でも変色は見られず、透明性に優れたものであった。また引張弾性率は4.0GPaであった。   Next, 15 g of the obtained polyimide powder is dissolved in 60 g of DMAC to form a uniform polyimide varnish, and then coated on a glass plate using an applicator, and the DMAC is dried under predetermined conditions. The polyimide film was peeled off from the plate to form a polyimide film having a thickness of 50 μm. The total light transmittance of the obtained polyimide film was as high as 90%, the yellowness was 2.4, no discoloration was observed by visual inspection, and the film was excellent in transparency. The tensile modulus was 4.0 GPa.

(実施例5)
ポリアミド酸の重合反応に使用するDMACの量を408gとし、芳香族ジアミン化合物として、TFMB57.643g(0.1800モル)及び4,4’−ジアミノジフェニルエーテル(DAPE)4.005g(0.0200モル)を用いた以外は実施例2と同様に行って、芳香族ジアミン化合物のモル比率がTFMB:DAPE=90:10、テトラカルボン酸二無水物のモル比率が6FDA:BPDA=50:50であるポリイミド粉体を得た。
(Example 5)
The amount of DMAC used for the polymerization reaction of the polyamic acid was 408 g, and as an aromatic diamine compound, 5.7643 g (0.1800 mol) of TFMB and 4.005 g (0.0200 mol) of 4,4′-diaminodiphenyl ether (DAPE) were used. Polyimide in which the molar ratio of the aromatic diamine compound is TFMB: DAPE = 90: 10, and the molar ratio of the tetracarboxylic dianhydride is 6FDA: BPDA = 50: 50, except that is used. A powder was obtained.

得られたポリイミド粉体の還元粘度は2.8dL/gであり、イミド化率は99.8%であった。   The reduced viscosity of the obtained polyimide powder was 2.8 dL / g, and the imidation ratio was 99.8%.

次に、得られたポリイミド粉体15gを60gのDMACに溶解させて均一なポリイミドワニスとした後、アプリケータを用いてガラス板上に塗膜し、所定の条件でDMACを乾燥させた後にガラス板から引き剥がして50μm厚みのポリイミドフィルムを作成した。得られたポリイミドフィルムの全光線透過率は88%であり、黄色度は2.5であって、目視でも変色は見られず、透明性に優れたものであった。また引張弾性率は4.1GPaであった。   Next, 15 g of the obtained polyimide powder is dissolved in 60 g of DMAC to form a uniform polyimide varnish, and then coated on a glass plate using an applicator, and the DMAC is dried under predetermined conditions. The polyimide film was peeled off from the plate to form a polyimide film having a thickness of 50 μm. The obtained polyimide film had a total light transmittance of 88%, a yellowness of 2.5, and did not show any discoloration visually, and was excellent in transparency. The tensile modulus was 4.1 GPa.

(実施例6)
200mLの容積のセパラブルフラスコ中で、58gのDMAc中に粒子径10〜15nmのジメチルアセトアミド(DMAc)分散ナノシリカ(日産化学株式会社製、オルガノシリカゾルDMAC−ST、シリカ濃度20%)30gを添加した後、攪拌して分散させた後、実施例2で得られたポリイミド粉体12gを添加してよく攪拌して溶解させ、固形分量で6gのシリカと12gのポリイミドが含まれるポリイミドワニス100gを作成した。
(Example 6)
In a separable flask having a volume of 200 mL, 30 g of dimethylacetamide (DMAc) -dispersed nanosilica having a particle diameter of 10 to 15 nm (manufactured by Nissan Chemical Industries, Ltd., organosilica sol DMAC-ST, silica concentration 20%) was added to 58 g of DMAc. Then, after stirring and dispersing, 12 g of the polyimide powder obtained in Example 2 was added and dissolved by stirring well to prepare 100 g of a polyimide varnish containing 6 g of silica and 12 g of polyimide in solid content. did.

