WO2023248810A1 - Polyamic acid composition, polyimide production method, laminate production method, and electronic device production method - Google Patents

Polyamic acid composition, polyimide production method, laminate production method, and electronic device production method Download PDF

Info

Publication number
WO2023248810A1
WO2023248810A1 PCT/JP2023/021312 JP2023021312W WO2023248810A1 WO 2023248810 A1 WO2023248810 A1 WO 2023248810A1 JP 2023021312 W JP2023021312 W JP 2023021312W WO 2023248810 A1 WO2023248810 A1 WO 2023248810A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamic acid
acid composition
residue
mol
polyimide film
Prior art date
Application number
PCT/JP2023/021312
Other languages
French (fr)
Japanese (ja)
Inventor
博文 中山
萌子 加藤
隆之介 滝
伸明 田中
友貴 白井
越生 堀井
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2023248810A1 publication Critical patent/WO2023248810A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a polyamic acid composition, a method for producing a polyimide, a method for producing a laminate, and a method for producing an electronic device.
  • the present invention further provides electronic device materials using polyimide, thin film transistor (TFT) substrates, flexible display substrates, color filters, printed matter, optical materials, image display devices (more specifically, liquid crystal display devices, organic EL, electronic paper, etc.), 3D displays, solar cells, touch panels, transparent conductive film substrates, and alternative materials for members in which glass is currently used.
  • TFT thin film transistor
  • Polyimide has sufficient heat resistance to be applicable to high-temperature processes, and its coefficient of thermal expansion (CTE) is similar to that of glass substrates and electronic devices, making it less susceptible to internal stress and suitable for substrate materials such as flexible displays. be.
  • the above-mentioned substrate material is produced by coating a support with a solution in which polyamic acid is dissolved (polyamic acid composition) and imidizing the polyamic acid to form a polyimide film, and then electronic devices are laminated on top of the polyimide film.
  • Solvents for dissolving polyamic acid are usually those with a relatively small number of carbon atoms, such as N,N-dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP), and N,N-dimethylacetamide (DMAC).
  • Amide solvents are currently used, but from the perspective of their impact on the environment and the human body, there is a growing need to switch to safer solvents.
  • Patent Document 1 As an example of preparing a polyamic acid composition using a highly safe solvent, an example is known in which a polyamic acid salt is used and water is used as a solvent (Patent Document 1, etc.). In addition, examples are known in which polyamic acids are synthesized using alkoxy-N-substituted propanamides as solvents with low concern for teratogenicity (Patent Documents 2 and 3, etc.).
  • the present invention has been achieved in view of the above circumstances, and provides a polyamic acid composition that can suppress the occurrence of poor adhesion and reduce internal stress while using a highly safe solvent, and the polyamic acid composition.
  • An object of the present invention is to provide a method for manufacturing polyimide, a method for manufacturing a laminate, and a method for manufacturing an electronic device using a composition.
  • the present invention includes the following aspects.
  • a polyamic acid composition containing a polyamic acid and an organic solvent contains a residue containing a divalent organic group represented by the following chemical formula (1), a 3,3',4,4'-biphenyltetracarboxylic dianhydride residue, and p-phenylenediamine. has a residue
  • the organic solvent is a polyamic acid composition containing one or more compounds selected from the group consisting of a compound represented by the following general formula (2) and a compound represented by the following general formula (3).
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom or a monovalent organic group having 1 or more carbon atoms; At least one represents a monovalent organic group having 2 or more carbon atoms, In the general formula (3), R 4 represents a monovalent organic group having 2 or more carbon atoms.
  • the residue containing the divalent organic group represented by the chemical formula (1) above may be a tetravalent organic group represented by the following chemical formula (4) or a tetravalent organic group represented by the following chemical formula (5).
  • the content of residues containing a divalent organic group represented by the chemical formula (1) is equal to or less than all tetracarboxylic dianhydride residues constituting the polyamic acid and all diamines constituting the polyamic acid.
  • the content of the 1,3-bis(3-aminopropyl)tetramethyldisiloxane residue is 0.1 mol% or more and 1.0 mol% or more based on the total amount of diamine residues constituting the polyamic acid.
  • a method for producing polyimide which comprises heating the polyamic acid composition according to any one of [1] to [7] above to imidize the polyamic acid.
  • a method for producing a laminate having a support and a polyimide film comprising: A coating film containing the polyamic acid is formed by coating the polyamic acid composition according to any one of [1] to [7] above on a support, and the coating film is heated to form a coating film containing the polyamide acid.
  • a method for producing a laminate by imidizing acid comprising:
  • Step Sa of heating the polyamic acid composition according to any one of [1] to [7] to imidize the polyamic acid;
  • a method for manufacturing an electronic device comprising a step Sb of arranging an electronic element on the polyimide film obtained in the step Sa.
  • a polyamic acid composition that can suppress the occurrence of poor adhesion and reduce internal stress while using a highly safe solvent, and a method for producing polyimide using the polyamic acid composition, A method for manufacturing a laminate and a method for manufacturing an electronic device can be provided.
  • Structural unit refers to a repeating unit that constitutes a polymer.
  • Polyamic acid is a polymer containing a structural unit represented by the following general formula (7) (hereinafter sometimes referred to as “structural unit (7)").
  • a 1 represents a tetracarboxylic dianhydride residue (tetravalent organic group derived from tetracarboxylic dianhydride), and A 2 represents a diamine residue (divalent organic group derived from diamine). represents an organic group).
  • the content of the structural unit (7) with respect to all the structural units constituting the polyamic acid is, for example, 50 mol% or more and 100 mol% or less, preferably 60 mol% or more and 100 mol% or less, and more preferably 70 mol%. It is 100 mol% or more, more preferably 80 mol% or more and 100 mol% or less, even more preferably 90 mol% or more and 100 mol% or less, and may be 100 mol%.
  • the "1% weight loss temperature” is the measurement temperature at which the weight of polyimide at a measurement temperature of 150° C. is a reference (100% by weight) and the weight is reduced by 1% by weight with respect to the above-mentioned reference weight.
  • the method for measuring the 1% weight loss temperature is the same method as in the examples described later or a method similar thereto.
  • alkyl group and “alkoxyalkyl group” are linear or branched and unsubstituted.
  • the compound and its derivatives may be collectively referred to by adding "system” after the compound name.
  • a polymer name when expressed by adding "system” after the compound name, it means that the repeating unit of the polymer is derived from the compound or its derivative, unless otherwise specified.
  • tetracarboxylic dianhydride may be described as "acid dianhydride.”
  • the components, functional groups, etc. illustrated in this specification may be used alone, or two or more types may be used in combination.
  • the polyamic acid composition according to this embodiment includes a polyamic acid and an organic solvent.
  • the polyamic acid (hereinafter sometimes referred to as "specific polyamic acid”) contained in the polyamic acid composition according to the present embodiment is a residue containing a divalent organic group represented by the following chemical formula (1) ( (hereinafter sometimes referred to as "residue (1)”), a 3,3',4,4'-biphenyltetracarboxylic dianhydride residue, and a p-phenylenediamine residue.
  • the organic solvent contained in the polyamic acid composition according to the present embodiment is a compound represented by the following general formula (2) (hereinafter sometimes referred to as "compound (2)”) and a compound represented by the following general formula (3). It includes one or more compounds selected from the group consisting of the compounds represented by (hereinafter sometimes referred to as “compound (3)”).
  • compound (3) one or more compounds (organic solvent) selected from the group consisting of compound (2) and compound (3) may be referred to as a "specific organic solvent.”
  • BPDA 3,3',4,4'-biphenyltetracarboxylic dianhydride
  • p-phenylenediamine is sometimes written as "PDA”.
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom or a monovalent organic group having 1 or more carbon atoms, and at least one of R 1 , R 2 and R 3 One represents a monovalent organic group having 2 or more carbon atoms.
  • R 4 represents a monovalent organic group having 2 or more carbon atoms.
  • polyamic acid compositions are made from amide-based compounds with a relatively small number of carbon atoms, such as N,N-dimethylformamide, N-methyl-2-pyrrolidone, and N,N-dimethylacetamide, from the viewpoint of improving solubility and properties.
  • Solvents are used, but these solvents have come to be viewed as problematic due to their health hazards. On the other hand, specific organic solvents have less impact on the environment and the human body and are highly safe.
  • R 1 , R 2 and R 3 in general formula (2) are each independently preferably a monovalent organic group having 1 or more carbon atoms, and preferably a monovalent organic group having 1 or more carbon atoms. The following monovalent organic groups are more preferred.
  • R 1 and R 2 in general formula (2) are each independently preferably an alkyl group having 1 or more carbon atoms, and an alkyl group having 1 or more and 6 or less carbon atoms. More preferred.
  • R 3 in general formula (2) is preferably an alkoxyalkyl group having 2 or more carbon atoms, more preferably an alkoxyalkyl group having 2 or more and 6 or less carbon atoms.
  • R 4 in general formula (3) is preferably a monovalent organic group having 2 or more and 6 or less carbon atoms. In order to further improve safety, R 4 in general formula (3) is preferably an alkyl group having 2 or more and 6 or less carbon atoms.
  • Examples of the compound (2) include 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide, N,N-diethylacetamide, N,N-dimethylpropionamide, and the like. It will be done. Among these, 3-methoxy-N,N-dimethylpropanamide or 3-butoxy-N,N-dimethylpropanamide is preferred from the viewpoint of safety.
  • Examples of the compound (3) include 1-ethyl-2-pyrrolidone and 1-butyl-2-pyrrolidone. Among these, 1-butyl-2-pyrrolidone is preferred from the viewpoint of safety.
  • the polyamic acid composition according to the present embodiment may contain only compound (2), only compound (3), or both compound (2) and compound (3) as the specific organic solvent.
  • the specific organic solvent is preferably 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide or 1-butyl-2-pyrrolidone; More preferred are methoxy-N,N-dimethylpropanamide or 1-butyl-2-pyrrolidone.
  • the specific polyamic acid has a rigid structure because it contains a BPDA residue and a PDA residue. Therefore, the specific polyamic acid can reduce internal stress.
  • the present inventors have found that when a polyimide film is formed using a polyamic acid composition containing a polyamic acid having a rigid structure and a specific organic solvent, floating occurs at the interface between the polyimide film and the support. It turned out to be easier. If there is any floating at the interface between the polyimide film and the support, the polyimide film may peel off during the formation of electronic devices, or the yield may decrease when peeling the polyimide film from the support after forming the electronic device. . Note that "lifting" is caused by the adhesion between the polyimide film and other material layers (more specifically, the glass substrate, sacrificial layer, etc.) due to subcomponents and residual solvent generated during imidization.
  • lifting include a state in which the polyimide film is lifted from the support, a state in which part of the polyimide film is destroyed and delamination occurs between the polyimide film and another material layer, and the like.
  • polyimide films obtained from polyamic acids having BPDA residues and PDA residues have densely packed molecular chains, so if a solvent with a relatively large number of carbon atoms, such as a specific organic solvent, is used, Gas release tends to be poor. Therefore, in the process of coating a polyamic acid composition containing a polyamic acid with a rigid structure onto a support and imidizing it, residual solvent and molecules released during imidization are trapped, and the polyimide membrane and the support are It is assumed that floating is likely to occur at the interface.
  • the residue (1) becomes bulky. It has been found that the structure allows for good gas release while reducing internal stress. That is, according to the polyamic acid composition according to the present embodiment, since it contains a specific polyamic acid and a specific organic solvent, it is possible to use a highly safe solvent while suppressing the occurrence of poor adhesion due to good gas release properties. Not only that, but the internal stress can be reduced.
  • the residue (1) is a residue contained in polyamic acid, it is one or more residues selected from the group consisting of tetracarboxylic dianhydride residues and diamine residues.
  • the specific polyamic acid may have only a tetracarboxylic dianhydride residue as the residue (1), or may have only a diamine residue, or may have a tetracarboxylic dianhydride residue and a diamine residue. It may have both groups.
  • Examples of the tetracarboxylic dianhydride for forming the residue (1) include spiro[11H-difuro[3,4-b:3',4'-i]xanthene-11,9'-[9H ] Fluorene]-1,3,7,9-tetrone (hereinafter sometimes referred to as "SFDA”), 9,9-bis(3,4-dicarboxyphenyl)fluorene dianhydride (hereinafter referred to as "BPAF”) ), 9,9-bis[4-(3,4-dicarboxyphenoxy)phenyl]fluorene dianhydride, 5,5'-[9H-fluoren-9-ylidene bis(2-methyl -4,1-phenylene)]bis(1,3-dihydro-1,3-dioxo-5-isobenzofurancarboxylate), N,N'-(9H-fluorene-9-ylidene-4,1-phenylene) Bis[1,3
  • Examples of the diamine for forming the residue (1) include 9,9-bis(4-aminophenyl)fluorene (hereinafter sometimes referred to as "BAFL"), 3,3'-(9H- Examples include fluorene-9,9-diyl)dianiline, 4,4'-(9H-fluorene-9-ylidene)bis[2-fluorobenzenamine], and the like.
  • BAFL 9,9-bis(4-aminophenyl)fluorene
  • 3,3'-(9H- Examples include fluorene-9,9-diyl)dianiline, 4,4'-(9H-fluorene-9-ylidene)bis[2-fluorobenzenamine], and the like.
  • BAFL 9,9-bis(4-aminophenyl)fluorene
  • 3,3'-(9H- Examples include fluorene-9,9-diyl)dianiline, 4,4'-(9H-fluorene-9-y
  • residue (1) is preferably one or more residues selected from the group consisting of SFDA residues, BPAF residues, and BAFL residues.
  • the SFDA residue is a tetravalent organic group represented by the following chemical formula (4).
  • the BPAF residue is a tetravalent organic group represented by the following chemical formula (5).
  • the BAFL residue is a divalent organic group represented by the following chemical formula (6).
  • the SFDA residue has a rigid structure derived from the xanthene structure, so in order to further reduce the internal stress and further suppress the occurrence of poor adhesion, the SFDA residue (1) should be used as the residue (1).
  • the content of residue (1) (if more than one type of residue (1) is included, the total content) must be lower than all the tetracarboxylic acids constituting the specific polyamic acid. It is preferably 15 mol% or less, more preferably 10 mol% or less, and 5 mol% or less, based on the total 100 mol% of the acid dianhydride residue and all the diamine residues constituting the specific polyamic acid. % or less.
  • It is preferably 0.1 mol% or more, and preferably 0.5 mol% or more with respect to the total 100 mol% of all tetracarboxylic dianhydride residues and all diamine residues constituting the specific polyamic acid. More preferably, it is 1 mol% or more.
  • an acid dianhydride other than BPDA and the acid dianhydride for forming the residue (1) may be used as a monomer to the extent that its performance is not impaired.
  • acid dianhydrides other than the acid dianhydride for forming BPDA and residue (1) include pyromellitic dianhydride, p-phenylene bis(trimelitate anhydride), 1,2,5, 6-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride, 3,3',4 , 4'-benzophenone tetracarboxylic dianhydride, 4,4'-oxydiphthalic anhydride, dicyclohexyl-3,3',4,4'-tetracarboxylic dianhydride, 1,2,4,5-cyclohexane Tetracarboxylic
  • the content of BPDA residues should be 70 mol% or more with respect to the total amount (100 mol%) of tetracarboxylic dianhydride residues constituting the specific polyamic acid. is preferable, more preferably 80 mol% or more, still more preferably 90 mol% or more, and may be 100 mol%.
  • residue (1) is a residue derived from an acid dianhydride (SFDA residue, BPAF residue, etc.), in order to further suppress the occurrence of poor adhesion, the content of residue (1) must be , is preferably 0.1 mol% or more, more preferably 0.5 mol% or more, based on the total amount (100 mol%) of the tetracarboxylic dianhydride residues constituting the specific polyamic acid. .
  • the residue (1) is a residue derived from an acid dianhydride (SFDA residue, BPAF residue, etc.), in order to further reduce internal stress, the content of the residue (1) must be It is preferably 10 mol% or less, more preferably 8 mol% or less, based on the total amount (100 mol%) of the tetracarboxylic dianhydride residues constituting the specific polyamic acid.
  • the total content of acid dianhydride-derived residues (1) and BPDA residues should be lower than that of the tetracarboxylic acid constituting the specific polyamic acid. It is preferably 60 mol% or more, more preferably 70 mol% or more, even more preferably 80 mol% or more, and 90 mol% based on the total amount (100 mol%) of dianhydride residues. % or more, and may be 100 mol%.
  • a diamine other than the diamine for forming PDA and the residue (1) may be used as a monomer to the extent that its performance is not impaired.
  • diamines other than diamine for forming PDA and residue (1) include 4-aminophenyl-4-aminobenzoate, 2,2'-bis(trifluoromethyl)-4,4'-diaminodiphenyl ether , 1,4-cyclohexanediamine, 4,4'-diaminobenzanilide, m-phenylenediamine, 4,4'-oxydianiline, 3,4'-oxydianiline, N,N'-bis(4-amino Phenyl) terephthalamide, 4,4'-diaminodiphenylsulfone, m-tolidine, o-tolidine, 4,4'-bis(4-aminophenoxy)biphenyl, 2-(4-aminophenyl)-6-amin
  • PAM-E is preferred as the diamine other than the diamine for forming PDA and the residue (1). That is, in order to improve the adhesion between the polyimide membrane and the support, it is preferable that the specific polyamic acid has a PAM-E residue.
  • the content of PAM-E residues should be 0.05 mol based on the total amount (100 mol%) of diamine residues constituting the specific polyamic acid. % or more, more preferably 0.1 mol% or more, and may be 0.2 mol% or more.
  • the content of PAM-E residues in order to suppress a decrease in yield when peeling the polyimide film from the support after forming an electronic device, it is necessary to adjust the content of PAM-E residues to the total amount of diamine residues constituting the specific polyamic acid ( 100 mol%), it is preferably 1.0 mol% or less, more preferably 0.9 mol% or less, even more preferably 0.8 mol% or less, and even more preferably 0.7 mol%. % or less is even more preferable, and may be 0.6 mol% or less.
  • the content of PDA residues is preferably 70 mol% or more, and 80 mol% or more, based on the total amount (100 mol%) of diamine residues constituting the specific polyamic acid. % or more, more preferably 90 mol% or more, and may be 100 mol%.
  • the residue (1) is a diamine-derived residue (such as a BAFL residue)
  • the content of the residue (1) in order to further suppress the occurrence of poor adhesion, the content of the residue (1) must be such that the content of the specific polyamic acid is It is preferably 0.1 mol% or more, more preferably 0.5 mol% or more, based on the total amount (100 mol%) of diamine residues.
  • the residue (1) is a diamine-derived residue (BAFL residue, etc.)
  • the total content of diamine-derived residues (1) and PDA residues should be adjusted to the total content of diamine residues constituting the specific polyamic acid ( 100 mol%), preferably 60 mol% or more, more preferably 70 mol% or more, even more preferably 80 mol% or more, and particularly preferably 90 mol% or more. , 100 mol%.
  • the polyamic acid composition can further reduce internal stress while further suppressing the occurrence of poor adhesion, and can further improve the adhesion between the polyimide film and the support.
  • the total content of PAM-E residues, diamine-derived residues (1), and PDA residues should be such that the total content of diamine residues (100 mol%) constituting the specific polyamic acid is as follows: It is preferably 60 mol% or more, more preferably 70 mol% or more, even more preferably 80 mol% or more, particularly preferably 90 mol% or more, even if it is 100 mol%. good.
  • the specific polyamic acid preferably satisfies the following condition 1, more preferably satisfies the following condition 2, and satisfies the following condition 3. It is more preferable, and it is particularly preferable that Condition 4 below is satisfied.
  • Condition 1 The total content of residue (1), BPDA residue, and PDA residue is the same as that of all the tetracarboxylic dianhydride residues that make up the specific polyamic acid and all the diamine residues that make up the specific polyamic acid. It is 90 mol% or more with respect to the total 100 mol%.
  • Condition 2 Satisfies Condition 1 above and further has a PAM-E residue.
  • Condition 3 Condition 2 above is satisfied, and the content of PAM-E residue is 0.1 mol% or more and 1.0 mol based on the total amount (100 mol%) of diamine residues constituting the specific polyamic acid. % or less.
  • Condition 4 The above condition 3 is satisfied, and the total content of residue (1), BPDA residue, PDA residue, and PAM-E residue is all the tetracarboxylic dianhydride residues constituting the specific polyamic acid. It is 95 mol% or more and 100 mol% or less with respect to the total 100 mol% of all the diamine residues constituting the specific polyamic acid.
  • the specific polyamic acid can be synthesized by a known general method, for example, by reacting a diamine and a tetracarboxylic dianhydride in an organic solvent.
  • An example of a specific method for synthesizing a specific polyamic acid will be explained.
  • a diamine solution is prepared by dissolving or dispersing diamine in an organic solvent in an inert gas atmosphere such as argon or nitrogen.
  • the tetracarboxylic dianhydride is dissolved in an organic solvent or dispersed in a slurry state, or is added to the diamine solution in a solid state.
  • the amount of the diamine if multiple types of diamines are used, the amount of each diamine
  • the amount of the tetracarboxylic dianhydride By adjusting the amount (if multiple types of tetracarboxylic dianhydride are used, the amount of each tetracarboxylic dianhydride), the desired specific polyamic acid (the combination of diamine and tetracarboxylic dianhydride) can be obtained.
  • polymer can be obtained.
  • the mole fraction of each residue in the specific polyamic acid matches, for example, the mole fraction of each monomer (diamine and tetracarboxylic dianhydride) used in the synthesis of the specific polyamic acid.
  • a specific polyamic acid containing multiple types of tetracarboxylic dianhydride residues and multiple types of diamine residues can also be obtained.
  • the temperature conditions for the reaction between the diamine and the tetracarboxylic dianhydride, that is, the synthesis reaction of the specific polyamic acid are not particularly limited, but are, for example, in the range of 20°C or higher and 150°C or lower.
  • the reaction time for the synthesis reaction of the specific polyamic acid is, for example, in the range of 10 minutes or more and 30 hours or less.
  • the organic solvent used in the synthesis of the specific polyamic acid is preferably a solvent that can dissolve the tetracarboxylic dianhydride and diamine used, and more preferably a solvent that can dissolve the specific polyamic acid to be produced. From the viewpoint of safety, the above-mentioned specific organic solvents are preferable as the organic solvent used in the synthesis of the specific polyamic acid. Furthermore, organic solvents other than the specific organic solvent may be used in the synthesis of the specific polyamic acid.
  • organic solvents other than specific organic solvents include urea-based solvents such as tetramethylurea and N,N-dimethylethylurea; sulfoxide-based solvents such as dimethyl sulfoxide; and sulfone-based solvents such as diphenyl sulfone and tetramethyl sulfone.
  • urea-based solvents such as tetramethylurea and N,N-dimethylethylurea
  • sulfoxide-based solvents such as dimethyl sulfoxide
  • sulfone-based solvents such as diphenyl sulfone and tetramethyl sulfone.
  • Solvent Amide solvent other than specific organic solvents such as N,N-dimethylacetamide (DMAC), N,N-dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP), hexamethylphosphoric triamide; ⁇ - Ester solvents such as butyrolactone; halogenated alkyl solvents such as chloroform and methylene chloride; aromatic hydrocarbon solvents such as benzene and toluene; phenolic solvents such as phenol and cresol; ketone solvents such as cyclopentanone; Examples include ether solvents such as tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, dimethyl ether, diethyl ether, diethylene glycol diethyl ether, diethylene glycol dimethyl ether, and p-cresol methyl ether. Usually, these solvents are used alone, but two or more types may be used in combination as necessary. Further, the synthesis
  • the polyamic acid composition according to this embodiment contains a specific polyamic acid and a specific organic solvent.
  • the reaction solution solution after reaction
  • the reaction solution itself may be used as the polyamic acid composition according to the present embodiment.
  • the above-mentioned specific organic solvents are preferable as the organic solvent used for synthesizing the specific polyamic acid.
  • the solid specific polyamic acid obtained by removing the solvent from the reaction solution may be dissolved in a specific organic solvent to prepare the polyamic acid composition according to the present embodiment.
  • the polyamic acid composition according to this embodiment may contain an organic solvent other than the specific organic solvent.
  • the content of the specific organic solvent in the polyamic acid composition according to this embodiment is preferably 70% by weight or more based on the total amount of organic solvent in the polyamic acid composition. , more preferably 80% by weight or more, still more preferably 90% by weight or more, and particularly preferably 100% by weight.
  • the content of the specific polyamic acid in the polyamic acid composition according to the present embodiment is not particularly limited, but is, for example, 1% by weight or more and 80% by weight or less based on the total amount of the polyamic acid composition.
  • the weight average molecular weight of the specific polyamic acid depends on its use, but is preferably in the range of 10,000 or more and 1,000,000 or less, more preferably in the range of 20,000 or more and 500,000 or less. , more preferably in the range of 30,000 or more and 200,000 or less.
  • the weight average molecular weight is 10,000 or more, the specific polyamic acid or the polyimide obtained using the specific polyamic acid can be easily formed into a coating film or a polyimide film.
  • the weight average molecular weight is 1,000,000 or less, sufficient solubility in solvents is exhibited, so that a coating film or polyimide film with a smooth surface and a uniform thickness can be obtained using the polyamic acid composition. It will be done.
  • the weight average molecular weight used here refers to a polyethylene oxide equivalent value measured using gel permeation chromatography (GPC).
