WO2023063202A1 - Polyamic acid, polyamic acid composition, polyimide, polyimide film, laminate, method for producing laminate, and electronic device - Google Patents

Polyamic acid, polyamic acid composition, polyimide, polyimide film, laminate, method for producing laminate, and electronic device Download PDF

Info

Publication number
WO2023063202A1
WO2023063202A1 PCT/JP2022/037393 JP2022037393W WO2023063202A1 WO 2023063202 A1 WO2023063202 A1 WO 2023063202A1 JP 2022037393 W JP2022037393 W JP 2022037393W WO 2023063202 A1 WO2023063202 A1 WO 2023063202A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamic acid
residues
mol
residue
polyimide film
Prior art date
Application number
PCT/JP2022/037393
Other languages
French (fr)
Japanese (ja)
Inventor
博文 中山
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2023063202A1 publication Critical patent/WO2023063202A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Definitions

  • the present invention relates to polyamic acids, polyamic acid compositions, polyimides, polyimide films, laminates, methods for producing laminates, and electronic devices.
  • the present invention further provides electronic device materials using polyimide, thin film transistor (TFT) substrates, flexible display substrates, color filters, printed matter, optical materials, image display devices (more specifically, liquid crystal display devices, organic EL, electronic paper, etc.), 3D displays, solar cells, touch panels, transparent conductive film substrates, and substitute materials for members currently using glass.
  • TFT thin film transistor
  • various electronic elements such as thin film transistors and transparent electrodes, are formed on the substrate, and high-temperature processes are required to form these electronic elements.
  • Polyimide has sufficient heat resistance to adapt to high-temperature processes, and its coefficient of thermal expansion (CTE) is similar to that of glass substrates and electronic devices. be.
  • Aromatic polyimides are generally colored yellowish brown due to intramolecular conjugation and formation of charge transfer (CT) complexes. Transparency is not required, and conventional aromatic polyimides have been used. However, in cases where the light emitted from the display element passes through the substrate, such as in transparent displays, bottom-emission organic EL, and liquid crystal displays, and in smartphones, etc., where full-screen displays (notchless) are required, sensors and When the camera module is arranged on the back surface of the substrate, the substrate is also required to have high optical properties (more specifically, transparency, etc.).
  • CT charge transfer
  • Patent Documents 1 and 2 In order to reduce the coloring of polyimide, a technique for suppressing the formation of a CT complex using an aliphatic monomer (Patent Documents 1 and 2), and a technique for improving transparency by using a monomer having a fluorine atom (Patent Document 3) )It has been known.
  • Patent Documents 1 and 2 have high transparency and a low CTE, but because they have an aliphatic structure, they have a low thermal decomposition temperature and are difficult to apply to high-temperature processes when forming electronic elements.
  • Patent Document 3 Although the polyimide described in Patent Document 3 has excellent transparency, it may be colored during the high-temperature process of forming electronic elements.
  • the present invention has been accomplished in view of the above circumstances, and an object of the present invention is to provide a polyimide and a polyamic acid as a precursor thereof that are excellent in transparency and capable of reducing coloration in high-temperature processes. Another object of the present invention is to provide a product or member that is produced using the polyimide and polyamic acid and that requires transparency. In particular, it is an object of the present invention to provide a product or member in which the polyimide film of the present invention is formed on the surface of an inorganic material such as glass, metal, metal oxide, or single crystal silicon.
  • the present invention includes the following aspects.
  • diamine residues other than the 4-aminophenyl-4-aminobenzoate residue groups are p-phenylenediamine residue, 9,9-bis(4-aminophenyl)fluorene residue, 2,2′-bis(trifluoromethyl)-4,4′-diaminodiphenyl ether residue, and 1,
  • a laminate comprising a support and the polyimide film described in [9] or [10] above.
  • the support is a glass substrate, The laminate according to [11], wherein the internal stress between the polyimide film and the glass substrate is 25 MPa or less.
  • a method for producing a laminate having a support and a polyimide film By applying the polyamic acid composition according to any one of [5] to [7] on a support, a coating film containing the polyamic acid is formed, and the coating film is heated to obtain the polyamide A method for producing a laminate by imidating an acid.
  • the polyimide produced using the polyamic acid according to the present invention has excellent transparency and can reduce coloration in high-temperature processes. Therefore, the polyimide produced using the polyamic acid according to the present invention is suitable as a material for electronic devices that require transparency.
  • a “structural unit” refers to a repeating unit that constitutes a polymer.
  • a “polyamic acid” is a polymer containing a structural unit represented by the following general formula (1) (hereinafter sometimes referred to as “structural unit (1)").
  • a 1 represents a tetracarboxylic dianhydride residue (tetravalent organic group derived from tetracarboxylic dianhydride)
  • a 2 represents a diamine residue (divalent organic group derived from diamine organic group).
  • the content of the structural unit (1) with respect to all structural units constituting the polyamic acid is, for example, 50 mol% or more and 100 mol% or less, preferably 60 mol% or more and 100 mol% or less, more preferably 70 mol%. 100 mol % or more, more preferably 80 mol % or more and 100 mol % or less, even more preferably 90 mol % or more and 100 mol % or less, and may be 100 mol %.
  • 1% weight loss temperature is the measurement temperature when the weight of polyimide at a measurement temperature of 150°C is taken as the reference (100% by weight), and the weight is reduced by 1% by weight with respect to the reference weight.
  • system may be added after the name of the compound to generically refer to the compound and its derivatives.
  • polymer name is expressed by adding "system” after the compound name, it means that the repeating unit of the polymer is derived from the compound or its derivative.
  • a tetracarboxylic dianhydride may be described as an "acid dianhydride”.
  • the components, functional groups, and the like exemplified in this specification may be used alone or in combination of two or more.
  • Polyamic acid according to the present embodiment is a tetracarboxylic dianhydride residue, 3,3',4,4'-biphenyltetracarboxylic acid It has a dianhydride residue and a 4,4′-(hexafluoroisopropylidene)diphthalic anhydride residue, and has a 4-aminophenyl-4-aminobenzoate residue as a diamine residue. That is, polyamic acid (1) is a polymer containing a structural unit represented by the following chemical formula (2) and a structural unit represented by the following chemical formula (3).
  • 3,3′,4,4′-biphenyltetracarboxylic dianhydride residue is 3,3′,4,4′-biphenyltetracarboxylic dianhydride (hereinafter sometimes referred to as “BPDA” ) is the partial structure derived from 4,4'-(Hexafluoroisopropylidene) diphthalic anhydride residue is a portion derived from 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (hereinafter sometimes referred to as "6FDA") Structure.
  • a 4-aminophenyl-4-aminobenzoate residue is a partial structure derived from 4-aminophenyl-4-aminobenzoate (hereinafter sometimes referred to as “4-BAAB”).
  • polyimides obtained from polyamic acids having BPDA residues and 4-BAAB residues have a high glass transition temperature (Tg) (excellent heat resistance) and a low CTE due to their rigid structure.
  • Tg glass transition temperature
  • CTE low CTE
  • internal stress hereinafter sometimes simply referred to as "internal stress”
  • a polyimide obtained from a polyamic acid having only a BPDA residue as a tetracarboxylic dianhydride residue and only a 4-BAAB residue as a diamine residue tends to have a high haze. It is not suitable for applications that require durability.
  • polyimides obtained from polyamic acid having 6FDA residues and 4-BAAB residues exhibit excellent transparency. tends to be easier. For this reason, polyimide obtained from polyamic acid having an excessively high content of 6FDA residues is difficult to reduce coloration in high-temperature processes.
  • polyamic acid (1) polyamic acid (1) having a specific range.
  • polyimide can reduce coloration in high-temperature processes while having excellent transparency.
  • the content of BPDA residues is 65 mol% or more and 97 mol% or less with respect to all tetracarboxylic dianhydride residues
  • the content of 6FDA residues is 3 mol % or more and 35 mol % or less with respect to all tetracarboxylic dianhydride residues.
  • the content of 4-BAAB residues is 50 mol % or more with respect to all diamine residues.
  • the content of BPDA residues is the total tetracarboxylic acid dianhydride that constitutes polyamic acid (1). It is preferably 70 mol % or more, more preferably 75 mol % or more, even more preferably 80 mol % or more, and even more preferably 85 mol % or more, relative to the residue.
  • the content of BPDA residues should be 95 mol% or less with respect to all tetracarboxylic dianhydride residues constituting the polyamic acid (1). Preferably, it is 90 mol % or less.
  • the content of 6FDA residues is preferably 5 mol% or more with respect to the total tetracarboxylic dianhydride residues constituting the polyamic acid (1), It is more preferably 10 mol % or more, and even more preferably 15 mol % or more.
  • the content of 6FDA residues must be such that the content of all tetracarboxylic acids constituting polyamic acid (1) is It is preferably 30 mol % or less relative to the anhydride residue.
  • the content of 4-BAAB residues is the total diamine residues that make up polyamic acid (1).
  • it is preferably 55 mol% or more, more preferably 60 mol% or more, still more preferably 65 mol% or more, even more preferably 70 mol% or more, and 75 mol%
  • 80 mol % or more, 85 mol % or more, 90 mol % or more, 95 mol % or more, or 100 mol % may be sufficient.
  • Acid dianhydrides other than BPDA and 6FDA may be used as monomers within a range that does not impair its performance.
  • Acid dianhydrides other than BPDA and 6FDA include, for example, pyromellitic dianhydride, p-phenylenebis(trimellitate anhydride), 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,2 ,5,6-naphthalenetetracarboxylic dianhydride, 2,2′,3,3′-biphenyltetracarboxylic dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 4 ,4'-oxydiphthalic anhydride, dicyclohexyl-3,3',4,4'-tetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 1,2,3, 4-Cyclobuta
  • the total content of BPDA residues and 6FDA residues constitutes polyamic acid (1) It is preferably 70 mol% or more, more preferably 75 mol% or more, still more preferably 80 mol% or more, with respect to the total tetracarboxylic dianhydride residue, 85 mol% or more is even more preferable, and may be 90 mol % or more, 95 mol % or more, or 100 mol %.
  • a diamine other than 4-BAAB may be used as a monomer within a range that does not impair its performance.
  • diamines other than 4-BAAB include p-phenylenediamine (hereinafter sometimes referred to as "PDA”) and 9,9-bis(4-aminophenyl)fluorene (hereinafter referred to as "BAFL").
  • 2,2′-bis(trifluoromethyl)-4,4′-diaminodiphenyl ether (hereinafter sometimes referred to as “6FODA”), 1,4-cyclohexanediamine (hereinafter referred to as “CHDA” ), 4,4′-diaminobenzanilide, 2,2′-bis(trifluoromethyl)benzidine, m-phenylenediamine, 4,4′-oxydianiline, 3,4′-oxy Dianiline, N,N'-bis(4-aminophenyl)terephthalamide, 4,4'-diaminodiphenylsulfone, m-tolidine, o-tolidine, 4,4'-bis(4-aminophenoxy)biphenyl, 2 -(4-aminophenyl)-6-aminobenzoxazole, 3,5-diaminobenzoic acid, 4,4'-diamino-3,3'-dihydroxybipheny
  • diamine residues other than 4-BAAB residues include PDA residues, BAFL residues, 6FODA residues and One or more diamine residues selected from the group consisting of CHDA residues are preferred.
  • one or more diamine residues selected from the group consisting of PDA residues, BAFL residues, 6FODA residues and CHDA residues may be referred to as "optional diamine residues".
  • polyamic acid (1) has only a 4-BAAB residue as a diamine residue, or 4- as a diamine residue. It is preferred to have only BAAB residues and optional diamine residues. That is, in polyamic acid (1), the content of 4-BAAB residues is 100 mol% with respect to all diamine residues, or the total content of 4-BAAB residues and optional diamine residues is It is preferably 100 mol % with respect to diamine residues.
  • the content of the optional diamine residue is the polyamic acid (1). It is preferably 5 mol% or more and 50 mol% or less, more preferably 5 mol% or more and 40 mol% or less, and 5 mol% or more and 35 mol% or less with respect to all the constituent diamine residues. is more preferably 5 mol % or more and 30 mol % or less, and particularly preferably 10 mol % or more and 30 mol % or less.
  • the content rate of arbitrary diamine residues represents the total content rate of multiple types of arbitrary diamine residues.
  • polyamic acid (1) has an optional diamine residue
  • a PDA residue is preferable as the optional diamine residue in order to obtain a polyimide with excellent heat resistance while further reducing coloration in high-temperature processes.
  • the optional diamine residue is one selected from the group consisting of a BAFL residue, a 6FODA residue and a CHDA residue.
  • the above diamine residues are preferred.
  • a BAFL residue is preferable as the optional diamine residue in order to obtain a polyimide that has excellent transparency and can further reduce coloration in high-temperature processes.
  • the polyamic acid (1) preferably satisfies the following condition 1, more preferably satisfies the following condition 2, and the following conditions 3 is more preferably satisfied.
  • Condition 1 having only 4-BAAB residues as diamine residues, or having only 4-BAAB residues and optional diamine residues as diamine residues, and the total content of BPDA residues and 6FDA residues is 90 mol % or more with respect to all acid dianhydride residues.
  • Condition 2 having only 4-BAAB residues and PDA residues as diamine residues, or having only 4-BAAB residues and BAFL residues as diamine residues, and BPDA residues and 6FDA residues The total content is 90 mol % or more with respect to all acid dianhydride residues.
  • Condition 3 It has only 4-BAAB residues and BAFL residues as diamine residues, and the total content of BPDA residues and 6FDA residues is 90 mol% or more with respect to all acid dianhydride residues. .
  • Polyamic acid (1) can be synthesized by a known general method, and can be obtained, for example, by reacting a diamine and a tetracarboxylic dianhydride in an organic solvent.
  • An example of a specific method for synthesizing polyamic acid (1) will be described.
  • a diamine solution is prepared by dissolving or dispersing a diamine in an organic solvent in an inert gas atmosphere such as argon or nitrogen.
  • the tetracarboxylic dianhydride is added to the diamine solution after dissolving it in an organic solvent or dispersing it in a slurry state, or in a solid state.
  • the substance amount of the diamine when using multiple types of diamines, the substance amount of each diamine
  • the substance amount of the tetracarboxylic dianhydride When using multiple types of tetracarboxylic dianhydrides, the amount of each tetracarboxylic dianhydride is adjusted to obtain the desired polyamic acid (polymer of diamine and tetracarboxylic dianhydride ) can be obtained.
  • the molar fraction of each residue in polyamic acid (1) matches, for example, the molar fraction of each monomer (diamine and tetracarboxylic dianhydride) used in synthesizing polyamic acid (1).
  • Polyamic acid (1) containing multiple types of tetracarboxylic dianhydride residues and multiple types of diamine residues can also be obtained by blending two types of polyamic acids.
  • the temperature conditions for the reaction between the diamine and the tetracarboxylic dianhydride, that is, the synthesis reaction of the polyamic acid (1) are not particularly limited, but are, for example, in the range of 20°C or higher and 150°C or lower.
  • the reaction time for the synthetic reaction of polyamic acid (1) is, for example, in the range of 10 minutes or more and 30 hours or less.
  • the organic solvent used for synthesizing polyamic acid (1) is preferably a solvent capable of dissolving the tetracarboxylic dianhydride and diamine used, and more preferably a solvent capable of dissolving polyamic acid (1) to be produced.
  • organic solvents used for synthesizing polyamic acid (1) include urea-based solvents such as tetramethylurea and N,N-dimethylethylurea; sulfoxide-based solvents such as dimethylsulfoxide; diphenylsulfone and tetramethylsulfone.
  • Sulfone-based solvents such as; N,N-dimethylacetamide (DMAC), N,N-dimethylformamide (DMF), N,N-diethylacetamide, N-methyl-2-pyrrolidone (NMP), 3-methoxy-N , N-dimethylpropanamide (MPA), hexamethylphosphoric triamide and other amide solvents; ⁇ -butyrolactone and other ester solvents; chloroform, methylene chloride and other halogenated alkyl solvents; benzene, toluene and other aromatic carbonization Hydrogen-based solvents; phenolic solvents such as phenol and cresol; ketone-based solvents such as cyclopentanone; Ether-based solvents such as cresol methyl ether are included.
  • DMAC N,N-dimethylacetamide
  • DMF N,N-dimethylformamide
  • NMP N,N-diethylacetamide
  • NMP N-methyl-2-pyr
  • the organic solvent used in the synthetic reaction of the polyamic acid (1) consists of amide solvents, ketone solvents, ester solvents and ether solvents.
  • amide solvents more specifically, DMF, DMAC, NMP, MPA, etc.
  • the synthetic reaction of polyamic acid (1) is preferably carried out in an inert gas atmosphere such as argon or nitrogen.
  • the weight average molecular weight of the polyamic acid (1) is preferably in the range of 10,000 or more and 1,000,000 or less, and more preferably in the range of 20,000 or more and 500,000 or less, depending on the application. More preferably, it is in the range of 30,000 or more and 200,000 or less. If the weight-average molecular weight is 10,000 or more, polyamic acid (1) or polyimide obtained using polyamic acid (1) can be easily formed into a coating film or a polyimide film (film). On the other hand, when the weight-average molecular weight is 1,000,000 or less, it exhibits sufficient solubility in a solvent, so a coating film or polyimide film having a smooth surface and a uniform thickness using a polyamic acid composition described later is obtained.
  • the weight average molecular weight used here means a polyethylene oxide equivalent value measured using gel permeation chromatography (GPC).
  • a method for controlling the molecular weight of the polyamic acid (1) a method of using either an acid dianhydride or a diamine in excess, a monofunctional acid anhydride such as phthalic anhydride or aniline, or an amine A method of quenching the reaction by reacting is included.
  • a polyimide film having sufficient strength can be obtained if the molar ratio of these charged is between 0.95 and 1.05.
  • the molar ratio of the charge is the ratio of the total amount of diamines used in the synthesis of polyamic acid (1) to the total amount of acid dianhydrides used in the synthesis of polyamic acid (1) (total amount of diamines amount/total substance amount of acid dianhydride). Further, by terminal-capping with phthalic anhydride, maleic anhydride, aniline, or the like, coloring of the polyimide obtained using the polyamic acid (1) can be further reduced.
  • the polyamic acid composition according to the present embodiment contains polyamic acid (1) and an organic solvent.
  • the organic solvent contained in the polyamic acid composition according to the present embodiment include the organic solvents exemplified as the organic solvent that can be used in the synthesis reaction of the polyamic acid (1), such as amide solvents and ketone solvents. , ester solvents and ether solvents are preferable, and amide solvents (more specifically, DMF, DMAC, NMP, MPA, etc.) are more preferable.
  • the reaction solution solution after reaction itself may be used as the polyamic acid composition according to the present embodiment.
  • the solid polyamic acid (1) obtained by removing the solvent from the reaction solution may be dissolved in an organic solvent to prepare the polyamic acid composition according to the present embodiment.
  • the content of polyamic acid (1) in the polyamic acid composition according to the present embodiment is not particularly limited, but is, for example, 1% by weight or more and 80% by weight or less based on the total amount of the polyamic acid composition.
  • the polyamic acid composition according to the present embodiment may contain an imidization accelerator and/or a dehydration catalyst in order to shorten the heating time and develop properties.
  • a tertiary amine can be used as the imidization accelerator.
  • a heterocyclic tertiary amine is preferred as the tertiary amine.
  • Preferable specific examples of heterocyclic tertiary amines include pyridine, picoline, quinoline, isoquinoline and imidazoles.
  • Preferred specific examples of the dehydration catalyst include acetic anhydride, propionic anhydride, n-butyric anhydride, benzoic anhydride, and trifluoroacetic anhydride.
  • the amount of the imidization accelerator is preferably 0.1 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the polyamic acid (1). It is more preferably 0.5 parts by weight or more and 5 parts by weight or less.
  • the amount of the dehydration catalyst is preferably 0.1 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the polyamic acid (1). It is more preferably 0.5 parts by weight or more and 5 parts by weight or less.
  • imidazoles are preferable.
  • imidazoles refer to compounds having a 1,3-diazole ring (1,3-diazole ring structure).
  • the imidazoles that can be added to the polyamic acid composition according to the present embodiment are not particularly limited. imidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole and the like.
  • 1,2-dimethylimidazole, 1-benzyl-2-methylimidazole and 1-benzyl-2-phenylimidazole are preferred, and 1,2-dimethylimidazole and 1-benzyl-2-methylimidazole are more preferred. .
  • the content of the imidazole is preferably 0.005 mol or more and 0.1 mol or less, and 0.01 mol or more and 0.08 mol or less, relative to 1 mol of the amide group of the polyamic acid (1). is more preferably 0.015 mol or more and 0.050 mol or less.
  • amide group of polyamic acid (1) refers to an amide group produced by a polymerization reaction of diamine and tetracarboxylic dianhydride.
  • the method of mixing polyamic acid (1) and imidazoles is not particularly limited. From the viewpoint of ease of controlling the molecular weight of polyamic acid (1), it is preferable to add imidazoles to polyamic acid (1) after polymerization. At this time, the imidazole may be added as it is to the polyamic acid (1), or the imidazole may be dissolved in a solvent in advance and this solution may be added to the polyamic acid (1). Not restricted.
  • the polyamic acid composition according to the present embodiment may be prepared by adding imidazoles to a solution containing polyamic acid (1) after polymerization (solution after reaction).
  • additives may be added as additives to the polyamic acid composition according to the present embodiment.
  • additives include plasticizers, antioxidants, dyes, surfactants, leveling agents, silicones, fine particles, and sensitizers.
  • the fine particles include organic fine particles made of polystyrene, polytetrafluoroethylene, etc., inorganic fine particles made of colloidal silica, carbon, layered silicate, etc. They may have a porous structure or a hollow structure.
  • the function and form of the fine particles are not particularly limited, and may be, for example, pigments, fillers, or fibrous particles.
  • the polyamic acid composition according to the present embodiment can contain a silane coupling agent in order to exhibit appropriate adhesion to the support.
  • a silane coupling agent known ones can be used without particular limitation, but compounds containing an amino group are particularly preferred from the viewpoint of reactivity with polyamic acid (1).
  • the mixing ratio of the silane coupling agent to 100 parts by weight of polyamic acid (1) is preferably 0.01 parts by weight or more and 0.50 parts by weight or less, and 0.01 parts by weight or more and 0.10 parts by weight or less. more preferably 0.01 parts by weight or more and 0.05 parts by weight or less.
  • the polyimide according to this embodiment is an imidized product of polyamic acid (1) described above.
  • the polyimide according to this embodiment can be obtained by a known method, and the production method is not particularly limited. An example of a method for imidating the polyamic acid (1) to obtain the polyimide according to the present embodiment will be described below. Imidation is carried out by dehydration and ring closure of polyamic acid (1). This dehydration ring closure can be carried out by an azeotropic method using an azeotropic solvent, a thermal method, or a chemical method.
  • imidization of polyamic acid (1) to polyimide can take any ratio of 1% or more and 100% or less. That is, a partially imidized polyamic acid (1) may be synthesized.
  • the dehydration ring closure of the polyamic acid (1) may be performed by heating the polyamic acid (1).
  • the method of heating the polyamic acid (1) is not particularly limited, but for example, the polyamic acid composition according to the present embodiment is applied onto a support such as a glass substrate, a metal plate, or a PET film (polyethylene terephthalate film). After that, the polyamic acid (1) may be heat-treated at a temperature in the range of 40°C or higher and 500°C or lower. According to this method, a laminate according to the present embodiment, which has a support and a polyimide film (specifically, a polyimide film containing an imidized product of polyamic acid (1)) disposed on the support, is obtained. be done.
  • a polyimide film specifically, a polyimide film containing an imidized product of polyamic acid (1)
  • the polyamic acid composition is directly put into a container that has been subjected to release treatment such as coating with a fluororesin, and the polyamic acid composition is heated and dried under reduced pressure to effect dehydration ring closure of the polyamic acid (1).
  • release treatment such as coating with a fluororesin
  • Polyimide can be obtained by dehydration ring closure of polyamic acid (1) by these techniques.
  • the heating time for each of the above treatments varies depending on the amount of the polyamic acid composition to be subjected to dehydration ring closure and the heating temperature, but is generally in the range of 1 minute or more and 300 minutes or less after the treatment temperature reaches the maximum temperature. It is preferable to
  • the polyimide film according to the present embodiment (specifically, the polyimide film containing the imidized product of polyamic acid (1)) is colorless and transparent, has a low degree of yellowness, and has a glass transition temperature (heat resistance) that can withstand the TFT manufacturing process. Therefore, it is suitable as a transparent substrate material for flexible displays.
  • the content of polyimide (specifically, imidized polyamic acid (1)) in the polyimide film according to the present embodiment is, for example, 70% by weight or more, and 80% by weight or more with respect to the total amount of the polyimide film. is preferable, more preferably 90% by weight or more, and may be 100% by weight.
  • Components other than polyimide in the polyimide film include, for example, the additives described above (more specifically, fine particles and the like).
  • An electronic device (more specifically, a flexible device or the like) according to this embodiment has a polyimide film according to this embodiment and an electronic element directly or indirectly arranged on this polyimide film.
  • an inorganic substrate such as glass is used as a support, and a polyimide film is formed thereon.
  • an electronic device is formed on the support by arranging (forming) an electronic element such as a TFT on the polyimide film.
  • the process of forming a TFT is generally carried out in a wide temperature range of 150° C. or higher and 650° C. or lower. is formed, and in some cases, a-Si or the like is further crystallized by a laser or the like.
  • the 1% weight loss temperature of polyimide is preferably 500° C. or higher because there is a possibility that a barrier film (to be described later) and electronic elements may peel off.
  • the upper limit of the 1% weight loss temperature of polyimide is preferably 600° C., for example, although the higher the better.
  • the 1% weight loss temperature can be adjusted, for example, by changing the content of residues having a rigid structure (more specifically, BPDA residues and the like).
  • an inorganic film such as a silicon oxide film (SiOx film) or a silicon nitride film (SiNx film) is formed as a barrier film on the polyimide film.
  • SiOx film silicon oxide film
  • SiNx film silicon nitride film
  • the polyimide and the inorganic film are separated from each other. Therefore, in addition to the 1% weight loss temperature of the polyimide being 500° C. or higher, the weight loss rate when the polyimide is kept isothermally at a temperature within the range of 400° C. or higher and 450° C. or lower must be less than 1%. desirable.
  • polyimides having a relatively high content of residues derived from fluorine-containing monomers generate corrosive gases such as hydrogen fluoride as outgassing in high-temperature processes such as the fabrication of TFT elements. It turned out to do.
  • corrosive gas is generated in a high-temperature process
  • the barrier film or the like laminated on the polyimide film corrodes, and peeling or the like may occur at the interface of the laminated body.
  • the polyamic acid (polyamic acid (1)) of the present embodiment has a 6FDA residue content of 3 mol% or more and 35 mol% or less with respect to the acid dianhydride residue, so polyamic acid (1) is used.
  • the polyimide thus obtained can suppress the generation of corrosive gas in a high-temperature process.
  • the glass transition temperature (Tg) of the polyimide is significantly lower than the process temperature, there is a possibility that misalignment or the like may occur during the formation of the electronic device. It is more preferably 350° C. or higher, still more preferably 400° C. or higher, and even more preferably 420° C. or higher.
  • the upper limit of Tg of polyimide is preferably 470° C., although the higher the better.
  • the coefficient of thermal expansion of the glass substrate is generally smaller than that of resin, internal stress is generated between the glass substrate and the polyimide film.
  • the laminated body including the polyimide film expands in the TFT formation process at a high temperature and then shrinks when cooled to room temperature.
  • the internal stress between the polyimide film and the glass substrate is preferably 40 MPa or less, more preferably 35 MPa or less, still more preferably 30 MPa or less, and even more preferably 25 MPa or less.
  • the lower limit of the internal stress is better, and may be 0 MPa.
  • the method for measuring the internal stress is the same method as in Examples described later or a method based thereon.
  • the polyimide film may peel off during the formation of the electronic device, or the yield may decrease when the polyimide film is peeled off after the electronic device is formed.
  • floating refers to the adhesion between the polyimide film and other material layers (more specifically, glass substrates, barrier films, etc.) due to secondary components and residual solvents generated during imidization. Refers to a state in which a defect has occurred.
  • floating include a state in which the polyimide film is lifted from the glass substrate, a state in which a portion of the polyimide film is destroyed and delamination occurs between the polyimide film and another material layer, and a barrier from the polyimide film. A state in which the film is lifted may be mentioned.
  • a polyimide film obtained from a polyamic acid having a BPDA residue and a 4-BAAB residue has densely packed molecular chains and poor outgassing properties. Floating is likely to occur in Since the polyamic acid (polyamic acid (1)) of the present embodiment contains a 6FDA residue having a bulky structure, the polyimide film obtained using the polyamic acid (1) has good gas release properties. . Therefore, according to the polyimide obtained using the polyamic acid (1), it is possible to suppress the occurrence of floating.
  • the polyimide according to this embodiment can be suitably used as a material for display substrates such as TFT substrates and touch panel substrates.
  • an electronic device (more specifically, an electronic device having electronic elements formed on a polyimide film) is formed on a support as described above, and then the polyimide film is peeled off from the support. often adopted.
  • alkali-free glass is preferably used as the material of the support.
  • the polyamic acid composition according to the present embodiment is applied (cast) onto a support to form a coated film-containing laminate comprising a coated film containing polyamic acid (1) and the support.
  • the coated film-containing layered product is heated, for example, at a temperature of 40° C. or higher and 200° C. or lower.
  • the heating time at this time is, for example, 3 minutes or more and 120 minutes or less.
  • a multi-step heating process may be provided, such as heating the coating film-containing laminate at a temperature of 50° C. for 30 minutes and then heating it at a temperature of 100° C. for 30 minutes.
  • the coating film-containing laminate is heated, for example, at a maximum temperature of 200° C. or higher and 500° C. or lower.
  • the heating time (heating time at the maximum temperature) at this time is, for example, 1 minute or more and 300 minutes or less. At this time, it is preferable to gradually raise the temperature from the low temperature to the maximum temperature.
  • the heating rate is preferably 2° C./min or more and 10° C./min or less, more preferably 4° C./min or more and 10° C./min or less.
  • the maximum temperature is preferably in the range of 250° C. or higher and 450° C. or lower. When the maximum temperature is 250° C.
  • imidization proceeds sufficiently, and when the maximum temperature is 450° C. or lower, thermal deterioration and coloration of the polyimide can be suppressed. Also, any temperature may be maintained for any length of time until the maximum temperature is reached.
  • the imidization reaction can be carried out under air, under reduced pressure, or in an inert gas such as nitrogen, but in order to develop higher transparency, it is carried out under reduced pressure or in an inert gas such as nitrogen. is preferred.
  • the heating device known devices such as a hot air oven, an infrared oven, a vacuum oven, an inert oven and a hot plate can be used.
  • Polyamic acid (1) in the coating film is imidized through these steps, and a laminate of a support and a polyimide film (a film containing an imidized product of polyamic acid (1)) (that is, according to the present embodiment) laminate) can be obtained.
  • a known method can be used to peel off the polyimide film from the obtained laminate of the support and the polyimide film. For example, it may be peeled off by hand, or may be peeled off using a mechanical device such as a driving roll or a robot. Furthermore, a method of providing a peeling layer between a support and a polyimide film, a method of forming a silicon oxide film on a support having a large number of grooves, forming a polyimide film using the silicon oxide film as a base layer, and forming a polyimide film on the support It is also possible to adopt a method of exfoliating the polyimide film by infiltrating a silicon oxide etchant between the film and the silicon oxide film. Alternatively, a method of separating the polyimide film by laser light irradiation may be employed.
  • the transparency of the polyimide film can be evaluated by total light transmittance (TT) according to JIS K7361-1:1997 and haze according to JIS K7136-2000.
  • the total light transmittance of the polyimide film is preferably 75% or more, more preferably 80% or more.
  • the haze of the polyimide film is preferably 1.5% or less, more preferably 1.2% or less, and 1.0%. It is more preferably less than, and may be 0%.
  • polyimide films are required to have high transmittance over the entire wavelength range. often colored.
  • the polyimide film is less colored.
  • the yellowness index (YI) of the polyimide film is preferably 25 or less, more preferably 20 or less, It can be 0.
  • YI can be measured according to JIS K7373-2006. YI can be adjusted, for example, by changing the content of 6FDA residues in polyamic acid (1).
  • the polyimide film with reduced coloration and imparted with transparency is suitable for transparent substrates such as glass substitutes, and substrates on which a sensor or camera module is provided on the back surface.
  • the top emission method in which light is extracted from the front surface of the TFT
  • the bottom emission method in which light is extracted from the back surface of the TFT.
  • the top-emission method is easy to increase the aperture ratio because the light is not blocked by the TFT, and high-definition image quality can be obtained. Characteristic. If the TFT is transparent, it is possible to improve the aperture ratio even in the bottom emission method, so there is a tendency to adopt the bottom emission method, which is easy to manufacture, for large displays. Since the polyimide film according to this embodiment has a low YI and excellent heat resistance, it can be applied to either of the above light extraction methods.
  • a polyamic acid composition is applied to a support such as a glass substrate, heated to imidize, an electronic element or the like is formed, and then the polyimide film is peeled off, the support and the like are used.
  • Adhesion means adhesion strength.
  • the manufacturing process of peeling off the polyimide film on which the electronic elements and the like are formed from the support after forming the electronic elements on the polyimide film on the support if the adhesion between the polyimide film and the support is excellent, the electronic element etc. can be formed or implemented more accurately.
  • the peel strength between the support and the polyimide film should be as high as possible from the viewpoint of improving productivity.
  • the peel strength is preferably 0.05 N/cm or more, more preferably 0.1 N/cm or more.
  • the polyimide film when peeling the polyimide film from the laminate of the support and the polyimide film, the polyimide film is often peeled off from the support by laser irradiation.
  • the cutoff wavelength of the polyimide film is required to be longer than the wavelength of the laser light used for peeling. Since a XeCl excimer laser with a wavelength of 308 nm is often used for laser peeling, the cutoff wavelength of the polyimide film is preferably 312 nm or longer, more preferably 330 nm or longer.
  • the cutoff wavelength of the polyimide film is preferably 390 nm or less.
  • the cutoff wavelength of the polyimide film is preferably 320 nm or more and 390 nm or less, more preferably 330 nm or more and 380 nm or less, from the viewpoint of achieving both transparency (low degree of yellowness) and workability of laser peeling.
  • the term "cutoff wavelength" as used herein means a wavelength at which the transmittance is 0.1% or less as measured by an ultraviolet-visible spectrophotometer.
  • the polyamic acid composition and polyimide according to the present embodiment may be used as they are for coating and molding processes for producing products and members, but the molded product molded in the form of a film is further subjected to coating and other treatments. It can also be used as a material for For use in coating or molding processes, the polyamic acid composition or polyimide, optionally dissolved or dispersed in an organic solvent, and optionally a photocurable component, a thermosetting component, a non-polymeric binder, A composition comprising polyamic acid (1) or polyimide may be prepared by blending the resin and other ingredients.
  • inorganic thin films such as metal oxide thin films and transparent electrodes may be formed on the surface of the polyimide film according to this embodiment.
  • the method for forming these inorganic thin films is not particularly limited, and examples thereof include PVD methods such as sputtering, vacuum deposition, and ion plating, and CVD methods.
  • the polyimide film according to the present embodiment In addition to heat resistance, low thermal expansion, and transparency, the polyimide film according to the present embodiment generates little internal stress when forming a laminate with a glass substrate, ensuring adhesion with inorganic materials during high-temperature processes. Therefore, it is preferably used in fields and products where these properties are useful.
  • the polyimide film according to the present embodiment can be used for liquid crystal display devices, organic EL devices, image display devices such as electronic paper, printed matter, color filters, flexible displays, optical films, 3D displays, touch panels, transparent conductive film substrates, solar cells, and the like. It is more preferable to use it as a substitute material for parts where glass is currently used.
  • the thickness of the polyimide film is, for example, 1 ⁇ m or more and 200 ⁇ m or less, preferably 5 ⁇ m or more and 100 ⁇ m or less.
  • the thickness of the polyimide film can be measured using a laser hologram.
  • the polyamic acid composition according to the present embodiment is prepared by coating the polyamic acid composition on a support, imidizing it by heating, forming an electronic element or the like, and then peeling off the polyimide film for batch-type device fabrication. It can be suitably used for the process. Therefore, in the present embodiment, the production of an electronic device including the step of applying a polyamic acid composition on a support, imidizing it by heating, and forming an electronic element or the like on a polyimide film formed on the support A method is also included. Moreover, the method for producing such an electronic device may further include a step of peeling off the polyimide film on which the electronic elements and the like are formed from the support.
  • the transmittance of light with a wavelength of 200 nm or more and 800 nm or less is measured using an ultraviolet-visible-near-infrared spectrophotometer (manufactured by JASCO Corporation "V-650"), and the transmittance is described in JIS K7373-2006.
  • the yellowness index (YI) of the laminate was calculated from the formula.
  • the yellowness index (YI) obtained here is referred to as "pre-annealing YI”.
  • the laminate after measuring the pre-annealing YI was heated (annealed) at 430°C for 120 minutes in a nitrogen atmosphere. Then, for the laminate after annealing, the transmittance of light with a wavelength of 200 nm or more and 800 nm or less was measured using an ultraviolet-visible-near-infrared spectrophotometer (manufactured by JASCO Corporation "V-650"). The yellowness index (YI) of the laminate was calculated from the formula described. Hereinafter, the yellowness index (YI) obtained here is referred to as "post-annealing YI".
  • Total light transmittance (TT) For the polyimide film peeled from each laminate obtained in Examples and Comparative Examples described later, using an integrating sphere haze meter ("HM-150N” manufactured by Murakami Color Research Laboratory Co., Ltd.), JIS K7361-1: 1997 Total light transmittance (TT) was measured by the method described in .
  • Glass transition temperature (Tg) A polyimide film having a width of 3 mm and a length of 10 mm was sampled from each laminate obtained in Examples and Comparative Examples, which will be described later, and used as a sample for Tg measurement. Using a thermal analyzer ("TMA/SS7100" manufactured by Hitachi High-Tech Science), a load of 98.0 mN was applied to the sample, the temperature was raised from 20 ° C. to 450 ° C. at 10 ° C./min, and the temperature and strain amount (elongation ) to obtain the TMA curve. The temperature at the inflection point of the obtained TMA curve (the temperature corresponding to the peak in the differential curve of the TMA curve) was defined as the glass transition temperature (Tg).
  • TMA/SS7100 manufactured by Hitachi High-Tech Science
  • NMP N-methyl-2-pyrrolidone BPDA: 3,3',4,4'-biphenyltetracarboxylic dianhydride 6FDA: 4,4'-(hexafluoroisopropylidene)diphthalic anhydride 4-BAAB: 4 -aminophenyl-4-aminobenzoate PDA: p-phenylenediamine BAFL: 9,9-bis(4-aminophenyl)fluorene 6FODA: 2,2'-bis(trifluoromethyl)-4,4'-diaminodiphenyl ether CHDA : 1,4-cyclohexanediamine DMI: 1,2-dimethylimidazole
  • Example 1 A 300 mL glass separable flask equipped with a stirrer equipped with a stainless steel stir bar and a nitrogen inlet was charged with 48.0 g of NMP as an organic solvent for polymerization. 5.026 g of 4-BAAB was then added to the flask and dissolved while stirring the flask contents. After adding 1.467 g of 6FDA and 5.507 g of BPDA to the contents of the flask, the contents of the flask were stirred for 24 hours under an atmosphere of 25° C. to obtain a polyamic acid composition.
  • the resulting polyamic acid composition was applied onto a glass substrate (manufactured by Corning, material: non-alkali glass, thickness: 0.7 mm, size: 100 mm x 100 mm) using a spin coater, and coated in air at 120°C. After heating for 30 minutes, it was heated at 430° C. for 30 minutes in a nitrogen atmosphere to obtain a laminate (laminate of Example 1) having a polyimide film having a thickness of 10 ⁇ m on a glass substrate.
  • Example 2 A 300 mL glass separable flask equipped with a stirrer equipped with a stainless steel stir bar and a nitrogen inlet was charged with 48.0 g of NMP as an organic solvent for polymerization. 5.026 g of 4-BAAB was then added to the flask and dissolved while stirring the flask contents. After adding 1.467 g of 6FDA and 5.507 g of BPDA to the contents of the flask, the contents of the flask were stirred for 24 hours under an atmosphere at a temperature of 25°C. Next, DMI was added to the contents of the flask to obtain a polyamic acid composition.
  • the amount of DMI added was 1 part by weight per 100 parts by weight of polyamic acid in the contents of the flask.
  • the resulting polyamic acid composition was applied onto a glass substrate (manufactured by Corning, material: non-alkali glass, thickness: 0.7 mm, size: 100 mm x 100 mm) using a spin coater, and coated in air at 120°C. After heating for 30 minutes, it was heated at 430° C. for 30 minutes in a nitrogen atmosphere to obtain a laminate (laminate of Example 2) having a polyimide film having a thickness of 10 ⁇ m on a glass substrate.
  • Examples 3 and 5 to 8 and Comparative Examples were prepared in the same manner as in Example 1 except that the acid dianhydride used and its charging ratio, and the diamine used and its charging ratio were as shown in Table 1. Laminates 1 and 2 were obtained, respectively. In addition, the acid dianhydride used and its charging ratio, and the diamine used and its charging ratio were as shown in Table 1, in the same manner as in Example 2. A laminate was obtained, respectively. Incidentally, in both Examples 3 to 8 and Comparative Examples 1 to 3, the total substance amount of the acid dianhydride in preparing the polyamic acid composition was the same as in Examples 1 and 2. Further, in all of Examples 3 to 8 and Comparative Examples 1 to 3, the total substance amount of diamine in preparing the polyamic acid composition was the same as in Examples 1 and 2.
  • Table 1 shows the materials used and the measurement results of physical properties for each of Examples 1 to 8 and Comparative Examples 1 to 3.
  • "-" means that the component was not used.
  • the numerical values in the "acid dianhydride” column are the content of each acid dianhydride relative to the total amount of acid dianhydride used (unit: mol%).
  • the numerical values in the "diamine” column are the content of each diamine relative to the total amount of diamines used (unit: mol %).
  • the numerical value in the "DMI” column is the amount of DMI (unit: parts by weight) per 100 parts by weight of polyamic acid.
  • the molar fraction of each residue of polyamic acid in the prepared polyamic acid composition was different from each monomer (diamine and tetracarboxylic dianhydride).
  • the polyamic acids in the polyamic acid compositions prepared in Examples 1-8 had BPDA residues and 6FDA residues, and had 4-BAAB residues.
  • the content of BPDA residues was 65 mol% or more and 97 mol% or less with respect to all tetracarboxylic dianhydride residues.
  • the content of 6FDA residues was 3 mol% or more and 35 mol% or less with respect to all tetracarboxylic dianhydride residues.
  • the content of 4-BAAB residues was 50 mol% or more with respect to the total diamine residues.
  • Examples 1 to 8 ⁇ YI was less than 10. Therefore, the polyimides obtained in Examples 1 to 8 were able to reduce coloring in high-temperature processes. Examples 1-8 had a haze of less than 1.0%. Therefore, the polyimides obtained in Examples 1 to 8 were excellent in transparency.
  • the polyamic acid in the polyamic acid composition prepared in Comparative Example 1 did not have 6FDA residues.
  • the content of 6FDA residues exceeded 35 mol % with respect to the total tetracarboxylic dianhydride residues.
  • Comparative Examples 1 and 3 the haze was 1.0% or more. Therefore, the polyimides obtained in Comparative Examples 1 and 3 were not excellent in transparency. In Comparative Examples 2 and 3, ⁇ YI was 10 or more. Therefore, the polyimides obtained in Comparative Examples 2 and 3 were not able to reduce the coloring in the high-temperature process.
  • the polyimide obtained from the polyamic acid composition according to the present invention has excellent transparency and can reduce coloration in high-temperature processes.

