JP2022007645A - Sludge fertilizer having high nitrogen mineralization ratio - Google Patents
Sludge fertilizer having high nitrogen mineralization ratio Download PDFInfo
- Publication number
- JP2022007645A JP2022007645A JP2020110731A JP2020110731A JP2022007645A JP 2022007645 A JP2022007645 A JP 2022007645A JP 2020110731 A JP2020110731 A JP 2020110731A JP 2020110731 A JP2020110731 A JP 2020110731A JP 2022007645 A JP2022007645 A JP 2022007645A
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- layer
- fertilizer
- laminate
- woody biomass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003337 fertilizer Substances 0.000 title claims abstract description 238
- 239000010802 sludge Substances 0.000 title claims abstract description 196
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 title abstract description 76
- 229910052757 nitrogen Inorganic materials 0.000 title abstract description 38
- 230000033558 biomineral tissue development Effects 0.000 title abstract description 26
- 239000000463 material Substances 0.000 claims abstract description 89
- 239000003895 organic fertilizer Substances 0.000 claims abstract description 82
- 239000002994 raw material Substances 0.000 claims abstract description 76
- 239000002028 Biomass Substances 0.000 claims abstract description 61
- 238000000034 method Methods 0.000 claims abstract description 46
- 235000020083 shōchū Nutrition 0.000 claims description 29
- 241000894007 species Species 0.000 claims description 14
- 238000002156 mixing Methods 0.000 claims description 13
- 241000894006 Bacteria Species 0.000 claims description 12
- 229910001385 heavy metal Inorganic materials 0.000 claims description 11
- 230000001143 conditioned effect Effects 0.000 claims description 6
- 241000193830 Bacillus <bacterium> Species 0.000 claims description 2
- 238000000855 fermentation Methods 0.000 abstract description 42
- 239000010410 layer Substances 0.000 description 234
- 239000010801 sewage sludge Substances 0.000 description 79
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 35
- 239000002361 compost Substances 0.000 description 28
- 235000013616 tea Nutrition 0.000 description 18
- 241001122767 Theaceae Species 0.000 description 17
- 238000009264 composting Methods 0.000 description 17
- 230000004151 fermentation Effects 0.000 description 17
- 238000012360 testing method Methods 0.000 description 17
- 210000003608 fece Anatomy 0.000 description 15
- 235000019484 Rapeseed oil Nutrition 0.000 description 14
- 240000007594 Oryza sativa Species 0.000 description 13
- 235000007164 Oryza sativa Nutrition 0.000 description 13
- 235000019198 oils Nutrition 0.000 description 13
- 235000009566 rice Nutrition 0.000 description 13
- 239000002699 waste material Substances 0.000 description 12
- 241000196324 Embryophyta Species 0.000 description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 239000010871 livestock manure Substances 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 239000002689 soil Substances 0.000 description 9
- 241000193833 Bacillales Species 0.000 description 8
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 8
- 235000017491 Bambusa tulda Nutrition 0.000 description 8
- 241001330002 Bambuseae Species 0.000 description 8
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 8
- 239000011425 bamboo Substances 0.000 description 8
- DATAGRPVKZEWHA-YFKPBYRVSA-N N(5)-ethyl-L-glutamine Chemical compound CCNC(=O)CC[C@H]([NH3+])C([O-])=O DATAGRPVKZEWHA-YFKPBYRVSA-N 0.000 description 7
- 230000004720 fertilization Effects 0.000 description 7
- 229920005610 lignin Polymers 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000009423 ventilation Methods 0.000 description 7
- 239000001913 cellulose Substances 0.000 description 6
- 229920002678 cellulose Polymers 0.000 description 6
- 239000000835 fiber Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 239000002344 surface layer Substances 0.000 description 6
- 108020004465 16S ribosomal RNA Proteins 0.000 description 5
- 241000233866 Fungi Species 0.000 description 5
- 229920002488 Hemicellulose Polymers 0.000 description 5
- 244000017020 Ipomoea batatas Species 0.000 description 5
- 235000002678 Ipomoea batatas Nutrition 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 235000013311 vegetables Nutrition 0.000 description 5
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 4
- 241000287828 Gallus gallus Species 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- ADRVNXBAWSRFAJ-UHFFFAOYSA-N catechin Natural products OC1Cc2cc(O)cc(O)c2OC1c3ccc(O)c(O)c3 ADRVNXBAWSRFAJ-UHFFFAOYSA-N 0.000 description 4
- 235000005487 catechin Nutrition 0.000 description 4
- 244000005700 microbiome Species 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052700 potassium Inorganic materials 0.000 description 4
- 239000011591 potassium Substances 0.000 description 4
- 239000011550 stock solution Substances 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- 241001539176 Hime Species 0.000 description 3
- 238000012300 Sequence Analysis Methods 0.000 description 3
- 238000005273 aeration Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 235000013399 edible fruits Nutrition 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 241001148471 unidentified anaerobic bacterium Species 0.000 description 3