  • methods for controlling the molecular weight of specific polyamic acids include adding an excess of either acid dianhydride or diamine, or reacting with monofunctional acid anhydrides or amines such as phthalic anhydride or aniline.
  • One method is to quench the reaction by When polymerizing with an excess of either acid dianhydride or diamine, a polyimide film having sufficient strength can be obtained if the molar ratio of these is between 0.95 and 1.05.
  • the above charging molar ratio is the ratio of the total amount of diamine used in the synthesis of the specific polyamic acid to the total amount of acid dianhydride used in the synthesis of the specific polyamic acid (total amount of diamine/acid dianhydride). total amount of anhydride).
  • coloring of polyimide obtained using a specific polyamic acid can be further reduced.
  • the polyamic acid composition according to the present embodiment may contain an imidization promoter and/or a dehydration catalyst in order to shorten the heating time and develop properties.
  • the above-mentioned imidization accelerator is not particularly limited, but a tertiary amine can be used.
  • a tertiary amine a heterocyclic tertiary amine is preferable.
  • Preferred specific examples of the heterocyclic tertiary amine include pyridine, picoline, quinoline, isoquinoline, and imidazoles.
  • Preferred specific examples of the dehydration catalyst include acetic anhydride, propionic anhydride, n-butyric anhydride, benzoic anhydride, trifluoroacetic anhydride, and the like.
  • the amount of the imidization accelerator is preferably 0.1 parts by weight or more and 20 parts by weight or less, and 0.1 parts by weight or more and 20 parts by weight or less, based on 100 parts by weight of the specific polyamic acid. More preferably, the amount is 5 parts by weight or more and 20 parts by weight or less.
  • the amount of the dehydration catalyst is preferably 0.1 parts by weight or more and 10 parts by weight or less, and 0.1 parts by weight or more and 10 parts by weight or less, based on 100 parts by weight of the specific polyamic acid. More preferably, the amount is 5 parts by weight or more and 5 parts by weight or less.
  • imidazoles are preferred.
  • imidazoles refer to compounds having a 1,3-diazole ring (1,3-diazole ring structure).
  • the imidazoles that can be added to the polyamic acid composition according to the present embodiment are not particularly limited, but include, for example, 1H-imidazole, 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethyl Examples include imidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, and 1-benzyl-2-phenylimidazole.
  • 1,2-dimethylimidazole, 1-benzyl-2-methylimidazole, and 1-benzyl-2-phenylimidazole are preferred, and 1,2-dimethylimidazole and 1-benzyl-2-methylimidazole are more preferred. .
  • the content of imidazoles is preferably 0.005 mol or more and 0.1 mol or less, more preferably 0.01 mol or more and 0.08 mol or less, per 1 mol of the amide group of the specific polyamic acid. It is preferably 0.015 mol or more and 0.050 mol or less.
  • the film strength and transparency of polyimide can be improved, and by controlling the content of imidazoles to 0.1 mol or less, the storage stability of specific polyamic acid can be improved. It is possible to improve heat resistance while maintaining the same.
  • the amide group of a specific polyamic acid refers to the amide group produced
  • the method of mixing the specific polyamic acid and imidazoles is not particularly limited. From the viewpoint of ease of controlling the molecular weight of the specific polyamic acid, it is preferable to add imidazoles to the specific polyamic acid after polymerization. At this time, the imidazole may be added to the specific polyamic acid as it is, or the imidazole may be dissolved in a solvent in advance and this solution may be added to the specific polyamic acid, and the method of addition is not particularly limited.
  • the polyamic acid composition according to the present embodiment may be prepared by adding imidazoles to a solution containing the specific polyamic acid after polymerization (solution after reaction).
  • the polyamic acid composition according to this embodiment may contain various organic or inorganic low-molecular compounds or high-molecular compounds as additives.
  • additives for example, plasticizers, antioxidants, dyes, surfactants, leveling agents, silicones, fine particles, sensitizers, etc.
  • the fine particles include organic fine particles made of polystyrene, polytetrafluoroethylene, etc., and inorganic fine particles made of colloidal silica, carbon, layered silicate, etc., and may have a porous structure or a hollow structure.
  • the function and form of the fine particles are not particularly limited, and for example, they may be pigments, fillers, or fibrous particles.
  • the polyamic acid composition according to the present embodiment may contain a silane coupling agent in order to develop appropriate adhesion to the support.
  • a silane coupling agent can be used without particular limitation.
  • the usable silane coupling agent is preferably a compound containing an amino group, such as 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 3-(ethoxydimethylsilyl)propylamine, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, N-2-(aminoethyl)-3-aminopropylmethyl More preferably, one or more compounds selected from the group consisting of dimethoxysilane and N-phenyl-3-aminopropyltrimethoxysilane, and more preferably selected from the group consisting of 3-aminopropyl
  • the blending ratio of the silane coupling agent to 100 parts by weight of the specific polyamic acid is preferably 0.01 parts by weight or more and 0.50 parts by weight or less, and 0.01 parts by weight or more and 0.30 parts by weight or less. is more preferable, and even more preferably 0.01 part by weight or more and 0.20 part by weight or less.
  • the reaction rate of the silane coupling agent may increase, making it difficult to control the condensation reaction of the generated silanol groups. It is preferable to reduce the number of alkoxy groups as necessary or to use a silane coupling agent having an alkoxy group with low reactivity. Specifically, by using 3-aminopropyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 3-(ethoxydimethylsilyl)propylamine, etc., the condensation reaction of silanol groups can be controlled and the support can be bonded to the support. Good adhesion and releasability can be achieved.
  • the method for producing polyimide according to the present embodiment includes a step of heating the polyamic acid composition according to the present embodiment to imidize the specific polyamic acid.
  • the method of imidizing the specific polyamic acid is not particularly limited, and any known method can be employed. An example of a method for imidizing a specific polyamic acid will be described below. Imidization is performed by dehydrating and ring-closing a specific polyamic acid. This dehydration ring closure can be performed by an azeotropic method using an azeotropic solvent, a thermal method, or a chemical method.
  • the polyamic acid composition may be placed directly into a container that has been subjected to mold release treatment such as coating with a fluororesin, and the polyamic acid composition may be heated and dried under reduced pressure to perform dehydration and ring closure of the specific polyamic acid. You can also do it.
  • Polyimide can be obtained by dehydration and ring closure of specific polyamic acids using these methods.
  • the heating time for each of the above treatments varies depending on the amount of polyamic acid composition to be treated and the heating temperature that undergoes dehydration and ring closure, but generally it is in the range of 1 minute to 300 minutes after the treatment temperature reaches the maximum temperature. It is preferable that
  • the imidization of the specific polyamic acid to polyimide can be performed at any ratio of 1% or more and 100% or less.
  • a partially imidized specific polyamic acid may be synthesized.
  • the ring-closing reaction from the specific polyamic acid to polyimide and the hydrolysis of the specific polyamic acid proceed simultaneously, and the molecular weight when converted into polyimide becomes lower than the molecular weight of the specific polyamic acid. Therefore, from the viewpoint of improving mechanical properties, it is preferable to imidize a part of the specific polyamic acid in the polyamic acid composition before forming the polyimide film described below.
  • a partially imidized polyamic acid may also be referred to as a "polyamic acid".
  • the method for manufacturing a laminate according to the present embodiment is a method for manufacturing a laminate having a support and a polyimide film (specifically, a polyimide film containing an imidized product of a specific polyamic acid).
  • the specific polyamic acid is dehydrated and ring-closed by heating the specific polyamic acid, and is imidized.
  • the method of heating the specific polyamic acid is not particularly limited, but for example, a coating film containing the specific polyamic acid is formed by coating the polyamic acid composition according to the present embodiment described above on a support. For example, a method of heat-treating the coated film at a temperature of 40° C. or higher and 500° C. or lower may be mentioned.
  • the support examples include a glass substrate, a metal plate, a PET film (polyethylene terephthalate film), and a glass substrate with a sacrificial layer in which an amorphous silicon layer (a-Si layer) is laminated on a glass substrate.
  • a laminate including a support and a polyimide film specifically, a polyimide film containing an imidized product of a specific polyamic acid
  • a polyimide film specifically, a polyimide film containing an imidized product of a specific polyamic acid
  • the polyimide film (specifically, the polyimide film containing an imidide of a specific polyamic acid) formed by the method for manufacturing a laminate according to the present embodiment is colorless and transparent, has a low degree of yellowness, and has a glass transition temperature that can withstand the TFT manufacturing process. (heat resistance), it is suitable as a transparent substrate material for flexible displays.
  • the content of polyimide (specifically, an imidized product of a specific polyamic acid) in the polyimide film is, for example, 70% by weight or more, preferably 80% by weight or more, and 90% by weight, based on the total amount of the polyimide film. It is more preferable that the amount is above, and may be 100% by weight.
  • components other than polyimide in the polyimide film include the above-mentioned additives (more specifically, fine particles, etc.).
  • the method for manufacturing an electronic device includes a step Sa of heating the polyamic acid composition according to the present embodiment to imidize a specific polyamic acid, and a step Sa. and step Sb of arranging an electronic element on the obtained polyimide film.
  • Step Sa is, for example, the same as the method for manufacturing the laminate according to the present embodiment described above.
  • step Sb for example, an electronic element (such as a TFT) is placed directly or indirectly on the polyimide film obtained in step Sa.
  • a polyimide film is formed on an inorganic base material such as glass as a support. Then, an electronic device is formed on the support by arranging (forming) an electronic element such as a TFT on the polyimide film.
  • the process of forming TFTs is generally carried out over a wide temperature range of 150°C to 650°C, but in order to actually achieve the desired performance, the oxide semiconductor layer or a-Si layer must be heated at 300°C or higher. In some cases, a-Si or the like may be further crystallized using a laser or the like.
  • the thermal decomposition temperature of the polyimide film is low, outgas is generated during the formation of electronic devices and adheres to the oven as a sublimate, causing contamination inside the oven.
  • the 1% weight loss temperature of the polyimide is 500° C. or higher because there is a possibility that the barrier film (described later) or the electronic device may peel off.
  • the upper limit of the 1% weight loss temperature of polyimide is, for example, 600° C., although the higher the temperature, the better.
  • the 1% weight loss temperature can be adjusted, for example, by changing the content of residues having a rigid structure (more specifically, BPDA residues, PDA residues, etc.).
  • an inorganic film such as a silicon oxide film (SiOx film) or a silicon nitride film (SiNx film) is formed as a barrier film on the polyimide film.
  • SiOx film silicon oxide film
  • SiNx film silicon nitride film
  • the heat resistance of polyimide is low, if imidization has not progressed completely, or if there is a large amount of residual solvent, it may be caused by volatile components such as polyimide decomposition gas during the high temperature process after laminating the inorganic film.
  • the polyimide and the inorganic film may peel off.
  • the weight loss rate when polyimide is maintained isothermally at a temperature within the range of 400°C to 450°C is less than 1%. desirable.
  • the glass transition temperature (Tg) of the polyimide is significantly lower than the process temperature, positional shift etc. may occur during the formation of electronic devices, so the Tg of the polyimide is preferably 300°C or higher.
  • the temperature is more preferably 350°C or higher, even more preferably 400°C or higher, and even more preferably 420°C or higher.
  • the upper limit of the Tg of polyimide is, for example, 470°C, although the higher the better.
  • the coefficient of thermal expansion of a glass substrate is generally smaller than that of a resin, internal stress occurs between the glass substrate and the polyimide film.
  • the laminate including the polyimide film expands during the high-temperature TFT formation process and then contracts when cooled to room temperature.
  • problems such as warpage and breakage of the glass substrate and peeling of the polyimide film from the glass substrate occur. Therefore, in a laminate having a support and a polyimide film, the internal stress between the polyimide film and the support is preferably 40 MPa or less, more preferably 30 MPa or less, and even more preferably 20 MPa. , 10 MPa or less is particularly preferable.
  • the method for measuring internal stress is the same method as in the examples described later or a method similar thereto.
  • the polyimide obtained by the manufacturing method according to this embodiment can be suitably used as a material for display substrates such as TFT substrates and touch panel substrates.
  • a method is used in which an electronic device (more specifically, an electronic device in which an electronic element is formed on a polyimide film) is formed on a support as described above, and then the polyimide film is peeled from the support. Often adopted. Further, as the material of the support, alkali-free glass is suitably used. An example of a method for producing a laminate of a polyimide film and a support will be described in detail below.
  • the polyamic acid composition according to the present embodiment is applied (cast) onto a support to form a coating film-containing laminate consisting of a coating film containing the specific polyamic acid and the support.
  • the coating film-containing laminate is heated, for example, at a temperature of 40° C. or higher and 200° C. or lower.
  • the heating time at this time is, for example, 3 minutes or more and 120 minutes or less.
  • a multi-step heating process may be provided, such as heating the coating film-containing laminate at a temperature of 50° C. for 30 minutes and then heating it at a temperature of 100° C. for 30 minutes.
  • the coating film-containing laminate is heated at a maximum temperature of 200° C. or more and 500° C. or less, for example.
  • the heating time (heating time at the highest temperature) at this time is, for example, 1 minute or more and 300 minutes or less.
  • the temperature increase rate is preferably 2°C/min or more and 10°C/min or less, more preferably 4°C/min or more and 10°C/min or less.
  • the maximum temperature is in the range of 250°C or more and 480°C or less.
  • the temperature may be maintained at any temperature for any period of time until the maximum temperature is reached.
  • the imidization reaction can be carried out under air, under reduced pressure, or in an inert gas such as nitrogen, but in order to achieve higher transparency, it is carried out under reduced pressure or in an inert gas such as nitrogen. It is preferable.
  • the heating device a known device such as a hot air oven, an infrared oven, a vacuum oven, an inert oven, a hot plate, etc. can be used. Through these steps, the specific polyamic acid in the coating film is imidized, and a laminate of the support and the polyimide film (a film containing an imidized product of the specific polyamic acid) can be obtained.
  • a known method can be used to peel the polyimide film from the obtained laminate of the support and the polyimide film. For example, it may be peeled off by hand or using a mechanical device such as a drive roll or a robot. Furthermore, we have proposed a method of providing a peeling layer between the support and the polyimide film, or forming a silicon oxide film on a substrate with many grooves, forming a polyimide film using the silicon oxide film as a base layer, and separating the substrate and the oxide film. It is also possible to adopt a method in which the polyimide film is peeled off by infiltrating a silicon oxide etching solution between the polyimide film and the silicon film. Alternatively, a method in which the polyimide film is separated by irradiation with laser light can also be adopted.
  • the transparency of the polyimide film can be evaluated by total light transmittance (TT) according to JIS K7361-1:1997 and haze according to JIS K7136-2000.
  • TT total light transmittance
  • the total light transmittance of the polyimide film is preferably 75% or more, more preferably 80% or more.
  • the haze of the polyimide film is preferably 1.5% or less, more preferably 1.2% or less, and 1.0% or less. It is more preferably less than or equal to 0%.
  • the polyimide film In applications that require high transparency, polyimide films are required to have high transmittance over the entire wavelength range, but polyimide films tend to absorb light at shorter wavelengths, causing the film itself to turn yellow. Often colored. In order to use a polyimide film in applications requiring high transparency, it is preferable that the polyimide film has reduced coloring. Specifically, in order to use a polyimide film in applications that require high transparency, the yellow index (YI) of the polyimide film is preferably 25 or less, more preferably 20 or less, It may be 0. YI can be measured according to JIS K7373-2006. YI can be adjusted, for example, by changing the content of residue (1) in the specific polyamic acid. A polyimide film with reduced coloration and imparted transparency is suitable for a transparent substrate used as a substitute for glass, or a substrate on which a sensor or camera module is provided on the back side.
  • the top-emission method is characterized by the fact that light is not blocked by the TFT, making it easy to increase the aperture ratio and providing high-definition image quality, while the bottom-emission method is easy to manufacture because it is easy to align the TFT and pixel electrode. It has characteristics. If the TFT is transparent, it is possible to improve the aperture ratio even in the bottom emission method, so there is a tendency for the bottom emission method, which is easy to manufacture, to be adopted for large displays.
  • the polyimide film obtained by the manufacturing method according to this embodiment has a low YI and excellent heat resistance, so it can be applied to either of the above light extraction methods.
  • Adhesion means adhesion strength.
  • the peel strength between the support and the polyimide film is preferably 0.05 N/cm or more. , more preferably 0.1 N/cm or more.
  • the method for measuring the peel strength is the same method as in the examples described later or a method similar thereto.
  • the cutoff wavelength of the polyimide film is required to be longer than the wavelength of the laser light used for peeling. Since a XeCl excimer laser with a wavelength of 308 nm is often used for laser peeling, the cutoff wavelength of the polyimide film is preferably 312 nm or more, more preferably 330 nm or more.
  • the cutoff wavelength of the polyimide film is preferably 390 nm or less.
  • the cutoff wavelength of the polyimide film is preferably 320 nm or more and 390 nm or less, and more preferably 330 nm or more and 380 nm or less.
  • the cutoff wavelength in this specification means a wavelength at which the transmittance is 0.1% or less as measured by an ultraviolet-visible spectrophotometer.
  • the polyamic acid composition according to the present embodiment and the polyimide obtained by the manufacturing method according to the present embodiment may be used as they are in coating or molding processes for producing products or members, but they can also be molded into a film. It can also be used as a material for further processing such as coating on the molded product.
  • the polyamic acid composition or polyimide is optionally dissolved or dispersed in an organic solvent, and optionally a photocurable component, a thermosetting component, and a non-polymerizable binder.
  • a composition containing the specific polyamic acid or polyimide may be prepared by blending the resin and other components.
  • inorganic thin films such as metal oxide thin films and transparent electrodes may be formed on the surface of the polyimide film obtained by the manufacturing method according to the present embodiment.
  • the method for forming these inorganic thin films is not particularly limited, and examples thereof include PVD methods such as sputtering method, vacuum evaporation method, and ion plating method, and CVD method.
  • the polyimide film obtained by the manufacturing method according to this embodiment has low internal stress that occurs when forming a laminate with a glass substrate, and can be used as an inorganic material during a high-temperature process. It is preferable to use it in fields and products where these properties are effective because it can ensure adhesion with the material.
  • the polyimide film obtained by the manufacturing method according to the present embodiment can be used in image display devices such as liquid crystal display devices, organic EL, electronic paper, printed matter, color filters, flexible displays, optical films, 3D displays, touch panels, transparent conductive It is preferably used for membrane substrates, solar cells, etc., and more preferably as a substitute material for parts where glass is currently used.
  • the thickness of the polyimide film is, for example, 1 ⁇ m or more and 200 ⁇ m or less, and preferably 5 ⁇ m or more and 100 ⁇ m or less.
  • the thickness of the polyimide film can be measured using a laser holo gauge.
  • the polyamic acid composition according to the present embodiment is suitable for a method for producing a polyimide film, in which the polyamic acid composition is applied onto a support, heated to imidize, and then the polyimide film is peeled off from the support.
  • the polyamic acid composition according to the present embodiment is prepared by coating the polyamic acid composition on a support, heating it to imidize it, forming electronic devices, etc. on the formed polyimide film, and then applying the polyamic acid composition to the support. It can be suitably used in a batch-type device manufacturing process in which a polyimide film on which electronic elements and the like are formed is peeled off. Therefore, the method for manufacturing an electronic device according to the present embodiment may include the step of peeling off the polyimide film on which the electronic elements and the like are formed from the support.
  • the internal stress generated between the glass substrate and the polyimide film was calculated using Stoney's equation.
  • the internal stress was 30 MPa or less, it was evaluated that "the internal stress was reduced.”
  • the internal stress exceeded 30 MPa, it was evaluated that the internal stress could not be reduced.
  • TD1 1% weight loss temperature
  • Peel strength is the average value of the peel strength when 50 mm of the polyimide film is peeled off from the glass substrate under the conditions of a temperature of 23°C and a humidity of 55% RH, a pulling speed of 50 mm/min, and a peeling angle of 90°. And so.
  • MPA 3-methoxy-N,N-dimethylpropanamide
  • NBP 1-butyl-2-pyrrolidone
  • BPDA 3,3',4,4'-biphenyltetracarboxylic dianhydride
  • BPAF 9,9-bis(3 ,4-dicarboxyphenyl)fluorene dianhydride
  • SFDA spiro[11H-difuro[3,4-b:3',4'-i]xanthene-11,9'-[9H]fluorene]-1,3, 7,9-tetrone
  • PDA p-phenylenediamine
  • BAFL 9,9-bis(4-aminophenyl)fluorene
  • PAM-E 1,3-bis(3-aminopropyl)tetramethyldisiloxane
  • ODA 4,4' -Oxydianiline APS: 3-aminopropyltriethoxysilane
  • APDE 3-
  • Example 1 A 300 mL glass separable flask equipped with a stirrer equipped with a stainless steel stirring bar and a nitrogen inlet tube was charged with 85.0 g of MPA as an organic solvent for polymerization. Then, 4.037 g of PDA was added to the flask and dissolved while stirring the flask contents. Next, 0.171 g of BPAF and 10.792 g of BPDA were added to the flask contents, and then the flask contents were stirred for 6 hours in an atmosphere at a temperature of 25°C. Next, after adding 0.005 g of APS to the contents of the flask, the contents of the flask were further stirred for 6 hours in an atmosphere at a temperature of 25° C.
  • the obtained polyamic acid composition was applied onto a glass substrate manufactured by Corning (product name: Eagle After heating at 120° C. for 30 minutes in a nitrogen atmosphere, heating was performed at 460° C. for 45 minutes in a nitrogen atmosphere to obtain a laminate comprising a 10 ⁇ m thick polyimide film on a glass substrate (the laminate of Example 1).
  • Examples 2 to 21 and Comparative Examples 1 to 7 Except that the acid dianhydride used and its charging ratio, the diamine used and its charging ratio, the silane coupling agent used and its addition amount, and the type of solvent were as shown in Tables 1 and 2. By the same method as in Example 1, laminates of Examples 2 to 21 and Comparative Examples 1 to 7 were obtained, respectively. In addition, in Examples 2 to 4, 9 to 14, 17, 19, and 21, and Comparative Examples 1, 3, and 5 to 7, in which no silane coupling agent was used, all the acid dianhydride was placed in the flask. Thereafter, the contents of the flask were stirred for 6 hours in an atmosphere at a temperature of 25°C to obtain a polyamic acid composition.
  • Example 1 the total amount of acid dianhydride in preparing the polyamic acid composition was the same as in Example 1. Further, in all of Examples 2 to 21 and Comparative Examples 1 to 7, the total amount of diamine in preparing the polyamic acid composition was the same as in Example 1.
  • the numerical values in the "Acid dianhydride” column are the content (unit: mol %) of each acid dianhydride relative to the total amount of diamine used (100 mol %). Furthermore, in Tables 1 and 2, the numerical values in the "diamine” column are the content rates (unit: mol %) of each diamine relative to the total amount (100 mol %) of diamines used. Furthermore, in Tables 1 and 2, the numerical values in the "Silane coupling agent” column are the amount of the silane coupling agent added (unit: parts by weight) with respect to 100 parts by weight of polyamic acid.
  • the polyamic acids in the polyamic acid compositions used in Examples 1 to 21 had residues (1), BPDA residues, and PDA residues.
  • the polyamic acid compositions used in Examples 1 to 21 contained specific organic solvents.
  • Example 1 to 21 As shown in Tables 1 and 2, in Examples 1 to 21, the internal stress was 30 MPa or less. Therefore, in Examples 1 to 21, the internal stress was able to be reduced. In Examples 1 to 21, there was no lifting between the glass substrate and the polyimide film and between the a-Si layer and the polyimide film. Therefore, in Examples 1 to 21, occurrence of poor adhesion was suppressed and film formability was good.
  • the polyamic acids in the polyamic acid compositions used in Comparative Examples 1 to 7 had BPDA residues and PDA residues, but did not have residue (1).
  • the polyamic acid compositions used in Comparative Examples 1 to 7 contained specific organic solvents.
  • Comparative Examples 1 to 6 there was some lifting between the glass substrate and the polyimide film and between the a-Si layer and the polyimide film. Therefore, in Comparative Examples 1 to 6, the occurrence of poor adhesion was not suppressed, and the film formability was poor. In Comparative Example 7, the internal stress exceeded 30 MPa. Therefore, in Comparative Example 7, the internal stress could not be reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