Abstract

The polyamic acid has a 3,3',4,4'-biphenyltetracarboxylic dianhydride residue and a 4,4'-(hexafluoroisopropylidene)diphthalic anhydride residue as tetracarboxylic dianhydride residues and a 4-aminophenyl-4-aminobenzoate residue as a diamine residue. The content of 3,3',4,4'-biphenyltetracarboxylic dianhydride residues is 65-97 mol% (inclusive) relative to the total tetracarboxylic dianhydride residues. The content of 4,4'-(hexafluoroisopropylidene)diphthalic anhydride residues is 3-35 mol% (inclusive) relative to the total tetracarboxylic dianhydride residues. The content of 4-aminophenyl-4-aminobenzoate residues is 50 mol% or more relative to the total diamine residues.

Description

ポリアミド酸、ポリアミド酸組成物、ポリイミド、ポリイミド膜、積層体、積層体の製造方法及び電子デバイスPolyamic acid, polyamic acid composition, polyimide, polyimide film, laminate, method for producing laminate, and electronic device
 本発明は、ポリアミド酸、ポリアミド酸組成物、ポリイミド、ポリイミド膜、積層体、積層体の製造方法及び電子デバイスに関する。本発明は、更に、ポリイミドを用いた電子デバイス材料、薄膜トランジスタ(TFT)基板、フレキシブルディスプレイ基板、カラーフィルター、印刷物、光学材料、画像表示装置(より具体的には、液晶表示装置、有機EL、電子ペーパー等)、3Dディスプレイ、太陽電池、タッチパネル、透明導電膜基板、及び現在ガラスが使用されている部材の代替材料に関する。 The present invention relates to polyamic acids, polyamic acid compositions, polyimides, polyimide films, laminates, methods for producing laminates, and electronic devices. The present invention further provides electronic device materials using polyimide, thin film transistor (TFT) substrates, flexible display substrates, color filters, printed matter, optical materials, image display devices (more specifically, liquid crystal display devices, organic EL, electronic paper, etc.), 3D displays, solar cells, touch panels, transparent conductive film substrates, and substitute materials for members currently using glass.
 液晶ディスプレイ、有機EL、電子ペーパー等のディスプレイや、太陽電池、タッチパネル等のエレクトロニクスデバイスの急速な進歩に伴い、デバイスの薄型化や軽量化、フレキシブル化が進んでいる。これらのデバイスではガラス基板に代えてポリイミドが基板材料として用いられている。 With the rapid progress of displays such as liquid crystal displays, organic EL, and electronic paper, as well as electronic devices such as solar cells and touch panels, devices are becoming thinner, lighter, and more flexible. In these devices, polyimide is used as the substrate material instead of the glass substrate.
 これらのデバイスでは、基板上に様々な電子素子、例えば、薄膜トランジスタや透明電極等が形成されており、これらの電子素子の形成には高温プロセスが必要である。ポリイミドは、高温プロセスに適応できるだけの十分な耐熱性を有しており、熱膨張係数(CTE)もガラス基板や電子素子と近いため、内部応力が生じにくく、フレキシブルディスプレイ等の基板材料に好適である。 In these devices, various electronic elements, such as thin film transistors and transparent electrodes, are formed on the substrate, and high-temperature processes are required to form these electronic elements. Polyimide has sufficient heat resistance to adapt to high-temperature processes, and its coefficient of thermal expansion (CTE) is similar to that of glass substrates and electronic devices. be.
 一般的に芳香族ポリイミドは分子内共役や電荷移動(CT)錯体の形成により黄褐色に着色しているが、トップエミッション型の有機EL等では、基板の反対側から光を取り出すため、基板に透明性は求められず、従前の芳香族ポリイミドが用いられてきた。しかし、透明ディスプレイやボトムエミッション型の有機EL、液晶ディスプレイのように表示素子から発せられる光が基板を通って出射されるような場合や、スマートフォン等を全面ディスプレイ(ノッチレス)にするためにセンサーやカメラモジュールを基板の背面に配置する場合には、基板にも高い光学特性(より具体的には、透明性等)が求められるようになってきた。 Aromatic polyimides are generally colored yellowish brown due to intramolecular conjugation and formation of charge transfer (CT) complexes. Transparency is not required, and conventional aromatic polyimides have been used. However, in cases where the light emitted from the display element passes through the substrate, such as in transparent displays, bottom-emission organic EL, and liquid crystal displays, and in smartphones, etc., where full-screen displays (notchless) are required, sensors and When the camera module is arranged on the back surface of the substrate, the substrate is also required to have high optical properties (more specifically, transparency, etc.).
 このような背景から、既存の芳香族ポリイミドと同等の耐熱性を有しつつ、着色が低減され、透明性に優れる材料が求められている。 Against this background, there is a demand for a material that has the same heat resistance as existing aromatic polyimides, but also has reduced coloration and excellent transparency.
 ポリイミドの着色を低減させるために、脂肪族系モノマーを用いてCT錯体の形成を抑える技術(特許文献1及び2)、及びフッ素原子を有するモノマーを用いることで透明性を高める技術(特許文献3)が知られている。 In order to reduce the coloring of polyimide, a technique for suppressing the formation of a CT complex using an aliphatic monomer (Patent Documents 1 and 2), and a technique for improving transparency by using a monomer having a fluorine atom (Patent Document 3) )It has been known.
 特許文献1及び2に記載のポリイミドは、透明性が高く、CTEも低いが、脂肪族構造を有するため熱分解温度が低く、電子素子を形成する際の高温プロセスに適用することは難しい。 The polyimides described in Patent Documents 1 and 2 have high transparency and a low CTE, but because they have an aliphatic structure, they have a low thermal decomposition temperature and are difficult to apply to high-temperature processes when forming electronic elements.
 特許文献3に記載のポリイミドは、透明性に優れるが、電子素子を形成する際の高温プロセスにおいて着色する場合がある。 Although the polyimide described in Patent Document 3 has excellent transparency, it may be colored during the high-temperature process of forming electronic elements.
特開2016-29177号公報JP 2016-29177 A 特開2012-41530号公報JP 2012-41530 A 特開2014-70139号公報JP 2014-70139 A
 本発明は、上記実情に鑑みて成し遂げられたものであり、透明性に優れつつ、高温プロセスにおける着色を低減できるポリイミド及びその前駆体としてのポリアミド酸を提供することを目的とする。更に、当該ポリイミド及びポリアミド酸を用いて製造された、透明性が要求される製品又は部材を提供することも目的とする。特に、本発明のポリイミド膜が、ガラス、金属、金属酸化物、単結晶シリコン等の無機物表面に形成された製品又は部材を提供することを目的とする。 The present invention has been accomplished in view of the above circumstances, and an object of the present invention is to provide a polyimide and a polyamic acid as a precursor thereof that are excellent in transparency and capable of reducing coloration in high-temperature processes. Another object of the present invention is to provide a product or member that is produced using the polyimide and polyamic acid and that requires transparency. In particular, it is an object of the present invention to provide a product or member in which the polyimide film of the present invention is formed on the surface of an inorganic material such as glass, metal, metal oxide, or single crystal silicon.
<本発明の態様>
 本発明には、以下の態様が含まれる。
<Aspect of the present invention>
The present invention includes the following aspects.
[1]テトラカルボン酸二無水物残基として、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基及び4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基を有し、かつジアミン残基として、4-アミノフェニル-4-アミノベンゾエート残基を有し、
 前記3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基の含有率が、全テトラカルボン酸二無水物残基に対して、65モル%以上97モル%以下であり、
 前記4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基の含有率が、全テトラカルボン酸二無水物残基に対して、3モル%以上35モル%以下であり、
 前記4-アミノフェニル-4-アミノベンゾエート残基の含有率が、全ジアミン残基に対して、50モル%以上である、ポリアミド酸。
[1] Tetracarboxylic dianhydride residue, 3,3′,4,4′-biphenyltetracarboxylic dianhydride residue and 4,4′-(hexafluoroisopropylidene)diphthalic anhydride residue and having a 4-aminophenyl-4-aminobenzoate residue as a diamine residue,
The content of the 3,3',4,4'-biphenyltetracarboxylic dianhydride residue is 65 mol% or more and 97 mol% or less with respect to the total tetracarboxylic dianhydride residue,
The content of the 4,4'-(hexafluoroisopropylidene)diphthalic anhydride residue is 3 mol% or more and 35 mol% or less with respect to all tetracarboxylic dianhydride residues,
Polyamic acid, wherein the content of the 4-aminophenyl-4-aminobenzoate residue is 50 mol% or more with respect to all diamine residues.
[2]前記4-アミノフェニル-4-アミノベンゾエート残基の含有率が全ジアミン残基に対して100モル%未満である場合、前記4-アミノフェニル-4-アミノベンゾエート残基以外のジアミン残基が、p-フェニレンジアミン残基、9,9-ビス(4-アミノフェニル)フルオレン残基、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル残基、及び1,4-シクロヘキサンジアミン残基からなる群より選ばれる一種以上である、前記[1]に記載のポリアミド酸。 [2] When the content of the 4-aminophenyl-4-aminobenzoate residue is less than 100 mol% of all diamine residues, diamine residues other than the 4-aminophenyl-4-aminobenzoate residue groups are p-phenylenediamine residue, 9,9-bis(4-aminophenyl)fluorene residue, 2,2′-bis(trifluoromethyl)-4,4′-diaminodiphenyl ether residue, and 1, The polyamic acid according to [1] above, which is at least one selected from the group consisting of 4-cyclohexanediamine residues.
[3]前記4-アミノフェニル-4-アミノベンゾエート残基の含有率が、全ジアミン残基に対して100モル%である、前記[1]に記載のポリアミド酸。 [3] The polyamic acid according to [1] above, wherein the content of the 4-aminophenyl-4-aminobenzoate residue is 100 mol% with respect to all diamine residues.
[4]前記4-アミノフェニル-4-アミノベンゾエート残基以外のジアミン残基の含有率が、全ジアミン残基に対して、5モル%以上50モル%以下である、前記[2]に記載のポリアミド酸。 [4] The above-mentioned [2], wherein the content of diamine residues other than the 4-aminophenyl-4-aminobenzoate residue is 5 mol% or more and 50 mol% or less with respect to all diamine residues. polyamic acid.
[5]前記[1]~[4]のいずれか一つに記載のポリアミド酸と、有機溶媒とを含有する、ポリアミド酸組成物。 [5] A polyamic acid composition containing the polyamic acid according to any one of [1] to [4] and an organic solvent.
[6]更にイミド化促進剤を含有する、前記[5]に記載のポリアミド酸組成物。 [6] The polyamic acid composition according to [5] above, which further contains an imidization accelerator.
[7]前記イミド化促進剤の量が、前記ポリアミド酸100重量部に対して、0.1重量部以上10重量部以下である、前記[6]に記載のポリアミド酸組成物。 [7] The polyamic acid composition according to [6], wherein the amount of the imidization accelerator is 0.1 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the polyamic acid.
[8]前記[1]~[4]のいずれか一つに記載のポリアミド酸のイミド化物であるポリイミド。 [8] A polyimide which is an imidized product of the polyamic acid according to any one of [1] to [4].
[9]前記[8]に記載のポリイミドを含むポリイミド膜。 [9] A polyimide film containing the polyimide described in [8] above.
[10]黄色度が20以下である、前記[9]に記載のポリイミド膜。 [10] The polyimide film according to [9] above, which has a yellowness index of 20 or less.
[11]支持体と、前記[9]又は[10]に記載のポリイミド膜とを有する積層体。 [11] A laminate comprising a support and the polyimide film described in [9] or [10] above.
[12]前記支持体は、ガラス基板であり、
 前記ポリイミド膜と前記ガラス基板との間の内部応力が、25MPa以下である、前記[11]に記載の積層体。
[12] The support is a glass substrate,
The laminate according to [11], wherein the internal stress between the polyimide film and the glass substrate is 25 MPa or less.
[13]支持体とポリイミド膜とを有する積層体の製造方法であって、
 前記[5]~[7]のいずれか一つに記載のポリアミド酸組成物を支持体上に塗布することにより、前記ポリアミド酸を含む塗布膜を形成し、前記塗布膜を加熱して前記ポリアミド酸をイミド化する、積層体の製造方法。
[13] A method for producing a laminate having a support and a polyimide film,
By applying the polyamic acid composition according to any one of [5] to [7] on a support, a coating film containing the polyamic acid is formed, and the coating film is heated to obtain the polyamide A method for producing a laminate by imidating an acid.
[14]前記[9]又は[10]に記載のポリイミド膜と、前記ポリイミド膜上に配置された電子素子とを有する電子デバイス。 [14] An electronic device comprising the polyimide film described in [9] or [10] above, and an electronic element disposed on the polyimide film.
 本発明に係るポリアミド酸を用いて製造されるポリイミドは、透明性に優れつつ、高温プロセスにおける着色を低減できる。そのため、本発明に係るポリアミド酸を用いて製造されるポリイミドは、透明性が要求される電子デバイスの材料として好適である。 The polyimide produced using the polyamic acid according to the present invention has excellent transparency and can reduce coloration in high-temperature processes. Therefore, the polyimide produced using the polyamic acid according to the present invention is suitable as a material for electronic devices that require transparency.
 以下、本発明の好適な実施形態について詳しく説明するが、本発明はこれらに限定されるものではない。 Preferred embodiments of the present invention will be described in detail below, but the present invention is not limited to these.
 まず、本明細書中で使用される用語について説明する。「構造単位」とは、重合体を構成する繰り返し単位のことをいう。「ポリアミド酸」は、下記一般式(1)で表される構造単位(以下、「構造単位(1)」と記載することがある)を含む重合体である。 First, the terms used in this specification will be explained. A "structural unit" refers to a repeating unit that constitutes a polymer. A "polyamic acid" is a polymer containing a structural unit represented by the following general formula (1) (hereinafter sometimes referred to as "structural unit (1)").
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(1)中、Aは、テトラカルボン酸二無水物残基(テトラカルボン酸二無水物由来の4価の有機基)を表し、Aは、ジアミン残基(ジアミン由来の2価の有機基)を表す。 In the general formula (1), A 1 represents a tetracarboxylic dianhydride residue (tetravalent organic group derived from tetracarboxylic dianhydride), A 2 represents a diamine residue (divalent organic group derived from diamine organic group).
 ポリアミド酸を構成する全構造単位に対する構造単位(1)の含有率は、例えば50モル%以上100モル%以下であり、好ましくは60モル%以上100モル%以下であり、より好ましくは70モル%以上100モル%以下であり、更に好ましくは80モル%以上100モル%以下であり、更により好ましくは90モル%以上100モル%以下であり、100モル%であってもよい。 The content of the structural unit (1) with respect to all structural units constituting the polyamic acid is, for example, 50 mol% or more and 100 mol% or less, preferably 60 mol% or more and 100 mol% or less, more preferably 70 mol%. 100 mol % or more, more preferably 80 mol % or more and 100 mol % or less, even more preferably 90 mol % or more and 100 mol % or less, and may be 100 mol %.
 「1%重量減少温度」は、測定温度150℃におけるポリイミドの重量を基準(100重量%)とし、上記基準の重量に対して1重量%減少した際の測定温度である。 "1% weight loss temperature" is the measurement temperature when the weight of polyimide at a measurement temperature of 150°C is taken as the reference (100% by weight), and the weight is reduced by 1% by weight with respect to the reference weight.
 以下、化合物名の後に「系」を付けて、化合物及びその誘導体を包括的に総称する場合がある。化合物名の後に「系」を付けて重合体名を表す場合には、重合体の繰り返し単位が化合物又はその誘導体に由来することを意味する。また、テトラカルボン酸二無水物を「酸二無水物」と記載することがある。また、本明細書に例示の成分や官能基等は、特記しない限り、単独で用いてもよく、二種以上を併用してもよい。 In the following, "system" may be added after the name of the compound to generically refer to the compound and its derivatives. When the polymer name is expressed by adding "system" after the compound name, it means that the repeating unit of the polymer is derived from the compound or its derivative. Moreover, a tetracarboxylic dianhydride may be described as an "acid dianhydride". In addition, unless otherwise specified, the components, functional groups, and the like exemplified in this specification may be used alone or in combination of two or more.
<本発明の好適な実施形態>
 本実施形態に係るポリアミド酸(以下、「ポリアミド酸(1)」と記載することがある)は、テトラカルボン酸二無水物残基として、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基及び4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基を有し、かつジアミン残基として、4-アミノフェニル-4-アミノベンゾエート残基を有する。つまり、ポリアミド酸(1)は、下記化学式(2)で表される構造単位と、下記化学式(3)で表される構造単位とを含む重合体である。
<Preferred embodiment of the present invention>
Polyamic acid according to the present embodiment (hereinafter sometimes referred to as "polyamic acid (1)") is a tetracarboxylic dianhydride residue, 3,3',4,4'-biphenyltetracarboxylic acid It has a dianhydride residue and a 4,4′-(hexafluoroisopropylidene)diphthalic anhydride residue, and has a 4-aminophenyl-4-aminobenzoate residue as a diamine residue. That is, polyamic acid (1) is a polymer containing a structural unit represented by the following chemical formula (2) and a structural unit represented by the following chemical formula (3).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基は、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(以下、「BPDA」と記載することがある)由来の部分構造である。4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基は、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(以下、「6FDA」と記載することがある)由来の部分構造である。4-アミノフェニル-4-アミノベンゾエート残基は、4-アミノフェニル-4-アミノベンゾエート(以下、「4-BAAB」と記載することがある)由来の部分構造である。 3,3′,4,4′-biphenyltetracarboxylic dianhydride residue is 3,3′,4,4′-biphenyltetracarboxylic dianhydride (hereinafter sometimes referred to as “BPDA” ) is the partial structure derived from 4,4'-(Hexafluoroisopropylidene) diphthalic anhydride residue is a portion derived from 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (hereinafter sometimes referred to as "6FDA") Structure. A 4-aminophenyl-4-aminobenzoate residue is a partial structure derived from 4-aminophenyl-4-aminobenzoate (hereinafter sometimes referred to as “4-BAAB”).
 一般に、BPDA残基と4-BAAB残基とを有するポリアミド酸から得られるポリイミドは、それらの剛直な構造に由来して、ガラス転移温度(Tg)が高く(耐熱性に優れ)、CTEが低い上、支持体上にポリイミド膜を形成して積層体を得る際に発生する内部応力(以下、単に「内部応力」と記載することがある)を低減できる。しかし、テトラカルボン酸二無水物残基としてBPDA残基のみを有し、かつジアミン残基として4-BAAB残基のみを有するポリアミド酸から得られるポリイミドは、ヘイズが高くなる傾向があるため、透明性が要求される用途には不向きである。 In general, polyimides obtained from polyamic acids having BPDA residues and 4-BAAB residues have a high glass transition temperature (Tg) (excellent heat resistance) and a low CTE due to their rigid structure. In addition, it is possible to reduce the internal stress (hereinafter sometimes simply referred to as "internal stress") generated when a polyimide film is formed on a support to obtain a laminate. However, a polyimide obtained from a polyamic acid having only a BPDA residue as a tetracarboxylic dianhydride residue and only a 4-BAAB residue as a diamine residue tends to have a high haze. It is not suitable for applications that require durability.
 また、一般に、6FDA残基と4-BAAB残基とを有するポリアミド酸から得られるポリイミドは、優れた透明性を発現するが、6FDA残基の含有率が過度に高くなると、高温プロセスにおいて熱分解しやすくなる傾向がある。このため、6FDA残基の含有率が過度に高いポリアミド酸から得られるポリイミドは、高温プロセスにおける着色を低減することが困難である。 In general, polyimides obtained from polyamic acid having 6FDA residues and 4-BAAB residues exhibit excellent transparency. tends to be easier. For this reason, polyimide obtained from polyamic acid having an excessively high content of 6FDA residues is difficult to reduce coloration in high-temperature processes.
 本発明者は、鋭意検討した結果、BPDA残基と6FDA残基とを特定割合で有し、かつ4-BAAB残基の含有率が特定範囲のポリアミド酸(ポリアミド酸(1))から得られるポリイミドが、透明性に優れつつ、高温プロセスにおける着色を低減できることを見いだした。具体的には、ポリアミド酸(1)では、BPDA残基の含有率が、全テトラカルボン酸二無水物残基に対して、65モル%以上97モル%以下であり、6FDA残基の含有率が、全テトラカルボン酸二無水物残基に対して、3モル%以上35モル%以下である。また、ポリアミド酸(1)では、4-BAAB残基の含有率が、全ジアミン残基に対して、50モル%以上である。 As a result of intensive studies, the present inventors have found that BPDA residues and 6FDA residues are in a specific ratio, and the content of 4-BAAB residues is obtained from a polyamic acid (polyamic acid (1)) having a specific range. We have found that polyimide can reduce coloration in high-temperature processes while having excellent transparency. Specifically, in polyamic acid (1), the content of BPDA residues is 65 mol% or more and 97 mol% or less with respect to all tetracarboxylic dianhydride residues, and the content of 6FDA residues is 3 mol % or more and 35 mol % or less with respect to all tetracarboxylic dianhydride residues. In polyamic acid (1), the content of 4-BAAB residues is 50 mol % or more with respect to all diamine residues.