得られたナノシリカ分散ポリイミドワニスを、アプリケータを用いてガラス板上に塗布し、所定の条件でDMAcを乾燥させた後にガラス板から引き剥がして、50μm厚みのナノシリカを33.3%含有するポリイミドフィルムを作成した。得られたポリイミドフィルムの全光線透過率は90%と高く、黄色度は2.5と低く、目視での変色や濁りは確認されず、透明性に優れたものであった。また、引張弾性率は5.7GPaと高い値を示した。   The obtained nanosilica-dispersed polyimide varnish is applied on a glass plate using an applicator, DMAc is dried under predetermined conditions, and then peeled off from the glass plate to obtain a polyimide containing 50 μm-thick 33.3% nanosilica. A film was made. The total light transmittance of the obtained polyimide film was as high as 90%, the yellowness was as low as 2.5, no discoloration or turbidity was visually observed, and the polyimide film was excellent in transparency. Further, the tensile elastic modulus showed a high value of 5.7 GPa.

(実施例7)
実施例2で得られたポリイミド粉体15gを60gのDMACに溶解させてポリイミドワニスとした後、実施例2で使用したものと同じアプリケータを使用して銅箔の平滑面上にポリイミドワニスを流延後、30℃で1時間かけて溶剤のDMACを一部乾燥した後、25℃のイオン交換水に10分浸漬させてDMACを純水により抽出した後、200℃の熱風オーブンで10分間乾燥し、次いで塩化第二鉄水溶液を用いて銅箔をエッチング除去して、白色のポリイミド多孔質膜を得た。ポリイミド多孔質膜を走査型電子顕微鏡(SEM)で観察したところ、ポリイミド膜に多数の孔が形成された多孔質膜であることが確認された。
(Example 7)
After dissolving 15 g of the polyimide powder obtained in Example 2 in 60 g of DMAC to obtain a polyimide varnish, the polyimide varnish was coated on the smooth surface of the copper foil using the same applicator as used in Example 2. After casting, the DMAC solvent was partially dried at 30 ° C. for 1 hour, immersed in ion-exchanged water at 25 ° C. for 10 minutes to extract DMAC with pure water, and then heated in a hot air oven at 200 ° C. for 10 minutes. After drying, the copper foil was removed by etching using an aqueous ferric chloride solution to obtain a white polyimide porous film. When the polyimide porous film was observed with a scanning electron microscope (SEM), it was confirmed that the polyimide film was a porous film having a large number of pores formed in the polyimide film.

(比較例1)
ポリアミド酸の重合反応に使用するDMACの量を460gとし、テトラカルボン酸二無水物として6FDAのみを89.294g(0.2010モル)用い、化学イミド化反応前の希釈用DMACの量を409gとした以外は実施例1と同様に行い、ポリイミド粉体を得た。
(Comparative Example 1)
The amount of DMAC used for the polymerization reaction of polyamic acid was 460 g, 89.294 g (0.2010 mol) of 6FDA alone was used as the tetracarboxylic dianhydride, and the amount of DMAC for dilution before the chemical imidization reaction was 409 g. Except having performed, it carried out similarly to Example 1 and obtained the polyimide powder.

得られたポリイミド粉体の還元粘度は2.1dL/gであり、イミド化率は99.9%であった。   The reduced viscosity of the obtained polyimide powder was 2.1 dL / g, and the imidation ratio was 99.9%.

次に、得られたポリイミド粉体15gを60gのDMACに溶解させて均一なポリイミドワニスとした後、アプリケータを用いてガラス板上に塗膜し、所定の条件でDMACを乾燥させた後にガラス板から引き剥がして50μm厚みのポリイミドフィルムを作成した。得られたポリイミドフィルムの全光線透過率は91%であり、黄色度は1.5であって、目視でも変色は見られず、透明性に優れたものであったが、引張弾性率が3.4GPaと低いものであった。   Next, 15 g of the obtained polyimide powder is dissolved in 60 g of DMAC to form a uniform polyimide varnish, and then coated on a glass plate using an applicator, and the DMAC is dried under predetermined conditions. The polyimide film was peeled off from the plate to form a polyimide film having a thickness of 50 μm. The resulting polyimide film had a total light transmittance of 91%, a yellowness of 1.5, no discoloration visually, and excellent transparency, but a tensile elasticity of 3%. Was as low as 4 GPa.