This polyamic acid composition contains a polyamic acid and an organic solvent. The polyamic acid has a residue including a divalent organic group represented by chemical formula (1), a 3,3',4,4'-biphenyl tetracarboxylic dianhydride residue, and a p-phenylene diamine residue. The organic solvent contains at least one compound selected from the group consisting of compounds represented by general formula (2) and compounds represented by general formula (3). In general formula (2), R1, R2, and R3 each independently represent a hydrogen atom or a monovalent organic group having one or more carbon atoms, and at least one of R1, R2, and R3 represents a monovalent organic group having two or more carbon atoms. In general formula (3), R4 represents a monovalent organic group having two or more carbon atoms. 

Description

ポリアミド酸組成物、ポリイミドの製造方法、積層体の製造方法及び電子デバイスの製造方法Polyamic acid composition, polyimide manufacturing method, laminate manufacturing method, and electronic device manufacturing method
 本発明は、ポリアミド酸組成物、ポリイミドの製造方法、積層体の製造方法及び電子デバイスの製造方法に関する。本発明は、更に、ポリイミドを用いた電子デバイス材料、薄膜トランジスタ(TFT)基板、フレキシブルディスプレイ基板、カラーフィルター、印刷物、光学材料、画像表示装置(より具体的には、液晶表示装置、有機EL、電子ペーパー等)、3Dディスプレイ、太陽電池、タッチパネル、透明導電膜基板、及び現在ガラスが使用されている部材の代替材料に関する。 The present invention relates to a polyamic acid composition, a method for producing a polyimide, a method for producing a laminate, and a method for producing an electronic device. The present invention further provides electronic device materials using polyimide, thin film transistor (TFT) substrates, flexible display substrates, color filters, printed matter, optical materials, image display devices (more specifically, liquid crystal display devices, organic EL, electronic paper, etc.), 3D displays, solar cells, touch panels, transparent conductive film substrates, and alternative materials for members in which glass is currently used.
 液晶ディスプレイ、有機EL、電子ペーパー等のディスプレイや、太陽電池、タッチパネル等のエレクトロニクスデバイスの急速な進歩に伴い、デバイスの薄型化や軽量化、フレキシブル化が進んでいる。これらのデバイスではガラス基板に代えてポリイミドが基板材料として用いられている。 With the rapid advancement of displays such as liquid crystal displays, organic EL, and electronic paper, and electronic devices such as solar cells and touch panels, devices are becoming thinner, lighter, and more flexible. In these devices, polyimide is used as a substrate material instead of a glass substrate.
 これらのデバイスでは、基板上に様々な電子素子、例えば、薄膜トランジスタや透明電極等が形成されており、これらの電子素子の形成には高温プロセスが必要である。ポリイミドは、高温プロセスに適応できるだけの十分な耐熱性を有しており、熱膨張係数(CTE)もガラス基板や電子素子と近いため、内部応力が生じにくく、フレキシブルディスプレイ等の基板材料に好適である。 In these devices, various electronic elements, such as thin film transistors and transparent electrodes, are formed on the substrate, and high-temperature processes are required to form these electronic elements. Polyimide has sufficient heat resistance to be applicable to high-temperature processes, and its coefficient of thermal expansion (CTE) is similar to that of glass substrates and electronic devices, making it less susceptible to internal stress and suitable for substrate materials such as flexible displays. be.
 上記のような基板材料は、ポリアミド酸を溶解させた溶液(ポリアミド酸組成物)を支持体に塗布し、ポリアミド酸をイミド化することでポリイミド膜を形成し、更にその上に電子素子が積層されることにより製造されている。 The above-mentioned substrate material is produced by coating a support with a solution in which polyamic acid is dissolved (polyamic acid composition) and imidizing the polyamic acid to form a polyimide film, and then electronic devices are laminated on top of the polyimide film. Manufactured by
 ポリアミド酸を溶解させる溶媒としては、通常、N,N-ジメチルホルムアミド(DMF)、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAC)等の炭素原子数が比較的小さいアミド系溶剤が用いられているが、環境や人体への影響の観点から、安全性の高い溶媒へ変更することが求められるようになってきた。 Solvents for dissolving polyamic acid are usually those with a relatively small number of carbon atoms, such as N,N-dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP), and N,N-dimethylacetamide (DMAC). Amide solvents are currently used, but from the perspective of their impact on the environment and the human body, there is a growing need to switch to safer solvents.
 安全性の高い溶媒を用いたポリアミド酸組成物の調製例として、ポリアミド酸塩を利用することで水を溶媒として用いた例が知られている(特許文献1等)。また、催奇形性の懸念が低い溶媒としてアルコキシ-N-置換プロパンアミドを用いてポリアミド酸を合成した例が知られている(特許文献2及び特許文献3等)。 As an example of preparing a polyamic acid composition using a highly safe solvent, an example is known in which a polyamic acid salt is used and water is used as a solvent (Patent Document 1, etc.). In addition, examples are known in which polyamic acids are synthesized using alkoxy-N-substituted propanamides as solvents with low concern for teratogenicity (Patent Documents 2 and 3, etc.).
特開2012-36382号公報JP2012-36382A 特表2017-517582号公報Special table 2017-517582 publication 国際公開第2022/054850号International Publication No. 2022/054850
 本発明者らが検証した結果、特許文献1~3に記載のポリアミド酸組成物を支持体上に塗布し、ポリアミド酸をイミド化すると、得られたポリイミド膜と支持体との間において密着性不良が生じやすくなるとともに、ポリイミド膜と支持体との界面に生じる内部応力が大きくなる傾向があることが判明した。以下、ポリイミド膜と支持体との間における密着性不良を、単に「密着性不良」と記載することがある。また、ポリイミド膜と支持体との界面に生じる内部応力を、単に「内部応力」と記載することがある。内部応力が大きくなると、電子デバイスへの適用が困難となる可能性がある。 As a result of verification by the present inventors, when the polyamic acid compositions described in Patent Documents 1 to 3 are applied onto a support and the polyamic acid is imidized, the adhesiveness between the obtained polyimide film and the support increases. It has been found that defects tend to occur more easily and internal stress generated at the interface between the polyimide film and the support tends to increase. Hereinafter, poor adhesion between the polyimide film and the support may be simply referred to as "poor adhesion." Further, the internal stress generated at the interface between the polyimide film and the support may be simply referred to as "internal stress." If the internal stress increases, it may become difficult to apply it to electronic devices.
 本発明は、上記実情に鑑みて成し遂げられたものであり、安全性の高い溶媒を使用しつつ、密着性不良の発生を抑制できる上、内部応力を低減できるポリアミド酸組成物、並びに当該ポリアミド酸組成物を用いたポリイミドの製造方法、積層体の製造方法及び電子デバイスの製造方法を提供することを目的とする。 The present invention has been achieved in view of the above circumstances, and provides a polyamic acid composition that can suppress the occurrence of poor adhesion and reduce internal stress while using a highly safe solvent, and the polyamic acid composition. An object of the present invention is to provide a method for manufacturing polyimide, a method for manufacturing a laminate, and a method for manufacturing an electronic device using a composition.
<本発明の態様>
 本発明には、以下の態様が含まれる。
<Aspects of the present invention>
The present invention includes the following aspects.
[1]ポリアミド酸と有機溶媒とを含むポリアミド酸組成物であって、
 前記ポリアミド酸は、下記化学式(1)で表される2価の有機基を含む残基と、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基と、p-フェニレンジアミン残基とを有し、
 前記有機溶媒は、下記一般式(2)で表される化合物及び下記一般式(3)で表される化合物からなる群より選択される一種以上の化合物を含む、ポリアミド酸組成物。
[1] A polyamic acid composition containing a polyamic acid and an organic solvent,
The polyamic acid contains a residue containing a divalent organic group represented by the following chemical formula (1), a 3,3',4,4'-biphenyltetracarboxylic dianhydride residue, and p-phenylenediamine. has a residue,
The organic solvent is a polyamic acid composition containing one or more compounds selected from the group consisting of a compound represented by the following general formula (2) and a compound represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 前記一般式(2)中、R、R及びRは、各々独立に、水素原子又は炭素原子数1以上の1価の有機基を表し、R、R及びRのうちの少なくとも1つは、炭素原子数2以上の1価の有機基を表し、
 前記一般式(3)中、Rは、炭素原子数2以上の1価の有機基を表す。
In the general formula (2), R 1 , R 2 and R 3 each independently represent a hydrogen atom or a monovalent organic group having 1 or more carbon atoms; At least one represents a monovalent organic group having 2 or more carbon atoms,
In the general formula (3), R 4 represents a monovalent organic group having 2 or more carbon atoms.
[2]前記化学式(1)で表される2価の有機基を含む残基は、下記化学式(4)で表される4価の有機基、下記化学式(5)で表される4価の有機基、及び下記化学式(6)で表される2価の有機基からなる群より選択される一種以上の残基である、前記[1]に記載のポリアミド酸組成物。 [2] The residue containing the divalent organic group represented by the chemical formula (1) above may be a tetravalent organic group represented by the following chemical formula (4) or a tetravalent organic group represented by the following chemical formula (5). The polyamic acid composition according to [1] above, which is one or more residues selected from the group consisting of an organic group and a divalent organic group represented by the following chemical formula (6).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
[3]前記化学式(1)で表される2価の有機基を含む残基の含有率が、前記ポリアミド酸を構成する全テトラカルボン酸二無水物残基と前記ポリアミド酸を構成する全ジアミン残基との合計100モル%に対して、15モル%以下である、前記[1]又は[2]に記載のポリアミド酸組成物。 [3] The content of residues containing a divalent organic group represented by the chemical formula (1) is equal to or less than all tetracarboxylic dianhydride residues constituting the polyamic acid and all diamines constituting the polyamic acid. The polyamic acid composition according to [1] or [2] above, wherein the polyamic acid composition is 15 mol% or less with respect to a total of 100 mol% with residues.
[4]前記有機溶媒は、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド又は1-ブチル-2-ピロリドンである、前記[1]~[3]のいずれか一つに記載のポリアミド酸組成物。 [4] The above [1] to [3], wherein the organic solvent is 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide, or 1-butyl-2-pyrrolidone. The polyamic acid composition according to any one of .
[5]前記ポリアミド酸は、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン残基を更に有する、前記[1]~[4]のいずれか一つに記載のポリアミド酸組成物。 [5] The polyamic acid composition according to any one of [1] to [4] above, wherein the polyamic acid further has a 1,3-bis(3-aminopropyl)tetramethyldisiloxane residue.
[6]前記1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン残基の含有率が、前記ポリアミド酸を構成するジアミン残基の全量に対して、0.1モル%以上1.0モル%以下である、前記[5]に記載のポリアミド酸組成物。 [6] The content of the 1,3-bis(3-aminopropyl)tetramethyldisiloxane residue is 0.1 mol% or more and 1.0 mol% or more based on the total amount of diamine residues constituting the polyamic acid. The polyamic acid composition according to [5] above, wherein the polyamic acid composition is mol % or less.
[7]シランカップリング剤を更に含む、前記[1]~[6]のいずれか一つに記載のポリアミド酸組成物。 [7] The polyamic acid composition according to any one of [1] to [6] above, further comprising a silane coupling agent.
[8]前記[1]~[7]のいずれか一つに記載のポリアミド酸組成物を加熱して前記ポリアミド酸をイミド化する、ポリイミドの製造方法。 [8] A method for producing polyimide, which comprises heating the polyamic acid composition according to any one of [1] to [7] above to imidize the polyamic acid.
[9]支持体とポリイミド膜とを有する積層体の製造方法であって、
 前記[1]~[7]のいずれか一つに記載のポリアミド酸組成物を支持体上に塗布することにより、前記ポリアミド酸を含む塗布膜を形成し、前記塗布膜を加熱して前記ポリアミド酸をイミド化する、積層体の製造方法。
[9] A method for producing a laminate having a support and a polyimide film, comprising:
A coating film containing the polyamic acid is formed by coating the polyamic acid composition according to any one of [1] to [7] above on a support, and the coating film is heated to form a coating film containing the polyamide acid. A method for producing a laminate by imidizing acid.
[10]前記[1]~[7]のいずれか一つに記載のポリアミド酸組成物を加熱して前記ポリアミド酸をイミド化する工程Saと、
 前記工程Saによって得られたポリイミド膜上に電子素子を配置する工程Sbと
を備える、電子デバイスの製造方法。
[10] Step Sa of heating the polyamic acid composition according to any one of [1] to [7] to imidize the polyamic acid;
A method for manufacturing an electronic device, comprising a step Sb of arranging an electronic element on the polyimide film obtained in the step Sa.
 本発明によれば、安全性の高い溶媒を使用しつつ、密着性不良の発生を抑制できる上、内部応力を低減できるポリアミド酸組成物、並びに当該ポリアミド酸組成物を用いたポリイミドの製造方法、積層体の製造方法及び電子デバイスの製造方法を提供できる。 According to the present invention, a polyamic acid composition that can suppress the occurrence of poor adhesion and reduce internal stress while using a highly safe solvent, and a method for producing polyimide using the polyamic acid composition, A method for manufacturing a laminate and a method for manufacturing an electronic device can be provided.
 以下、本発明の好適な実施形態について詳しく説明するが、本発明はこれらに限定されるものではない。また、本明細書中に記載された学術文献及び特許文献の全てが、本明細書中において参考として援用される。 Hereinafter, preferred embodiments of the present invention will be described in detail, but the present invention is not limited thereto. In addition, all academic literature and patent literature described in this specification are incorporated herein by reference.
 まず、本明細書中で使用される用語について説明する。「構造単位」とは、重合体を構成する繰り返し単位のことをいう。「ポリアミド酸」は、下記一般式(7)で表される構造単位(以下、「構造単位(7)」と記載することがある)を含む重合体である。 First, the terms used in this specification will be explained. "Structural unit" refers to a repeating unit that constitutes a polymer. "Polyamic acid" is a polymer containing a structural unit represented by the following general formula (7) (hereinafter sometimes referred to as "structural unit (7)").
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 一般式(7)中、Aは、テトラカルボン酸二無水物残基(テトラカルボン酸二無水物由来の4価の有機基)を表し、Aは、ジアミン残基(ジアミン由来の2価の有機基)を表す。 In general formula (7), A 1 represents a tetracarboxylic dianhydride residue (tetravalent organic group derived from tetracarboxylic dianhydride), and A 2 represents a diamine residue (divalent organic group derived from diamine). represents an organic group).
 ポリアミド酸を構成する全構造単位に対する構造単位(7)の含有率は、例えば50モル%以上100モル%以下であり、好ましくは60モル%以上100モル%以下であり、より好ましくは70モル%以上100モル%以下であり、更に好ましくは80モル%以上100モル%以下であり、更により好ましくは90モル%以上100モル%以下であり、100モル%であってもよい。 The content of the structural unit (7) with respect to all the structural units constituting the polyamic acid is, for example, 50 mol% or more and 100 mol% or less, preferably 60 mol% or more and 100 mol% or less, and more preferably 70 mol%. It is 100 mol% or more, more preferably 80 mol% or more and 100 mol% or less, even more preferably 90 mol% or more and 100 mol% or less, and may be 100 mol%.
 「1%重量減少温度」は、測定温度150℃におけるポリイミドの重量を基準(100重量%)とし、上記基準の重量に対して1重量%減少した際の測定温度である。1%重量減少温度の測定方法は、後述する実施例と同じ方法又はそれに準ずる方法である。 The "1% weight loss temperature" is the measurement temperature at which the weight of polyimide at a measurement temperature of 150° C. is a reference (100% by weight) and the weight is reduced by 1% by weight with respect to the above-mentioned reference weight. The method for measuring the 1% weight loss temperature is the same method as in the examples described later or a method similar thereto.
 「アルキル基」及び「アルコキシアルキル基」は、いずれも直鎖状又は分枝鎖状で非置換である。 Both "alkyl group" and "alkoxyalkyl group" are linear or branched and unsubstituted.
 以下、化合物名の後に「系」を付けて、化合物及びその誘導体を包括的に総称する場合がある。また、化合物名の後に「系」を付けて重合体名を表す場合には、何ら規定していなければ、重合体の繰り返し単位が化合物又はその誘導体に由来することを意味する。また、テトラカルボン酸二無水物を「酸二無水物」と記載することがある。また、本明細書に例示の成分や官能基等は、特記しない限り、単独で用いてもよく、2種以上を併用してもよい。 Hereinafter, the compound and its derivatives may be collectively referred to by adding "system" after the compound name. Furthermore, when a polymer name is expressed by adding "system" after the compound name, it means that the repeating unit of the polymer is derived from the compound or its derivative, unless otherwise specified. Moreover, tetracarboxylic dianhydride may be described as "acid dianhydride." Moreover, unless otherwise specified, the components, functional groups, etc. illustrated in this specification may be used alone, or two or more types may be used in combination.
<本発明の好適な実施形態>
 本実施形態に係るポリアミド酸組成物は、ポリアミド酸と、有機溶媒とを含む。本実施形態に係るポリアミド酸組成物に含まれるポリアミド酸(以下、「特定ポリアミド酸」と記載することがある)は、下記化学式(1)で表される2価の有機基を含む残基(以下、「残基(1)」と記載することがある)と、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基と、p-フェニレンジアミン残基とを有する。本実施形態に係るポリアミド酸組成物に含まれる有機溶媒は、下記一般式(2)で表される化合物(以下、「化合物(2)」と記載することがある)及び下記一般式(3)で表される化合物(以下、「化合物(3)」と記載することがある)からなる群より選択される一種以上の化合物を含む。以下、化合物(2)及び化合物(3)からなる群より選択される一種以上の化合物(有機溶媒)を、「特定有機溶媒」と記載することがある。また、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を、「BPDA」と記載することがある。また、p-フェニレンジアミンを、「PDA」と記載することがある。
<Preferred embodiment of the present invention>
The polyamic acid composition according to this embodiment includes a polyamic acid and an organic solvent. The polyamic acid (hereinafter sometimes referred to as "specific polyamic acid") contained in the polyamic acid composition according to the present embodiment is a residue containing a divalent organic group represented by the following chemical formula (1) ( (hereinafter sometimes referred to as "residue (1)"), a 3,3',4,4'-biphenyltetracarboxylic dianhydride residue, and a p-phenylenediamine residue. The organic solvent contained in the polyamic acid composition according to the present embodiment is a compound represented by the following general formula (2) (hereinafter sometimes referred to as "compound (2)") and a compound represented by the following general formula (3). It includes one or more compounds selected from the group consisting of the compounds represented by (hereinafter sometimes referred to as "compound (3)"). Hereinafter, one or more compounds (organic solvent) selected from the group consisting of compound (2) and compound (3) may be referred to as a "specific organic solvent." Further, 3,3',4,4'-biphenyltetracarboxylic dianhydride may be referred to as "BPDA". Furthermore, p-phenylenediamine is sometimes written as "PDA".
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 一般式(2)中、R、R及びRは、各々独立に、水素原子又は炭素原子数1以上の1価の有機基を表し、R、R及びRのうちの少なくとも1つは、炭素原子数2以上の1価の有機基を表す。また、一般式(3)中、Rは、炭素原子数2以上の1価の有機基を表す。 In general formula (2), R 1 , R 2 and R 3 each independently represent a hydrogen atom or a monovalent organic group having 1 or more carbon atoms, and at least one of R 1 , R 2 and R 3 One represents a monovalent organic group having 2 or more carbon atoms. Further, in the general formula (3), R 4 represents a monovalent organic group having 2 or more carbon atoms.
 一般に、ポリアミド酸組成物には、溶解性や特性向上等の観点からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド等の炭素原子数が比較的小さいアミド系溶媒が用いられているが、これらの溶媒は、健康への有害性が問題視されるようになってきた。これに対し、特定有機溶媒は、環境や人体への影響が小さく、安全性が高い。 In general, polyamic acid compositions are made from amide-based compounds with a relatively small number of carbon atoms, such as N,N-dimethylformamide, N-methyl-2-pyrrolidone, and N,N-dimethylacetamide, from the viewpoint of improving solubility and properties. Solvents are used, but these solvents have come to be viewed as problematic due to their health hazards. On the other hand, specific organic solvents have less impact on the environment and the human body and are highly safe.
 安全性を高めるためには、一般式(2)中のR、R及びRとしては、各々独立に、炭素原子数1以上の1価の有機基が好ましく、炭素原子数1以上6以下の1価の有機基がより好ましい。安全性をより高めるためには、一般式(2)中のR及びRとしては、各々独立に、炭素原子数1以上のアルキル基が好ましく、炭素原子数1以上6以下のアルキル基がより好ましい。安全性をより高めるためには、一般式(2)中のRとしては、炭素原子数2以上のアルコキシアルキル基が好ましく、炭素原子数2以上6以下のアルコキシアルキル基がより好ましい。 In order to improve safety, R 1 , R 2 and R 3 in general formula (2) are each independently preferably a monovalent organic group having 1 or more carbon atoms, and preferably a monovalent organic group having 1 or more carbon atoms. The following monovalent organic groups are more preferred. In order to further improve safety, R 1 and R 2 in general formula (2) are each independently preferably an alkyl group having 1 or more carbon atoms, and an alkyl group having 1 or more and 6 or less carbon atoms. More preferred. In order to further improve safety, R 3 in general formula (2) is preferably an alkoxyalkyl group having 2 or more carbon atoms, more preferably an alkoxyalkyl group having 2 or more and 6 or less carbon atoms.
 安全性を高めるためには、一般式(3)中のRとしては、炭素原子数2以上6以下の1価の有機基が好ましい。安全性をより高めるためには、一般式(3)中のRとしては、炭素原子数2以上6以下のアルキル基が好ましい。 In order to improve safety, R 4 in general formula (3) is preferably a monovalent organic group having 2 or more and 6 or less carbon atoms. In order to further improve safety, R 4 in general formula (3) is preferably an alkyl group having 2 or more and 6 or less carbon atoms.
 化合物(2)としては、例えば、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、N,N-ジエチルアセトアミド、N,N-ジメチルプロピオンアミド等が挙げられる。これらの中でも、安全性の観点から、3-メトキシ-N,N-ジメチルプロパンアミド又は3-ブトキシ-N,N-ジメチルプロパンアミドが好ましい。 Examples of the compound (2) include 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide, N,N-diethylacetamide, N,N-dimethylpropionamide, and the like. It will be done. Among these, 3-methoxy-N,N-dimethylpropanamide or 3-butoxy-N,N-dimethylpropanamide is preferred from the viewpoint of safety.
 化合物(3)としては、例えば、1-エチル-2-ピロリドン、1-ブチル-2-ピロリドン等が挙げられる。これらの中でも、安全性の観点から、1-ブチル-2-ピロリドンが好ましい。 Examples of the compound (3) include 1-ethyl-2-pyrrolidone and 1-butyl-2-pyrrolidone. Among these, 1-butyl-2-pyrrolidone is preferred from the viewpoint of safety.
 本実施形態に係るポリアミド酸組成物は、特定有機溶媒として、化合物(2)のみを含んでもよく、化合物(3)のみを含んでもよく、化合物(2)及び化合物(3)の両方を含んでもよい。安全性を高めるためには、特定有機溶媒としては、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド又は1-ブチル-2-ピロリドンが好ましく、3-メトキシ-N,N-ジメチルプロパンアミド又は1-ブチル-2-ピロリドンがより好ましい。 The polyamic acid composition according to the present embodiment may contain only compound (2), only compound (3), or both compound (2) and compound (3) as the specific organic solvent. good. In order to increase safety, the specific organic solvent is preferably 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide or 1-butyl-2-pyrrolidone; More preferred are methoxy-N,N-dimethylpropanamide or 1-butyl-2-pyrrolidone.