 高温プロセスにおける着色をより低減しつつ内部応力を低減できる上、耐熱性に優れるポリイミドを得るためには、BPDA残基の含有率が、ポリアミド酸(1)を構成する全テトラカルボン酸二無水物残基に対して、70モル%以上であることが好ましく、75モル%以上であることがより好ましく、80モル%以上であることが更に好ましく、85モル%以上であることが更により好ましい。また、透明性により優れるポリイミドを得るためには、BPDA残基の含有率が、ポリアミド酸(1)を構成する全テトラカルボン酸二無水物残基に対して、95モル%以下であることが好ましく、90モル%以下であることがより好ましい。 In order to obtain a polyimide that can reduce internal stress while further reducing coloration in a high-temperature process and has excellent heat resistance, the content of BPDA residues is the total tetracarboxylic acid dianhydride that constitutes polyamic acid (1). It is preferably 70 mol % or more, more preferably 75 mol % or more, even more preferably 80 mol % or more, and even more preferably 85 mol % or more, relative to the residue. In addition, in order to obtain a polyimide with excellent transparency, the content of BPDA residues should be 95 mol% or less with respect to all tetracarboxylic dianhydride residues constituting the polyamic acid (1). Preferably, it is 90 mol % or less.
 透明性により優れるポリイミドを得るためには、6FDA残基の含有率が、ポリアミド酸(1)を構成する全テトラカルボン酸二無水物残基に対して、5モル%以上であることが好ましく、10モル%以上であることがより好ましく、15モル%以上であることが更に好ましい。また、高温プロセスにおける着色をより低減しつつ内部応力を低減できる上、耐熱性に優れるポリイミドを得るためには、6FDA残基の含有率が、ポリアミド酸(1)を構成する全テトラカルボン酸二無水物残基に対して、30モル%以下であることが好ましい。 In order to obtain a polyimide with excellent transparency, the content of 6FDA residues is preferably 5 mol% or more with respect to the total tetracarboxylic dianhydride residues constituting the polyamic acid (1), It is more preferably 10 mol % or more, and even more preferably 15 mol % or more. In addition, in order to obtain a polyimide that can reduce internal stress while further reducing coloration in high-temperature processes and has excellent heat resistance, the content of 6FDA residues must be such that the content of all tetracarboxylic acids constituting polyamic acid (1) is It is preferably 30 mol % or less relative to the anhydride residue.
 高温プロセスにおける着色をより低減しつつ内部応力を低減できる上、耐熱性に優れるポリイミドを得るためには、4-BAAB残基の含有率が、ポリアミド酸(1)を構成する全ジアミン残基に対して、55モル%以上であることが好ましく、60モル%以上であることがより好ましく、65モル%以上であることが更に好ましく、70モル%以上であることが更により好ましく、75モル%以上、80モル%以上、85モル%以上、90モル%以上、95モル%以上又は100モル%であってもよい。 In order to obtain a polyimide that can reduce internal stress while further reducing coloration in a high-temperature process and has excellent heat resistance, the content of 4-BAAB residues is the total diamine residues that make up polyamic acid (1). On the other hand, it is preferably 55 mol% or more, more preferably 60 mol% or more, still more preferably 65 mol% or more, even more preferably 70 mol% or more, and 75 mol% Above, 80 mol % or more, 85 mol % or more, 90 mol % or more, 95 mol % or more, or 100 mol % may be sufficient.
 ポリアミド酸(1)を合成する際は、その性能を損なわない範囲で、BPDA及び6FDA以外の酸二無水物をモノマーとして用いてもよい。BPDA及び6FDA以外の酸二無水物としては、例えば、ピロメリット酸二無水物、p-フェニレンビス(トリメリテート無水物)、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、4,4’-オキシジフタル酸無水物、ジシクロヘキシル-3,3’,4,4’-テトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、2’-オキソジスピロ[ビシクロ[2.2.1]ヘプタン-2,1’-シクロペンタン-3’,2’’-ビシクロ[2.2.1]ヘプタン]-5,6:5’’,6’’-テトラカルボン酸二無水物及びこれらの誘導体が挙げられ、これらを単独又は二種類以上用いてもよい。 When synthesizing polyamic acid (1), acid dianhydrides other than BPDA and 6FDA may be used as monomers within a range that does not impair its performance. Acid dianhydrides other than BPDA and 6FDA include, for example, pyromellitic dianhydride, p-phenylenebis(trimellitate anhydride), 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,2 ,5,6-naphthalenetetracarboxylic dianhydride, 2,2′,3,3′-biphenyltetracarboxylic dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 4 ,4'-oxydiphthalic anhydride, dicyclohexyl-3,3',4,4'-tetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 1,2,3, 4-Cyclobutanetetracarboxylic dianhydride, 2′-oxodispiro[bicyclo[2.2.1]heptane-2,1′-cyclopentane-3′,2″-bicyclo[2.2.1]heptane] -5,6:5'',6''-tetracarboxylic dianhydrides and derivatives thereof, which may be used singly or in combination of two or more.
 高温プロセスにおける着色をより低減しつつ内部応力を低減できる上、耐熱性及び透明性により優れるポリイミドを得るためには、BPDA残基及び6FDA残基の合計含有率が、ポリアミド酸(1)を構成する全テトラカルボン酸二無水物残基に対して、70モル%以上であることが好ましく、75モル%以上であることがより好ましく、80モル%以上であることが更に好ましく、85モル%以上であることが更により好ましく、90モル%以上、95モル%以上又は100モル%であってもよい。 In order to obtain a polyimide that can reduce internal stress while further reducing coloration in high-temperature processes and has excellent heat resistance and transparency, the total content of BPDA residues and 6FDA residues constitutes polyamic acid (1) It is preferably 70 mol% or more, more preferably 75 mol% or more, still more preferably 80 mol% or more, with respect to the total tetracarboxylic dianhydride residue, 85 mol% or more is even more preferable, and may be 90 mol % or more, 95 mol % or more, or 100 mol %.
 ポリアミド酸(1)を合成する際は、その性能を損なわない範囲で、4-BAAB以外のジアミンをモノマーとして用いてもよい。4-BAAB以外のジアミンとしては、例えば、p-フェニレンジアミン(以下、「PDA」と記載することがある)、9,9-ビス(4-アミノフェニル)フルオレン(以下、「BAFL」と記載することがある)、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル(以下、「6FODA」と記載することがある)、1,4-シクロヘキサンジアミン(以下、「CHDA」と記載することがある)、4,4’-ジアミノベンズアニリド、2,2’-ビス(トリフルオロメチル)ベンジジン、m-フェニレンジアミン、4,4’-オキシジアニリン、3,4’-オキシジアニリン、N,N’-ビス(4-アミノフェニル)テレフタルアミド、4,4’-ジアミノジフェニルスルホン、m-トリジン、o-トリジン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、2-(4-アミノフェニル)-6-アミノベンゾオキサゾール、3,5-ジアミノ安息香酸、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル、4,4’-メチレンビス(シクロヘキサンアミン)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン及びこれらの誘導体が挙げられ、これらを単独又は二種類以上用いてもよい。 When synthesizing polyamic acid (1), a diamine other than 4-BAAB may be used as a monomer within a range that does not impair its performance. Examples of diamines other than 4-BAAB include p-phenylenediamine (hereinafter sometimes referred to as "PDA") and 9,9-bis(4-aminophenyl)fluorene (hereinafter referred to as "BAFL"). 2,2′-bis(trifluoromethyl)-4,4′-diaminodiphenyl ether (hereinafter sometimes referred to as “6FODA”), 1,4-cyclohexanediamine (hereinafter referred to as “CHDA” ), 4,4′-diaminobenzanilide, 2,2′-bis(trifluoromethyl)benzidine, m-phenylenediamine, 4,4′-oxydianiline, 3,4′-oxy Dianiline, N,N'-bis(4-aminophenyl)terephthalamide, 4,4'-diaminodiphenylsulfone, m-tolidine, o-tolidine, 4,4'-bis(4-aminophenoxy)biphenyl, 2 -(4-aminophenyl)-6-aminobenzoxazole, 3,5-diaminobenzoic acid, 4,4'-diamino-3,3'-dihydroxybiphenyl, 4,4'-methylenebis(cyclohexanamine), 1, 3-bis(3-aminopropyl)tetramethyldisiloxane and derivatives thereof may be mentioned, and these may be used alone or in combination of two or more.
 ポリアミド酸(1)が、4-BAAB残基以外のジアミン残基を有する場合、つまり、ポリアミド酸(1)において、4-BAAB残基の含有率が全ジアミン残基に対して100モル%未満である場合、透明性に優れつつ、高温プロセスにおける着色をより低減できるポリイミドを得るためには、4-BAAB残基以外のジアミン残基としては、PDA残基、BAFL残基、6FODA残基及びCHDA残基からなる群より選ばれる一種以上のジアミン残基が好ましい。以下、PDA残基、BAFL残基、6FODA残基及びCHDA残基からなる群より選ばれる一種以上のジアミン残基を、「任意ジアミン残基」と記載することがある。 When polyamic acid (1) has diamine residues other than 4-BAAB residues, that is, in polyamic acid (1), the content of 4-BAAB residues is less than 100 mol% with respect to all diamine residues. In that case, in order to obtain a polyimide that has excellent transparency and can further reduce coloring in a high-temperature process, diamine residues other than 4-BAAB residues include PDA residues, BAFL residues, 6FODA residues and One or more diamine residues selected from the group consisting of CHDA residues are preferred. Hereinafter, one or more diamine residues selected from the group consisting of PDA residues, BAFL residues, 6FODA residues and CHDA residues may be referred to as "optional diamine residues".
 透明性に優れつつ、高温プロセスにおける着色をより低減できるポリイミドを得るためには、ポリアミド酸(1)は、ジアミン残基として4-BAAB残基のみを有するか、又は、ジアミン残基として4-BAAB残基及び任意ジアミン残基のみを有することが好ましい。つまり、ポリアミド酸(1)では、4-BAAB残基の含有率が全ジアミン残基に対して100モル%であるか、又は、4-BAAB残基及び任意ジアミン残基の合計含有率が全ジアミン残基に対して100モル%であることが好ましい。 In order to obtain a polyimide that has excellent transparency and can further reduce coloring in a high-temperature process, polyamic acid (1) has only a 4-BAAB residue as a diamine residue, or 4- as a diamine residue. It is preferred to have only BAAB residues and optional diamine residues. That is, in polyamic acid (1), the content of 4-BAAB residues is 100 mol% with respect to all diamine residues, or the total content of 4-BAAB residues and optional diamine residues is It is preferably 100 mol % with respect to diamine residues.
 ポリアミド酸(1)が任意ジアミン残基を有する場合、透明性に優れつつ、高温プロセスにおける着色をより低減できるポリイミドを得るためには、任意ジアミン残基の含有率は、ポリアミド酸(1)を構成する全ジアミン残基に対して、5モル%以上50モル%以下であることが好ましく、5モル%以上40モル%以下であることがより好ましく、5モル%以上35モル%以下であることが更に好ましく、5モル%以上30モル%以下であることが更により好ましく、10モル%以上30モル%以下であることが特に好ましい。なお、ポリアミド酸(1)が任意ジアミン残基を複数種有する場合、「任意ジアミン残基の含有率」とは、複数種の任意ジアミン残基の合計含有率を表す。 When the polyamic acid (1) has an optional diamine residue, in order to obtain a polyimide that has excellent transparency and can further reduce coloration in a high-temperature process, the content of the optional diamine residue is the polyamic acid (1). It is preferably 5 mol% or more and 50 mol% or less, more preferably 5 mol% or more and 40 mol% or less, and 5 mol% or more and 35 mol% or less with respect to all the constituent diamine residues. is more preferably 5 mol % or more and 30 mol % or less, and particularly preferably 10 mol % or more and 30 mol % or less. In addition, when polyamic acid (1) has multiple types of arbitrary diamine residues, "the content rate of arbitrary diamine residues" represents the total content rate of multiple types of arbitrary diamine residues.
 ポリアミド酸(1)が任意ジアミン残基を有する場合、高温プロセスにおける着色をより低減しつつ、耐熱性に優れるポリイミドを得るためには、任意ジアミン残基としてはPDA残基が好ましい。 When polyamic acid (1) has an optional diamine residue, a PDA residue is preferable as the optional diamine residue in order to obtain a polyimide with excellent heat resistance while further reducing coloration in high-temperature processes.
 ポリアミド酸(1)が任意ジアミン残基を有する場合、透明性に優れるポリイミドを得るためには、任意ジアミン残基としては、BAFL残基、6FODA残基及びCHDA残基からなる群より選ばれる一種以上のジアミン残基が好ましい。 When the polyamic acid (1) has an optional diamine residue, in order to obtain a polyimide with excellent transparency, the optional diamine residue is one selected from the group consisting of a BAFL residue, a 6FODA residue and a CHDA residue. The above diamine residues are preferred.
 ポリアミド酸(1)が任意ジアミン残基を有する場合、透明性に優れつつ、高温プロセスにおける着色をより低減できるポリイミドを得るためには、任意ジアミン残基としてはBAFL残基が好ましい。 When polyamic acid (1) has an optional diamine residue, a BAFL residue is preferable as the optional diamine residue in order to obtain a polyimide that has excellent transparency and can further reduce coloration in high-temperature processes.
 透明性に更に優れつつ、高温プロセスにおける着色を更に低減できるポリイミドを得るためには、ポリアミド酸(1)は、下記条件1を満たすことが好ましく、下記条件2を満たすことがより好ましく、下記条件3を満たすことが更に好ましい。
 条件1:ジアミン残基として4-BAAB残基のみを有するか、又は、ジアミン残基として4-BAAB残基及び任意ジアミン残基のみを有し、かつBPDA残基及び6FDA残基の合計含有率が全酸二無水物残基に対して90モル%以上である。
 条件2:ジアミン残基として4-BAAB残基及びPDA残基のみを有するか、又は、ジアミン残基として4-BAAB残基及びBAFL残基のみを有し、かつBPDA残基及び6FDA残基の合計含有率が全酸二無水物残基に対して90モル%以上である。
 条件3:ジアミン残基として4-BAAB残基及びBAFL残基のみを有し、かつBPDA残基及び6FDA残基の合計含有率が全酸二無水物残基に対して90モル%以上である。
In order to obtain a polyimide that can further reduce coloration in a high-temperature process while still having excellent transparency, the polyamic acid (1) preferably satisfies the following condition 1, more preferably satisfies the following condition 2, and the following conditions 3 is more preferably satisfied.
Condition 1: having only 4-BAAB residues as diamine residues, or having only 4-BAAB residues and optional diamine residues as diamine residues, and the total content of BPDA residues and 6FDA residues is 90 mol % or more with respect to all acid dianhydride residues.
Condition 2: having only 4-BAAB residues and PDA residues as diamine residues, or having only 4-BAAB residues and BAFL residues as diamine residues, and BPDA residues and 6FDA residues The total content is 90 mol % or more with respect to all acid dianhydride residues.
Condition 3: It has only 4-BAAB residues and BAFL residues as diamine residues, and the total content of BPDA residues and 6FDA residues is 90 mol% or more with respect to all acid dianhydride residues. .
 ポリアミド酸(1)は、公知の一般的な方法にて合成することができ、例えば、有機溶媒中でジアミンとテトラカルボン酸二無水物とを反応させることにより得ることができる。ポリアミド酸(1)の具体的な合成方法の一例について説明する。まず、アルゴン、窒素等の不活性ガス雰囲気中において、ジアミンを、有機溶媒中に溶解又はスラリー状に分散させて、ジアミン溶液を調製する。そして、テトラカルボン酸二無水物を、有機溶媒に溶解又はスラリー状に分散させた状態とした後、あるいは固体の状態で、上記ジアミン溶液中に添加する。 Polyamic acid (1) can be synthesized by a known general method, and can be obtained, for example, by reacting a diamine and a tetracarboxylic dianhydride in an organic solvent. An example of a specific method for synthesizing polyamic acid (1) will be described. First, a diamine solution is prepared by dissolving or dispersing a diamine in an organic solvent in an inert gas atmosphere such as argon or nitrogen. Then, the tetracarboxylic dianhydride is added to the diamine solution after dissolving it in an organic solvent or dispersing it in a slurry state, or in a solid state.
 ジアミンとテトラカルボン酸二無水物とを用いてポリアミド酸を合成する場合、ジアミンの物質量(ジアミンを複数種使用する場合は、各ジアミンの物質量)と、テトラカルボン酸二無水物の物質量(テトラカルボン酸二無水物を複数種使用する場合は、各テトラカルボン酸二無水物の物質量)とを調整することで、所望のポリアミド酸(ジアミンとテトラカルボン酸二無水物との重合体)を得ることができる。ポリアミド酸(1)中の各残基のモル分率は、例えば、ポリアミド酸(1)の合成に使用する各モノマー(ジアミン及びテトラカルボン酸二無水物)のモル分率と一致する。また、二種のポリアミド酸をブレンドすることによって、複数種のテトラカルボン酸二無水物残基及び複数種のジアミン残基を含有するポリアミド酸(1)を得ることもできる。ジアミンとテトラカルボン酸二無水物との反応、即ち、ポリアミド酸(1)の合成反応の温度条件は、特に限定されないが、例えば20℃以上150℃以下の範囲である。ポリアミド酸(1)の合成反応の反応時間は、例えば10分以上30時間以下の範囲である。 When synthesizing a polyamic acid using a diamine and a tetracarboxylic dianhydride, the substance amount of the diamine (when using multiple types of diamines, the substance amount of each diamine) and the substance amount of the tetracarboxylic dianhydride (When using multiple types of tetracarboxylic dianhydrides, the amount of each tetracarboxylic dianhydride) is adjusted to obtain the desired polyamic acid (polymer of diamine and tetracarboxylic dianhydride ) can be obtained. The molar fraction of each residue in polyamic acid (1) matches, for example, the molar fraction of each monomer (diamine and tetracarboxylic dianhydride) used in synthesizing polyamic acid (1). Polyamic acid (1) containing multiple types of tetracarboxylic dianhydride residues and multiple types of diamine residues can also be obtained by blending two types of polyamic acids. The temperature conditions for the reaction between the diamine and the tetracarboxylic dianhydride, that is, the synthesis reaction of the polyamic acid (1) are not particularly limited, but are, for example, in the range of 20°C or higher and 150°C or lower. The reaction time for the synthetic reaction of polyamic acid (1) is, for example, in the range of 10 minutes or more and 30 hours or less.
 ポリアミド酸(1)の合成に使用する有機溶媒は、使用するテトラカルボン酸二無水物及びジアミンを溶解可能な溶媒が好ましく、生成するポリアミド酸(1)を溶解可能な溶媒がより好ましい。ポリアミド酸(1)の合成に使用する有機溶媒としては、例えば、テトラメチル尿素、N,N-ジメチルエチルウレアのようなウレア系溶媒;ジメチルスルホキシドのようなスルホキシド系溶媒;ジフェニルスルホン、テトラメチルスルホンのようなスルホン系溶媒;N,N-ジメチルアセトアミド(DMAC)、N,N-ジメチルホルムアミド(DMF)、N,N-ジエチルアセトアミド、N-メチル-2-ピロリドン(NMP)、3-メトキシ-N,N-ジメチルプロパンアミド(MPA)、ヘキサメチルリン酸トリアミド等のアミド系溶媒;γ-ブチロラクトン等のエステル系溶媒;クロロホルム、塩化メチレン等のハロゲン化アルキル系溶媒;ベンゼン、トルエン等の芳香族炭化水素系溶媒;フェノール、クレゾール等のフェノール系溶媒;シクロペンタノン等のケトン系溶媒;テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、ジメチルエーテル、ジエチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、p-クレゾールメチルエーテル等のエーテル系溶媒が挙げられる。通常これらの溶媒を単独で用いるが、必要に応じて二種以上を適宜組み合わせて用いてもよい。ポリアミド酸(1)の溶解性及び反応性を高めるためには、ポリアミド酸(1)の合成反応に使用する有機溶媒としては、アミド系溶媒、ケトン系溶媒、エステル系溶媒及びエーテル系溶媒からなる群より選択される一種以上の溶媒が好ましく、アミド系溶媒(より具体的には、DMF、DMAC、NMP、MPA等)がより好ましい。また、ポリアミド酸(1)の合成反応は、アルゴンや窒素等の不活性ガス雰囲気下で行うことが好ましい。 The organic solvent used for synthesizing polyamic acid (1) is preferably a solvent capable of dissolving the tetracarboxylic dianhydride and diamine used, and more preferably a solvent capable of dissolving polyamic acid (1) to be produced. Examples of organic solvents used for synthesizing polyamic acid (1) include urea-based solvents such as tetramethylurea and N,N-dimethylethylurea; sulfoxide-based solvents such as dimethylsulfoxide; diphenylsulfone and tetramethylsulfone. Sulfone-based solvents such as; N,N-dimethylacetamide (DMAC), N,N-dimethylformamide (DMF), N,N-diethylacetamide, N-methyl-2-pyrrolidone (NMP), 3-methoxy-N , N-dimethylpropanamide (MPA), hexamethylphosphoric triamide and other amide solvents; γ-butyrolactone and other ester solvents; chloroform, methylene chloride and other halogenated alkyl solvents; benzene, toluene and other aromatic carbonization Hydrogen-based solvents; phenolic solvents such as phenol and cresol; ketone-based solvents such as cyclopentanone; Ether-based solvents such as cresol methyl ether are included. These solvents are usually used alone, but if necessary, two or more of them may be used in combination. In order to increase the solubility and reactivity of the polyamic acid (1), the organic solvent used in the synthetic reaction of the polyamic acid (1) consists of amide solvents, ketone solvents, ester solvents and ether solvents. One or more solvents selected from the group are preferred, and amide solvents (more specifically, DMF, DMAC, NMP, MPA, etc.) are more preferred. Further, the synthetic reaction of polyamic acid (1) is preferably carried out in an inert gas atmosphere such as argon or nitrogen.
 ポリアミド酸(1)の重量平均分子量は、その用途にもよるが、10,000以上1,000,000以下の範囲であることが好ましく、20,000以上500,000以下の範囲であることがより好ましく、30,000以上200,000以下の範囲であることが更に好ましい。重量平均分子量が10,000以上であれば、ポリアミド酸(1)、又はポリアミド酸(1)を用いて得られるポリイミドを、塗布膜又はポリイミド膜(フィルム)とすることが容易となる。一方、重量平均分子量が1,000,000以下であると、溶媒に対して十分な溶解性を示すため、後述するポリアミド酸組成物を用いて表面が平滑で厚みが均一な塗布膜又はポリイミド膜が得られる。ここで用いている重量平均分子量とは、ゲルパーミレーションクロマトグラフィー(GPC)を用いて測定したポリエチレンオキシド換算値のことをいう。 The weight average molecular weight of the polyamic acid (1) is preferably in the range of 10,000 or more and 1,000,000 or less, and more preferably in the range of 20,000 or more and 500,000 or less, depending on the application. More preferably, it is in the range of 30,000 or more and 200,000 or less. If the weight-average molecular weight is 10,000 or more, polyamic acid (1) or polyimide obtained using polyamic acid (1) can be easily formed into a coating film or a polyimide film (film). On the other hand, when the weight-average molecular weight is 1,000,000 or less, it exhibits sufficient solubility in a solvent, so a coating film or polyimide film having a smooth surface and a uniform thickness using a polyamic acid composition described later is obtained. The weight average molecular weight used here means a polyethylene oxide equivalent value measured using gel permeation chromatography (GPC).