(比較例2)
ポリアミド酸の重合反応に使用するDMACの量を437gとし、テトラカルボン酸二無水物である6FDAとBPDAの使用量をそれぞれ66.969g(0.1508モル)、14.785g(0.0503モル)として、化学イミド化反応前の希釈用DMACの量を389gとした以外は実施例1と同様に行い、テトラカルボン酸二無水物のモル比率が6FDA:BPDA=75:25であるポリイミド粉体を得た。
(Comparative Example 2)
The amount of DMAC used for the polyamic acid polymerization reaction was 437 g, and the amounts of tetracarboxylic dianhydride 6FDA and BPDA used were 66.969 g (0.1508 mol) and 14.785 g (0.0503 mol), respectively. A polyimide powder having a molar ratio of tetracarboxylic dianhydride of 6FDA: BPDA = 75: 25 was prepared in the same manner as in Example 1 except that the amount of DMAC for dilution before the chemical imidization reaction was 389 g. Obtained.

得られたポリイミド粉体の還元粘度は2.2dL/gであり、イミド化率は99.9%であった。   The reduced viscosity of the obtained polyimide powder was 2.2 dL / g, and the imidation ratio was 99.9%.

次に、得られたポリイミド粉体15gを60gのDMACに溶解させて均一なポリイミドワニスとした後、アプリケータを用いてガラス板上に塗膜し、所定の条件でDMACを乾燥させた後にガラス板から引き剥がして50μm厚みのポリイミドフィルムを作成した。得られたポリイミドフィルムの全光線透過率は90%と高く、黄色度は1.7であって、目視でも変色は見られず、透明性に優れたものであったが、引張弾性率は3.5GPaと低いものであった。   Next, 15 g of the obtained polyimide powder is dissolved in 60 g of DMAC to form a uniform polyimide varnish, and then coated on a glass plate using an applicator, and the DMAC is dried under predetermined conditions. The polyimide film was peeled off from the plate to form a polyimide film having a thickness of 50 μm. The total light transmittance of the obtained polyimide film was as high as 90%, the yellowness was 1.7, no discoloration was observed visually, and the transparency was excellent, but the tensile modulus was 3%. It was as low as 0.5 GPa.

(比較例3)
攪拌装置と攪拌翼を備えたガラス製の2Lのセパラブルフラスコに、溶剤N,N−ジメチルアセトアミド(DMAC)397gと2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル(TFMB)64.048g(0.2000モル)を入れて攪拌し、TFMBをDMAC中に溶解させた。次いで、セパラブルフラスコ内を攪拌しながら、窒素気流下で、テトラカルボン酸二無水物である4,4’−(1,1,1,3,3,3−ヘキサフルオロプロパン−2,2−ジイル)ジフタル酸二無水物(6FDA)26.788g(0.0603モル)を10分程度かけて投入し、その後3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)41.397g(0.1407モル)を投入して、そのまま温度が20〜40℃の温度範囲となるように調整しながら6時間攪拌を続けて重合反応を行い、粘稠なポリアミド酸溶液を得た。使用した6FDA:BPDAのモル比率は30:70、テトラカルボン酸二無水物(6FDAとBPDAの合計)/芳香族ジアミン化合物のモル比率は1.005であり、ポリアミド酸溶液の濃度は25重量%であった。
(Comparative Example 3)
In a 2 L separable glass flask equipped with a stirrer and stirring blades, 397 g of a solvent N, N-dimethylacetamide (DMAC) and 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl ( (TFMB) 64.048 g (0.2000 mol) was added and stirred, and TFMB was dissolved in DMAC. Next, the tetracarboxylic dianhydride 4,4 ′-(1,1,1,3,3,3-hexafluoropropane-2,2-) was stirred under a nitrogen stream while stirring the inside of the separable flask. Diyl) diphthalic dianhydride (6FDA) (26.788 g, 0.0603 mol) was added over about 10 minutes, and then 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA) 41 .397 g (0.1407 mol) was added, and the polymerization reaction was carried out by continuously stirring for 6 hours while adjusting the temperature to a temperature range of 20 to 40 ° C. to obtain a viscous polyamic acid solution. . The molar ratio of 6FDA: BPDA used was 30:70, the molar ratio of tetracarboxylic dianhydride (total of 6FDA and BPDA) / aromatic diamine compound was 1.005, and the concentration of the polyamic acid solution was 25% by weight. Met.