 特定ポリアミド酸は、BPDA残基及びPDA残基を含むため、剛直な構造を有する。このため、特定ポリアミド酸は、内部応力を低減できる。 The specific polyamic acid has a rigid structure because it contains a BPDA residue and a PDA residue. Therefore, the specific polyamic acid can reduce internal stress.
 一方、本発明者らの検討により、剛直な構造を有するポリアミド酸と特定有機溶媒とを含むポリアミド酸組成物を用いてポリイミド膜を製膜すると、ポリイミド膜と支持体との界面に浮きが発生しやすくなることが判明した。ポリイミド膜と支持体との界面に浮きがあると、電子素子の形成中にポリイミド膜が剥がれたり、電子素子を形成した後、支持体からポリイミド膜を剥離する際の歩留まり低下を引き起こす恐れがある。なお、「浮き」とは、イミド化時に発生する副成分や残存溶媒に起因して、ポリイミド膜と他の材料層(より具体的には、ガラス基板、犠牲層等)との間で密着性不良が生じた状態をさす。具体的な「浮き」としては、支持体からポリイミド膜が浮き上がった状態、ポリイミド膜の一部が破壊されてポリイミド膜と他の材料層との間において層間剥離が生じた状態等が挙げられる。 On the other hand, the present inventors have found that when a polyimide film is formed using a polyamic acid composition containing a polyamic acid having a rigid structure and a specific organic solvent, floating occurs at the interface between the polyimide film and the support. It turned out to be easier. If there is any floating at the interface between the polyimide film and the support, the polyimide film may peel off during the formation of electronic devices, or the yield may decrease when peeling the polyimide film from the support after forming the electronic device. . Note that "lifting" is caused by the adhesion between the polyimide film and other material layers (more specifically, the glass substrate, sacrificial layer, etc.) due to subcomponents and residual solvent generated during imidization. Refers to a state where a defect has occurred. Specific examples of "lifting" include a state in which the polyimide film is lifted from the support, a state in which part of the polyimide film is destroyed and delamination occurs between the polyimide film and another material layer, and the like.
 一般に、BPDA残基とPDA残基とを有するポリアミド酸から得られるポリイミド膜は、分子鎖が密にパッキングしているため、特定有機溶媒のような炭素原子数が比較的大きい溶媒を用いると、ガス抜け性が悪くなる傾向がある。そのため、剛直な構造のポリアミド酸を含むポリアミド酸組成物を支持体上に塗布し、イミド化する過程で、残存溶媒やイミド化で生じた脱離分子が閉じ込められ、ポリイミド膜と支持体との界面に浮きが発生しやすくなると推測される。これに対し、本発明者らが鋭意検討した結果、BPDA残基及びPDA残基と、残基(1)とを有するポリアミド酸(特定ポリアミド酸)を用いると、残基(1)のかさ高い構造により良好なガス抜け性を実現しつつ、内部応力を低減できることが判明した。即ち、本実施形態に係るポリアミド酸組成物によれば、特定ポリアミド酸と特定有機溶媒とを含むため、安全性の高い溶媒を使用しつつ、良好なガス抜け性により密着性不良の発生を抑制できる上、内部応力を低減できる。 In general, polyimide films obtained from polyamic acids having BPDA residues and PDA residues have densely packed molecular chains, so if a solvent with a relatively large number of carbon atoms, such as a specific organic solvent, is used, Gas release tends to be poor. Therefore, in the process of coating a polyamic acid composition containing a polyamic acid with a rigid structure onto a support and imidizing it, residual solvent and molecules released during imidization are trapped, and the polyimide membrane and the support are It is assumed that floating is likely to occur at the interface. On the other hand, as a result of intensive studies by the present inventors, when a polyamic acid (specific polyamic acid) having a BPDA residue, a PDA residue, and a residue (1) is used, the residue (1) becomes bulky. It has been found that the structure allows for good gas release while reducing internal stress. That is, according to the polyamic acid composition according to the present embodiment, since it contains a specific polyamic acid and a specific organic solvent, it is possible to use a highly safe solvent while suppressing the occurrence of poor adhesion due to good gas release properties. Not only that, but the internal stress can be reduced.
 残基(1)は、ポリアミド酸に含まれる残基であるため、テトラカルボン酸二無水物残基及びジアミン残基からなる群より選択される一種以上の残基である。特定ポリアミド酸は、残基(1)として、テトラカルボン酸二無水物残基のみを有してもよく、ジアミン残基のみを有してもよく、テトラカルボン酸二無水物残基及びジアミン残基の両方を有してもよい。 Since the residue (1) is a residue contained in polyamic acid, it is one or more residues selected from the group consisting of tetracarboxylic dianhydride residues and diamine residues. The specific polyamic acid may have only a tetracarboxylic dianhydride residue as the residue (1), or may have only a diamine residue, or may have a tetracarboxylic dianhydride residue and a diamine residue. It may have both groups.
 残基(1)を形成するためのテトラカルボン酸二無水物としては、例えば、スピロ[11H-ジフロ[3,4-b:3’,4’-i]キサンテン-11,9’-[9H]フルオレン]-1,3,7,9-テトロン(以下、「SFDA」と記載することがある)、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物(以下、「BPAF」と記載することがある)、9,9-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]フルオレン二無水物、5,5’-[9H-フルオレン-9-イリデンビス(2-メチル-4,1-フェニレン)]ビス(1,3-ジハイドロ-1,3-ジオキソ-5-イソベンゾフランカルボキシレート)、N,N’-(9H-フルオレン-9-イリデンジ-4,1-フェニレン)ビス[1,3-ジハイドロ-1,3-ジオキソ-5-イソベンゾフランカルボキシアミド]、5,5’-スピロ[9H-フルオレン-9,9’-[9H]キサンテン]-3’,6’-ジイルビス(1,3-ジハイドロ-1,3-ジオキソ-5-イソベンゾフランカルボキシレート)等が挙げられる。密着性不良の発生をより抑制するためには、残基(1)を形成するためのテトラカルボン酸二無水物としては、SFDA又はBPAFが好ましい。 Examples of the tetracarboxylic dianhydride for forming the residue (1) include spiro[11H-difuro[3,4-b:3',4'-i]xanthene-11,9'-[9H ] Fluorene]-1,3,7,9-tetrone (hereinafter sometimes referred to as "SFDA"), 9,9-bis(3,4-dicarboxyphenyl)fluorene dianhydride (hereinafter referred to as "BPAF") ), 9,9-bis[4-(3,4-dicarboxyphenoxy)phenyl]fluorene dianhydride, 5,5'-[9H-fluoren-9-ylidene bis(2-methyl -4,1-phenylene)]bis(1,3-dihydro-1,3-dioxo-5-isobenzofurancarboxylate), N,N'-(9H-fluorene-9-ylidene-4,1-phenylene) Bis[1,3-dihydro-1,3-dioxo-5-isobenzofurancarboxamide], 5,5'-spiro[9H-fluorene-9,9'-[9H]xanthene]-3',6'- Examples include diylbis(1,3-dihydro-1,3-dioxo-5-isobenzofurancarboxylate) and the like. In order to further suppress the occurrence of poor adhesion, SFDA or BPAF is preferable as the tetracarboxylic dianhydride for forming the residue (1).
 残基(1)を形成するためのジアミンとしては、例えば、9,9-ビス(4-アミノフェニル)フルオレン(以下、「BAFL」と記載することがある)、3,3’-(9H-フルオレン-9,9-ジイル)ジアニリン、4,4’-(9H-フルオレン-9-イリデン)ビス[2-フルオロベンゼンアミン]等が挙げられる。密着性不良の発生をより抑制するためには、残基(1)を形成するためのジアミンとしては、BAFLが好ましい。 Examples of the diamine for forming the residue (1) include 9,9-bis(4-aminophenyl)fluorene (hereinafter sometimes referred to as "BAFL"), 3,3'-(9H- Examples include fluorene-9,9-diyl)dianiline, 4,4'-(9H-fluorene-9-ylidene)bis[2-fluorobenzenamine], and the like. In order to further suppress the occurrence of poor adhesion, BAFL is preferable as the diamine for forming the residue (1).
 密着性不良の発生をより抑制するためには、残基(1)としては、SFDA残基、BPAF残基及びBAFL残基からなる群より選択される一種以上の残基が好ましい。SFDA残基は、下記化学式(4)で表される4価の有機基である。BPAF残基は、下記化学式(5)で表される4価の有機基である。BAFL残基は、下記化学式(6)で表される2価の有機基である。 In order to further suppress the occurrence of poor adhesion, residue (1) is preferably one or more residues selected from the group consisting of SFDA residues, BPAF residues, and BAFL residues. The SFDA residue is a tetravalent organic group represented by the following chemical formula (4). The BPAF residue is a tetravalent organic group represented by the following chemical formula (5). The BAFL residue is a divalent organic group represented by the following chemical formula (6).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 中でも、SFDA残基は、キサンテン構造に由来した剛直な構造を有するため、内部応力をより低減しつつ、密着性不良の発生をより抑制するためには、残基(1)としては、SFDA残基が特に好ましい。 Among these, the SFDA residue has a rigid structure derived from the xanthene structure, so in order to further reduce the internal stress and further suppress the occurrence of poor adhesion, the SFDA residue (1) should be used as the residue (1). Particularly preferred are groups.
 熱膨張係数の増大を抑制するためには、残基(1)の含有率(残基(1)を複数種含む場合は、それらの合計含有率)が、特定ポリアミド酸を構成する全テトラカルボン酸二無水物残基と特定ポリアミド酸を構成する全ジアミン残基との合計100モル%に対して、15モル%以下であることが好ましく、10モル%以下であることがより好ましく、5モル%以下であってもよい。また、密着性不良の発生をより抑制するためには、残基(1)の含有率(残基(1)を複数種含む場合は、それらの合計含有率)が、特定ポリアミド酸を構成する全テトラカルボン酸二無水物残基と特定ポリアミド酸を構成する全ジアミン残基との合計100モル%に対して、0.1モル%以上であることが好ましく、0.5モル%以上であることがより好ましく、1モル%以上であることが更に好ましい。 In order to suppress an increase in the coefficient of thermal expansion, the content of residue (1) (if more than one type of residue (1) is included, the total content) must be lower than all the tetracarboxylic acids constituting the specific polyamic acid. It is preferably 15 mol% or less, more preferably 10 mol% or less, and 5 mol% or less, based on the total 100 mol% of the acid dianhydride residue and all the diamine residues constituting the specific polyamic acid. % or less. In addition, in order to further suppress the occurrence of poor adhesion, it is necessary to ensure that the content of residue (1) (if multiple types of residue (1) are included, their total content) constitutes the specific polyamic acid. It is preferably 0.1 mol% or more, and preferably 0.5 mol% or more with respect to the total 100 mol% of all tetracarboxylic dianhydride residues and all diamine residues constituting the specific polyamic acid. More preferably, it is 1 mol% or more.
 特定ポリアミド酸を合成する際は、その性能を損なわない範囲で、BPDA及び残基(1)を形成するための酸二無水物以外の酸二無水物をモノマーとして用いてもよい。BPDA及び残基(1)を形成するための酸二無水物以外の酸二無水物としては、例えば、ピロメリット酸二無水物、p-フェニレンビス(トリメリテート無水物)、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、4,4’-オキシジフタル酸無水物、ジシクロヘキシル-3,3’,4,4’-テトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、2’-オキソジスピロ[ビシクロ[2.2.1]ヘプタン-2,1’-シクロペンタン-3’,2’’-ビシクロ[2.2.1]ヘプタン]-5,6:5’’,6’’-テトラカルボン酸二無水物及びこれらの誘導体が挙げられ、これらを単独又は二種類以上用いてもよい。 When synthesizing the specific polyamic acid, an acid dianhydride other than BPDA and the acid dianhydride for forming the residue (1) may be used as a monomer to the extent that its performance is not impaired. Examples of acid dianhydrides other than the acid dianhydride for forming BPDA and residue (1) include pyromellitic dianhydride, p-phenylene bis(trimelitate anhydride), 1,2,5, 6-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride, 3,3',4 , 4'-benzophenone tetracarboxylic dianhydride, 4,4'-oxydiphthalic anhydride, dicyclohexyl-3,3',4,4'-tetracarboxylic dianhydride, 1,2,4,5-cyclohexane Tetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 2'-oxodispiro[bicyclo[2.2.1]heptane-2,1'-cyclopentane-3',2 Examples include ''-bicyclo[2.2.1]heptane]-5,6:5'',6''-tetracarboxylic dianhydride and derivatives thereof, and these may be used alone or in combination of two or more. good.
 内部応力をより低減するためには、BPDA残基の含有率が、特定ポリアミド酸を構成するテトラカルボン酸二無水物残基の全量(100モル%)に対して、70モル%以上であることが好ましく、80モル%以上であることがより好ましく、90モル%以上であることが更に好ましく、100モル%であってもよい。 In order to further reduce internal stress, the content of BPDA residues should be 70 mol% or more with respect to the total amount (100 mol%) of tetracarboxylic dianhydride residues constituting the specific polyamic acid. is preferable, more preferably 80 mol% or more, still more preferably 90 mol% or more, and may be 100 mol%.
 残基(1)が酸二無水物由来の残基(SFDA残基、BPAF残基等)である場合、密着性不良の発生をより抑制するためには、残基(1)の含有率が、特定ポリアミド酸を構成するテトラカルボン酸二無水物残基の全量(100モル%)に対して、0.1モル%以上であることが好ましく、0.5モル%以上であることがより好ましい。また、残基(1)が酸二無水物由来の残基(SFDA残基、BPAF残基等)である場合、内部応力をより低減するためには、残基(1)の含有率が、特定ポリアミド酸を構成するテトラカルボン酸二無水物残基の全量(100モル%)に対して、10モル%以下であることが好ましく、8モル%以下であることがより好ましい。 When residue (1) is a residue derived from an acid dianhydride (SFDA residue, BPAF residue, etc.), in order to further suppress the occurrence of poor adhesion, the content of residue (1) must be , is preferably 0.1 mol% or more, more preferably 0.5 mol% or more, based on the total amount (100 mol%) of the tetracarboxylic dianhydride residues constituting the specific polyamic acid. . In addition, when the residue (1) is a residue derived from an acid dianhydride (SFDA residue, BPAF residue, etc.), in order to further reduce internal stress, the content of the residue (1) must be It is preferably 10 mol% or less, more preferably 8 mol% or less, based on the total amount (100 mol%) of the tetracarboxylic dianhydride residues constituting the specific polyamic acid.
 密着性不良の発生をより抑制しつつ内部応力をより低減するためには、酸二無水物由来の残基(1)及びBPDA残基の合計含有率が、特定ポリアミド酸を構成するテトラカルボン酸二無水物残基の全量(100モル%)に対して、60モル%以上であることが好ましく、70モル%以上であることがより好ましく、80モル%以上であることが更に好ましく、90モル%以上であることが特に好ましく、100モル%であってもよい。 In order to further reduce internal stress while further suppressing the occurrence of poor adhesion, the total content of acid dianhydride-derived residues (1) and BPDA residues should be lower than that of the tetracarboxylic acid constituting the specific polyamic acid. It is preferably 60 mol% or more, more preferably 70 mol% or more, even more preferably 80 mol% or more, and 90 mol% based on the total amount (100 mol%) of dianhydride residues. % or more, and may be 100 mol%.
 特定ポリアミド酸を合成する際は、その性能を損なわない範囲で、PDA及び残基(1)を形成するためのジアミン以外のジアミンをモノマーとして用いてもよい。PDA及び残基(1)を形成するためのジアミン以外のジアミンとしては、例えば、4-アミノフェニル-4-アミノベンゾエート、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル、1,4-シクロヘキサンジアミン、4,4’-ジアミノベンズアニリド、m-フェニレンジアミン、4,4’-オキシジアニリン、3,4’-オキシジアニリン、N,N’-ビス(4-アミノフェニル)テレフタルアミド、4,4’-ジアミノジフェニルスルホン、m-トリジン、o-トリジン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、2-(4-アミノフェニル)-6-アミノベンゾオキサゾール、3,5-ジアミノ安息香酸、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル、4,4’-メチレンビス(シクロヘキサンアミン)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(以下、「PAM-E」と記載することがある)及びこれらの誘導体が挙げられ、これらを単独又は二種類以上用いてもよい。 When synthesizing the specific polyamic acid, a diamine other than the diamine for forming PDA and the residue (1) may be used as a monomer to the extent that its performance is not impaired. Examples of diamines other than diamine for forming PDA and residue (1) include 4-aminophenyl-4-aminobenzoate, 2,2'-bis(trifluoromethyl)-4,4'-diaminodiphenyl ether , 1,4-cyclohexanediamine, 4,4'-diaminobenzanilide, m-phenylenediamine, 4,4'-oxydianiline, 3,4'-oxydianiline, N,N'-bis(4-amino Phenyl) terephthalamide, 4,4'-diaminodiphenylsulfone, m-tolidine, o-tolidine, 4,4'-bis(4-aminophenoxy)biphenyl, 2-(4-aminophenyl)-6-aminobenzoxazole , 3,5-diaminobenzoic acid, 4,4'-diamino-3,3'-dihydroxybiphenyl, 4,4'-methylenebis(cyclohexaneamine), 1,3-bis(3-aminopropyl)tetramethyldisiloxane (hereinafter sometimes referred to as "PAM-E") and derivatives thereof, and these may be used alone or in combination of two or more.
 ポリイミド膜と支持体との密着性を高めるためには、PDA及び残基(1)を形成するためのジアミン以外のジアミンとしては、PAM-Eが好ましい。つまり、ポリイミド膜と支持体との密着性を高めるためには、特定ポリアミド酸が、PAM-E残基を有することが好ましい。 In order to improve the adhesion between the polyimide membrane and the support, PAM-E is preferred as the diamine other than the diamine for forming PDA and the residue (1). That is, in order to improve the adhesion between the polyimide membrane and the support, it is preferable that the specific polyamic acid has a PAM-E residue.
 ポリイミド膜と支持体との密着性をより高めるためには、PAM-E残基の含有率が、特定ポリアミド酸を構成するジアミン残基の全量(100モル%)に対して、0.05モル%以上であることが好ましく、0.1モル%以上であることがより好ましく、0.2モル%以上であってもよい。また、電子素子を形成した後、支持体からポリイミド膜を剥離する際の歩留まり低下を抑制するためには、PAM-E残基の含有率が、特定ポリアミド酸を構成するジアミン残基の全量(100モル%)に対して、1.0モル%以下であることが好ましく、0.9モル%以下であることがより好ましく、0.8モル%以下であることが更に好ましく、0.7モル%以下であることが更により好ましく、0.6モル%以下であってもよい。 In order to further improve the adhesion between the polyimide membrane and the support, the content of PAM-E residues should be 0.05 mol based on the total amount (100 mol%) of diamine residues constituting the specific polyamic acid. % or more, more preferably 0.1 mol% or more, and may be 0.2 mol% or more. In addition, in order to suppress a decrease in yield when peeling the polyimide film from the support after forming an electronic device, it is necessary to adjust the content of PAM-E residues to the total amount of diamine residues constituting the specific polyamic acid ( 100 mol%), it is preferably 1.0 mol% or less, more preferably 0.9 mol% or less, even more preferably 0.8 mol% or less, and even more preferably 0.7 mol%. % or less is even more preferable, and may be 0.6 mol% or less.
 内部応力をより低減するためには、PDA残基の含有率が、特定ポリアミド酸を構成するジアミン残基の全量(100モル%)に対して、70モル%以上であることが好ましく、80モル%以上であることがより好ましく、90モル%以上であることが更に好ましく、100モル%であってもよい。 In order to further reduce internal stress, the content of PDA residues is preferably 70 mol% or more, and 80 mol% or more, based on the total amount (100 mol%) of diamine residues constituting the specific polyamic acid. % or more, more preferably 90 mol% or more, and may be 100 mol%.
 残基(1)がジアミン由来の残基(BAFL残基等)である場合、密着性不良の発生をより抑制するためには、残基(1)の含有率が、特定ポリアミド酸を構成するジアミン残基の全量(100モル%)に対して、0.1モル%以上であることが好ましく、0.5モル%以上であることがより好ましい。また、残基(1)がジアミン由来の残基(BAFL残基等)である場合、内部応力をより低減するためには、残基(1)の含有率が、特定ポリアミド酸を構成するジアミン残基の全量(100モル%)に対して、10モル%以下であることが好ましく、8モル%以下であることがより好ましく、5モル%以下であることが更に好ましい。 When the residue (1) is a diamine-derived residue (such as a BAFL residue), in order to further suppress the occurrence of poor adhesion, the content of the residue (1) must be such that the content of the specific polyamic acid is It is preferably 0.1 mol% or more, more preferably 0.5 mol% or more, based on the total amount (100 mol%) of diamine residues. In addition, when the residue (1) is a diamine-derived residue (BAFL residue, etc.), in order to further reduce the internal stress, it is necessary to adjust the content of the residue (1) to the diamine that constitutes the specific polyamic acid. It is preferably at most 10 mol%, more preferably at most 8 mol%, even more preferably at most 5 mol%, based on the total amount of residues (100 mol%).
 密着性不良の発生をより抑制しつつ内部応力をより低減するためには、ジアミン由来の残基(1)及びPDA残基の合計含有率が、特定ポリアミド酸を構成するジアミン残基の全量(100モル%)に対して、60モル%以上であることが好ましく、70モル%以上であることがより好ましく、80モル%以上であることが更に好ましく、90モル%以上であることが特に好ましく、100モル%であってもよい。 In order to further reduce internal stress while further suppressing the occurrence of poor adhesion, the total content of diamine-derived residues (1) and PDA residues should be adjusted to the total content of diamine residues constituting the specific polyamic acid ( 100 mol%), preferably 60 mol% or more, more preferably 70 mol% or more, even more preferably 80 mol% or more, and particularly preferably 90 mol% or more. , 100 mol%.
 特定ポリアミド酸がPAM-E残基を有する場合、密着性不良の発生をより抑制しつつ内部応力をより低減できる上、ポリイミド膜と支持体との密着性をより高めることができるポリアミド酸組成物を得るためには、PAM-E残基、ジアミン由来の残基(1)及びPDA残基の合計含有率が、特定ポリアミド酸を構成するジアミン残基の全量(100モル%)に対して、60モル%以上であることが好ましく、70モル%以上であることがより好ましく、80モル%以上であることが更に好ましく、90モル%以上であることが特に好ましく、100モル%であってもよい。 When the specific polyamic acid has a PAM-E residue, the polyamic acid composition can further reduce internal stress while further suppressing the occurrence of poor adhesion, and can further improve the adhesion between the polyimide film and the support. In order to obtain , the total content of PAM-E residues, diamine-derived residues (1), and PDA residues should be such that the total content of diamine residues (100 mol%) constituting the specific polyamic acid is as follows: It is preferably 60 mol% or more, more preferably 70 mol% or more, even more preferably 80 mol% or more, particularly preferably 90 mol% or more, even if it is 100 mol%. good.
 内部応力を更に低減しつつ、密着性不良の発生を更に抑制するためには、特定ポリアミド酸は、下記条件1を満たすことが好ましく、下記条件2を満たすことがより好ましく、下記条件3を満たすことが更に好ましく、下記条件4を満たすことが特に好ましい。
 条件1:残基(1)、BPDA残基及びPDA残基の合計含有率が、特定ポリアミド酸を構成する全テトラカルボン酸二無水物残基と特定ポリアミド酸を構成する全ジアミン残基との合計100モル%に対して、90モル%以上である。
 条件2:上記条件1を満たし、かつPAM-E残基を更に有する。
 条件3:上記条件2を満たし、かつPAM-E残基の含有率が、特定ポリアミド酸を構成するジアミン残基の全量(100モル%)に対して、0.1モル%以上1.0モル%以下である。
 条件4:上記条件3を満たし、かつ残基(1)、BPDA残基、PDA残基及びPAM-E残基の合計含有率が、特定ポリアミド酸を構成する全テトラカルボン酸二無水物残基と特定ポリアミド酸を構成する全ジアミン残基との合計100モル%に対して、95モル%以上100モル%以下である。
In order to further suppress the occurrence of poor adhesion while further reducing internal stress, the specific polyamic acid preferably satisfies the following condition 1, more preferably satisfies the following condition 2, and satisfies the following condition 3. It is more preferable, and it is particularly preferable that Condition 4 below is satisfied.
Condition 1: The total content of residue (1), BPDA residue, and PDA residue is the same as that of all the tetracarboxylic dianhydride residues that make up the specific polyamic acid and all the diamine residues that make up the specific polyamic acid. It is 90 mol% or more with respect to the total 100 mol%.
Condition 2: Satisfies Condition 1 above and further has a PAM-E residue.
Condition 3: Condition 2 above is satisfied, and the content of PAM-E residue is 0.1 mol% or more and 1.0 mol based on the total amount (100 mol%) of diamine residues constituting the specific polyamic acid. % or less.
Condition 4: The above condition 3 is satisfied, and the total content of residue (1), BPDA residue, PDA residue, and PAM-E residue is all the tetracarboxylic dianhydride residues constituting the specific polyamic acid. It is 95 mol% or more and 100 mol% or less with respect to the total 100 mol% of all the diamine residues constituting the specific polyamic acid.
 特定ポリアミド酸は、公知の一般的な方法にて合成することができ、例えば、有機溶媒中でジアミンとテトラカルボン酸二無水物とを反応させることにより得ることができる。特定ポリアミド酸の具体的な合成方法の一例について説明する。まず、アルゴン、窒素等の不活性ガス雰囲気中において、ジアミンを、有機溶媒中に溶解又はスラリー状に分散させて、ジアミン溶液を調製する。そして、テトラカルボン酸二無水物を、有機溶媒に溶解又はスラリー状に分散させた状態とした後、あるいは固体の状態で、上記ジアミン溶液中に添加する。 The specific polyamic acid can be synthesized by a known general method, for example, by reacting a diamine and a tetracarboxylic dianhydride in an organic solvent. An example of a specific method for synthesizing a specific polyamic acid will be explained. First, a diamine solution is prepared by dissolving or dispersing diamine in an organic solvent in an inert gas atmosphere such as argon or nitrogen. Then, the tetracarboxylic dianhydride is dissolved in an organic solvent or dispersed in a slurry state, or is added to the diamine solution in a solid state.