 また、ポリアミド酸(1)の分子量を制御する方法として、酸二無水物とジアミンのどちらかを過剰にする方法や、フタル酸無水物やアニリンのような一官能性の酸無水物やアミンと反応させることで反応をクエンチさせる方法が挙げられる。酸二無水物とジアミンのどちらかを過剰にして重合する場合、これらの仕込みモル比が0.95から1.05の間であれば、十分な強度を有するポリイミド膜を得ることができる。なお、上記仕込みモル比は、ポリアミド酸(1)の合成に使用した酸二無水物の合計物質量に対する、ポリアミド酸(1)の合成に使用したジアミンの合計物質量の比(ジアミンの合計物質量/酸二無水物の合計物質量)である。また、フタル酸無水物、マレイン酸無水物、アニリン等で末端封止することで、ポリアミド酸(1)を用いて得られるポリイミドの着色をより低減することもできる。 In addition, as a method for controlling the molecular weight of the polyamic acid (1), a method of using either an acid dianhydride or a diamine in excess, a monofunctional acid anhydride such as phthalic anhydride or aniline, or an amine A method of quenching the reaction by reacting is included. When either the acid dianhydride or the diamine is used excessively for polymerization, a polyimide film having sufficient strength can be obtained if the molar ratio of these charged is between 0.95 and 1.05. In addition, the molar ratio of the charge is the ratio of the total amount of diamines used in the synthesis of polyamic acid (1) to the total amount of acid dianhydrides used in the synthesis of polyamic acid (1) (total amount of diamines amount/total substance amount of acid dianhydride). Further, by terminal-capping with phthalic anhydride, maleic anhydride, aniline, or the like, coloring of the polyimide obtained using the polyamic acid (1) can be further reduced.
 本実施形態に係るポリアミド酸組成物は、ポリアミド酸(1)と、有機溶媒とを含有する。本実施形態に係るポリアミド酸組成物に含まれる有機溶媒としては、上記ポリアミド酸(1)の合成反応に使用可能な有機溶媒として例示した有機溶媒を挙げることができ、アミド系溶媒、ケトン系溶媒、エステル系溶媒及びエーテル系溶媒からなる群より選択される一種以上の溶媒が好ましく、アミド系溶媒(より具体的には、DMF、DMAC、NMP、MPA等)がより好ましい。上述した方法でポリアミド酸(1)を得た場合、反応溶液(反応後の溶液)自体を本実施形態に係るポリアミド酸組成物としてもよい。また、反応溶液から溶媒を除去して得られた固体のポリアミド酸(1)を、有機溶媒に溶解して、本実施形態に係るポリアミド酸組成物を調製してもよい。なお、本実施形態に係るポリアミド酸組成物中のポリアミド酸(1)の含有率は、特に制限されないが、例えばポリアミド酸組成物全量に対して1重量%以上80重量%以下である。 The polyamic acid composition according to the present embodiment contains polyamic acid (1) and an organic solvent. Examples of the organic solvent contained in the polyamic acid composition according to the present embodiment include the organic solvents exemplified as the organic solvent that can be used in the synthesis reaction of the polyamic acid (1), such as amide solvents and ketone solvents. , ester solvents and ether solvents are preferable, and amide solvents (more specifically, DMF, DMAC, NMP, MPA, etc.) are more preferable. When polyamic acid (1) is obtained by the method described above, the reaction solution (solution after reaction) itself may be used as the polyamic acid composition according to the present embodiment. Alternatively, the solid polyamic acid (1) obtained by removing the solvent from the reaction solution may be dissolved in an organic solvent to prepare the polyamic acid composition according to the present embodiment. The content of polyamic acid (1) in the polyamic acid composition according to the present embodiment is not particularly limited, but is, for example, 1% by weight or more and 80% by weight or less based on the total amount of the polyamic acid composition.
 また、本実施形態に係るポリアミド酸組成物は、加熱時間の短縮や特性発現のために、イミド化促進剤及び/又は脱水触媒を含んでいてもよい。 In addition, the polyamic acid composition according to the present embodiment may contain an imidization accelerator and/or a dehydration catalyst in order to shorten the heating time and develop properties.
 上記イミド化促進剤としては、特に限定されないが、3級アミンを用いることができる。3級アミンとしては複素環式の3級アミンが好ましい。複素環式の3級アミンの好ましい具体例としては、ピリジン、ピコリン、キノリン、イソキノリン、イミダゾール類等を挙げることができる。上記脱水触媒としては、無水酢酸、プロピオン酸無水物、n-酪酸無水物、安息香酸無水物、トリフルオロ酢酸無水物等を好ましい具体例として挙げることができる。 Although not particularly limited, a tertiary amine can be used as the imidization accelerator. A heterocyclic tertiary amine is preferred as the tertiary amine. Preferable specific examples of heterocyclic tertiary amines include pyridine, picoline, quinoline, isoquinoline and imidazoles. Preferred specific examples of the dehydration catalyst include acetic anhydride, propionic anhydride, n-butyric anhydride, benzoic anhydride, and trifluoroacetic anhydride.
 加熱時間の短縮の観点及び特性発現の観点から、イミド化促進剤の量は、100重量部のポリアミド酸(1)に対して、0.1重量部以上10重量部以下であることが好ましく、0.5重量部以上5重量部以下であることがより好ましい。また、加熱時間の短縮の観点及び特性発現の観点から、脱水触媒の量は、100重量部のポリアミド酸(1)に対して、0.1重量部以上10重量部以下であることが好ましく、0.5重量部以上5重量部以下であることがより好ましい。 From the viewpoint of shortening the heating time and the expression of properties, the amount of the imidization accelerator is preferably 0.1 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the polyamic acid (1). It is more preferably 0.5 parts by weight or more and 5 parts by weight or less. In addition, from the viewpoint of shortening the heating time and developing properties, the amount of the dehydration catalyst is preferably 0.1 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the polyamic acid (1). It is more preferably 0.5 parts by weight or more and 5 parts by weight or less.
 イミド化促進剤としては、イミダゾール類が好ましい。なお、本明細書中においてイミダゾール類とは、1,3-ジアゾール環(1,3-ジアゾール環構造)を有する化合物をさす。本実施形態に係るポリアミド酸組成物に添加できるイミダゾール類としては、特に限定されないが、例えば、1H-イミダゾール、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール等が挙げられる。これらの中では、1,2-ジメチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾールが好ましく、1,2-ジメチルイミダゾール、1-ベンジル-2-メチルイミダゾールがより好ましい。 As the imidization accelerator, imidazoles are preferable. In the present specification, imidazoles refer to compounds having a 1,3-diazole ring (1,3-diazole ring structure). The imidazoles that can be added to the polyamic acid composition according to the present embodiment are not particularly limited. imidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole and the like. Among these, 1,2-dimethylimidazole, 1-benzyl-2-methylimidazole and 1-benzyl-2-phenylimidazole are preferred, and 1,2-dimethylimidazole and 1-benzyl-2-methylimidazole are more preferred. .
 イミダゾール類の含有量は、ポリアミド酸(1)のアミド基1モルに対して、0.005モル以上0.1モル以下であることが好ましく、0.01モル以上0.08モル以下であることがより好ましく、0.015モル以上0.050モル以下であることが更に好ましい。イミダゾール類を0.005モル以上含有させることでポリイミドの膜強度及び透明性を向上させることができ、イミダゾール類の含有量を0.1モル以下とすることで、ポリアミド酸(1)の保存安定性を維持しつつ、耐熱性を向上させることができる。なお、本明細書中において、「ポリアミド酸(1)のアミド基」とは、ジアミンとテトラカルボン酸二無水物との重合反応によって生成したアミド基をさす。 The content of the imidazole is preferably 0.005 mol or more and 0.1 mol or less, and 0.01 mol or more and 0.08 mol or less, relative to 1 mol of the amide group of the polyamic acid (1). is more preferably 0.015 mol or more and 0.050 mol or less. By containing 0.005 mol or more of imidazoles, the film strength and transparency of the polyimide can be improved, and by making the content of imidazoles 0.1 mol or less, polyamic acid (1) can be stored stably. It is possible to improve the heat resistance while maintaining the properties. In the present specification, "amide group of polyamic acid (1)" refers to an amide group produced by a polymerization reaction of diamine and tetracarboxylic dianhydride.
 ポリアミド酸(1)とイミダゾール類との混合方法は特に制限されない。ポリアミド酸(1)の分子量制御の容易性の観点から、重合後のポリアミド酸(1)にイミダゾール類を添加することが好ましい。このとき、イミダゾール類をそのままポリアミド酸(1)に添加してもよいし、あらかじめイミダゾール類を溶媒に溶解しておき、この溶液をポリアミド酸(1)に添加してもよく、添加方法は特に制限されない。重合後のポリアミド酸(1)を含む溶液(反応後の溶液)にイミダゾール類を添加して、本実施形態に係るポリアミド酸組成物を調製してもよい。 The method of mixing polyamic acid (1) and imidazoles is not particularly limited. From the viewpoint of ease of controlling the molecular weight of polyamic acid (1), it is preferable to add imidazoles to polyamic acid (1) after polymerization. At this time, the imidazole may be added as it is to the polyamic acid (1), or the imidazole may be dissolved in a solvent in advance and this solution may be added to the polyamic acid (1). Not restricted. The polyamic acid composition according to the present embodiment may be prepared by adding imidazoles to a solution containing polyamic acid (1) after polymerization (solution after reaction).
 本実施形態に係るポリアミド酸組成物には、添加剤として、様々な有機若しくは無機の低分子化合物、又は高分子化合物を配合してもよい。添加剤としては、例えば、可塑剤、酸化防止剤、染料、界面活性剤、レベリング剤、シリコーン、微粒子、増感剤等を用いることができる。微粒子には、ポリスチレン、ポリテトラフルオロエチレン等からなる有機微粒子や、コロイダルシリカ、カーボン、層状珪酸塩等からなる無機微粒子等が含まれ、それらは多孔質構造や中空構造であってもよい。また、微粒子の機能及び形態は、特に限定されず、例えば、顔料であっても、フィラーであってもよく、繊維状粒子であってもよい。 Various organic or inorganic low-molecular-weight compounds or high-molecular-weight compounds may be added as additives to the polyamic acid composition according to the present embodiment. Examples of additives that can be used include plasticizers, antioxidants, dyes, surfactants, leveling agents, silicones, fine particles, and sensitizers. The fine particles include organic fine particles made of polystyrene, polytetrafluoroethylene, etc., inorganic fine particles made of colloidal silica, carbon, layered silicate, etc. They may have a porous structure or a hollow structure. The function and form of the fine particles are not particularly limited, and may be, for example, pigments, fillers, or fibrous particles.
 また、本実施形態に係るポリアミド酸組成物には、支持体との適切な密着性を発現させるために、シランカップリング剤を含有させることができる。シランカップリング剤の種類は、公知のものを特に制限なく使用できるが、ポリアミド酸(1)との反応性の観点からアミノ基を含有する化合物が特に好ましい。 In addition, the polyamic acid composition according to the present embodiment can contain a silane coupling agent in order to exhibit appropriate adhesion to the support. As the type of silane coupling agent, known ones can be used without particular limitation, but compounds containing an amino group are particularly preferred from the viewpoint of reactivity with polyamic acid (1).
 100重量部のポリアミド酸(1)に対するシランカップリング剤の配合割合は、0.01重量部以上0.50重量部以下であることが好ましく、0.01重量部以上0.10重量部以下であることがより好ましく、0.01重量部以上0.05重量部以下であることが更に好ましい。シランカップリング剤の配合割合を0.01重量部以上とすることで、支持体に対する剥離抑制効果が十分に発揮され、シランカップリング剤の配合割合を0.50重量部以下とすることで、ポリアミド酸(1)の分子量低下が抑制されるため、ポリイミド膜の脆化を抑制できる。 The mixing ratio of the silane coupling agent to 100 parts by weight of polyamic acid (1) is preferably 0.01 parts by weight or more and 0.50 parts by weight or less, and 0.01 parts by weight or more and 0.10 parts by weight or less. more preferably 0.01 parts by weight or more and 0.05 parts by weight or less. By setting the mixing ratio of the silane coupling agent to 0.01 parts by weight or more, the effect of suppressing peeling from the support is sufficiently exhibited, and by setting the mixing ratio of the silane coupling agent to 0.50 parts by weight or less, Since the decrease in the molecular weight of the polyamic acid (1) is suppressed, embrittlement of the polyimide film can be suppressed.
 本実施形態に係るポリイミドは、上述したポリアミド酸(1)のイミド化物である。本実施形態に係るポリイミドは、公知の方法にて得ることができ、その製造方法は、特に制限されない。以下、ポリアミド酸(1)をイミド化して本実施形態に係るポリイミドを得る方法の一例について説明する。イミド化は、ポリアミド酸(1)を脱水閉環することによって行われる。この脱水閉環は、共沸溶媒を用いた共沸法、熱的手法又は化学的手法によって行うことができる。また、ポリアミド酸(1)からポリイミドへのイミド化は、1%以上100%以下の任意の割合をとることができる。つまり、一部がイミド化されたポリアミド酸(1)を合成してもよい。特に加熱昇温によりイミド化する場合は、ポリアミド酸(1)からポリイミドへの閉環反応とポリアミド酸(1)の加水分解が同時に進行しており、ポリイミドにした時の分子量がポリアミド酸(1)の分子量よりも低くなる可能性があるため、後述するポリイミド膜を形成する前に、ポリアミド酸組成物中のポリアミド酸(1)の一部をあらかじめイミド化しておくことが機械特性向上の観点から好ましい。本明細書では、一部がイミド化したポリアミド酸も、「ポリアミド酸」と記載することがある。 The polyimide according to this embodiment is an imidized product of polyamic acid (1) described above. The polyimide according to this embodiment can be obtained by a known method, and the production method is not particularly limited. An example of a method for imidating the polyamic acid (1) to obtain the polyimide according to the present embodiment will be described below. Imidation is carried out by dehydration and ring closure of polyamic acid (1). This dehydration ring closure can be carried out by an azeotropic method using an azeotropic solvent, a thermal method, or a chemical method. In addition, imidization of polyamic acid (1) to polyimide can take any ratio of 1% or more and 100% or less. That is, a partially imidized polyamic acid (1) may be synthesized. In particular, when imidization is performed by heating, the ring closure reaction from polyamic acid (1) to polyimide and the hydrolysis of polyamic acid (1) proceed simultaneously, and the molecular weight of polyamic acid (1) when converted to polyimide is Since there is a possibility that the molecular weight is lower than the molecular weight of the polyamic acid composition, before forming the polyimide film described later, it is preferable to pre-imidize a portion of the polyamic acid (1) in the polyamic acid composition from the viewpoint of improving mechanical properties. preferable. In this specification, a partially imidized polyamic acid may also be referred to as a "polyamic acid".
 ポリアミド酸(1)の脱水閉環は、ポリアミド酸(1)を加熱して行えばよい。ポリアミド酸(1)を加熱する方法は特に制限されないが、例えば、ガラス基板、金属板、PETフィルム(ポリエチレンテレフタレートフィルム)等の支持体上に、上述した本実施形態に係るポリアミド酸組成物を塗布した後、温度40℃以上500℃以下の範囲内でポリアミド酸(1)の熱処理を行えばよい。この方法によれば、支持体と、この支持体上に配置されたポリイミド膜(詳しくは、ポリアミド酸(1)のイミド化物を含むポリイミド膜)とを有する、本実施形態に係る積層体が得られる。あるいは、フッ素系樹脂によるコーティング等の離型処理を施した容器に直接ポリアミド酸組成物を入れ、当該ポリアミド酸組成物を減圧下で加熱・乾燥することによって、ポリアミド酸(1)の脱水閉環を行うこともできる。これらの手法によるポリアミド酸(1)の脱水閉環により、ポリイミドを得ることができる。なお、上記各処理の加熱時間は、脱水閉環を行うポリアミド酸組成物の処理量や加熱温度により異なるが、一般的には、処理温度が最高温度に達してから1分以上300分以下の範囲とすることが好ましい。 The dehydration ring closure of the polyamic acid (1) may be performed by heating the polyamic acid (1). The method of heating the polyamic acid (1) is not particularly limited, but for example, the polyamic acid composition according to the present embodiment is applied onto a support such as a glass substrate, a metal plate, or a PET film (polyethylene terephthalate film). After that, the polyamic acid (1) may be heat-treated at a temperature in the range of 40°C or higher and 500°C or lower. According to this method, a laminate according to the present embodiment, which has a support and a polyimide film (specifically, a polyimide film containing an imidized product of polyamic acid (1)) disposed on the support, is obtained. be done. Alternatively, the polyamic acid composition is directly put into a container that has been subjected to release treatment such as coating with a fluororesin, and the polyamic acid composition is heated and dried under reduced pressure to effect dehydration ring closure of the polyamic acid (1). can also be done. Polyimide can be obtained by dehydration ring closure of polyamic acid (1) by these techniques. The heating time for each of the above treatments varies depending on the amount of the polyamic acid composition to be subjected to dehydration ring closure and the heating temperature, but is generally in the range of 1 minute or more and 300 minutes or less after the treatment temperature reaches the maximum temperature. It is preferable to
 本実施形態に係るポリイミド膜(詳しくは、ポリアミド酸(1)のイミド化物を含むポリイミド膜)は、無色透明で黄色度が低く、TFT作製工程に耐えうるガラス転移温度(耐熱性)を有していることから、フレキシブルディスプレイの透明基板材料に適している。本実施形態に係るポリイミド膜中のポリイミド(詳しくは、ポリアミド酸(1)のイミド化物)の含有率は、ポリイミド膜全量に対して、例えば70重量%以上であり、80重量%以上であることが好ましく、90重量%以上であることがより好ましく、100重量%であってもよい。ポリイミド膜中のポリイミド以外の成分としては、例えば、上述した添加剤(より具体的には、微粒子等)が挙げられる。 The polyimide film according to the present embodiment (specifically, the polyimide film containing the imidized product of polyamic acid (1)) is colorless and transparent, has a low degree of yellowness, and has a glass transition temperature (heat resistance) that can withstand the TFT manufacturing process. Therefore, it is suitable as a transparent substrate material for flexible displays. The content of polyimide (specifically, imidized polyamic acid (1)) in the polyimide film according to the present embodiment is, for example, 70% by weight or more, and 80% by weight or more with respect to the total amount of the polyimide film. is preferable, more preferably 90% by weight or more, and may be 100% by weight. Components other than polyimide in the polyimide film include, for example, the additives described above (more specifically, fine particles and the like).
 本実施形態に係る電子デバイス(より具体的には、フレキシブルデバイス等)は、本実施形態に係るポリイミド膜と、このポリイミド膜上に直接的又は間接的に配置された電子素子とを有する。フレキシブルディスプレイ用として本実施形態に係る電子デバイスを製造する場合、まず、ガラス等の無機基材を支持体として、その上にポリイミド膜を形成する。そして、ポリイミド膜上にTFT等の電子素子を配置(形成)することにより、支持体上に電子デバイスを形成する。TFTを形成する工程は、一般的に150℃以上650℃以下の広い温度領域で実施されるが、実際に所望の性能を達成するためには300℃以上で酸化物半導体層やa-Si層を形成し、場合によっては更にレーザー等でa-Si等を結晶化させることもある。 An electronic device (more specifically, a flexible device or the like) according to this embodiment has a polyimide film according to this embodiment and an electronic element directly or indirectly arranged on this polyimide film. When manufacturing the electronic device according to the present embodiment for a flexible display, first, an inorganic substrate such as glass is used as a support, and a polyimide film is formed thereon. Then, an electronic device is formed on the support by arranging (forming) an electronic element such as a TFT on the polyimide film. The process of forming a TFT is generally carried out in a wide temperature range of 150° C. or higher and 650° C. or lower. is formed, and in some cases, a-Si or the like is further crystallized by a laser or the like.
 この際、ポリイミド膜の熱分解温度が低い場合、電子素子形成中にアウトガスが発生し、昇華物としてオーブン内に付着し、炉内汚染の原因となったり、ポリイミド膜上に形成した無機膜(後述するバリア膜等)や電子素子が剥離したりする可能性があるため、ポリイミドの1%重量減少温度は500℃以上であることが好ましい。ポリイミドの1%重量減少温度の上限は、高ければ高いほどよいが、例えば600℃である。1%重量減少温度は、例えば、剛直な構造を有する残基(より具体的には、BPDA残基等)の含有率を変更することにより、調整できる。更に詳細に説明すると、TFT形成前に、ポリイミド膜上にバリア膜として酸化シリコン膜(SiOx膜)や窒化シリコン膜(SiNx膜)等の無機膜を形成する。この際、ポリイミドの耐熱性が低い場合やイミド化が完全に進行していない場合、あるいは残存溶媒が多い場合には、無機膜積層後の高温プロセスでポリイミドの分解ガス等の揮発成分に起因してポリイミドと無機膜とが剥離する場合がある。このため、ポリイミドの1%重量減少温度が500℃以上であることに加え、ポリイミドを400℃以上450℃以下の範囲内の温度で等温保持した際の重量減少率が1%未満であることが望ましい。 At this time, if the thermal decomposition temperature of the polyimide film is low, outgassing is generated during the formation of the electronic device, and the sublimate adheres to the inside of the oven, causing contamination inside the oven. The 1% weight loss temperature of polyimide is preferably 500° C. or higher because there is a possibility that a barrier film (to be described later) and electronic elements may peel off. The upper limit of the 1% weight loss temperature of polyimide is preferably 600° C., for example, although the higher the better. The 1% weight loss temperature can be adjusted, for example, by changing the content of residues having a rigid structure (more specifically, BPDA residues and the like). More specifically, before forming the TFT, an inorganic film such as a silicon oxide film (SiOx film) or a silicon nitride film (SiNx film) is formed as a barrier film on the polyimide film. At this time, if the heat resistance of the polyimide is low, if the imidization has not progressed completely, or if there is a large amount of residual solvent, volatile components such as the decomposition gas of the polyimide in the high-temperature process after lamination of the inorganic film may cause In some cases, the polyimide and the inorganic film are separated from each other. Therefore, in addition to the 1% weight loss temperature of the polyimide being 500° C. or higher, the weight loss rate when the polyimide is kept isothermally at a temperature within the range of 400° C. or higher and 450° C. or lower must be less than 1%. desirable.