次に、得られたポリアミド酸溶液にDMAC353gを加えてポリアミド酸の濃度が15重量%になるように希釈した後、イミド化促進剤としてイソキノリン25.83gを加えて、ポリアミド酸溶液を攪拌しながら30〜40℃の温度範囲に保ち、そこにイミド化剤として、無水酢酸122.5gを約10分間かけてゆっくりと滴下したところ、滴下後にポリアミド酸ワニスがゲル状に固まってしまい、攪拌を継続することが困難となり、ポリイミド粉体を得ることができなかった。   Next, 353 g of DMAC was added to the obtained polyamic acid solution to dilute the polyamic acid so that the concentration of polyamic acid became 15% by weight. Then, 25.83 g of isoquinoline was added as an imidization accelerator, and the polyamic acid solution was stirred. When the temperature was kept at 30 to 40 ° C. and 122.5 g of acetic anhydride was slowly added dropwise as an imidizing agent over about 10 minutes, the polyamic acid varnish solidified in a gel state after the addition and continued stirring. This made it difficult to obtain a polyimide powder.

(比較例4)
化学イミド化反応の際のイミド化剤である無水酢酸の使用量を122.5gではなく、40.84gとした以外は実施例2と同様に行って、テトラカルボン酸二無水物のモル比率が6FDA:BPDA=50:50であるポリイミド粉体を得た。
(Comparative Example 4)
The same procedure as in Example 2 was carried out except that the amount of acetic anhydride used as an imidizing agent in the chemical imidization reaction was changed to 40.84 g instead of 122.5 g, and the molar ratio of the tetracarboxylic dianhydride was changed. A polyimide powder having 6FDA: BPDA = 50: 50 was obtained.

得られたポリイミド粉体の還元粘度は1.9dL/gであり、イミド化率は85.0%であった。   The reduced viscosity of the obtained polyimide powder was 1.9 dL / g, and the imidation ratio was 85.0%.

次に、得られたポリイミド粉体15gを60gのDMACに溶解させて均一なポリイミド溶液とした後、アプリケータを用いてガラス板上に塗膜し、所定の条件でDMACを乾燥させた後にガラス板から引き剥がして50μm厚みのポリイミドフィルムを作成した。得られたポリイミドフィルムの全光線透過率は83%であり、黄色度は3.8であって、目視で若干黄色であることが確認された。また引張弾性率は3.8GPaであった。   Next, 15 g of the obtained polyimide powder is dissolved in 60 g of DMAC to form a uniform polyimide solution, and then coated on a glass plate using an applicator. The polyimide film was peeled off from the plate to form a polyimide film having a thickness of 50 μm. The resulting polyimide film had a total light transmittance of 83%, a yellowness of 3.8, and was visually confirmed to be slightly yellow. Further, the tensile modulus was 3.8 GPa.

以上の結果を表1に示す。   Table 1 shows the above results.

Figure 2020029486
Figure 2020029486

本発明に係るポリイミド粉体やポリイミドワニスを用いれば、極めて優れた耐熱性、透明性および弾性率とを兼ね備え、特にディスプレイ用途や電子材料用途に好適に用いられるポリイミドフィルムや、耐熱性やリチウムイオン電池の電解液への耐性に優れた多孔質膜を製造することができ、産業上の価値は極めて高い。   If the polyimide powder or the polyimide varnish according to the present invention is used, it has extremely excellent heat resistance, transparency and elastic modulus, and is particularly suitable for a display film or an electronic material application. It is possible to produce a porous membrane having excellent resistance to the electrolyte solution of the battery, and the industrial value is extremely high.