 ジアミンとテトラカルボン酸二無水物とを用いて特定ポリアミド酸を合成する場合、ジアミンの物質量(ジアミンを複数種使用する場合は、各ジアミンの物質量)と、テトラカルボン酸二無水物の物質量(テトラカルボン酸二無水物を複数種使用する場合は、各テトラカルボン酸二無水物の物質量)とを調整することで、所望の特定ポリアミド酸(ジアミンとテトラカルボン酸二無水物との重合体)を得ることができる。特定ポリアミド酸中の各残基のモル分率は、例えば、特定ポリアミド酸の合成に使用する各モノマー(ジアミン及びテトラカルボン酸二無水物)のモル分率と一致する。また、2種のポリアミド酸をブレンドすることによって、複数種のテトラカルボン酸二無水物残基及び複数種のジアミン残基を含有する特定ポリアミド酸を得ることもできる。ジアミンとテトラカルボン酸二無水物との反応、即ち、特定ポリアミド酸の合成反応の温度条件は、特に限定されないが、例えば20℃以上150℃以下の範囲である。特定ポリアミド酸の合成反応の反応時間は、例えば10分以上30時間以下の範囲である。 When synthesizing a specific polyamic acid using a diamine and a tetracarboxylic dianhydride, the amount of the diamine (if multiple types of diamines are used, the amount of each diamine) and the amount of the tetracarboxylic dianhydride By adjusting the amount (if multiple types of tetracarboxylic dianhydride are used, the amount of each tetracarboxylic dianhydride), the desired specific polyamic acid (the combination of diamine and tetracarboxylic dianhydride) can be obtained. polymer) can be obtained. The mole fraction of each residue in the specific polyamic acid matches, for example, the mole fraction of each monomer (diamine and tetracarboxylic dianhydride) used in the synthesis of the specific polyamic acid. Moreover, by blending two types of polyamic acids, a specific polyamic acid containing multiple types of tetracarboxylic dianhydride residues and multiple types of diamine residues can also be obtained. The temperature conditions for the reaction between the diamine and the tetracarboxylic dianhydride, that is, the synthesis reaction of the specific polyamic acid, are not particularly limited, but are, for example, in the range of 20°C or higher and 150°C or lower. The reaction time for the synthesis reaction of the specific polyamic acid is, for example, in the range of 10 minutes or more and 30 hours or less.
 特定ポリアミド酸の合成に使用する有機溶媒は、使用するテトラカルボン酸二無水物及びジアミンを溶解可能な溶媒が好ましく、生成する特定ポリアミド酸を溶解可能な溶媒がより好ましい。特定ポリアミド酸の合成に使用する有機溶媒としては、安全性の観点から、上述した特定有機溶媒が好ましい。また、特定ポリアミド酸の合成には、特定有機溶媒以外の有機溶媒を使用してもよい。特定有機溶媒以外の有機溶媒としては、例えば、テトラメチル尿素、N,N-ジメチルエチルウレアのようなウレア系溶媒;ジメチルスルホキシドのようなスルホキシド系溶媒;ジフェニルスルホン、テトラメチルスルホンのようなスルホン系溶媒;N,N-ジメチルアセトアミド(DMAC)、N,N-ジメチルホルムアミド(DMF)、N-メチル-2-ピロリドン(NMP)、ヘキサメチルリン酸トリアミド等の特定有機溶媒以外のアミド系溶媒;γ-ブチロラクトン等のエステル系溶媒;クロロホルム、塩化メチレン等のハロゲン化アルキル系溶媒;ベンゼン、トルエン等の芳香族炭化水素系溶媒;フェノール、クレゾール等のフェノール系溶媒;シクロペンタノン等のケトン系溶媒;テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、ジメチルエーテル、ジエチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、p-クレゾールメチルエーテル等のエーテル系溶媒が挙げられる。通常これらの溶媒を単独で用いるが、必要に応じて2種以上を適宜組み合わせて用いてもよい。また、特定ポリアミド酸の合成反応は、アルゴンや窒素等の不活性ガス雰囲気下で行うことが好ましい。 The organic solvent used in the synthesis of the specific polyamic acid is preferably a solvent that can dissolve the tetracarboxylic dianhydride and diamine used, and more preferably a solvent that can dissolve the specific polyamic acid to be produced. From the viewpoint of safety, the above-mentioned specific organic solvents are preferable as the organic solvent used in the synthesis of the specific polyamic acid. Furthermore, organic solvents other than the specific organic solvent may be used in the synthesis of the specific polyamic acid. Examples of organic solvents other than specific organic solvents include urea-based solvents such as tetramethylurea and N,N-dimethylethylurea; sulfoxide-based solvents such as dimethyl sulfoxide; and sulfone-based solvents such as diphenyl sulfone and tetramethyl sulfone. Solvent: Amide solvent other than specific organic solvents such as N,N-dimethylacetamide (DMAC), N,N-dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP), hexamethylphosphoric triamide; γ - Ester solvents such as butyrolactone; halogenated alkyl solvents such as chloroform and methylene chloride; aromatic hydrocarbon solvents such as benzene and toluene; phenolic solvents such as phenol and cresol; ketone solvents such as cyclopentanone; Examples include ether solvents such as tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, dimethyl ether, diethyl ether, diethylene glycol diethyl ether, diethylene glycol dimethyl ether, and p-cresol methyl ether. Usually, these solvents are used alone, but two or more types may be used in combination as necessary. Further, the synthesis reaction of the specific polyamic acid is preferably carried out under an inert gas atmosphere such as argon or nitrogen.
 本実施形態に係るポリアミド酸組成物は、特定ポリアミド酸と、特定有機溶媒とを含有する。上述した方法で特定ポリアミド酸を得た場合、反応溶液(反応後の溶液)自体を本実施形態に係るポリアミド酸組成物としてもよい。反応溶液自体を本実施形態に係るポリアミド酸組成物とする場合、特定ポリアミド酸の合成に使用する有機溶媒としては、上述した特定有機溶媒が好ましい。また、反応溶液から溶媒を除去して得られた固体の特定ポリアミド酸を、特定有機溶媒に溶解して、本実施形態に係るポリアミド酸組成物を調製してもよい。 The polyamic acid composition according to this embodiment contains a specific polyamic acid and a specific organic solvent. When the specific polyamic acid is obtained by the method described above, the reaction solution (solution after reaction) itself may be used as the polyamic acid composition according to the present embodiment. When the reaction solution itself is used as the polyamic acid composition according to the present embodiment, the above-mentioned specific organic solvents are preferable as the organic solvent used for synthesizing the specific polyamic acid. Alternatively, the solid specific polyamic acid obtained by removing the solvent from the reaction solution may be dissolved in a specific organic solvent to prepare the polyamic acid composition according to the present embodiment.
 本実施形態に係るポリアミド酸組成物中には、特定有機溶媒以外の有機溶媒が含まれていてもよい。ただし、安全性の観点から、本実施形態に係るポリアミド酸組成物中の特定有機溶媒の含有率は、ポリアミド酸組成物中の有機溶媒の全量に対して、70重量%以上であることが好ましく、80重量%以上であることがより好ましく、90重量%以上であることが更に好ましく、100重量%であることが特に好ましい。なお、本実施形態に係るポリアミド酸組成物中の特定ポリアミド酸の含有率は、特に制限されないが、例えばポリアミド酸組成物全量に対して1重量%以上80重量%以下である。 The polyamic acid composition according to this embodiment may contain an organic solvent other than the specific organic solvent. However, from the viewpoint of safety, the content of the specific organic solvent in the polyamic acid composition according to this embodiment is preferably 70% by weight or more based on the total amount of organic solvent in the polyamic acid composition. , more preferably 80% by weight or more, still more preferably 90% by weight or more, and particularly preferably 100% by weight. Note that the content of the specific polyamic acid in the polyamic acid composition according to the present embodiment is not particularly limited, but is, for example, 1% by weight or more and 80% by weight or less based on the total amount of the polyamic acid composition.
 特定ポリアミド酸の重量平均分子量は、その用途にもよるが、10,000以上1,000,000以下の範囲であることが好ましく、20,000以上500,000以下の範囲であることがより好ましく、30,000以上200,000以下の範囲であることが更に好ましい。重量平均分子量が10,000以上であれば、特定ポリアミド酸、又は特定ポリアミド酸を用いて得られるポリイミドを、塗布膜又はポリイミド膜(フィルム)とすることが容易となる。一方、重量平均分子量が1,000,000以下であると、溶媒に対して十分な溶解性を示すため、ポリアミド酸組成物を用いて表面が平滑で厚みが均一な塗布膜又はポリイミド膜が得られる。ここで用いている重量平均分子量とは、ゲルパーミレーションクロマトグラフィー(GPC)を用いて測定したポリエチレンオキシド換算値のことをいう。 The weight average molecular weight of the specific polyamic acid depends on its use, but is preferably in the range of 10,000 or more and 1,000,000 or less, more preferably in the range of 20,000 or more and 500,000 or less. , more preferably in the range of 30,000 or more and 200,000 or less. When the weight average molecular weight is 10,000 or more, the specific polyamic acid or the polyimide obtained using the specific polyamic acid can be easily formed into a coating film or a polyimide film. On the other hand, when the weight average molecular weight is 1,000,000 or less, sufficient solubility in solvents is exhibited, so that a coating film or polyimide film with a smooth surface and a uniform thickness can be obtained using the polyamic acid composition. It will be done. The weight average molecular weight used here refers to a polyethylene oxide equivalent value measured using gel permeation chromatography (GPC).
 また、特定ポリアミド酸の分子量を制御する方法として、酸二無水物とジアミンのどちらかを過剰にする方法や、フタル酸無水物やアニリンのような一官能性の酸無水物やアミンと反応させることで反応をクエンチさせる方法が挙げられる。酸二無水物とジアミンのどちらかを過剰にして重合する場合、これらの仕込みモル比が0.95から1.05の間であれば、十分な強度を有するポリイミド膜を得ることができる。なお、上記仕込みモル比は、特定ポリアミド酸の合成に使用した酸二無水物の合計物質量に対する、特定ポリアミド酸の合成に使用したジアミンの合計物質量の比(ジアミンの合計物質量/酸二無水物の合計物質量)である。また、フタル酸無水物、マレイン酸無水物、アニリン等で末端封止することで、特定ポリアミド酸を用いて得られるポリイミドの着色をより低減することもできる。 In addition, methods for controlling the molecular weight of specific polyamic acids include adding an excess of either acid dianhydride or diamine, or reacting with monofunctional acid anhydrides or amines such as phthalic anhydride or aniline. One method is to quench the reaction by When polymerizing with an excess of either acid dianhydride or diamine, a polyimide film having sufficient strength can be obtained if the molar ratio of these is between 0.95 and 1.05. The above charging molar ratio is the ratio of the total amount of diamine used in the synthesis of the specific polyamic acid to the total amount of acid dianhydride used in the synthesis of the specific polyamic acid (total amount of diamine/acid dianhydride). total amount of anhydride). Further, by end-capping with phthalic anhydride, maleic anhydride, aniline, etc., coloring of polyimide obtained using a specific polyamic acid can be further reduced.
 また、本実施形態に係るポリアミド酸組成物は、加熱時間の短縮や特性発現のために、イミド化促進剤及び/又は脱水触媒を含んでいてもよい。 Furthermore, the polyamic acid composition according to the present embodiment may contain an imidization promoter and/or a dehydration catalyst in order to shorten the heating time and develop properties.
 上記イミド化促進剤としては、特に限定されないが、3級アミンを用いることができる。3級アミンとしては複素環式の3級アミンが好ましい。複素環式の3級アミンの好ましい具体例としては、ピリジン、ピコリン、キノリン、イソキノリン、イミダゾール類等を挙げることができる。上記脱水触媒としては、無水酢酸、プロピオン酸無水物、n-酪酸無水物、安息香酸無水物、トリフルオロ酢酸無水物等を好ましい具体例として挙げることができる。 The above-mentioned imidization accelerator is not particularly limited, but a tertiary amine can be used. As the tertiary amine, a heterocyclic tertiary amine is preferable. Preferred specific examples of the heterocyclic tertiary amine include pyridine, picoline, quinoline, isoquinoline, and imidazoles. Preferred specific examples of the dehydration catalyst include acetic anhydride, propionic anhydride, n-butyric anhydride, benzoic anhydride, trifluoroacetic anhydride, and the like.
 加熱時間の短縮の観点及び特性発現の観点から、イミド化促進剤の量は、100重量部の特定ポリアミド酸に対して、0.1重量部以上20重量部以下であることが好ましく、0.5重量部以上20重量部以下であることがより好ましい。また、加熱時間の短縮の観点及び特性発現の観点から、脱水触媒の量は、100重量部の特定ポリアミド酸に対して、0.1重量部以上10重量部以下であることが好ましく、0.5重量部以上5重量部以下であることがより好ましい。 From the viewpoint of shortening the heating time and developing properties, the amount of the imidization accelerator is preferably 0.1 parts by weight or more and 20 parts by weight or less, and 0.1 parts by weight or more and 20 parts by weight or less, based on 100 parts by weight of the specific polyamic acid. More preferably, the amount is 5 parts by weight or more and 20 parts by weight or less. Further, from the viewpoint of shortening the heating time and developing characteristics, the amount of the dehydration catalyst is preferably 0.1 parts by weight or more and 10 parts by weight or less, and 0.1 parts by weight or more and 10 parts by weight or less, based on 100 parts by weight of the specific polyamic acid. More preferably, the amount is 5 parts by weight or more and 5 parts by weight or less.
 イミド化促進剤としては、イミダゾール類が好ましい。なお、本明細書中においてイミダゾール類とは、1,3-ジアゾール環(1,3-ジアゾール環構造)を有する化合物をさす。本実施形態に係るポリアミド酸組成物に添加できるイミダゾール類としては、特に限定されないが、例えば、1H-イミダゾール、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール等が挙げられる。これらの中では、1,2-ジメチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾールが好ましく、1,2-ジメチルイミダゾール、1-ベンジル-2-メチルイミダゾールがより好ましい。 As the imidization accelerator, imidazoles are preferred. In this specification, imidazoles refer to compounds having a 1,3-diazole ring (1,3-diazole ring structure). The imidazoles that can be added to the polyamic acid composition according to the present embodiment are not particularly limited, but include, for example, 1H-imidazole, 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethyl Examples include imidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, and 1-benzyl-2-phenylimidazole. Among these, 1,2-dimethylimidazole, 1-benzyl-2-methylimidazole, and 1-benzyl-2-phenylimidazole are preferred, and 1,2-dimethylimidazole and 1-benzyl-2-methylimidazole are more preferred. .
 イミダゾール類の含有量は、特定ポリアミド酸のアミド基1モルに対して、0.005モル以上0.1モル以下であることが好ましく、0.01モル以上0.08モル以下であることがより好ましく、0.015モル以上0.050モル以下であることが更に好ましい。イミダゾール類を0.005モル以上含有させることでポリイミドの膜強度及び透明性を向上させることができ、イミダゾール類の含有量を0.1モル以下とすることで、特定ポリアミド酸の保存安定性を維持しつつ、耐熱性を向上させることができる。なお、本明細書中において、「特定ポリアミド酸のアミド基」とは、ジアミンとテトラカルボン酸二無水物との重合反応によって生成したアミド基をさす。 The content of imidazoles is preferably 0.005 mol or more and 0.1 mol or less, more preferably 0.01 mol or more and 0.08 mol or less, per 1 mol of the amide group of the specific polyamic acid. It is preferably 0.015 mol or more and 0.050 mol or less. By containing 0.005 mol or more of imidazoles, the film strength and transparency of polyimide can be improved, and by controlling the content of imidazoles to 0.1 mol or less, the storage stability of specific polyamic acid can be improved. It is possible to improve heat resistance while maintaining the same. In addition, in this specification, "the amide group of a specific polyamic acid" refers to the amide group produced|generated by the polymerization reaction of a diamine and a tetracarboxylic dianhydride.
 特定ポリアミド酸とイミダゾール類との混合方法は特に制限されない。特定ポリアミド酸の分子量制御の容易性の観点から、重合後の特定ポリアミド酸にイミダゾール類を添加することが好ましい。このとき、イミダゾール類をそのまま特定ポリアミド酸に添加してもよいし、あらかじめイミダゾール類を溶媒に溶解しておき、この溶液を特定ポリアミド酸に添加してもよく、添加方法は特に制限されない。重合後の特定ポリアミド酸を含む溶液(反応後の溶液)にイミダゾール類を添加して、本実施形態に係るポリアミド酸組成物を調製してもよい。 The method of mixing the specific polyamic acid and imidazoles is not particularly limited. From the viewpoint of ease of controlling the molecular weight of the specific polyamic acid, it is preferable to add imidazoles to the specific polyamic acid after polymerization. At this time, the imidazole may be added to the specific polyamic acid as it is, or the imidazole may be dissolved in a solvent in advance and this solution may be added to the specific polyamic acid, and the method of addition is not particularly limited. The polyamic acid composition according to the present embodiment may be prepared by adding imidazoles to a solution containing the specific polyamic acid after polymerization (solution after reaction).
 本実施形態に係るポリアミド酸組成物には、添加剤として、様々な有機若しくは無機の低分子化合物、又は高分子化合物を配合してもよい。添加剤としては、例えば、可塑剤、酸化防止剤、染料、界面活性剤、レベリング剤、シリコーン、微粒子、増感剤等を用いることができる。微粒子には、ポリスチレン、ポリテトラフルオロエチレン等からなる有機微粒子や、コロイダルシリカ、カーボン、層状珪酸塩等からなる無機微粒子等が含まれ、それらは多孔質構造や中空構造であってもよい。また、微粒子の機能及び形態は、特に限定されず、例えば、顔料であっても、フィラーであってもよく、繊維状粒子であってもよい。 The polyamic acid composition according to this embodiment may contain various organic or inorganic low-molecular compounds or high-molecular compounds as additives. As additives, for example, plasticizers, antioxidants, dyes, surfactants, leveling agents, silicones, fine particles, sensitizers, etc. can be used. The fine particles include organic fine particles made of polystyrene, polytetrafluoroethylene, etc., and inorganic fine particles made of colloidal silica, carbon, layered silicate, etc., and may have a porous structure or a hollow structure. Further, the function and form of the fine particles are not particularly limited, and for example, they may be pigments, fillers, or fibrous particles.
 また、本実施形態に係るポリアミド酸組成物には、支持体との適切な密着性を発現させるために、シランカップリング剤を含有させることができる。シランカップリング剤は、公知のものを特に制限なく使用できる。支持体との良好な密着性を発現させるためには、使用可能なシランカップリング剤としては、アミノ基を含有する化合物が好ましく、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルジエトキシメチルシラン、3-(エトキシジメチルシリル)プロピルアミン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン及びN-フェニル-3-アミノプロピルトリメトキシシランからなる群より選択される一種以上の化合物がより好ましく、3-アミノプロピルトリエトキシシラン及び3-アミノプロピルジエトキシメチルシランからなる群より選択される一種以上の化合物が更に好ましく、3-アミノプロピルトリエトキシシランが特に好ましい。 Furthermore, the polyamic acid composition according to the present embodiment may contain a silane coupling agent in order to develop appropriate adhesion to the support. Any known silane coupling agent can be used without particular limitation. In order to develop good adhesion to the support, the usable silane coupling agent is preferably a compound containing an amino group, such as 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 3-(ethoxydimethylsilyl)propylamine, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, N-2-(aminoethyl)-3-aminopropylmethyl More preferably, one or more compounds selected from the group consisting of dimethoxysilane and N-phenyl-3-aminopropyltrimethoxysilane, and more preferably selected from the group consisting of 3-aminopropyltriethoxysilane and 3-aminopropyldiethoxymethylsilane. More preferred are one or more compounds, with 3-aminopropyltriethoxysilane being particularly preferred.
 100重量部の特定ポリアミド酸に対するシランカップリング剤の配合割合は、0.01重量部以上0.50重量部以下であることが好ましく、0.01重量部以上0.30重量部以下であることがより好ましく、0.01重量部以上0.20重量部以下であることが更に好ましい。シランカップリング剤の配合割合を0.01重量部以上とすることで、支持体に対する剥離抑制効果が十分に発揮され、シランカップリング剤の配合割合を0.50重量部以下とすることで、特定ポリアミド酸の分子量低下が抑制されるため、ポリイミド膜の脆化を抑制できる。 The blending ratio of the silane coupling agent to 100 parts by weight of the specific polyamic acid is preferably 0.01 parts by weight or more and 0.50 parts by weight or less, and 0.01 parts by weight or more and 0.30 parts by weight or less. is more preferable, and even more preferably 0.01 part by weight or more and 0.20 part by weight or less. By setting the blending ratio of the silane coupling agent to 0.01 parts by weight or more, the peeling suppressing effect on the support can be sufficiently exhibited, and by setting the blending ratio of the silane coupling agent to 0.50 parts by weight or less, Since molecular weight reduction of the specific polyamic acid is suppressed, embrittlement of the polyimide film can be suppressed.
 3-メトキシ-N,N-ジメチルプロパンアミド等のpHが高い有機溶媒においては、シランカップリング剤の反応速度が高くなる場合があり、生成したシラノール基の縮合反応の制御が困難になるため、必要に応じてアルコキシ基の数を少なくしたり、反応性が低いアルコキシ基を有するシランカップリング剤を用いることが好ましい。具体的には、3-アミノプロピルトリエトキシシラン、3-アミノプロピルジエトキシメチルシラン、3-(エトキシジメチルシリル)プロピルアミン等を用いることで、シラノール基の縮合反応を制御しつつ、支持体との良好な密着性と剥離性を実現することができる。 In organic solvents with a high pH such as 3-methoxy-N,N-dimethylpropanamide, the reaction rate of the silane coupling agent may increase, making it difficult to control the condensation reaction of the generated silanol groups. It is preferable to reduce the number of alkoxy groups as necessary or to use a silane coupling agent having an alkoxy group with low reactivity. Specifically, by using 3-aminopropyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 3-(ethoxydimethylsilyl)propylamine, etc., the condensation reaction of silanol groups can be controlled and the support can be bonded to the support. Good adhesion and releasability can be achieved.
 本実施形態に係るポリイミドの製造方法は、本実施形態に係るポリアミド酸組成物を加熱して、特定ポリアミド酸をイミド化する工程を備える。特定ポリアミド酸をイミド化する方法としては、特に制限されず、公知の方法を採用することができる。以下、特定ポリアミド酸をイミド化する方法の一例について説明する。イミド化は、特定ポリアミド酸を脱水閉環することによって行われる。この脱水閉環は、共沸溶媒を用いた共沸法、熱的手法又は化学的手法によって行うことができる。あるいは、フッ素系樹脂によるコーティング等の離型処理を施した容器に直接ポリアミド酸組成物を入れ、当該ポリアミド酸組成物を減圧下で加熱・乾燥することによって、特定ポリアミド酸の脱水閉環を行うこともできる。これらの手法による特定ポリアミド酸の脱水閉環により、ポリイミドを得ることができる。なお、上記各処理の加熱時間は、脱水閉環を行うポリアミド酸組成物の処理量や加熱温度により異なるが、一般的には、処理温度が最高温度に達してから1分以上300分以下の範囲とすることが好ましい。 The method for producing polyimide according to the present embodiment includes a step of heating the polyamic acid composition according to the present embodiment to imidize the specific polyamic acid. The method of imidizing the specific polyamic acid is not particularly limited, and any known method can be employed. An example of a method for imidizing a specific polyamic acid will be described below. Imidization is performed by dehydrating and ring-closing a specific polyamic acid. This dehydration ring closure can be performed by an azeotropic method using an azeotropic solvent, a thermal method, or a chemical method. Alternatively, the polyamic acid composition may be placed directly into a container that has been subjected to mold release treatment such as coating with a fluororesin, and the polyamic acid composition may be heated and dried under reduced pressure to perform dehydration and ring closure of the specific polyamic acid. You can also do it. Polyimide can be obtained by dehydration and ring closure of specific polyamic acids using these methods. The heating time for each of the above treatments varies depending on the amount of polyamic acid composition to be treated and the heating temperature that undergoes dehydration and ring closure, but generally it is in the range of 1 minute to 300 minutes after the treatment temperature reaches the maximum temperature. It is preferable that