 また、本発明者の検討により、フッ素含有モノマーに由来する残基の含有率が比較的高いポリイミドが、例えばTFT素子の作製等の高温プロセスにおいて、アウトガスとしてフッ化水素等の腐食性ガスを発生することが判明した。高温プロセスにおいて腐食性ガスが発生すると、ポリイミド膜上に積層されたバリア膜等が腐食し、積層体の界面で剥がれ等が発生する場合がある。本実施形態のポリアミド酸(ポリアミド酸(1))は、6FDA残基の含有率が酸二無水物残基に対して3モル%以上35モル%以下であるため、ポリアミド酸(1)を用いて得られたポリイミドによれば、高温プロセスにおける腐食性ガスの発生を抑制できる。 In addition, according to the studies of the present inventors, polyimides having a relatively high content of residues derived from fluorine-containing monomers generate corrosive gases such as hydrogen fluoride as outgassing in high-temperature processes such as the fabrication of TFT elements. It turned out to do. When corrosive gas is generated in a high-temperature process, the barrier film or the like laminated on the polyimide film corrodes, and peeling or the like may occur at the interface of the laminated body. The polyamic acid (polyamic acid (1)) of the present embodiment has a 6FDA residue content of 3 mol% or more and 35 mol% or less with respect to the acid dianhydride residue, so polyamic acid (1) is used. The polyimide thus obtained can suppress the generation of corrosive gas in a high-temperature process.
 また、ポリイミドのガラス転移温度(Tg)がプロセス温度よりも著しく低い場合は、電子素子形成中に位置ずれ等が生じる可能性があるため、ポリイミドのTgは、300℃以上であることが好ましく、350℃以上であることがより好ましく、400℃以上であることが更に好ましく、420℃以上であることが更により好ましい。ポリイミドのTgの上限は、高ければ高いほどよいが、例えば470℃である。また、一般的に、ガラス基板の熱膨張係数は樹脂に比較して小さいため、ガラス基板とポリイミド膜との間に内部応力が発生する。支持体として用いたガラス基板や電子素子と、ポリイミド膜との積層体の内部応力が高ければ、ポリイミド膜を含む積層体が、高温のTFT形成工程で膨張した後、常温まで冷却する際に収縮し、ガラス基板の反りや破損、ポリイミド膜のガラス基板からの剥離等の問題が生じる。そのため、ポリイミド膜とガラス基板の間の内部応力が、40MPa以下であることが好ましく、35MPa以下であることがより好ましく、30MPa以下であることが更に好ましく、25MPa以下であることが更により好ましい。内部応力の下限は、低ければ低いほどよく、0MPaであってもよい。内部応力の測定方法は、後述する実施例と同じ方法又はそれに準ずる方法である。 Further, if the glass transition temperature (Tg) of the polyimide is significantly lower than the process temperature, there is a possibility that misalignment or the like may occur during the formation of the electronic device. It is more preferably 350° C. or higher, still more preferably 400° C. or higher, and even more preferably 420° C. or higher. The upper limit of Tg of polyimide is preferably 470° C., although the higher the better. Further, since the coefficient of thermal expansion of the glass substrate is generally smaller than that of resin, internal stress is generated between the glass substrate and the polyimide film. If the internal stress of the laminated body of the glass substrate or electronic element used as a support and the polyimide film is high, the laminated body including the polyimide film expands in the TFT formation process at a high temperature and then shrinks when cooled to room temperature. However, problems such as warping or breakage of the glass substrate and peeling of the polyimide film from the glass substrate arise. Therefore, the internal stress between the polyimide film and the glass substrate is preferably 40 MPa or less, more preferably 35 MPa or less, still more preferably 30 MPa or less, and even more preferably 25 MPa or less. The lower limit of the internal stress is better, and may be 0 MPa. The method for measuring the internal stress is the same method as in Examples described later or a method based thereon.
 ポリイミド膜と支持体(例えばガラス基板)との界面に浮きがあると、電子素子の形成中にポリイミド膜が剥がれたり、電子素子を形成した後、ポリイミド膜を剥離する際の歩留まり低下を引き起こす恐れがある。なお、「浮き」とは、イミド化時に発生する副成分や残存溶媒に起因して、ポリイミド膜と他の材料層(より具体的には、ガラス基板、バリア膜等)との間で密着性不良が生じた状態をさす。具体的な「浮き」としては、ガラス基板からポリイミド膜が浮き上がった状態、ポリイミド膜の一部が破壊されてポリイミド膜と他の材料層との間において層間剥離が生じた状態、ポリイミド膜からバリア膜が浮き上がった状態等が挙げられる。一般に、BPDA残基と4-BAAB残基とを有するポリアミド酸から得られるポリイミド膜は、分子鎖が密にパッキングしており、ガス抜け性が悪いため、支持体(例えばガラス基板)との界面において浮きが発生しやすい。本実施形態のポリアミド酸(ポリアミド酸(1))は、かさ高い構造を有する6FDA残基を含有するため、ポリアミド酸(1)を用いて得られたポリイミド膜は、ガス抜け性が良好となる。このため、ポリアミド酸(1)を用いて得られたポリイミドによれば、浮きの発生を抑制できる。 If there is a float at the interface between the polyimide film and the support (for example, a glass substrate), the polyimide film may peel off during the formation of the electronic device, or the yield may decrease when the polyimide film is peeled off after the electronic device is formed. There is The term “floating” refers to the adhesion between the polyimide film and other material layers (more specifically, glass substrates, barrier films, etc.) due to secondary components and residual solvents generated during imidization. Refers to a state in which a defect has occurred. Specific examples of "floating" include a state in which the polyimide film is lifted from the glass substrate, a state in which a portion of the polyimide film is destroyed and delamination occurs between the polyimide film and another material layer, and a barrier from the polyimide film. A state in which the film is lifted may be mentioned. In general, a polyimide film obtained from a polyamic acid having a BPDA residue and a 4-BAAB residue has densely packed molecular chains and poor outgassing properties. Floating is likely to occur in Since the polyamic acid (polyamic acid (1)) of the present embodiment contains a 6FDA residue having a bulky structure, the polyimide film obtained using the polyamic acid (1) has good gas release properties. . Therefore, according to the polyimide obtained using the polyamic acid (1), it is possible to suppress the occurrence of floating.
 本実施形態に係るポリイミドは、TFT基板やタッチパネル基板等のディスプレイ基板の材料として好適に用いることができる。ポリイミドを上記用途に用いる際、上述したように支持体上に電子デバイス(詳しくは、ポリイミド膜上に電子素子が形成された電子デバイス)を形成した後、ポリイミド膜を支持体から剥離する方法を採用する場合が多い。また、支持体の材料としては、無アルカリガラスが好適に用いられる。以下、ポリイミド膜と支持体との積層体の製造方法の一例について詳述する。 The polyimide according to this embodiment can be suitably used as a material for display substrates such as TFT substrates and touch panel substrates. When polyimide is used for the above applications, an electronic device (more specifically, an electronic device having electronic elements formed on a polyimide film) is formed on a support as described above, and then the polyimide film is peeled off from the support. often adopted. Also, alkali-free glass is preferably used as the material of the support. An example of a method for producing a laminate of a polyimide film and a support will be described in detail below.
 まず、支持体上に本実施形態に係るポリアミド酸組成物を塗布(流延)し、ポリアミド酸(1)を含む塗布膜と、支持体とからなる塗布膜含有積層体を形成する。次に、塗布膜含有積層体を、例えば温度40℃以上200℃以下の条件で加熱する。この際の加熱時間は、例えば3分以上120分以下である。なお、塗布膜含有積層体を、温度50℃にて30分加熱した後、温度100℃にて30分加熱する等のように、多段階の加熱工程を設けてもよい。次に、塗布膜中のポリアミド酸(1)のイミド化を進めるため、塗布膜含有積層体を、例えば、最高温度200℃以上500℃以下の条件で加熱する。この際の加熱時間(最高温度での加熱時間)は、例えば1分以上300分以下である。このとき、低温から最高温度まで徐々に昇温することが好ましい。昇温速度は、2℃/分以上10℃/分以下であることが好ましく、4℃/分以上10℃/分以下であることがより好ましい。また、最高温度は250℃以上450℃以下の範囲であることが好ましい。最高温度が250℃以上であれば、十分にイミド化が進行し、最高温度が450℃以下であれば、ポリイミドの熱劣化や着色を抑制できる。また、最高温度に到達するまでに任意の温度で任意の時間保持してもよい。イミド化反応は、空気下、減圧下、又は窒素等の不活性ガス中で行うことができるが、より高い透明性を発現させるためには、減圧下、又は窒素等の不活性ガス中で行うことが好ましい。また、加熱装置としては、熱風オーブン、赤外オーブン、真空オーブン、イナートオーブン、ホットプレート等の公知の装置を用いることができる。これらの工程を経て塗布膜中のポリアミド酸(1)がイミド化され、支持体と、ポリイミド膜(ポリアミド酸(1)のイミド化物を含む膜)との積層体(即ち、本実施形態に係る積層体)を得ることができる。 First, the polyamic acid composition according to the present embodiment is applied (cast) onto a support to form a coated film-containing laminate comprising a coated film containing polyamic acid (1) and the support. Next, the coated film-containing layered product is heated, for example, at a temperature of 40° C. or higher and 200° C. or lower. The heating time at this time is, for example, 3 minutes or more and 120 minutes or less. A multi-step heating process may be provided, such as heating the coating film-containing laminate at a temperature of 50° C. for 30 minutes and then heating it at a temperature of 100° C. for 30 minutes. Next, in order to promote imidization of polyamic acid (1) in the coating film, the coating film-containing laminate is heated, for example, at a maximum temperature of 200° C. or higher and 500° C. or lower. The heating time (heating time at the maximum temperature) at this time is, for example, 1 minute or more and 300 minutes or less. At this time, it is preferable to gradually raise the temperature from the low temperature to the maximum temperature. The heating rate is preferably 2° C./min or more and 10° C./min or less, more preferably 4° C./min or more and 10° C./min or less. Also, the maximum temperature is preferably in the range of 250° C. or higher and 450° C. or lower. When the maximum temperature is 250° C. or higher, imidization proceeds sufficiently, and when the maximum temperature is 450° C. or lower, thermal deterioration and coloration of the polyimide can be suppressed. Also, any temperature may be maintained for any length of time until the maximum temperature is reached. The imidization reaction can be carried out under air, under reduced pressure, or in an inert gas such as nitrogen, but in order to develop higher transparency, it is carried out under reduced pressure or in an inert gas such as nitrogen. is preferred. As the heating device, known devices such as a hot air oven, an infrared oven, a vacuum oven, an inert oven and a hot plate can be used. Polyamic acid (1) in the coating film is imidized through these steps, and a laminate of a support and a polyimide film (a film containing an imidized product of polyamic acid (1)) (that is, according to the present embodiment) laminate) can be obtained.
 得られた支持体とポリイミド膜との積層体からポリイミド膜を剥離する方法は、公知の方法を用いることができる。例えば、手で引き剥がしてもよいし、駆動ロール、ロボット等の機械装置を用いて引き剥がしてもよい。更には、支持体とポリイミド膜との間に剥離層を設ける方法や、多数の溝を有する支持体上に酸化シリコン膜を形成し、酸化シリコン膜を下地層としてポリイミド膜を形成し、支持体と酸化シリコン膜との間に酸化シリコンのエッチング液を浸潤させることによって、ポリイミド膜を剥離する方法を採用することもできる。また、レーザー光の照射によってポリイミド膜を分離させる方法を採用することもできる。 A known method can be used to peel off the polyimide film from the obtained laminate of the support and the polyimide film. For example, it may be peeled off by hand, or may be peeled off using a mechanical device such as a driving roll or a robot. Furthermore, a method of providing a peeling layer between a support and a polyimide film, a method of forming a silicon oxide film on a support having a large number of grooves, forming a polyimide film using the silicon oxide film as a base layer, and forming a polyimide film on the support It is also possible to adopt a method of exfoliating the polyimide film by infiltrating a silicon oxide etchant between the film and the silicon oxide film. Alternatively, a method of separating the polyimide film by laser light irradiation may be employed.
 ポリイミド膜の透明性は、JIS K7361-1:1997に従った全光線透過率(TT)、及びJIS K7136-2000に従ったヘイズで評価することができる。高い透明性が要求される用途でポリイミド膜を用いる場合、ポリイミド膜の全光線透過率は、75%以上であることが好ましく、80%以上であることがより好ましい。また、高い透明性が要求される用途でポリイミド膜を用いる場合、ポリイミド膜のヘイズは、1.5%以下であることが好ましく、1.2%以下であることがより好ましく、1.0%未満であることが更に好ましく、0%であってもよい。高い透明性が要求される用途においては、ポリイミド膜は全波長領域で透過率が高いことが要求されるが、ポリイミド膜は短波長側の光を吸収しやすい傾向があり、膜自体が黄色に着色することが多い。高い透明性が要求される用途にポリイミド膜を使用するためには、ポリイミド膜の着色が低減されていることが好ましい。具体的には、高い透明性が要求される用途にポリイミド膜を使用するためには、ポリイミド膜の黄色度(YI)は、25以下であることが好ましく、20以下であることがより好ましく、0であってもよい。YIは、JIS K7373-2006に従い測定することができる。YIは、例えばポリアミド酸(1)中の6FDA残基の含有率を変更することにより、調整できる。このように、着色が低減され、透明性が付与されたポリイミド膜は、ガラス代替用途等の透明基板や、背面にセンサーやカメラモジュールが設けられる基板に好適である。 The transparency of the polyimide film can be evaluated by total light transmittance (TT) according to JIS K7361-1:1997 and haze according to JIS K7136-2000. When the polyimide film is used for applications requiring high transparency, the total light transmittance of the polyimide film is preferably 75% or more, more preferably 80% or more. Further, when a polyimide film is used in applications requiring high transparency, the haze of the polyimide film is preferably 1.5% or less, more preferably 1.2% or less, and 1.0%. It is more preferably less than, and may be 0%. For applications that require high transparency, polyimide films are required to have high transmittance over the entire wavelength range. often colored. In order to use the polyimide film in applications requiring high transparency, it is preferable that the polyimide film is less colored. Specifically, in order to use the polyimide film for applications requiring high transparency, the yellowness index (YI) of the polyimide film is preferably 25 or less, more preferably 20 or less, It can be 0. YI can be measured according to JIS K7373-2006. YI can be adjusted, for example, by changing the content of 6FDA residues in polyamic acid (1). Thus, the polyimide film with reduced coloration and imparted with transparency is suitable for transparent substrates such as glass substitutes, and substrates on which a sensor or camera module is provided on the back surface.
 また、フレキシブルディスプレイの光取り出し方式には、TFTの表面側から光を取り出すトップエミッション方式とTFTの裏面側から光を取り出すボトムエミッション方式の二種類がある。トップエミッション方式は、TFTに光が遮られないため開口率を上げやすく、高精細な画質が得られるという特徴があり、ボトムエミッション方式はTFTと画素電極との位置合わせが容易で製造しやすいといった特徴がある。TFTが透明であればボトムエミッション方式においても、開口率を向上させることが可能となるため、大型ディスプレイには製造が容易なボトムエミッション方式が採用される傾向がある。本実施形態に係るポリイミド膜は、YIが低く、耐熱性にも優れているため、上記どちらの光取り出し方式にも適用できる。 In addition, there are two types of light extraction methods for flexible displays: the top emission method, in which light is extracted from the front surface of the TFT, and the bottom emission method, in which light is extracted from the back surface of the TFT. The top-emission method is easy to increase the aperture ratio because the light is not blocked by the TFT, and high-definition image quality can be obtained. Characteristic. If the TFT is transparent, it is possible to improve the aperture ratio even in the bottom emission method, so there is a tendency to adopt the bottom emission method, which is easy to manufacture, for large displays. Since the polyimide film according to this embodiment has a low YI and excellent heat resistance, it can be applied to either of the above light extraction methods.
 また、ガラス基板等の支持体上にポリアミド酸組成物を塗布し、加熱してイミド化し、電子素子等を形成した後、ポリイミド膜を剥がすという、バッチタイプのデバイス作製プロセスにおいては、支持体とポリイミド膜との間の密着性に優れることが好ましい。ここでいう密着性とは、密着強度を意味する。支持体上のポリイミド膜に電子素子等を形成した後に、支持体から、電子素子等が形成されたポリイミド膜を剥がすという作製プロセスにおいて、ポリイミド膜と支持体との密着性に優れると、電子素子等をより正確に形成又は実装することができる。支持体上にポリイミド膜を介して電子素子等を配置する製造プロセスにおいて、生産性向上の観点から、支持体とポリイミド膜との間のピール強度は高ければ高いほどよい。具体的には、上記ピール強度は、0.05N/cm以上であることが好ましく、0.1N/cm以上であることがより好ましい。 Further, in a batch-type device manufacturing process in which a polyamic acid composition is applied to a support such as a glass substrate, heated to imidize, an electronic element or the like is formed, and then the polyimide film is peeled off, the support and the like are used. It is preferable to have excellent adhesion to the polyimide film. Adhesion here means adhesion strength. In the manufacturing process of peeling off the polyimide film on which the electronic elements and the like are formed from the support after forming the electronic elements on the polyimide film on the support, if the adhesion between the polyimide film and the support is excellent, the electronic element etc. can be formed or implemented more accurately. In the manufacturing process of arranging an electronic element or the like on a support via a polyimide film, the peel strength between the support and the polyimide film should be as high as possible from the viewpoint of improving productivity. Specifically, the peel strength is preferably 0.05 N/cm or more, more preferably 0.1 N/cm or more.
 上述したような製造プロセスにおいて、支持体とポリイミド膜との積層体からポリイミド膜を剥離する際、レーザー照射によって支持体からポリイミド膜を剥離する場合が多い。この場合、ポリイミド膜にレーザー光を吸収させる必要があるため、ポリイミド膜のカットオフ波長は、剥離に使用するレーザー光の波長よりも長波長であることが求められる。レーザー剥離には、波長308nmのXeClエキシマレーザーが用いられることが多いため、ポリイミド膜のカットオフ波長は、312nm以上であることが好ましく、330nm以上であることがより好ましい。一方、カットオフ波長が長波長であると、ポリイミド膜が黄色に着色する傾向があるため、ポリイミド膜のカットオフ波長は、390nm以下であることが好ましい。透明性(低黄色度合)とレーザー剥離の加工性とを両立させる観点から、ポリイミド膜のカットオフ波長は、320nm以上390nm以下であることが好ましく、330nm以上380nm以下であることがより好ましい。なお、本明細書中におけるカットオフ波長とは、紫外-可視分光光度計によって測定される、透過率が0.1%以下になる波長のことを意味する。 In the manufacturing process described above, when peeling the polyimide film from the laminate of the support and the polyimide film, the polyimide film is often peeled off from the support by laser irradiation. In this case, since the polyimide film needs to absorb the laser light, the cutoff wavelength of the polyimide film is required to be longer than the wavelength of the laser light used for peeling. Since a XeCl excimer laser with a wavelength of 308 nm is often used for laser peeling, the cutoff wavelength of the polyimide film is preferably 312 nm or longer, more preferably 330 nm or longer. On the other hand, if the cutoff wavelength is long, the polyimide film tends to be colored yellow, so the cutoff wavelength of the polyimide film is preferably 390 nm or less. The cutoff wavelength of the polyimide film is preferably 320 nm or more and 390 nm or less, more preferably 330 nm or more and 380 nm or less, from the viewpoint of achieving both transparency (low degree of yellowness) and workability of laser peeling. The term "cutoff wavelength" as used herein means a wavelength at which the transmittance is 0.1% or less as measured by an ultraviolet-visible spectrophotometer.
 本実施形態に係るポリアミド酸組成物及びポリイミドは、そのまま製品や部材を作製するためのコーティングや成形プロセスに使用してもよいが、フィルム状に成形された成形物に更にコーティング等の処理を行うための材料として用いることもできる。コーティング又は成形プロセスに使用するために、ポリアミド酸組成物又はポリイミドを、必要に応じて有機溶媒に溶解又は分散させ、更に、必要に応じて光硬化性成分、熱硬化性成分、非重合性バインダー樹脂及びその他の成分を配合して、ポリアミド酸(1)又はポリイミドを含む組成物を調製してもよい。 The polyamic acid composition and polyimide according to the present embodiment may be used as they are for coating and molding processes for producing products and members, but the molded product molded in the form of a film is further subjected to coating and other treatments. It can also be used as a material for For use in coating or molding processes, the polyamic acid composition or polyimide, optionally dissolved or dispersed in an organic solvent, and optionally a photocurable component, a thermosetting component, a non-polymeric binder, A composition comprising polyamic acid (1) or polyimide may be prepared by blending the resin and other ingredients.
 本実施形態に係るポリイミド膜の表面には、金属酸化物薄膜や透明電極等の各種無機薄膜を形成してもよい。これら無機薄膜の製膜方法としては、特に限定されるものではなく、例えば、スパッタリング法、真空蒸着法、イオンプレーティング法等のPVD法や、CVD法が挙げられる。 Various inorganic thin films such as metal oxide thin films and transparent electrodes may be formed on the surface of the polyimide film according to this embodiment. The method for forming these inorganic thin films is not particularly limited, and examples thereof include PVD methods such as sputtering, vacuum deposition, and ion plating, and CVD methods.