Claims (10)

少なくとも1種類の芳香族ジアミン化合物に由来する構造単位と2種類以上のテトラカルボン酸に由来する構造単位とを有し、N,N−ジメチルアセトアミドに5重量%以上可溶なイミド化率が90%以上のポリイミド粉体であって、
2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニルに由来する構造単位が前記少なくとも1種類の芳香族ジアミン化合物に由来する構造単位全体の50モル%以上を占め、
4,4’−(1,1,1,3,3,3−ヘキサフルオロプロパン−2,2−ジイル)ジフタル酸二無水物に由来する構造単位が前記2種類以上のテトラカルボン酸に由来する構造単位全体の30〜70モル%を占め、
3,3’,4,4’−ビフェニルテトラカルボン酸二無水物に由来する構造単位が
前記2種類以上のテトラカルボン酸に由来する構造単位全体の30〜60モル%を占めることを特徴とする
ポリイミド粉体。
It has a structural unit derived from at least one kind of aromatic diamine compound and a structural unit derived from two or more kinds of tetracarboxylic acids, and has an imidization ratio of 90% or more soluble in N, N-dimethylacetamide of 90% or more. % Or more of polyimide powder,
The structural unit derived from 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl accounts for 50 mol% or more of the entire structural unit derived from the at least one aromatic diamine compound;
The structural unit derived from 4,4 ′-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl) diphthalic dianhydride is derived from the two or more kinds of tetracarboxylic acids. Accounts for 30-70 mol% of the total structural units,
The structural unit derived from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride occupies 30 to 60 mol% of the total structural units derived from the two or more kinds of tetracarboxylic acids. Polyimide powder.
前記ポリイミド粉体が、少なくとも1種類の芳香族ジアミン化合物と2種類以上のテトラカルボン酸二無水物から、ポリアミド酸への重合、化学イミド化反応、生成ポリイミドの析出による粉体の形成、及び乾燥の工程を経て製造され、
芳香族ジアミン化合物として2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニルが芳香族ジアミン化合物全体の50モル%以上用いられ、
テトラカルボン酸二無水物として4,4’−(1,1,1,3,3,3−ヘキサフルオロプロパン−2,2−ジイル)ジフタル酸二無水物が全テトラカルボン酸のモル量に対して30〜70%、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物が30〜60%の範囲で用いられていることを特徴とする請求項1に記載のポリイミド粉体。
The polyimide powder is obtained by polymerizing at least one kind of aromatic diamine compound and two or more kinds of tetracarboxylic dianhydride into polyamic acid, a chemical imidization reaction, and forming a powder by precipitation of the resulting polyimide, and drying. Manufactured through the process of
2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl is used as the aromatic diamine compound in an amount of 50 mol% or more of the entire aromatic diamine compound;
4,4 ′-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl) diphthalic dianhydride is used as the tetracarboxylic dianhydride based on the molar amount of all tetracarboxylic acids. The polyimide powder according to claim 1, wherein 30 to 70% by weight of 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride is used in a range of 30 to 60%.