 また、特定ポリアミド酸からポリイミドへのイミド化は、1%以上100%以下の任意の割合をとることができる。つまり、一部がイミド化された特定ポリアミド酸を合成してもよい。特に加熱昇温によりイミド化する場合は、特定ポリアミド酸からポリイミドへの閉環反応と特定ポリアミド酸の加水分解が同時に進行しており、ポリイミドにした時の分子量が特定ポリアミド酸の分子量よりも低くなる可能性があるため、後述するポリイミド膜を形成する前に、ポリアミド酸組成物中の特定ポリアミド酸の一部をあらかじめイミド化しておくことが機械特性向上の観点から好ましい。本明細書では、一部がイミド化したポリアミド酸も、「ポリアミド酸」と記載することがある。 Further, the imidization of the specific polyamic acid to polyimide can be performed at any ratio of 1% or more and 100% or less. In other words, a partially imidized specific polyamic acid may be synthesized. In particular, when imidization is performed by heating and increasing temperature, the ring-closing reaction from the specific polyamic acid to polyimide and the hydrolysis of the specific polyamic acid proceed simultaneously, and the molecular weight when converted into polyimide becomes lower than the molecular weight of the specific polyamic acid. Therefore, from the viewpoint of improving mechanical properties, it is preferable to imidize a part of the specific polyamic acid in the polyamic acid composition before forming the polyimide film described below. In this specification, a partially imidized polyamic acid may also be referred to as a "polyamic acid".
 本実施形態に係る積層体の製造方法は、支持体とポリイミド膜(詳しくは、特定ポリアミド酸のイミド化物を含むポリイミド膜)とを有する積層体の製造方法である。本実施形態に係る積層体の製造方法では、特定ポリアミド酸を加熱することにより、特定ポリアミド酸を脱水閉環し、イミド化する。特定ポリアミド酸を加熱する方法は、特に制限されないが、例えば、支持体上に、上述した本実施形態に係るポリアミド酸組成物を塗布することにより、特定ポリアミド酸を含む塗布膜を形成し、得られた塗布膜を、例えば温度40℃以上500℃以下の範囲内で熱処理する方法が挙げられる。支持体としては、ガラス基板、金属板、PETフィルム(ポリエチレンテレフタレートフィルム)や、ガラス基板上にアモルファスシリコン層(a-Si層)が積層された犠牲層付きガラス基板等が挙げられる。この方法によれば、支持体と、この支持体上に配置されたポリイミド膜(詳しくは、特定ポリアミド酸のイミド化物を含むポリイミド膜)とを有する積層体が得られる。 The method for manufacturing a laminate according to the present embodiment is a method for manufacturing a laminate having a support and a polyimide film (specifically, a polyimide film containing an imidized product of a specific polyamic acid). In the method for manufacturing a laminate according to the present embodiment, the specific polyamic acid is dehydrated and ring-closed by heating the specific polyamic acid, and is imidized. The method of heating the specific polyamic acid is not particularly limited, but for example, a coating film containing the specific polyamic acid is formed by coating the polyamic acid composition according to the present embodiment described above on a support. For example, a method of heat-treating the coated film at a temperature of 40° C. or higher and 500° C. or lower may be mentioned. Examples of the support include a glass substrate, a metal plate, a PET film (polyethylene terephthalate film), and a glass substrate with a sacrificial layer in which an amorphous silicon layer (a-Si layer) is laminated on a glass substrate. According to this method, a laminate including a support and a polyimide film (specifically, a polyimide film containing an imidized product of a specific polyamic acid) disposed on the support can be obtained.
 本実施形態に係る積層体の製造方法により形成されるポリイミド膜(詳しくは、特定ポリアミド酸のイミド化物を含むポリイミド膜)は、無色透明で黄色度が低く、TFT作製工程に耐えうるガラス転移温度(耐熱性)を有していることから、フレキシブルディスプレイの透明基板材料に適している。上記ポリイミド膜中のポリイミド(詳しくは、特定ポリアミド酸のイミド化物)の含有率は、ポリイミド膜全量に対して、例えば70重量%以上であり、80重量%以上であることが好ましく、90重量%以上であることがより好ましく、100重量%であってもよい。ポリイミド膜中のポリイミド以外の成分としては、例えば、上述した添加剤(より具体的には、微粒子等)が挙げられる。 The polyimide film (specifically, the polyimide film containing an imidide of a specific polyamic acid) formed by the method for manufacturing a laminate according to the present embodiment is colorless and transparent, has a low degree of yellowness, and has a glass transition temperature that can withstand the TFT manufacturing process. (heat resistance), it is suitable as a transparent substrate material for flexible displays. The content of polyimide (specifically, an imidized product of a specific polyamic acid) in the polyimide film is, for example, 70% by weight or more, preferably 80% by weight or more, and 90% by weight, based on the total amount of the polyimide film. It is more preferable that the amount is above, and may be 100% by weight. Examples of components other than polyimide in the polyimide film include the above-mentioned additives (more specifically, fine particles, etc.).
 本実施形態に係る電子デバイス(より具体的には、フレキシブルデバイス等)の製造方法は、本実施形態に係るポリアミド酸組成物を加熱して特定ポリアミド酸をイミド化する工程Saと、工程Saによって得られたポリイミド膜上に電子素子を配置する工程Sbとを備える。工程Saは、例えば上述した本実施形態に係る積層体の製造方法と同じである。工程Sbでは、例えば、工程Saによって得られたポリイミド膜上に、直接的又は間接的に電子素子(TFT等)を配置する。 The method for manufacturing an electronic device (more specifically, a flexible device, etc.) according to the present embodiment includes a step Sa of heating the polyamic acid composition according to the present embodiment to imidize a specific polyamic acid, and a step Sa. and step Sb of arranging an electronic element on the obtained polyimide film. Step Sa is, for example, the same as the method for manufacturing the laminate according to the present embodiment described above. In step Sb, for example, an electronic element (such as a TFT) is placed directly or indirectly on the polyimide film obtained in step Sa.
 フレキシブルディスプレイ用として電子デバイスを製造する場合、まず、ガラス等の無機基材を支持体として、その上にポリイミド膜を形成する。そして、ポリイミド膜上にTFT等の電子素子を配置(形成)することにより、支持体上に電子デバイスを形成する。TFTを形成する工程は、一般的に150℃以上650℃以下の広い温度領域で実施されるが、実際に所望の性能を達成するためには300℃以上で酸化物半導体層やa-Si層を形成し、場合によっては更にレーザー等でa-Si等を結晶化させることもある。 When manufacturing an electronic device for a flexible display, first, a polyimide film is formed on an inorganic base material such as glass as a support. Then, an electronic device is formed on the support by arranging (forming) an electronic element such as a TFT on the polyimide film. The process of forming TFTs is generally carried out over a wide temperature range of 150°C to 650°C, but in order to actually achieve the desired performance, the oxide semiconductor layer or a-Si layer must be heated at 300°C or higher. In some cases, a-Si or the like may be further crystallized using a laser or the like.
 この際、ポリイミド膜の熱分解温度が低い場合、電子素子形成中にアウトガスが発生し、昇華物としてオーブン内に付着し、炉内汚染の原因となったり、ポリイミド膜上に形成した無機膜(後述するバリア膜等)や電子素子が剥離したりする可能性があるため、ポリイミドの1%重量減少温度は500℃以上であることが好ましい。ポリイミドの1%重量減少温度の上限は、高ければ高いほどよいが、例えば600℃である。1%重量減少温度は、例えば、剛直な構造を有する残基(より具体的には、BPDA残基、PDA残基等)の含有率を変更することにより、調整できる。更に詳細に説明すると、TFT形成前に、ポリイミド膜上にバリア膜として酸化シリコン膜(SiOx膜)や窒化シリコン膜(SiNx膜)等の無機膜を形成する。この際、ポリイミドの耐熱性が低い場合やイミド化が完全に進行していない場合、あるいは残存溶媒が多い場合には、無機膜積層後の高温プロセスでポリイミドの分解ガス等の揮発成分に起因してポリイミドと無機膜とが剥離する場合がある。このため、ポリイミドの1%重量減少温度が500℃以上であることに加え、ポリイミドを400℃以上450℃以下の範囲内の温度で等温保持した際の重量減少率が1%未満であることが望ましい。 At this time, if the thermal decomposition temperature of the polyimide film is low, outgas is generated during the formation of electronic devices and adheres to the oven as a sublimate, causing contamination inside the oven. It is preferable that the 1% weight loss temperature of the polyimide is 500° C. or higher because there is a possibility that the barrier film (described later) or the electronic device may peel off. The upper limit of the 1% weight loss temperature of polyimide is, for example, 600° C., although the higher the temperature, the better. The 1% weight loss temperature can be adjusted, for example, by changing the content of residues having a rigid structure (more specifically, BPDA residues, PDA residues, etc.). More specifically, before forming the TFT, an inorganic film such as a silicon oxide film (SiOx film) or a silicon nitride film (SiNx film) is formed as a barrier film on the polyimide film. At this time, if the heat resistance of polyimide is low, if imidization has not progressed completely, or if there is a large amount of residual solvent, it may be caused by volatile components such as polyimide decomposition gas during the high temperature process after laminating the inorganic film. The polyimide and the inorganic film may peel off. For this reason, in addition to the 1% weight loss temperature of polyimide being 500°C or higher, the weight loss rate when polyimide is maintained isothermally at a temperature within the range of 400°C to 450°C is less than 1%. desirable.
 また、ポリイミドのガラス転移温度(Tg)がプロセス温度よりも著しく低い場合は、電子素子形成中に位置ずれ等が生じる可能性があるため、ポリイミドのTgは、300℃以上であることが好ましく、350℃以上であることがより好ましく、400℃以上であることが更に好ましく、420℃以上であることが更により好ましい。ポリイミドのTgの上限は、高ければ高いほどよいが、例えば470℃である。また、一般的に、ガラス基板の熱膨張係数は樹脂に比較して小さいため、ガラス基板とポリイミド膜との間に内部応力が発生する。支持体として用いたガラス基板や電子素子と、ポリイミド膜との積層体の内部応力が高ければ、ポリイミド膜を含む積層体が、高温のTFT形成工程で膨張した後、常温まで冷却する際に収縮し、ガラス基板の反りや破損、ポリイミド膜のガラス基板からの剥離等の問題が生じる。そのため、支持体とポリイミド膜とを有する積層体において、ポリイミド膜と支持体の間の内部応力が、40MPa以下であることが好ましく、30MPa以下であることがより好ましく、20MPaであることが更に好ましく、10MPa以下であることが特に好ましい。内部応力の下限は、低ければ低いほどよく、0MPaであってもよい。内部応力の測定方法は、後述する実施例と同じ方法又はそれに準ずる方法である。 Furthermore, if the glass transition temperature (Tg) of the polyimide is significantly lower than the process temperature, positional shift etc. may occur during the formation of electronic devices, so the Tg of the polyimide is preferably 300°C or higher. The temperature is more preferably 350°C or higher, even more preferably 400°C or higher, and even more preferably 420°C or higher. The upper limit of the Tg of polyimide is, for example, 470°C, although the higher the better. Furthermore, since the coefficient of thermal expansion of a glass substrate is generally smaller than that of a resin, internal stress occurs between the glass substrate and the polyimide film. If the internal stress of the laminate of the glass substrate or electronic device used as a support and the polyimide film is high, the laminate including the polyimide film expands during the high-temperature TFT formation process and then contracts when cooled to room temperature. However, problems such as warpage and breakage of the glass substrate and peeling of the polyimide film from the glass substrate occur. Therefore, in a laminate having a support and a polyimide film, the internal stress between the polyimide film and the support is preferably 40 MPa or less, more preferably 30 MPa or less, and even more preferably 20 MPa. , 10 MPa or less is particularly preferable. The lower the lower limit of the internal stress, the better, and may be 0 MPa. The method for measuring internal stress is the same method as in the examples described later or a method similar thereto.
 本実施形態に係る製造方法により得られたポリイミドは、TFT基板やタッチパネル基板等のディスプレイ基板の材料として好適に用いることができる。ポリイミドを上記用途に用いる際、上述したように支持体上に電子デバイス(詳しくは、ポリイミド膜上に電子素子が形成された電子デバイス)を形成した後、ポリイミド膜を支持体から剥離する方法を採用する場合が多い。また、支持体の材料としては、無アルカリガラスが好適に用いられる。以下、ポリイミド膜と支持体との積層体の製造方法の一例について詳述する。 The polyimide obtained by the manufacturing method according to this embodiment can be suitably used as a material for display substrates such as TFT substrates and touch panel substrates. When using polyimide for the above-mentioned purposes, a method is used in which an electronic device (more specifically, an electronic device in which an electronic element is formed on a polyimide film) is formed on a support as described above, and then the polyimide film is peeled from the support. Often adopted. Further, as the material of the support, alkali-free glass is suitably used. An example of a method for producing a laminate of a polyimide film and a support will be described in detail below.
 まず、支持体上に本実施形態に係るポリアミド酸組成物を塗布(流延)し、特定ポリアミド酸を含む塗布膜と、支持体とからなる塗布膜含有積層体を形成する。次に、塗布膜含有積層体を、例えば温度40℃以上200℃以下の条件で加熱する。この際の加熱時間は、例えば3分以上120分以下である。なお、塗布膜含有積層体を、温度50℃にて30分加熱した後、温度100℃にて30分加熱する等のように、多段階の加熱工程を設けてもよい。次に、塗布膜中の特定ポリアミド酸のイミド化を進めるため、塗布膜含有積層体を、例えば、最高温度200℃以上500℃以下の条件で加熱する。この際の加熱時間(最高温度での加熱時間)は、例えば1分以上300分以下である。このとき、低温から最高温度まで徐々に昇温することが好ましい。昇温速度は、2℃/分以上10℃/分以下であることが好ましく、4℃/分以上10℃/分以下であることがより好ましい。また、最高温度は250℃以上480℃以下の範囲であることが好ましい。最高温度が250℃以上であれば、十分にイミド化が進行し、最高温度が480℃以下であれば、ポリイミドの熱劣化や着色を抑制できる。また、最高温度に到達するまでに任意の温度で任意の時間保持してもよい。イミド化反応は、空気下、減圧下、又は窒素等の不活性ガス中で行うことができるが、より高い透明性を発現させるためには、減圧下、又は窒素等の不活性ガス中で行うことが好ましい。また、加熱装置としては、熱風オーブン、赤外オーブン、真空オーブン、イナートオーブン、ホットプレート等の公知の装置を用いることができる。これらの工程を経て塗布膜中の特定ポリアミド酸がイミド化され、支持体と、ポリイミド膜(特定ポリアミド酸のイミド化物を含む膜)との積層体を得ることができる。 First, the polyamic acid composition according to the present embodiment is applied (cast) onto a support to form a coating film-containing laminate consisting of a coating film containing the specific polyamic acid and the support. Next, the coating film-containing laminate is heated, for example, at a temperature of 40° C. or higher and 200° C. or lower. The heating time at this time is, for example, 3 minutes or more and 120 minutes or less. Note that a multi-step heating process may be provided, such as heating the coating film-containing laminate at a temperature of 50° C. for 30 minutes and then heating it at a temperature of 100° C. for 30 minutes. Next, in order to promote imidization of the specific polyamic acid in the coating film, the coating film-containing laminate is heated at a maximum temperature of 200° C. or more and 500° C. or less, for example. The heating time (heating time at the highest temperature) at this time is, for example, 1 minute or more and 300 minutes or less. At this time, it is preferable to gradually raise the temperature from a low temperature to a maximum temperature. The temperature increase rate is preferably 2°C/min or more and 10°C/min or less, more preferably 4°C/min or more and 10°C/min or less. Moreover, it is preferable that the maximum temperature is in the range of 250°C or more and 480°C or less. If the maximum temperature is 250°C or higher, imidization will proceed sufficiently, and if the maximum temperature is 480°C or lower, thermal deterioration and coloring of polyimide can be suppressed. Further, the temperature may be maintained at any temperature for any period of time until the maximum temperature is reached. The imidization reaction can be carried out under air, under reduced pressure, or in an inert gas such as nitrogen, but in order to achieve higher transparency, it is carried out under reduced pressure or in an inert gas such as nitrogen. It is preferable. Further, as the heating device, a known device such as a hot air oven, an infrared oven, a vacuum oven, an inert oven, a hot plate, etc. can be used. Through these steps, the specific polyamic acid in the coating film is imidized, and a laminate of the support and the polyimide film (a film containing an imidized product of the specific polyamic acid) can be obtained.
 得られた支持体とポリイミド膜との積層体からポリイミド膜を剥離する方法は、公知の方法を用いることができる。例えば、手で引き剥がしてもよいし、駆動ロール、ロボット等の機械装置を用いて引き剥がしてもよい。更には、支持体とポリイミド膜との間に剥離層を設ける方法や、多数の溝を有する基板上に酸化シリコン膜を形成し、酸化シリコン膜を下地層としてポリイミド膜を形成し、基板と酸化シリコン膜との間に酸化シリコンのエッチング液を浸潤させることによって、ポリイミド膜を剥離する方法を採用することもできる。また、レーザー光の照射によってポリイミド膜を分離させる方法を採用することもできる。 A known method can be used to peel the polyimide film from the obtained laminate of the support and the polyimide film. For example, it may be peeled off by hand or using a mechanical device such as a drive roll or a robot. Furthermore, we have proposed a method of providing a peeling layer between the support and the polyimide film, or forming a silicon oxide film on a substrate with many grooves, forming a polyimide film using the silicon oxide film as a base layer, and separating the substrate and the oxide film. It is also possible to adopt a method in which the polyimide film is peeled off by infiltrating a silicon oxide etching solution between the polyimide film and the silicon film. Alternatively, a method in which the polyimide film is separated by irradiation with laser light can also be adopted.
 ポリイミド膜の透明性は、JIS K7361-1:1997に従った全光線透過率(TT)、及びJIS K7136-2000に従ったヘイズで評価することができる。高い透明性が要求される用途でポリイミド膜を用いる場合、ポリイミド膜の全光線透過率は、75%以上であることが好ましく、80%以上であることがより好ましい。また、高い透明性が要求される用途でポリイミド膜を用いる場合、ポリイミド膜のヘイズは、1.5%以下であることが好ましく、1.2%以下であることがより好ましく、1.0%以下であることが更に好ましく、0%であってもよい。高い透明性が要求される用途においては、ポリイミド膜は全波長領域で透過率が高いことが要求されるが、ポリイミド膜は短波長側の光を吸収しやすい傾向があり、膜自体が黄色に着色することが多い。高い透明性が要求される用途にポリイミド膜を使用するためには、ポリイミド膜の着色が低減されていることが好ましい。具体的には、高い透明性が要求される用途にポリイミド膜を使用するためには、ポリイミド膜の黄色度(YI)は、25以下であることが好ましく、20以下であることがより好ましく、0であってもよい。YIは、JIS K7373-2006に従い測定することができる。YIは、例えば特定ポリアミド酸中の残基(1)の含有率を変更することにより、調整できる。このように、着色が低減され、透明性が付与されたポリイミド膜は、ガラス代替用途等の透明基板や、背面にセンサーやカメラモジュールが設けられる基板に好適である。 The transparency of the polyimide film can be evaluated by total light transmittance (TT) according to JIS K7361-1:1997 and haze according to JIS K7136-2000. When using a polyimide film for applications requiring high transparency, the total light transmittance of the polyimide film is preferably 75% or more, more preferably 80% or more. Furthermore, when using a polyimide film in applications that require high transparency, the haze of the polyimide film is preferably 1.5% or less, more preferably 1.2% or less, and 1.0% or less. It is more preferably less than or equal to 0%. In applications that require high transparency, polyimide films are required to have high transmittance over the entire wavelength range, but polyimide films tend to absorb light at shorter wavelengths, causing the film itself to turn yellow. Often colored. In order to use a polyimide film in applications requiring high transparency, it is preferable that the polyimide film has reduced coloring. Specifically, in order to use a polyimide film in applications that require high transparency, the yellow index (YI) of the polyimide film is preferably 25 or less, more preferably 20 or less, It may be 0. YI can be measured according to JIS K7373-2006. YI can be adjusted, for example, by changing the content of residue (1) in the specific polyamic acid. A polyimide film with reduced coloration and imparted transparency is suitable for a transparent substrate used as a substitute for glass, or a substrate on which a sensor or camera module is provided on the back side.
 また、フレキシブルディスプレイの光取り出し方式には、TFTの表面側から光を取り出すトップエミッション方式とTFTの裏面側から光を取り出すボトムエミッション方式の2種類がある。トップエミッション方式では、TFTに光が遮られないため開口率を上げやすく、高精細な画質が得られるという特徴があり、ボトムエミッション方式はTFTと画素電極との位置合わせが容易で製造しやすいといった特徴がある。TFTが透明であればボトムエミッション方式においても、開口率を向上させることが可能となるため、大型ディスプレイには製造が容易なボトムエミッション方式が採用される傾向がある。本実施形態に係る製造方法により得られたポリイミド膜は、YIが低く、耐熱性にも優れているため、上記どちらの光取り出し方式にも適用できる。 Furthermore, there are two types of light extraction methods for flexible displays: a top emission method in which light is extracted from the front side of the TFT, and a bottom emission method in which light is extracted from the back side of the TFT. The top-emission method is characterized by the fact that light is not blocked by the TFT, making it easy to increase the aperture ratio and providing high-definition image quality, while the bottom-emission method is easy to manufacture because it is easy to align the TFT and pixel electrode. It has characteristics. If the TFT is transparent, it is possible to improve the aperture ratio even in the bottom emission method, so there is a tendency for the bottom emission method, which is easy to manufacture, to be adopted for large displays. The polyimide film obtained by the manufacturing method according to this embodiment has a low YI and excellent heat resistance, so it can be applied to either of the above light extraction methods.
 また、ガラス基板等の支持体上にポリアミド酸組成物を塗布し、加熱してイミド化し、電子素子等を形成した後、ポリイミド膜を剥がすという、バッチタイプのデバイス作製プロセスにおいては、支持体とポリイミド膜との間の密着性に優れることが好ましい。ここでいう密着性とは、密着強度を意味する。支持体上のポリイミド膜に電子素子等を形成した後に、支持体から、電子素子等が形成されたポリイミド膜を剥がすという作製プロセスにおいて、ポリイミド膜と支持体との密着性に優れると、電子素子等をより正確に形成又は実装することができる。支持体上にポリイミド膜を介して電子素子等を配置する製造プロセスにおいて、生産性向上の観点から、支持体とポリイミド膜との間のピール強度は、0.05N/cm以上であることが好ましく、0.1N/cm以上であることがより好ましい。上記ピール強度の測定方法は、後述する実施例と同じ方法又はそれに準ずる方法である。 In addition, in a batch-type device manufacturing process in which a polyamic acid composition is coated on a support such as a glass substrate, heated to imidize to form an electronic element, and then the polyimide film is peeled off, the support and It is preferable to have excellent adhesion with the polyimide film. Adhesion here means adhesion strength. In the manufacturing process of forming electronic devices, etc. on a polyimide film on a support, and then peeling off the polyimide film on which the electronic devices, etc. are formed, from the support, if the adhesion between the polyimide film and the support is excellent, the electronic device etc. can be formed or implemented more accurately. In a manufacturing process in which electronic devices and the like are placed on a support via a polyimide film, from the viewpoint of improving productivity, the peel strength between the support and the polyimide film is preferably 0.05 N/cm or more. , more preferably 0.1 N/cm or more. The method for measuring the peel strength is the same method as in the examples described later or a method similar thereto.