 本実施形態に係るポリイミド膜は、耐熱性、低熱膨張性、透明性に加えて、ガラス基板と積層体を形成した際に生じる内部応力が小さく、高温プロセス中で無機材料との密着性を確保できるため、これらの特性が有効とされる分野及び製品に使用されることが好ましい。例えば、本実施形態に係るポリイミド膜は、液晶表示装置、有機EL、電子ペーパー等の画像表示装置、印刷物、カラーフィルター、フレキシブルディスプレイ、光学フィルム、3Dディスプレイ、タッチパネル、透明導電膜基板、太陽電池等に使用されることが好ましく、更には現在ガラスが使用されている部分の代替材料とすることがより好ましい。これらの用途において、ポリイミド膜の厚みは、例えば1μm以上200μm以下であり、5μm以上100μm以下であることが好ましい。ポリイミド膜の厚みは、レーザホロゲージを用いて測定することができる。 In addition to heat resistance, low thermal expansion, and transparency, the polyimide film according to the present embodiment generates little internal stress when forming a laminate with a glass substrate, ensuring adhesion with inorganic materials during high-temperature processes. Therefore, it is preferably used in fields and products where these properties are useful. For example, the polyimide film according to the present embodiment can be used for liquid crystal display devices, organic EL devices, image display devices such as electronic paper, printed matter, color filters, flexible displays, optical films, 3D displays, touch panels, transparent conductive film substrates, solar cells, and the like. It is more preferable to use it as a substitute material for parts where glass is currently used. In these uses, the thickness of the polyimide film is, for example, 1 μm or more and 200 μm or less, preferably 5 μm or more and 100 μm or less. The thickness of the polyimide film can be measured using a laser hologram.
 また、本実施形態に係るポリアミド酸組成物は、支持体上にポリアミド酸組成物を塗布し、加熱してイミド化し、電子素子等を形成した後、ポリイミド膜を剥がすという、バッチタイプのデバイス作製プロセスに好適に用いることができる。従って、本実施形態には、支持体上にポリアミド酸組成物を塗布し、加熱してイミド化し、支持体上に形成されたポリイミド膜上に電子素子等を形成する工程を含む電子デバイスの製造方法も含まれる。また、かかる電子デバイスの製造方法は、更に、支持体から、電子素子等が形成されたポリイミド膜を剥がす工程を含んでいてもよい。 In addition, the polyamic acid composition according to the present embodiment is prepared by coating the polyamic acid composition on a support, imidizing it by heating, forming an electronic element or the like, and then peeling off the polyimide film for batch-type device fabrication. It can be suitably used for the process. Therefore, in the present embodiment, the production of an electronic device including the step of applying a polyamic acid composition on a support, imidizing it by heating, and forming an electronic element or the like on a polyimide film formed on the support A method is also included. Moreover, the method for producing such an electronic device may further include a step of peeling off the polyimide film on which the electronic elements and the like are formed from the support.
 以下、本発明の実施例について説明するが、本発明の範囲が下記実施例に限定されるものではない。 Examples of the present invention will be described below, but the scope of the present invention is not limited to the following examples.
<物性の測定方法>
 まず、ポリイミド(ポリイミド膜)の物性の測定方法について説明する。
<Method for measuring physical properties>
First, a method for measuring physical properties of polyimide (polyimide film) will be described.
[内部応力]
 あらかじめ反り量を計測していたコーニング社製のガラス基板(材質:無アルカリガラス、厚み:0.7mm、サイズ:100mm×100mm)上に後述する実施例及び比較例で調製した各ポリアミド酸組成物をスピンコーターで塗布し、空気中において120℃で30分加熱した後、窒素雰囲気下において430℃で30分加熱し、ガラス基板上に厚み10μmのポリイミド膜を備える積層体を得た。ポリイミド膜の吸水の影響を排除するために、積層体を120℃で10分乾燥させた後、温度25℃の窒素雰囲気下における積層体の反り量を、薄膜応力測定装置(ケーエルエー・テンコール社製「FLX-2320-S」)を用いて測定した。そして、ポリイミド膜形成前のガラス基板の反り量及び積層体の反り量から、ストーニーの式によりガラス基板とポリイミド膜との間で発生した内部応力を算出した。
[Internal stress]
Each polyamic acid composition prepared in Examples and Comparative Examples described later on a glass substrate manufactured by Corning (material: non-alkali glass, thickness: 0.7 mm, size: 100 mm × 100 mm) whose amount of warpage had been measured in advance. was applied with a spin coater, heated in air at 120° C. for 30 minutes, and then heated at 430° C. in a nitrogen atmosphere for 30 minutes to obtain a laminate having a polyimide film having a thickness of 10 μm on a glass substrate. In order to eliminate the influence of water absorption of the polyimide film, the laminate was dried at 120 ° C. for 10 minutes, and then the amount of warpage of the laminate in a nitrogen atmosphere at a temperature of 25 ° C. was measured using a thin film stress measurement device (manufactured by KLA-Tencor Co., Ltd. "FLX-2320-S"). Then, the internal stress generated between the glass substrate and the polyimide film was calculated from the amount of warpage of the glass substrate before the formation of the polyimide film and the amount of warpage of the laminate by the Stoney equation.
[黄色度(YI)]
 後述する実施例及び比較例で得られた各積層体中のポリイミド膜について、紫外可視近赤外分光光度計(日本分光社製「V-650」)を用いて波長200nm以上800nm以下の光の透過率を測定し、JIS K7373-2006に記載の式から、ポリイミド膜の黄色度(YI)を算出した。
[Yellowness index (YI)]
For the polyimide film in each laminate obtained in Examples and Comparative Examples described later, an ultraviolet-visible near-infrared spectrophotometer (manufactured by JASCO Corporation "V-650") was used to measure light with a wavelength of 200 nm or more and 800 nm or less. The transmittance was measured, and the yellowness index (YI) of the polyimide film was calculated from the formula described in JIS K7373-2006.
[黄色度変化(ΔYI)]
 コーニング社製のガラス基板(商標名:Eagle XG、材質:無アルカリガラス、厚み:0.7mm、サイズ:100mm×100mm)上に後述する実施例及び比較例で調製した各ポリアミド酸組成物をスピンコーターで塗布し、空気中において120℃で30分加熱した後、窒素雰囲気下において430℃で30分加熱し、ガラス基板上に厚み10μmのポリイミド膜を形成した。次いで、得られたポリイミド膜上に、プラズマCVD法にてSiOx膜(厚み:1μm)を積層した。得られた積層体について、紫外可視近赤外分光光度計(日本分光社製「V-650」)を用いて波長200nm以上800nm以下の光の透過率を測定し、JIS K7373-2006に記載の式から、積層体の黄色度(YI)を算出した。以下、ここで得られた黄色度(YI)を「アニール前YI」と記載する。
[Yellowness change (ΔYI)]
Each polyamic acid composition prepared in Examples and Comparative Examples described later was spun on a glass substrate manufactured by Corning (trade name: Eagle XG, material: non-alkali glass, thickness: 0.7 mm, size: 100 mm × 100 mm). After coating with a coater and heating at 120° C. for 30 minutes in the air, the solution was heated at 430° C. for 30 minutes in a nitrogen atmosphere to form a polyimide film having a thickness of 10 μm on the glass substrate. Then, a SiOx film (thickness: 1 μm) was laminated on the obtained polyimide film by a plasma CVD method. For the obtained laminate, the transmittance of light with a wavelength of 200 nm or more and 800 nm or less is measured using an ultraviolet-visible-near-infrared spectrophotometer (manufactured by JASCO Corporation "V-650"), and the transmittance is described in JIS K7373-2006. The yellowness index (YI) of the laminate was calculated from the formula. Hereinafter, the yellowness index (YI) obtained here is referred to as "pre-annealing YI".
 次いで、アニール前YIを測定した後の積層体を、窒素雰囲気下において、430℃で120分間加熱(アニール)した。そして、アニール後の積層体について、紫外可視近赤外分光光度計(日本分光社製「V-650」)を用いて波長200nm以上800nm以下の光の透過率を測定し、JIS K7373-2006に記載の式から、積層体の黄色度(YI)を算出した。以下、ここで得られた黄色度(YI)を「アニール後YI」と記載する。そして、黄色度変化(ΔYI)を、式「ΔYI=アニール後YI-アニール前YI」に従って算出した。ΔYIが10未満の場合、「高温プロセスにおける着色を低減できている」と評価した。一方、ΔYIが10以上の場合、「高温プロセスにおける着色を低減できていない」と評価した。 Next, the laminate after measuring the pre-annealing YI was heated (annealed) at 430°C for 120 minutes in a nitrogen atmosphere. Then, for the laminate after annealing, the transmittance of light with a wavelength of 200 nm or more and 800 nm or less was measured using an ultraviolet-visible-near-infrared spectrophotometer (manufactured by JASCO Corporation "V-650"). The yellowness index (YI) of the laminate was calculated from the formula described. Hereinafter, the yellowness index (YI) obtained here is referred to as "post-annealing YI". Then, the change in yellowness (ΔYI) was calculated according to the formula “ΔYI=YI after annealing−YI before annealing”. When ΔYI was less than 10, it was evaluated as "coloring in high-temperature process can be reduced". On the other hand, when ΔYI was 10 or more, it was evaluated as "coloring in high temperature process cannot be reduced".
[全光線透過率(TT)]
 後述する実施例及び比較例で得られた各積層体から剥離したポリイミド膜について、積分球式ヘイズメーター(村上色彩技術研究所社製「HM-150N」)を用いて、JIS K7361-1:1997に記載の方法により全光線透過率(TT)を測定した。
[Total light transmittance (TT)]
For the polyimide film peeled from each laminate obtained in Examples and Comparative Examples described later, using an integrating sphere haze meter ("HM-150N" manufactured by Murakami Color Research Laboratory Co., Ltd.), JIS K7361-1: 1997 Total light transmittance (TT) was measured by the method described in .
[ヘイズ]
 後述する実施例及び比較例で得られた各積層体から剥離したポリイミド膜について、積分球式ヘイズメーター(村上色彩技術研究所社製「HM-150N」)を用いて、JIS K7136-2000に記載の方法によりヘイズを測定した。ヘイズが1.0%未満の場合、「透明性に優れている」と評価した。一方、ヘイズが1.0%以上の場合、「透明性に優れていない」と評価した。
[Haze]
For the polyimide film peeled from each laminate obtained in Examples and Comparative Examples described later, using an integrating sphere haze meter ("HM-150N" manufactured by Murakami Color Research Laboratory), described in JIS K7136-2000. Haze was measured by the method of. When the haze was less than 1.0%, it was evaluated as "excellent in transparency". On the other hand, when the haze was 1.0% or more, it was evaluated as "not excellent in transparency".
[ガラス転移温度(Tg)]
 後述する実施例及び比較例で得られた各積層体から幅3mmかつ長さ10mmの大きさにサンプリングしたポリイミド膜を、Tg測定用の試料として用いた。熱分析装置(日立ハイテクサイエンス社製「TMA/SS7100」)を用いて、試料に98.0mNの荷重をかけ、10℃/分で20℃から450℃まで昇温し、温度と歪量(伸び)をプロットしてTMA曲線を得た。得られたTMA曲線の変曲点の温度(TMA曲線の微分曲線におけるピークに対応する温度)をガラス転移温度(Tg)とした。
[Glass transition temperature (Tg)]
A polyimide film having a width of 3 mm and a length of 10 mm was sampled from each laminate obtained in Examples and Comparative Examples, which will be described later, and used as a sample for Tg measurement. Using a thermal analyzer ("TMA/SS7100" manufactured by Hitachi High-Tech Science), a load of 98.0 mN was applied to the sample, the temperature was raised from 20 ° C. to 450 ° C. at 10 ° C./min, and the temperature and strain amount (elongation ) to obtain the TMA curve. The temperature at the inflection point of the obtained TMA curve (the temperature corresponding to the peak in the differential curve of the TMA curve) was defined as the glass transition temperature (Tg).
<ポリイミド膜の作製>
 以下、実施例及び比較例のポリイミド膜(積層体)の作製方法について説明する。なお、以下において、化合物及び試薬類を下記の略称で記載している。また、ポリイミド膜の作製に使用するポリアミド酸組成物の調製は、いずれも窒素雰囲気下で行った。
NMP:N-メチル-2-ピロリドン
BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物
6FDA:4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物
4-BAAB:4-アミノフェニル-4-アミノベンゾエート
PDA:p-フェニレンジアミン
BAFL:9,9-ビス(4-アミノフェニル)フルオレン
6FODA:2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル
CHDA:1,4-シクロヘキサンジアミン
DMI:1,2-ジメチルイミダゾール
<Preparation of polyimide film>
Methods for producing polyimide films (laminates) of Examples and Comparative Examples will be described below. Compounds and reagents are abbreviated below. Moreover, preparation of the polyamic acid composition used for preparation of the polyimide film was carried out under a nitrogen atmosphere.
NMP: N-methyl-2-pyrrolidone BPDA: 3,3',4,4'-biphenyltetracarboxylic dianhydride 6FDA: 4,4'-(hexafluoroisopropylidene)diphthalic anhydride 4-BAAB: 4 -aminophenyl-4-aminobenzoate PDA: p-phenylenediamine BAFL: 9,9-bis(4-aminophenyl)fluorene 6FODA: 2,2'-bis(trifluoromethyl)-4,4'-diaminodiphenyl ether CHDA : 1,4-cyclohexanediamine DMI: 1,2-dimethylimidazole
[実施例1]
 ステンレス鋼製攪拌棒を備えた攪拌機及び窒素導入管を装着した300mLのガラス製セパラブルフラスコに、重合用の有機溶媒として、48.0gのNMPを入れた。次いで、フラスコ内容物を攪拌しながら、5.026gの4-BAABをフラスコに入れて溶解させた。次いで、フラスコ内容物に、1.467gの6FDA及び5.507gのBPDAを加えた後、温度25℃の雰囲気下、フラスコ内容物を24時間攪拌し、ポリアミド酸組成物を得た。得られたポリアミド酸組成物を、スピンコーターを用いてガラス基板(コーニング社製、材質:無アルカリガラス、厚み:0.7mm、サイズ:100mm×100mm)上に塗布し、空気中において120℃で30分加熱した後、窒素雰囲気下において430℃で30分加熱し、ガラス基板上に厚み10μmのポリイミド膜を備える積層体(実施例1の積層体)を得た。
[Example 1]
A 300 mL glass separable flask equipped with a stirrer equipped with a stainless steel stir bar and a nitrogen inlet was charged with 48.0 g of NMP as an organic solvent for polymerization. 5.026 g of 4-BAAB was then added to the flask and dissolved while stirring the flask contents. After adding 1.467 g of 6FDA and 5.507 g of BPDA to the contents of the flask, the contents of the flask were stirred for 24 hours under an atmosphere of 25° C. to obtain a polyamic acid composition. The resulting polyamic acid composition was applied onto a glass substrate (manufactured by Corning, material: non-alkali glass, thickness: 0.7 mm, size: 100 mm x 100 mm) using a spin coater, and coated in air at 120°C. After heating for 30 minutes, it was heated at 430° C. for 30 minutes in a nitrogen atmosphere to obtain a laminate (laminate of Example 1) having a polyimide film having a thickness of 10 μm on a glass substrate.
[実施例2]
 ステンレス鋼製攪拌棒を備えた攪拌機及び窒素導入管を装着した300mLのガラス製セパラブルフラスコに、重合用の有機溶媒として、48.0gのNMPを入れた。次いで、フラスコ内容物を攪拌しながら、5.026gの4-BAABをフラスコに入れて溶解させた。次いで、フラスコ内容物に、1.467gの6FDA及び5.507gのBPDAを加えた後、温度25℃の雰囲気下、フラスコ内容物を24時間攪拌した。次いで、フラスコ内容物に、DMIを添加して、ポリアミド酸組成物を得た。DMIの添加量は、フラスコ内容物中のポリアミド酸100重量部に対して1重量部であった。得られたポリアミド酸組成物を、スピンコーターを用いてガラス基板(コーニング社製、材質:無アルカリガラス、厚み:0.7mm、サイズ:100mm×100mm)上に塗布し、空気中において120℃で30分加熱した後、窒素雰囲気下において430℃で30分加熱し、ガラス基板上に厚み10μmのポリイミド膜を備える積層体(実施例2の積層体)を得た。
[Example 2]
A 300 mL glass separable flask equipped with a stirrer equipped with a stainless steel stir bar and a nitrogen inlet was charged with 48.0 g of NMP as an organic solvent for polymerization. 5.026 g of 4-BAAB was then added to the flask and dissolved while stirring the flask contents. After adding 1.467 g of 6FDA and 5.507 g of BPDA to the contents of the flask, the contents of the flask were stirred for 24 hours under an atmosphere at a temperature of 25°C. Next, DMI was added to the contents of the flask to obtain a polyamic acid composition. The amount of DMI added was 1 part by weight per 100 parts by weight of polyamic acid in the contents of the flask. The resulting polyamic acid composition was applied onto a glass substrate (manufactured by Corning, material: non-alkali glass, thickness: 0.7 mm, size: 100 mm x 100 mm) using a spin coater, and coated in air at 120°C. After heating for 30 minutes, it was heated at 430° C. for 30 minutes in a nitrogen atmosphere to obtain a laminate (laminate of Example 2) having a polyimide film having a thickness of 10 μm on a glass substrate.
[実施例3~8及び比較例1~3]
 使用した酸二無水物及びその仕込み割合、並びに使用したジアミン及びその仕込み割合を、表1に示すとおりとしたこと以外は、実施例1と同じ方法により、実施例3及び5~8並びに比較例1及び2の積層体をそれぞれ得た。また、使用した酸二無水物及びその仕込み割合、並びに使用したジアミン及びその仕込み割合を、表1に示すとおりとしたこと以外は、実施例2と同じ方法により、実施例4及び比較例3の積層体をそれぞれ得た。なお、実施例3~8及び比較例1~3のいずれについても、ポリアミド酸組成物を調製する際の酸二無水物の合計物質量は、実施例1及び2と同じであった。また、実施例3~8及び比較例1~3のいずれについても、ポリアミド酸組成物を調製する際のジアミンの合計物質量は、実施例1及び2と同じであった。
[Examples 3 to 8 and Comparative Examples 1 to 3]
Examples 3 and 5 to 8 and Comparative Examples were prepared in the same manner as in Example 1 except that the acid dianhydride used and its charging ratio, and the diamine used and its charging ratio were as shown in Table 1. Laminates 1 and 2 were obtained, respectively. In addition, the acid dianhydride used and its charging ratio, and the diamine used and its charging ratio were as shown in Table 1, in the same manner as in Example 2. A laminate was obtained, respectively. Incidentally, in both Examples 3 to 8 and Comparative Examples 1 to 3, the total substance amount of the acid dianhydride in preparing the polyamic acid composition was the same as in Examples 1 and 2. Further, in all of Examples 3 to 8 and Comparative Examples 1 to 3, the total substance amount of diamine in preparing the polyamic acid composition was the same as in Examples 1 and 2.
 実施例1~8及び比較例1~3のそれぞれについて、使用した材料及び物性の測定結果を、表1に示す。なお、表1において、「-」は、当該成分を使用しなかったことを意味する。また、表1において、「酸二無水物」の欄の数値は、使用した酸二無水物の全量に対する各酸二無水物の含有率(単位:モル%)である。表1において、「ジアミン」の欄の数値は、使用したジアミンの全量に対する各ジアミンの含有率(単位:モル%)である。表1において、「DMI」の欄の数値は、ポリアミド酸100重量部に対するDMIの量(単位:重量部)である。また、実施例1~8及び比較例1~3のいずれについても、調製したポリアミド酸組成物中のポリアミド酸の各残基のモル分率は、ポリアミド酸の合成に使用した各モノマー(ジアミン及びテトラカルボン酸二無水物)のモル分率と一致していた。 Table 1 shows the materials used and the measurement results of physical properties for each of Examples 1 to 8 and Comparative Examples 1 to 3. In Table 1, "-" means that the component was not used. In Table 1, the numerical values in the "acid dianhydride" column are the content of each acid dianhydride relative to the total amount of acid dianhydride used (unit: mol%). In Table 1, the numerical values in the "diamine" column are the content of each diamine relative to the total amount of diamines used (unit: mol %). In Table 1, the numerical value in the "DMI" column is the amount of DMI (unit: parts by weight) per 100 parts by weight of polyamic acid. In addition, in both Examples 1 to 8 and Comparative Examples 1 to 3, the molar fraction of each residue of polyamic acid in the prepared polyamic acid composition was different from each monomer (diamine and tetracarboxylic dianhydride).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例1~8において調製したポリアミド酸組成物中のポリアミド酸は、BPDA残基及び6FDA残基を有し、かつ4-BAAB残基を有していた。実施例1~8において調製したポリアミド酸組成物中のポリアミド酸では、BPDA残基の含有率が、全テトラカルボン酸二無水物残基に対して、65モル%以上97モル%以下であった。実施例1~8において調製したポリアミド酸組成物中のポリアミド酸では、6FDA残基の含有率が、全テトラカルボン酸二無水物残基に対して、3モル%以上35モル%以下であった。実施例1~8において調製したポリアミド酸組成物中のポリアミド酸では、4-BAAB残基の含有率が、全ジアミン残基に対して、50モル%以上であった。 The polyamic acids in the polyamic acid compositions prepared in Examples 1-8 had BPDA residues and 6FDA residues, and had 4-BAAB residues. In the polyamic acids in the polyamic acid compositions prepared in Examples 1 to 8, the content of BPDA residues was 65 mol% or more and 97 mol% or less with respect to all tetracarboxylic dianhydride residues. . In the polyamic acids in the polyamic acid compositions prepared in Examples 1 to 8, the content of 6FDA residues was 3 mol% or more and 35 mol% or less with respect to all tetracarboxylic dianhydride residues. . In the polyamic acids in the polyamic acid compositions prepared in Examples 1 to 8, the content of 4-BAAB residues was 50 mol% or more with respect to the total diamine residues.
 実施例1~8では、ΔYIが10未満であった。よって、実施例1~8で得られたポリイミドは、高温プロセスにおける着色を低減できていた。実施例1~8では、ヘイズが1.0%未満であった。よって、実施例1~8で得られたポリイミドは、透明性に優れていた。 In Examples 1 to 8, ΔYI was less than 10. Therefore, the polyimides obtained in Examples 1 to 8 were able to reduce coloring in high-temperature processes. Examples 1-8 had a haze of less than 1.0%. Therefore, the polyimides obtained in Examples 1 to 8 were excellent in transparency.
 比較例1において調製したポリアミド酸組成物中のポリアミド酸は、6FDA残基を有していなかった。比較例2及び3において調製したポリアミド酸組成物中のポリアミド酸では、6FDA残基の含有率が、全テトラカルボン酸二無水物残基に対して、35モル%を超えていた。 The polyamic acid in the polyamic acid composition prepared in Comparative Example 1 did not have 6FDA residues. In the polyamic acids in the polyamic acid compositions prepared in Comparative Examples 2 and 3, the content of 6FDA residues exceeded 35 mol % with respect to the total tetracarboxylic dianhydride residues.
 比較例1及び3では、ヘイズが1.0%以上であった。よって、比較例1及び3で得られたポリイミドは、透明性に優れていなかった。比較例2及び3では、ΔYIが10以上であった。よって、比較例2及び3で得られたポリイミドは、高温プロセスにおける着色を低減できていなかった。 In Comparative Examples 1 and 3, the haze was 1.0% or more. Therefore, the polyimides obtained in Comparative Examples 1 and 3 were not excellent in transparency. In Comparative Examples 2 and 3, ΔYI was 10 or more. Therefore, the polyimides obtained in Comparative Examples 2 and 3 were not able to reduce the coloring in the high-temperature process.
 以上の結果から、本発明に係るポリアミド酸組成物から得られるポリイミドが、透明性に優れつつ、高温プロセスにおける着色を低減できることが示された。 From the above results, it was shown that the polyimide obtained from the polyamic acid composition according to the present invention has excellent transparency and can reduce coloration in high-temperature processes.