還元粘度が2.0〜3.5dL/gの範囲にあることを特徴とする請求項1又は2に記載のポリイミド粉体。   The polyimide powder according to claim 1 or 2, wherein the reduced viscosity is in a range of 2.0 to 3.5 dL / g. N,N−ジメチルアセトアミドに溶解して得られるポリイミド溶液を製膜して得られる50μm厚みのフィルムの全光線透過率が80%以上であり、黄色度が3以下であることを特徴とする請求項1〜3の何れか一項に記載のポリイミド粉体。   The film having a thickness of 50 μm obtained by forming a polyimide solution obtained by dissolving in N, N-dimethylacetamide has a total light transmittance of 80% or more and a yellowness of 3 or less. Item 4. The polyimide powder according to any one of Items 1 to 3. N,N−ジメチルアセトアミドに溶解して得られるポリイミド溶液を製膜して得られる50μm厚みのフィルムの引張弾性率が4.0GPa以上であることを特徴とする請求項1〜4の何れか一項に記載のポリイミド粉体。   5. A film having a thickness of 50 [mu] m obtained by forming a polyimide solution obtained by dissolving in N, N-dimethylacetamide and having a tensile modulus of 4.0 GPa or more. Item 12. The polyimide powder according to Item. 溶剤中に、請求項1〜5の何れか一項に記載のポリイミド粉体を1〜30重量%の濃度で含むポリイミドワニス。   A polyimide varnish containing the polyimide powder according to any one of claims 1 to 5 at a concentration of 1 to 30% by weight in a solvent. 請求項6に記載のポリイミドワニスであって、ポリイミド100重量部に対して10〜100重量部の無機粒子を更に含むことを特徴とするポリイミドワニス。   The polyimide varnish according to claim 6, further comprising 10 to 100 parts by weight of inorganic particles with respect to 100 parts by weight of the polyimide. 請求項6又は7に記載のポリイミドワニスを製膜して得られる、厚さ1〜200μmのポリイミドフィルム。   A polyimide film having a thickness of 1 to 200 μm, obtained by forming the polyimide varnish of claim 6 or 7 into a film. 引張弾性率が4.0GPa以上であることを特徴とする請求項8に記載のポリイミドフィルム。   The polyimide film according to claim 8, wherein the tensile modulus is 4.0 GPa or more. 請求項6又は7に記載のポリイミドワニスを製膜して得られる、厚さ1〜200μmのポリイミド多孔質膜。   A polyimide porous film having a thickness of 1 to 200 µm, obtained by forming the polyimide varnish of claim 6 or 7 into a film.
JP2018154269A 2018-08-20 2018-08-20 Polyimide powder, polyimide varnish, polyimide film and polyimide porous membrane Pending JP2020029486A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018154269A JP2020029486A (en) 2018-08-20 2018-08-20 Polyimide powder, polyimide varnish, polyimide film and polyimide porous membrane
TW108123907A TW202009255A (en) 2018-08-20 2019-07-08 Polyimide powder, polyimide varnish, polyimide film and polyimide porous film having little coloring or impurities and being excellent in heat resistance, transparency and mechanical properties
CN201910756456.3A CN110845730A (en) 2018-08-20 2019-08-16 Polyimide powder, polyimide varnish, polyimide film, and polyimide porous film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018154269A JP2020029486A (en) 2018-08-20 2018-08-20 Polyimide powder, polyimide varnish, polyimide film and polyimide porous membrane