 上述したような製造プロセスにおいて、支持体とポリイミド膜との積層体からポリイミド膜を剥離する際、レーザー照射によって支持体からポリイミド膜を剥離する場合が多い。この場合、ポリイミド膜にレーザー光を吸収させる必要があるため、ポリイミド膜のカットオフ波長は、剥離に使用するレーザー光の波長よりも長波長であることが求められる。レーザー剥離には、波長308nmのXeClエキシマレーザーが用いられることが多いため、ポリイミド膜のカットオフ波長は、312nm以上であることが好ましく、330nm以上であることがより好ましい。一方、カットオフ波長が長波長であると、ポリイミド膜が黄色に着色する傾向があるため、ポリイミド膜のカットオフ波長は、390nm以下であることが好ましい。透明性(低黄色度合)とレーザー剥離の加工性とを両立させる観点から、ポリイミド膜のカットオフ波長は、320nm以上390nm以下であることが好ましく、330nm以上380nm以下であることがより好ましい。なお、本明細書中におけるカットオフ波長とは、紫外-可視分光光度計によって測定される、透過率が0.1%以下になる波長のことを意味する。 In the manufacturing process as described above, when peeling a polyimide film from a laminate of a support and a polyimide film, the polyimide film is often peeled from the support by laser irradiation. In this case, since it is necessary for the polyimide film to absorb the laser light, the cutoff wavelength of the polyimide film is required to be longer than the wavelength of the laser light used for peeling. Since a XeCl excimer laser with a wavelength of 308 nm is often used for laser peeling, the cutoff wavelength of the polyimide film is preferably 312 nm or more, more preferably 330 nm or more. On the other hand, if the cutoff wavelength is a long wavelength, the polyimide film tends to be colored yellow, so the cutoff wavelength of the polyimide film is preferably 390 nm or less. From the viewpoint of achieving both transparency (low yellow degree) and workability for laser peeling, the cutoff wavelength of the polyimide film is preferably 320 nm or more and 390 nm or less, and more preferably 330 nm or more and 380 nm or less. Note that the cutoff wavelength in this specification means a wavelength at which the transmittance is 0.1% or less as measured by an ultraviolet-visible spectrophotometer.
 本実施形態に係るポリアミド酸組成物、及び本実施形態に係る製造方法により得られたポリイミドは、そのまま製品や部材を作製するためのコーティングや成形プロセスに使用してもよいが、フィルム状に成形された成形物に更にコーティング等の処理を行うための材料として用いることもできる。コーティング又は成形プロセスに使用するために、ポリアミド酸組成物又はポリイミドを、必要に応じて有機溶媒に溶解又は分散させ、更に、必要に応じて光硬化性成分、熱硬化性成分、非重合性バインダー樹脂及びその他の成分を配合して、特定ポリアミド酸又はポリイミドを含む組成物を調製してもよい。 The polyamic acid composition according to the present embodiment and the polyimide obtained by the manufacturing method according to the present embodiment may be used as they are in coating or molding processes for producing products or members, but they can also be molded into a film. It can also be used as a material for further processing such as coating on the molded product. For use in coating or molding processes, the polyamic acid composition or polyimide is optionally dissolved or dispersed in an organic solvent, and optionally a photocurable component, a thermosetting component, and a non-polymerizable binder. A composition containing the specific polyamic acid or polyimide may be prepared by blending the resin and other components.
 本実施形態に係る製造方法により得られたポリイミド膜の表面には、金属酸化物薄膜や透明電極等の各種無機薄膜を形成してもよい。これら無機薄膜の製膜方法としては、特に限定されるものではなく、例えば、スパッタリング法、真空蒸着法、イオンプレーティング法等のPVD法や、CVD法が挙げられる。 Various inorganic thin films such as metal oxide thin films and transparent electrodes may be formed on the surface of the polyimide film obtained by the manufacturing method according to the present embodiment. The method for forming these inorganic thin films is not particularly limited, and examples thereof include PVD methods such as sputtering method, vacuum evaporation method, and ion plating method, and CVD method.
 本実施形態に係る製造方法により得られたポリイミド膜は、耐熱性、低熱膨張性、透明性に加えて、ガラス基板と積層体を形成した際に生じる内部応力が小さく、高温プロセス中で無機材料との密着性を確保できるため、これらの特性が有効とされる分野及び製品に使用されることが好ましい。例えば、本実施形態に係る製造方法により得られたポリイミド膜は、液晶表示装置、有機EL、電子ペーパー等の画像表示装置、印刷物、カラーフィルター、フレキシブルディスプレイ、光学フィルム、3Dディスプレイ、タッチパネル、透明導電膜基板、太陽電池等に使用されることが好ましく、更には現在ガラスが使用されている部分の代替材料とすることがより好ましい。これらの用途において、ポリイミド膜の厚みは、例えば1μm以上200μm以下であり、5μm以上100μm以下であることが好ましい。ポリイミド膜の厚みは、レーザホロゲージを用いて測定することができる。 In addition to heat resistance, low thermal expansion, and transparency, the polyimide film obtained by the manufacturing method according to this embodiment has low internal stress that occurs when forming a laminate with a glass substrate, and can be used as an inorganic material during a high-temperature process. It is preferable to use it in fields and products where these properties are effective because it can ensure adhesion with the material. For example, the polyimide film obtained by the manufacturing method according to the present embodiment can be used in image display devices such as liquid crystal display devices, organic EL, electronic paper, printed matter, color filters, flexible displays, optical films, 3D displays, touch panels, transparent conductive It is preferably used for membrane substrates, solar cells, etc., and more preferably as a substitute material for parts where glass is currently used. In these uses, the thickness of the polyimide film is, for example, 1 μm or more and 200 μm or less, and preferably 5 μm or more and 100 μm or less. The thickness of the polyimide film can be measured using a laser holo gauge.
 また、本実施形態に係るポリアミド酸組成物は、支持体上にポリアミド酸組成物を塗布し、加熱してイミド化した後、支持体からポリイミド膜を剥がすという、ポリイミド膜の製造方法に好適に用いることができる。また、本実施形態に係るポリアミド酸組成物は、支持体上にポリアミド酸組成物を塗布し、加熱してイミド化し、形成されたポリイミド膜上に電子素子等を形成した後、支持体から、電子素子等が形成されたポリイミド膜を剥がすという、バッチタイプのデバイス作製プロセスに好適に用いることができる。従って、本実施形態に係る電子デバイスの製造方法は、支持体から、電子素子等が形成されたポリイミド膜を剥がす工程を含んでいてもよい。 Furthermore, the polyamic acid composition according to the present embodiment is suitable for a method for producing a polyimide film, in which the polyamic acid composition is applied onto a support, heated to imidize, and then the polyimide film is peeled off from the support. Can be used. In addition, the polyamic acid composition according to the present embodiment is prepared by coating the polyamic acid composition on a support, heating it to imidize it, forming electronic devices, etc. on the formed polyimide film, and then applying the polyamic acid composition to the support. It can be suitably used in a batch-type device manufacturing process in which a polyimide film on which electronic elements and the like are formed is peeled off. Therefore, the method for manufacturing an electronic device according to the present embodiment may include the step of peeling off the polyimide film on which the electronic elements and the like are formed from the support.
 以下、本発明の実施例について説明するが、本発明の範囲が下記実施例に限定されるものではない。 Examples of the present invention will be described below, but the scope of the present invention is not limited to the following examples.
<物性の測定方法及び評価方法>
 まず、ポリイミド(ポリイミド膜)の物性の測定方法及び評価方法について説明する。
<Methods for measuring and evaluating physical properties>
First, a method for measuring and evaluating physical properties of polyimide (polyimide film) will be explained.
[内部応力]
 あらかじめ反り量を計測していたコーニング社製のガラス基板(商品名:Eagle XG、材質:無アルカリガラス、厚み:0.7mm、サイズ:100mm×100mm)上に後述する実施例及び比較例で調製した各ポリアミド酸組成物をスピンコーターで塗布し、空気中において120℃で30分加熱した後、窒素雰囲気下において460℃で45分加熱し、ガラス基板上に厚み10μmのポリイミド膜を備える積層体を得た。ポリイミド膜の吸水の影響を排除するために、積層体を120℃で10分乾燥させた後、温度25℃の窒素雰囲気下における積層体の反り量を、薄膜応力測定装置(ケーエルエー・テンコール社製「FLX-2320-S」)を用いて測定した。そして、ポリイミド膜形成前のガラス基板の反り量及び積層体の反り量から、ストーニーの式によりガラス基板とポリイミド膜との間で発生した内部応力を算出した。内部応力が30MPa以下の場合、「内部応力を低減できている」と評価した。一方、内部応力が30MPaを超える場合、「内部応力を低減できていない」と評価した。
[Internal stress]
The samples were prepared in the Examples and Comparative Examples described later on a glass substrate manufactured by Corning Inc. (product name: Eagle Each of the polyamic acid compositions prepared above was applied using a spin coater, heated in air at 120°C for 30 minutes, and then heated at 460°C for 45 minutes in a nitrogen atmosphere to form a laminate with a 10 μm thick polyimide film on a glass substrate. I got it. In order to eliminate the influence of water absorption by the polyimide film, the laminate was dried at 120°C for 10 minutes, and the amount of warpage of the laminate was measured in a nitrogen atmosphere at 25°C using a thin film stress measuring device (manufactured by KLA-Tencor). "FLX-2320-S"). Then, from the amount of warpage of the glass substrate before forming the polyimide film and the amount of warpage of the laminate, the internal stress generated between the glass substrate and the polyimide film was calculated using Stoney's equation. When the internal stress was 30 MPa or less, it was evaluated that "the internal stress was reduced." On the other hand, when the internal stress exceeded 30 MPa, it was evaluated that the internal stress could not be reduced.
[1%重量減少温度(TD1)]
 後述する実施例及び比較例で得られた各積層体からサンプリングしたポリイミド膜(詳しくは、重量が10mgとなるようにサンプリングしたポリイミド膜)を測定用の試料とし、示差熱熱重量同時測定装置(日立ハイテクサイエンス社製「TG/DTA7200」)を用いて、窒素雰囲気下、20℃/分の条件で25℃から650℃まで昇温し、測定温度150℃での試料重量を基準として、この基準の重量に対して1重量%減少した際の測定温度を、1%重量減少温度(TD1)とした。
[1% weight loss temperature (TD1)]
A polyimide film sampled from each laminate obtained in the Examples and Comparative Examples described later (more specifically, a polyimide film sampled so that the weight was 10 mg) was used as a measurement sample, and a simultaneous differential thermogravimetric measurement device ( Using the Hitachi High-Tech Science Co., Ltd. "TG/DTA7200"), the temperature was raised from 25°C to 650°C at 20°C/min in a nitrogen atmosphere, and the sample weight at the measurement temperature of 150°C was used as the standard. The measurement temperature at which the weight decreased by 1% by weight was defined as the 1% weight loss temperature (TD1).
[製膜性]
(ガラス基板上の製膜性)
 コーニング社製のガラス基板(商品名:Eagle XG、材質:無アルカリガラス、厚み:0.7mm、サイズ:100mm×100mm)上に後述する実施例及び比較例で調製した各ポリアミド酸組成物をスピンコーターで塗布し、空気中において120℃で30分加熱した後、窒素雰囲気下において460℃で45分加熱し、ガラス基板上に厚み10μmのポリイミド膜を備える積層体を得た。得られた積層体について、ガラス基板とポリイミド膜との間の浮きの有無を目視にて確認した。
[Film forming property]
(Film forming property on glass substrate)
Each polyamic acid composition prepared in the Examples and Comparative Examples described below was spun on a glass substrate manufactured by Corning Inc. (product name: Eagle XG, material: alkali-free glass, thickness: 0.7 mm, size: 100 mm x 100 mm). It was coated with a coater, heated in air at 120° C. for 30 minutes, and then heated at 460° C. for 45 minutes in a nitrogen atmosphere to obtain a laminate comprising a 10 μm thick polyimide film on a glass substrate. The resulting laminate was visually checked to see if there was any floating between the glass substrate and the polyimide film.
(a-Si層上の製膜性)
 コーニング社製のガラス基板(商品名:Eagle XG、材質:無アルカリガラス、厚み:0.7mm、サイズ:100mm×100mm)上にa-Si層(厚み:100nm)を積層した後、a-Si層上に、後述する実施例及び比較例で調製した各ポリアミド酸組成物をスピンコーターで塗布した。次いで、ポリアミド酸組成物が塗布された基板を、空気中において120℃で30分加熱した後、窒素雰囲気下において460℃で45分加熱し、ガラス基板上に、a-Si層及び厚み10μmのポリイミド膜を順次備える積層体を得た。得られた積層体について、a-Si層とポリイミド膜との間の浮きの有無を目視にて確認した。
(Film forming property on a-Si layer)
After laminating an a-Si layer (thickness: 100 nm) on a Corning glass substrate (product name: Eagle XG, material: alkali-free glass, thickness: 0.7 mm, size: 100 mm x 100 mm), Each polyamic acid composition prepared in Examples and Comparative Examples described below was applied onto the layer using a spin coater. Next, the substrate coated with the polyamic acid composition was heated in air at 120°C for 30 minutes and then in a nitrogen atmosphere at 460°C for 45 minutes to form an a-Si layer and a 10 μm thick layer on the glass substrate. A laminate including polyimide films sequentially was obtained. The resulting laminate was visually checked to see if there was any floating between the a-Si layer and the polyimide film.
(製膜性の評価基準)
 ガラス基板とポリイミド膜との間、及びa-Si層とポリイミド膜との間のいずれについても浮きが無い場合、「密着性不良の発生が抑制され、製膜性がよい」と評価した。一方、ガラス基板とポリイミド膜との間、及びa-Si層とポリイミド膜との間の少なくとも一方に浮きが有る場合、「密着性不良の発生が抑制されておらず、製膜性がよくない」と評価した。
(Evaluation criteria for film formability)
When there was no lifting between the glass substrate and the polyimide film and between the a-Si layer and the polyimide film, it was evaluated that "occurrence of poor adhesion was suppressed and film formability was good". On the other hand, if there is floating between the glass substrate and the polyimide film, or between the a-Si layer and the polyimide film, "the occurrence of poor adhesion is not suppressed, and the film formability is not good." ”
[ピール強度]
 後述する実施例及び比較例で得られた各積層体のポリイミド膜に、ASTM D1876-01規格に従い、カッターナイフにて幅10mmの切れ目を入れ、引張試験機(東洋精機社製「ストログラフVES1D」)を用いて、温度23℃かつ湿度55%RHの環境下、引張速度50mm/分かつ剥離角度90°の条件で、ガラス基板からポリイミド膜を50mm引き剥がした際の剥離強度の平均値をピール強度とした。
[Peel strength]
In accordance with the ASTM D1876-01 standard, a cut with a width of 10 mm was made in the polyimide film of each laminate obtained in the Examples and Comparative Examples described below using a cutter knife, and the film was tested using a tensile tester ("Strograph VES1D" manufactured by Toyo Seiki Co., Ltd.). Peel strength is the average value of the peel strength when 50 mm of the polyimide film is peeled off from the glass substrate under the conditions of a temperature of 23°C and a humidity of 55% RH, a pulling speed of 50 mm/min, and a peeling angle of 90°. And so.
<ポリイミド膜の作製>
 以下、実施例及び比較例のポリイミド膜(積層体)の作製方法について説明する。なお、以下において、化合物及び試薬類を下記の略称で記載している。また、ポリイミド膜の作製に使用するポリアミド酸組成物の調製は、いずれも窒素雰囲気下で行った。
MPA:3-メトキシ-N,N-ジメチルプロパンアミド
NBP:1-ブチル-2-ピロリドン
BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物
BPAF:9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物
SFDA:スピロ[11H-ジフロ[3,4-b:3’,4’-i]キサンテン-11,9’-[9H]フルオレン]-1,3,7,9-テトロン
PDA:p-フェニレンジアミン
BAFL:9,9-ビス(4-アミノフェニル)フルオレン
PAM-E:1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン
ODA:4,4’-オキシジアニリン
APS:3-アミノプロピルトリエトキシシラン
APDE:3-アミノプロピルジエトキシメチルシラン
<Preparation of polyimide film>
Hereinafter, methods for producing polyimide films (laminates) of Examples and Comparative Examples will be described. In addition, below, compounds and reagents are described by the following abbreviations. Furthermore, the preparation of the polyamic acid composition used for producing the polyimide film was performed under a nitrogen atmosphere.
MPA: 3-methoxy-N,N-dimethylpropanamide NBP: 1-butyl-2-pyrrolidone BPDA: 3,3',4,4'-biphenyltetracarboxylic dianhydride BPAF: 9,9-bis(3 ,4-dicarboxyphenyl)fluorene dianhydride SFDA: spiro[11H-difuro[3,4-b:3',4'-i]xanthene-11,9'-[9H]fluorene]-1,3, 7,9-tetrone PDA: p-phenylenediamine BAFL: 9,9-bis(4-aminophenyl)fluorene PAM-E: 1,3-bis(3-aminopropyl)tetramethyldisiloxane ODA: 4,4' -Oxydianiline APS: 3-aminopropyltriethoxysilane APDE: 3-aminopropyldiethoxymethylsilane
[実施例1]
 ステンレス鋼製攪拌棒を備えた攪拌機及び窒素導入管を装着した300mLのガラス製セパラブルフラスコに、重合用の有機溶媒として、85.0gのMPAを入れた。次いで、フラスコ内容物を攪拌しながら、4.037gのPDAをフラスコに入れて溶解させた。次いで、フラスコ内容物に、0.171gのBPAF及び10.792gのBPDAを加えた後、温度25℃の雰囲気下、フラスコ内容物を6時間攪拌した。次いで、フラスコ内容物に0.005gのAPSを添加した後、温度25℃の雰囲気下、フラスコ内容物を更に6時間攪拌し、ポリアミド酸組成物を得た。得られたポリアミド酸組成物を、スピンコーターを用いてコーニング社製ガラス基板(商品名:Eagle XG、材質:無アルカリガラス、厚み:0.7mm、サイズ:100mm×100mm)上に塗布し、空気中において120℃で30分加熱した後、窒素雰囲気下において460℃で45分加熱し、ガラス基板上に厚み10μmのポリイミド膜を備える積層体(実施例1の積層体)を得た。
[Example 1]
A 300 mL glass separable flask equipped with a stirrer equipped with a stainless steel stirring bar and a nitrogen inlet tube was charged with 85.0 g of MPA as an organic solvent for polymerization. Then, 4.037 g of PDA was added to the flask and dissolved while stirring the flask contents. Next, 0.171 g of BPAF and 10.792 g of BPDA were added to the flask contents, and then the flask contents were stirred for 6 hours in an atmosphere at a temperature of 25°C. Next, after adding 0.005 g of APS to the contents of the flask, the contents of the flask were further stirred for 6 hours in an atmosphere at a temperature of 25° C. to obtain a polyamic acid composition. The obtained polyamic acid composition was applied onto a glass substrate manufactured by Corning (product name: Eagle After heating at 120° C. for 30 minutes in a nitrogen atmosphere, heating was performed at 460° C. for 45 minutes in a nitrogen atmosphere to obtain a laminate comprising a 10 μm thick polyimide film on a glass substrate (the laminate of Example 1).
[実施例2~21及び比較例1~7]
 使用した酸二無水物及びその仕込み割合、使用したジアミン及びその仕込み割合、使用したシランカップリング剤及びその添加量、並びに溶媒の種類を、表1及び表2に示すとおりとしたこと以外は、実施例1と同じ方法により、実施例2~21及び比較例1~7の積層体をそれぞれ得た。なお、シランカップリング剤を使用しなかった実施例2~4、9~14、17、19及び21、並びに比較例1、3及び5~7では、フラスコに全ての酸二無水物を入れた後、温度25℃の雰囲気下、フラスコ内容物を6時間攪拌し、ポリアミド酸組成物を得た。また、実施例2~21及び比較例1~7のいずれについても、ポリアミド酸組成物を調製する際の酸二無水物の合計物質量は、実施例1と同じであった。また、実施例2~21及び比較例1~7のいずれについても、ポリアミド酸組成物を調製する際のジアミンの合計物質量は、実施例1と同じであった。
[Examples 2 to 21 and Comparative Examples 1 to 7]
Except that the acid dianhydride used and its charging ratio, the diamine used and its charging ratio, the silane coupling agent used and its addition amount, and the type of solvent were as shown in Tables 1 and 2. By the same method as in Example 1, laminates of Examples 2 to 21 and Comparative Examples 1 to 7 were obtained, respectively. In addition, in Examples 2 to 4, 9 to 14, 17, 19, and 21, and Comparative Examples 1, 3, and 5 to 7, in which no silane coupling agent was used, all the acid dianhydride was placed in the flask. Thereafter, the contents of the flask were stirred for 6 hours in an atmosphere at a temperature of 25°C to obtain a polyamic acid composition. Furthermore, in all of Examples 2 to 21 and Comparative Examples 1 to 7, the total amount of acid dianhydride in preparing the polyamic acid composition was the same as in Example 1. Further, in all of Examples 2 to 21 and Comparative Examples 1 to 7, the total amount of diamine in preparing the polyamic acid composition was the same as in Example 1.
 実施例1~21及び比較例1~7について、使用した酸二無水物、ジアミン、シランカップリング剤及び溶媒、並びに内部応力、TD1、製膜性及びピール強度を、表1及び表2に示す。なお、表1及び表2において、酸二無水物、ジアミン及びシランカップリング剤の欄の「-」は、当該成分を使用しなかったことを意味する。また、表1及び表2において、ピール強度の欄の「-」は、ピール強度を測定しなかったことを意味する。 For Examples 1 to 21 and Comparative Examples 1 to 7, the acid dianhydride, diamine, silane coupling agent and solvent used, as well as internal stress, TD1, film formability and peel strength are shown in Tables 1 and 2. . In addition, in Tables 1 and 2, "-" in the column of acid dianhydride, diamine, and silane coupling agent means that the corresponding component was not used. Furthermore, in Tables 1 and 2, "-" in the peel strength column means that the peel strength was not measured.
 また、表1及び表2において、「酸二無水物」の欄の数値は、使用したジアミンの全量(100モル%)に対する各酸二無水物の含有率(単位:モル%)である。また、表1及び表2において、「ジアミン」の欄の数値は、使用したジアミンの全量(100モル%)に対する各ジアミンの含有率(単位:モル%)である。また、表1及び表2において、「シランカップリング剤」の欄の数値は、ポリアミド酸100重量部に対するシランカップリング剤の添加量(単位:重量部)である。また、実施例1~21及び比較例1~7のいずれについても、調製したポリアミド酸組成物中のポリアミド酸の各残基のモル分率は、ポリアミド酸の合成に使用した各モノマー(ジアミン及びテトラカルボン酸二無水物)のモル分率と一致していた。 Furthermore, in Tables 1 and 2, the numerical values in the "Acid dianhydride" column are the content (unit: mol %) of each acid dianhydride relative to the total amount of diamine used (100 mol %). Furthermore, in Tables 1 and 2, the numerical values in the "diamine" column are the content rates (unit: mol %) of each diamine relative to the total amount (100 mol %) of diamines used. Furthermore, in Tables 1 and 2, the numerical values in the "Silane coupling agent" column are the amount of the silane coupling agent added (unit: parts by weight) with respect to 100 parts by weight of polyamic acid. In addition, for both Examples 1 to 21 and Comparative Examples 1 to 7, the molar fraction of each residue of polyamic acid in the prepared polyamic acid composition was determined by the mole fraction of each monomer (diamine and (tetracarboxylic dianhydride).
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 実施例1~21で使用されたポリアミド酸組成物中のポリアミド酸は、残基(1)とBPDA残基とPDA残基とを有していた。実施例1~21で使用されたポリアミド酸組成物は、特定有機溶媒を含んでいた。 The polyamic acids in the polyamic acid compositions used in Examples 1 to 21 had residues (1), BPDA residues, and PDA residues. The polyamic acid compositions used in Examples 1 to 21 contained specific organic solvents.
 表1及び表2に示すように、実施例1~21では、内部応力が30MPa以下であった。よって、実施例1~21では、内部応力を低減できていた。実施例1~21では、ガラス基板とポリイミド膜との間、及びa-Si層とポリイミド膜との間のいずれについても浮きが無かった。よって、実施例1~21では、密着性不良の発生が抑制され、製膜性がよかった。 As shown in Tables 1 and 2, in Examples 1 to 21, the internal stress was 30 MPa or less. Therefore, in Examples 1 to 21, the internal stress was able to be reduced. In Examples 1 to 21, there was no lifting between the glass substrate and the polyimide film and between the a-Si layer and the polyimide film. Therefore, in Examples 1 to 21, occurrence of poor adhesion was suppressed and film formability was good.
 比較例1~7で使用されたポリアミド酸組成物中のポリアミド酸は、BPDA残基とPDA残基とを有していたが、残基(1)を有していなかった。比較例1~7で使用されたポリアミド酸組成物は、特定有機溶媒を含んでいた。 The polyamic acids in the polyamic acid compositions used in Comparative Examples 1 to 7 had BPDA residues and PDA residues, but did not have residue (1). The polyamic acid compositions used in Comparative Examples 1 to 7 contained specific organic solvents.
 表2に示すように、比較例1~6では、ガラス基板とポリイミド膜との間、及びa-Si層とポリイミド膜との間のいずれについても浮きが有った。よって、比較例1~6では、密着性不良の発生が抑制されておらず、製膜性がよくなかった。比較例7では、内部応力が30MPaを超えていた。よって、比較例7では、内部応力を低減できていなかった。 As shown in Table 2, in Comparative Examples 1 to 6, there was some lifting between the glass substrate and the polyimide film and between the a-Si layer and the polyimide film. Therefore, in Comparative Examples 1 to 6, the occurrence of poor adhesion was not suppressed, and the film formability was poor. In Comparative Example 7, the internal stress exceeded 30 MPa. Therefore, in Comparative Example 7, the internal stress could not be reduced.
 以上の結果から、本発明によれば、安全性の高い溶媒を使用しつつ、密着性不良の発生を抑制できる上、内部応力を低減できることが示された。