Claims (14)

  1.  テトラカルボン酸二無水物残基として、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基及び4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基を有し、かつジアミン残基として、4-アミノフェニル-4-アミノベンゾエート残基を有し、
     前記3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基の含有率が、全テトラカルボン酸二無水物残基に対して、65モル%以上97モル%以下であり、
     前記4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基の含有率が、全テトラカルボン酸二無水物残基に対して、3モル%以上35モル%以下であり、
     前記4-アミノフェニル-4-アミノベンゾエート残基の含有率が、全ジアミン残基に対して、50モル%以上である、ポリアミド酸。
    As tetracarboxylic dianhydride residues, 3,3',4,4'-biphenyltetracarboxylic dianhydride residues and 4,4'-(hexafluoroisopropylidene) diphthalic anhydride residues , and having a 4-aminophenyl-4-aminobenzoate residue as a diamine residue,
    The content of the 3,3',4,4'-biphenyltetracarboxylic dianhydride residue is 65 mol% or more and 97 mol% or less with respect to the total tetracarboxylic dianhydride residue,
    The content of the 4,4'-(hexafluoroisopropylidene)diphthalic anhydride residue is 3 mol% or more and 35 mol% or less with respect to all tetracarboxylic dianhydride residues,
    Polyamic acid, wherein the content of the 4-aminophenyl-4-aminobenzoate residue is 50 mol% or more with respect to all diamine residues.
  2.  前記4-アミノフェニル-4-アミノベンゾエート残基の含有率が全ジアミン残基に対して100モル%未満である場合、前記4-アミノフェニル-4-アミノベンゾエート残基以外のジアミン残基が、p-フェニレンジアミン残基、9,9-ビス(4-アミノフェニル)フルオレン残基、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル残基、及び1,4-シクロヘキサンジアミン残基からなる群より選ばれる一種以上である、請求項1に記載のポリアミド酸。 When the content of the 4-aminophenyl-4-aminobenzoate residue is less than 100 mol% with respect to all diamine residues, diamine residues other than the 4-aminophenyl-4-aminobenzoate residue are p-phenylenediamine residue, 9,9-bis(4-aminophenyl)fluorene residue, 2,2′-bis(trifluoromethyl)-4,4′-diaminodiphenyl ether residue, and 1,4-cyclohexane The polyamic acid according to claim 1, which is one or more selected from the group consisting of diamine residues.
  3.  前記4-アミノフェニル-4-アミノベンゾエート残基の含有率が、全ジアミン残基に対して100モル%である、請求項1に記載のポリアミド酸。 The polyamic acid according to claim 1, wherein the content of said 4-aminophenyl-4-aminobenzoate residues is 100 mol% with respect to all diamine residues.
  4.  前記4-アミノフェニル-4-アミノベンゾエート残基以外のジアミン残基の含有率が、全ジアミン残基に対して、5モル%以上50モル%以下である、請求項2に記載のポリアミド酸。 The polyamic acid according to claim 2, wherein the content of diamine residues other than the 4-aminophenyl-4-aminobenzoate residues is 5 mol% or more and 50 mol% or less with respect to all diamine residues.
  5.  請求項1に記載のポリアミド酸と、有機溶媒とを含有する、ポリアミド酸組成物。 A polyamic acid composition containing the polyamic acid according to claim 1 and an organic solvent.
  6.  更にイミド化促進剤を含有する、請求項5に記載のポリアミド酸組成物。 The polyamic acid composition according to claim 5, further comprising an imidization accelerator.
  7.  前記イミド化促進剤の量が、前記ポリアミド酸100重量部に対して、0.1重量部以上10重量部以下である、請求項6に記載のポリアミド酸組成物。 The polyamic acid composition according to claim 6, wherein the amount of the imidization accelerator is 0.1 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the polyamic acid.
  8.  請求項1に記載のポリアミド酸のイミド化物であるポリイミド。 A polyimide which is an imidized product of the polyamic acid according to claim 1.
  9.  請求項8に記載のポリイミドを含むポリイミド膜。 A polyimide film containing the polyimide according to claim 8.
  10.  黄色度が20以下である、請求項9に記載のポリイミド膜。 The polyimide film according to claim 9, which has a yellowness index of 20 or less.
  11.  支持体と、請求項9に記載のポリイミド膜とを有する積層体。 A laminate comprising a support and the polyimide film according to claim 9.
  12.  前記支持体は、ガラス基板であり、
     前記ポリイミド膜と前記ガラス基板との間の内部応力が、25MPa以下である、請求項11に記載の積層体。
    The support is a glass substrate,
    12. The laminate according to claim 11, wherein the internal stress between said polyimide film and said glass substrate is 25 MPa or less.
  13.  支持体とポリイミド膜とを有する積層体の製造方法であって、
     請求項5に記載のポリアミド酸組成物を支持体上に塗布することにより、前記ポリアミド酸を含む塗布膜を形成し、前記塗布膜を加熱して前記ポリアミド酸をイミド化する、積層体の製造方法。
    A method for producing a laminate having a support and a polyimide film,
    Manufacture of a laminate by applying the polyamic acid composition according to claim 5 onto a support to form a coating film containing the polyamic acid, and heating the coating film to imidize the polyamic acid. Method.
  14.  請求項9に記載のポリイミド膜と、前記ポリイミド膜上に配置された電子素子とを有する電子デバイス。 An electronic device comprising the polyimide film according to claim 9 and an electronic element arranged on the polyimide film.
PCT/JP2022/037393 2021-10-12 2022-10-06 Polyamic acid, polyamic acid composition, polyimide, polyimide film, laminate, method for producing laminate, and electronic device WO2023063202A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-167107 2021-10-12
JP2021167107 2021-10-12