Publications (1)

Publication Number Publication Date
JP2020029486A true JP2020029486A (en) 2020-02-27

Family

ID=69594726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018154269A Pending JP2020029486A (en) 2018-08-20 2018-08-20 Polyimide powder, polyimide varnish, polyimide film and polyimide porous membrane

Country Status (3)

Country Link
JP (1) JP2020029486A (en)
CN (1) CN110845730A (en)
TW (1) TW202009255A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023517096A (en) * 2020-03-17 2023-04-21 ドゥーサン コーポレイション Polyimide film with moisture and water resistance properties

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101959807B1 (en) * 2018-08-22 2019-03-20 에스케이씨코오롱피아이 주식회사 Polyimide Varnish for Coating Conductor Comprising Aromatic Carboxylic Acid and Method for Preparing the Same
CN111501125B (en) * 2020-04-29 2021-05-18 中国地质大学(北京) High-whiteness polyimide superfine fiber and preparation method and application thereof
CN112062960A (en) * 2020-09-10 2020-12-11 武汉华星光电半导体显示技术有限公司 Polyimide, polyimide film, preparation method of polyimide film and display device
TWI824189B (en) * 2020-10-26 2023-12-01 南亞塑膠工業股份有限公司 Method for producing polyimide film

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS585343A (en) * 1981-07-01 1983-01-12 Ube Ind Ltd Modification of porous membrane
JP2005304207A (en) * 2004-04-13 2005-10-27 Toyobo Co Ltd Dynamo-electric machine
JP2009518500A (en) * 2005-12-05 2009-05-07 コーロン インダストリーズ インク Polyimide film
JP2010538103A (en) * 2007-08-27 2010-12-09 コーロン インダストリーズ,インコーポレイテッド Polyimide film
JP2017186473A (en) * 2016-04-07 2017-10-12 株式会社カネカ Film
WO2018097142A1 (en) * 2016-11-24 2018-05-31 日産化学工業株式会社 Composition for forming flexible device substrate
WO2018116598A1 (en) * 2016-12-22 2018-06-28 富士フイルム株式会社 Optical film and manufacturing method for optical film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101292993B1 (en) * 2007-11-20 2013-08-02 코오롱인더스트리 주식회사 Polyimide resin, and liquid crystal alignment layer and polyimide film using the same
TWI813543B (en) * 2016-08-10 2023-09-01 日商日鐵化學材料股份有限公司 Method for producing polyimide precursor, polyimide and transparent polyimide film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS585343A (en) * 1981-07-01 1983-01-12 Ube Ind Ltd Modification of porous membrane
JP2005304207A (en) * 2004-04-13 2005-10-27 Toyobo Co Ltd Dynamo-electric machine
JP2009518500A (en) * 2005-12-05 2009-05-07 コーロン インダストリーズ インク Polyimide film
JP2010538103A (en) * 2007-08-27 2010-12-09 コーロン インダストリーズ,インコーポレイテッド Polyimide film
JP2017186473A (en) * 2016-04-07 2017-10-12 株式会社カネカ Film
WO2018097142A1 (en) * 2016-11-24 2018-05-31 日産化学工業株式会社 Composition for forming flexible device substrate
WO2018116598A1 (en) * 2016-12-22 2018-06-28 富士フイルム株式会社 Optical film and manufacturing method for optical film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023517096A (en) * 2020-03-17 2023-04-21 ドゥーサン コーポレイション Polyimide film with moisture and water resistance properties

Also Published As

Publication number Publication date
TW202009255A (en) 2020-03-01
CN110845730A (en) 2020-02-28

Similar Documents

Publication Publication Date Title
JP7045732B2 (en) Polyimide powder and its manufacturing method
JP6921758B2 (en) Polyamic acid, polyimide, polyamic acid solution, polyimide laminate, flexible device substrate, and their manufacturing method
JP6010533B2 (en) Polyamide acid, polyimide, polyamide acid solution, polyimide solution, polyimide film obtained from these solutions, and use of polyimide film
KR101890451B1 (en) Polyamide-imide solution and polyamide-imide film
TWI486378B (en) Optical film, method for manufacturing optical film, transparent substrate, image display device, and solar cell
JP2020029486A (en) Polyimide powder, polyimide varnish, polyimide film and polyimide porous membrane
JP5695276B2 (en) Use of polyamic acid, polyimide, polyamic acid solution, and polyimide
JP7157859B2 (en) Electronic device manufacturing method
JP6993672B2 (en) Polyimide powder, polyimide varnish and polyimide film
TWI775946B (en) Polyimide powder, polyimide coating and polyimide film
JP2004182757A (en) Polyimide resin and its production method
JPS627733A (en) Colorless clear polyimide formed body and its production
JP6687442B2 (en) Utilization of polyamic acid, polyimide, polyamic acid solution, and polyimide
JP2007091828A (en) Polyimide rein and polyimide resin film
JPWO2002066546A1 (en) Polyimide film and method for producing the same
CN108587163B (en) High-transparency low-expansion polyimide film and preparation method and application thereof
JP6993673B2 (en) Polyimide powder, polyimide varnish and polyimide film
JP2009013422A (en) Coating material
JP2006137881A (en) Soluble polyimide and optical compensation member
JPH08225645A (en) Colorless clear polyimide molding and production thereof
JP2519228B2 (en) Colorless and transparent polyimide molding and method for producing the same
JP6994712B2 (en) Soluble transparent polyimide polymerized in γ-butyrolactone solvent
TW201922849A (en) Polyimide resin and production method therefor, polyimide solution, and polyimide film and production method therefor
CN114641443A (en) Method for producing dried film roll
TW202348399A (en) Film, method for manufacturing same, and image display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221122

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20221122

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20221130

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20221206

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20230106

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20230117