 
The above results indicate that, according to the present invention, it is possible to suppress the occurrence of poor adhesion and reduce internal stress while using a highly safe solvent.

Claims (10)

  1.  ポリアミド酸と有機溶媒とを含むポリアミド酸組成物であって、
     前記ポリアミド酸は、下記化学式(1)で表される2価の有機基を含む残基と、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基と、p-フェニレンジアミン残基とを有し、
     前記有機溶媒は、下記一般式(2)で表される化合物及び下記一般式(3)で表される化合物からなる群より選択される一種以上の化合物を含む、ポリアミド酸組成物。
    Figure JPOXMLDOC01-appb-C000001
     (前記一般式(2)中、R、R及びRは、各々独立に、水素原子又は炭素原子数1以上の1価の有機基を表し、R、R及びRのうちの少なくとも1つは、炭素原子数2以上の1価の有機基を表し、
     前記一般式(3)中、Rは、炭素原子数2以上の1価の有機基を表す。)
    A polyamic acid composition comprising a polyamic acid and an organic solvent,
    The polyamic acid contains a residue containing a divalent organic group represented by the following chemical formula (1), a 3,3',4,4'-biphenyltetracarboxylic dianhydride residue, and p-phenylenediamine. has a residue,
    The organic solvent is a polyamic acid composition containing one or more compounds selected from the group consisting of a compound represented by the following general formula (2) and a compound represented by the following general formula (3).
    Figure JPOXMLDOC01-appb-C000001
    (In the general formula (2), R 1 , R 2 and R 3 each independently represent a hydrogen atom or a monovalent organic group having 1 or more carbon atoms, and among R 1 , R 2 and R 3 At least one of represents a monovalent organic group having 2 or more carbon atoms,
    In the general formula (3), R 4 represents a monovalent organic group having 2 or more carbon atoms. )
  2.  前記化学式(1)で表される2価の有機基を含む残基は、下記化学式(4)で表される4価の有機基、下記化学式(5)で表される4価の有機基、及び下記化学式(6)で表される2価の有機基からなる群より選択される一種以上の残基である、請求項1に記載のポリアミド酸組成物。
    Figure JPOXMLDOC01-appb-C000002
    The residue containing the divalent organic group represented by the chemical formula (1) is a tetravalent organic group represented by the following chemical formula (4), a tetravalent organic group represented by the following chemical formula (5), and the polyamic acid composition according to claim 1, which is one or more residues selected from the group consisting of divalent organic groups represented by the following chemical formula (6).
    Figure JPOXMLDOC01-appb-C000002
  3.  前記化学式(1)で表される2価の有機基を含む残基の含有率が、前記ポリアミド酸を構成する全テトラカルボン酸二無水物残基と前記ポリアミド酸を構成する全ジアミン残基との合計100モル%に対して、15モル%以下である、請求項1に記載のポリアミド酸組成物。 The content of the residue containing the divalent organic group represented by the chemical formula (1) is the same as that of all the tetracarboxylic dianhydride residues constituting the polyamic acid and all the diamine residues constituting the polyamic acid. The polyamic acid composition according to claim 1, wherein the polyamic acid composition is 15 mol% or less based on a total of 100 mol%.
  4.  前記有機溶媒は、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド又は1-ブチル-2-ピロリドンである、請求項1に記載のポリアミド酸組成物。 The polyamic acid composition according to claim 1, wherein the organic solvent is 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide, or 1-butyl-2-pyrrolidone.
  5.  前記ポリアミド酸は、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン残基を更に有する、請求項1に記載のポリアミド酸組成物。 The polyamic acid composition according to claim 1, wherein the polyamic acid further has a 1,3-bis(3-aminopropyl)tetramethyldisiloxane residue.
  6.  前記1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン残基の含有率が、前記ポリアミド酸を構成するジアミン残基の全量に対して、0.1モル%以上1.0モル%以下である、請求項5に記載のポリアミド酸組成物。 The content of the 1,3-bis(3-aminopropyl)tetramethyldisiloxane residue is 0.1 mol% or more and 1.0 mol% or less with respect to the total amount of diamine residues constituting the polyamic acid. The polyamic acid composition according to claim 5.
  7.  シランカップリング剤を更に含む、請求項1に記載のポリアミド酸組成物。 The polyamic acid composition according to claim 1, further comprising a silane coupling agent.
  8.  請求項1に記載のポリアミド酸組成物を加熱して前記ポリアミド酸をイミド化する、ポリイミドの製造方法。 A method for producing polyimide, which comprises heating the polyamic acid composition according to claim 1 to imidize the polyamic acid.
  9.  支持体とポリイミド膜とを有する積層体の製造方法であって、
     請求項1に記載のポリアミド酸組成物を支持体上に塗布することにより、前記ポリアミド酸を含む塗布膜を形成し、前記塗布膜を加熱して前記ポリアミド酸をイミド化する、積層体の製造方法。
    A method for producing a laminate having a support and a polyimide film, the method comprising:
    Manufacturing a laminate by coating the polyamic acid composition according to claim 1 on a support to form a coating film containing the polyamic acid, and heating the coating film to imidize the polyamic acid. Method.
  10.  請求項1に記載のポリアミド酸組成物を加熱して前記ポリアミド酸をイミド化する工程Saと、
     前記工程Saによって得られたポリイミド膜上に電子素子を配置する工程Sbと
    を備える、電子デバイスの製造方法。

     
    a step Sa of heating the polyamic acid composition according to claim 1 to imidize the polyamic acid;
    A method for manufacturing an electronic device, comprising a step Sb of arranging an electronic element on the polyimide film obtained in the step Sa.

PCT/JP2023/021312 2022-06-24 2023-06-08 Polyamic acid composition, polyimide production method, laminate production method, and electronic device production method WO2023248810A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-101887 2022-06-24
JP2022101887 2022-06-24

Publications (1)

Publication Number Publication Date
WO2023248810A1 true WO2023248810A1 (en) 2023-12-28

Family

ID=89379725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021312 WO2023248810A1 (en) 2022-06-24 2023-06-08 Polyamic acid composition, polyimide production method, laminate production method, and electronic device production method

Country Status (2)

Country Link
TW (1) TW202409147A (en)
WO (1) WO2023248810A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007137933A (en) * 2005-11-15 2007-06-07 Toray Ind Inc Resin composition, heat resistant resin laminate film using the same, and metal-clad laminate film
WO2015147046A1 (en) * 2014-03-28 2015-10-01 出光興産株式会社 Extraction solvent for extractive distillation and method for separating hydrocarbons using same
WO2016111182A1 (en) * 2015-01-06 2016-07-14 凸版印刷株式会社 Power storage device outer casing material
JP2016213141A (en) * 2015-05-13 2016-12-15 凸版印刷株式会社 Exterior package material for power storage device and power storage device
JP2019183066A (en) * 2018-04-16 2019-10-24 花王株式会社 Water-based ink
JP2019214540A (en) * 2018-06-14 2019-12-19 アース製薬株式会社 Insecticide composition
JP2022061487A (en) * 2020-10-06 2022-04-18 東レ株式会社 Resin composition, production method of display device or light-receiving device using the same, substrate and device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007137933A (en) * 2005-11-15 2007-06-07 Toray Ind Inc Resin composition, heat resistant resin laminate film using the same, and metal-clad laminate film
WO2015147046A1 (en) * 2014-03-28 2015-10-01 出光興産株式会社 Extraction solvent for extractive distillation and method for separating hydrocarbons using same
WO2016111182A1 (en) * 2015-01-06 2016-07-14 凸版印刷株式会社 Power storage device outer casing material
JP2016213141A (en) * 2015-05-13 2016-12-15 凸版印刷株式会社 Exterior package material for power storage device and power storage device
JP2019183066A (en) * 2018-04-16 2019-10-24 花王株式会社 Water-based ink
JP2019214540A (en) * 2018-06-14 2019-12-19 アース製薬株式会社 Insecticide composition
JP2022061487A (en) * 2020-10-06 2022-04-18 東レ株式会社 Resin composition, production method of display device or light-receiving device using the same, substrate and device

Also Published As

Publication number Publication date
TW202409147A (en) 2024-03-01

Similar Documents

Publication Publication Date Title
JP6725626B2 (en) Method for producing polyimide precursor, resin composition and resin film
US10711105B2 (en) Polyimide precursor resin composition
KR101994059B1 (en) Resin precursor, resin composition containing same, polyimide resin membrane, resin film, and method for producing same
JP7304338B2 (en) Method for producing polyimide film and method for producing electronic device
JP5650458B2 (en) LAMINATE MANUFACTURING METHOD AND FLEXIBLE DEVICE MANUFACTURING METHOD
JP6921758B2 (en) Polyamic acid, polyimide, polyamic acid solution, polyimide laminate, flexible device substrate, and their manufacturing method
WO2013154141A1 (en) Poly(amic acid) solution composition, and polyimide
JP7292260B2 (en) Polyamic acid and its manufacturing method, polyamic acid solution, polyimide, polyimide film, laminate and its manufacturing method, flexible device and its manufacturing method
WO2021261177A1 (en) Poly(amic acid), poly(amic acid) solution, polyimide, polyimide film, layered product, method for producing layered product, and electronic device
JP6687442B2 (en) Utilization of polyamic acid, polyimide, polyamic acid solution, and polyimide
JP7084755B2 (en) A method for producing a polyamic acid, a polyamic acid solution, a polyimide, a polyimide film, a laminate and a flexible device, and a polyimide film.
JP7349253B2 (en) A polyamic acid, a polyamic acid solution, a polyimide, a polyimide film, a laminate, a flexible device, and a method for producing a polyimide film.
JP2015129201A (en) Polyamic acid solution composition and polyimide
JP2022044020A (en) Polyamide acid, polyamide acid solution, polyimide, polyimide film, laminate and flexible device, and method for producing polyimide film
WO2023074350A1 (en) Polyamide acid, polyamide acid composition, polyimide, polyimide film, multilayer body, method for producing multilayer body, and electronic device
WO2023248810A1 (en) Polyamic acid composition, polyimide production method, laminate production method, and electronic device production method
WO2023063202A1 (en) Polyamic acid, polyamic acid composition, polyimide, polyimide film, laminate, method for producing laminate, and electronic device
WO2024181150A1 (en) Polyamic acid composition, polyimide production method, laminate production method, and electronic device production method
JP2022145217A (en) Polyamic acid composition, polyimide, laminate of the same, flexible device, and production method of laminate
WO2024172112A1 (en) Polyimide precursor composition, polyimide film, layered product, electronic device, method for producing layered product, method for producing polyimide film, and method for producing electronic device
JP2024122517A (en) Polyamic acid solution, and methods for producing polyimide, laminate, and flexible device.
JP2023038407A (en) Polyamide acid composition, polyimide, polyimide film, laminate and flexible device, and method for producing laminate
JP2022044021A (en) Polyamide acid, polyamide acid solution, polyimide, polyimide film, laminate and flexible device, and method for producing polyimide film
KR20230092934A (en) Polyamic acid, polyamic acid solution, polyimide, polyimide film, laminate, electronic device, and method for producing polyimide film
JP2022068709A (en) Polyamic acid, polyamic acid solution, polyimide, polyimide film, laminate and flexible device, as well as production method of polyimide film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826997

Country of ref document: EP

Kind code of ref document: A1