Publications (1)

Publication Number Publication Date
WO2023063202A1 true WO2023063202A1 (en) 2023-04-20

Family

ID=85988647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037393 WO2023063202A1 (en) 2021-10-12 2022-10-06 Polyamic acid, polyamic acid composition, polyimide, polyimide film, laminate, method for producing laminate, and electronic device

Country Status (1)

Country Link
WO (1) WO2023063202A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021109910A (en) * 2020-01-09 2021-08-02 旭化成株式会社 Resin composition, polyimide, and method for producing polyimide film
JP2021109908A (en) * 2020-01-09 2021-08-02 旭化成株式会社 Resin composition, polyimide, and method for producing polyimide film
WO2022211086A1 (en) * 2021-04-02 2022-10-06 旭化成株式会社 Polyimide, resin composition, polyimide film, and production method therefor
WO2022220286A1 (en) * 2021-04-16 2022-10-20 三菱瓦斯化学株式会社 Imide-amic acid copolymer and production method therefor, varnish, and polyimide film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021109910A (en) * 2020-01-09 2021-08-02 旭化成株式会社 Resin composition, polyimide, and method for producing polyimide film
JP2021109908A (en) * 2020-01-09 2021-08-02 旭化成株式会社 Resin composition, polyimide, and method for producing polyimide film
WO2022211086A1 (en) * 2021-04-02 2022-10-06 旭化成株式会社 Polyimide, resin composition, polyimide film, and production method therefor
WO2022220286A1 (en) * 2021-04-16 2022-10-20 三菱瓦斯化学株式会社 Imide-amic acid copolymer and production method therefor, varnish, and polyimide film

Similar Documents

Publication Publication Date Title
JP7304338B2 (en) Method for producing polyimide film and method for producing electronic device
JP5650458B2 (en) LAMINATE MANUFACTURING METHOD AND FLEXIBLE DEVICE MANUFACTURING METHOD
TWI728163B (en) Polyimide, polyimide solution, polyimide, polyimide film, laminate and flexible device, and manufacturing method of polyimide film
TW201734132A (en) Polyamic acid, polyimide, polyamic acid solution, polyimide laminate, flexible device substrate, and method for producing them
JP7424284B2 (en) Polyimide resin, polyimide varnish and polyimide film
TW201809069A (en) Alkoxysilane-modified polyamic acid solution, laminate and flexible device made by using same, and method for producing laminate
JP7292260B2 (en) Polyamic acid and its manufacturing method, polyamic acid solution, polyimide, polyimide film, laminate and its manufacturing method, flexible device and its manufacturing method
JP7126311B2 (en) Polyamic acid, polyamic acid solution, polyimide, polyimide film, laminate and flexible device, and method for producing polyimide film
TWI735550B (en) Polyamide acid, polyamide acid solution, polyimide, and polyimide substrate and manufacturing method thereof
WO2021261177A1 (en) Poly(amic acid), poly(amic acid) solution, polyimide, polyimide film, layered product, method for producing layered product, and electronic device
JP6687442B2 (en) Utilization of polyamic acid, polyimide, polyamic acid solution, and polyimide
JP7084755B2 (en) A method for producing a polyamic acid, a polyamic acid solution, a polyimide, a polyimide film, a laminate and a flexible device, and a polyimide film.
JP7349253B2 (en) A polyamic acid, a polyamic acid solution, a polyimide, a polyimide film, a laminate, a flexible device, and a method for producing a polyimide film.
WO2023074350A1 (en) Polyamide acid, polyamide acid composition, polyimide, polyimide film, multilayer body, method for producing multilayer body, and electronic device
WO2023157790A1 (en) Polyamide acid, polyamide acid composition, polyimide, polyimide film, laminate, method for producing laminate, and electronic device
JP2022044020A (en) Polyamide acid, polyamide acid solution, polyimide, polyimide film, laminate and flexible device, and method for producing polyimide film
JPWO2019131896A1 (en) Polyimide, polyimide solution composition, polyimide film, and substrate
WO2023063202A1 (en) Polyamic acid, polyamic acid composition, polyimide, polyimide film, laminate, method for producing laminate, and electronic device
WO2023248810A1 (en) Polyamic acid composition, polyimide production method, laminate production method, and electronic device production method
JP2022145217A (en) Polyamic acid composition, polyimide, laminate of the same, flexible device, and production method of laminate
JP2023038407A (en) Polyamide acid composition, polyimide, polyimide film, laminate and flexible device, and method for producing laminate
TW202409147A (en) Polyamide composition, method for manufacturing polyimide, method for manufacturing laminated body, and method for manufacturing electronic device
KR20230092934A (en) Polyamic acid, polyamic acid solution, polyimide, polyimide film, laminate, electronic device, and method for producing polyimide film
JP2022044021A (en) Polyamide acid, polyamide acid solution, polyimide, polyimide film, laminate and flexible device, and method for producing polyimide film
WO2022202769A1 (en) Poly(amic acid), poly(amic acid) solution, polyimide, polyimide substrate and layered product, and methods for producing these

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880897

Country of ref document: EP

Kind code of ref document: A1