- PFTAWBLQPZVEMU-DZGCQCFKSA-N (+)-catechin Chemical compound C1([C@H]2OC3=CC(O)=CC(O)=C3C[C@@H]2O)=CC=C(O)C(O)=C1 PFTAWBLQPZVEMU-DZGCQCFKSA-N 0.000 description 2
- 241000203809 Actinomycetales Species 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 241000315697 Cerasibacillus quisquiliarum Species 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- 240000005979 Hordeum vulgare Species 0.000 description 2
- 235000007340 Hordeum vulgare Nutrition 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 235000019779 Rapeseed Meal Nutrition 0.000 description 2
- 241001148470 aerobic bacillus Species 0.000 description 2
- 238000010564 aerobic fermentation Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001765 catechin Chemical class 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 229950001002 cianidanol Drugs 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 235000012054 meals Nutrition 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000004456 rapeseed meal Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229940026510 theanine Drugs 0.000 description 2
- 235000019583 umami taste Nutrition 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 241000187362 Actinomadura Species 0.000 description 1
- 241000203069 Archaea Species 0.000 description 1
- 241001112695 Clostridiales Species 0.000 description 1
- 238000007400 DNA extraction Methods 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 240000003483 Leersia hexandra Species 0.000 description 1
- 241000877128 Massilibacterium senegalense Species 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- 241001304176 Sinibacillus Species 0.000 description 1
- 241000604872 Sinibacillus soli Species 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 235000019764 Soybean Meal Nutrition 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000012520 detergent analysis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000003895 groundwater pollution Methods 0.000 description 1
- 239000003864 humus Substances 0.000 description 1
- 230000002977 hyperthermial effect Effects 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 235000019645 odor Nutrition 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229940072033 potash Drugs 0.000 description 1
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Substances [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 1
- 235000015320 potassium carbonate Nutrition 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 238000003900 soil pollution Methods 0.000 description 1
- 239000004455 soybean meal Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/20—Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/78—Recycling of wood or furniture waste
Landscapes
- Treatment Of Sludge (AREA)
- Fertilizers (AREA)
- Cultivation Of Plants (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
Description
特許法第30条第2項適用申請有り 1.研究集会名:令和元年度土木学会全国大会第74回年次学術講演会 開催日:令和1年9月3日 2.掲載アドレス:https://confit.atlas.jp/guide/event/jsce2019/top https://confit.atlas.jp/guide/event/jsce2019/session/1VII-224-31/tables?pXWfDeB01x https://confit.atlas.jp/guide/event/jsce2019/subject/VII-55/tables?cryptold= 掲載日:令和1年6月28日 3.掲載アドレス:https://confit.atlas.jp/guide/event/jsce2019/top https://confit.atlas.jp/guide/event/jsce2019/session/1VII-224-31/tables?pXWfDeB01x https://confit.atlas.jp/guide/event/jsce2019/subject/VII-57/tables?cryptold= 掲載日:令和1年6月28日 4.刊行物名:令和元年度土木学会全国大会第74回年次学術講演会 DVD版講演概要集 発行日 :2019年8月1日 5.刊行物名:令和元年度土木学会西部支部研究発表会講演概要集(CD-ROM) 発行日 :2020年2月20日There is an application for application of Article 30, Paragraph 2 of the Patent Law. Name of the research meeting: The 74th Annual Academic Lecture Meeting of the Japan Society of Civil Engineers in the first year of Reiwa Date: September 3, 1st year of Reiwa 2. Posting address: https: // confit. atlas. jp / guide / event / jsce2019 / top https: // confit. atlas. jp / guide / event / jsce2019 / session / 1VII-224-31 / tables? pXWfDeB01x https: // confit. atlas. jp / guide / event / jsce2019 / subject / VII-55 / subjects? cryptold = Publication date: June 28, 1st year of Reiwa 3. Posting address: https: // confit. atlas. jp / guide / event / jsce2019 / top https: // confit. atlas. jp / guide / event / jsce2019 / session / 1VII-224-31 / tables? pXWfDeB01x https: // confit. atlas. jp / guide / event / jsce2019 / subject / VII-57 / subjects? cryptold = Publication date: June 28, 1st year of Reiwa 4. Publication name: Reiwa 1st year Japan Society of Civil Engineers National Convention 74th Annual Academic Lecture DVD Version Lecture Summary Publication Date: August 1, 2019 5. Publication name: Reiwa 1st year Civil Society Western Chapter Research Presentation Summary (CD-ROM) Publication date: February 20, 2020
本発明は、窒素無機化率の高い汚泥肥料に関する。 The present invention relates to sludge fertilizer having a high nitrogen mineralization rate.
現在、下水処理施設から発生する下水汚泥や下水熱、リンなどの資源の活用促進が求められている。2015年の下水道法改正では、汚泥の燃料又は肥料としての再生利用努力の必要性が規定されている。また環境省の「循環型社会形成推進基本計画」では、下水汚泥の肥料利用に関して、地域内での循環利用を支援すると示されている。 Currently, there is a need to promote the utilization of resources such as sewage sludge, sewage heat, and phosphorus generated from sewage treatment facilities. The 2015 Amendment to the Sewerage Act stipulates the need for efforts to recycle sludge as fuel or fertilizer. In addition, the Ministry of the Environment's "Basic Plan for Promotion of Sound Material-Cycle Society" states that it will support the use of fertilizer for sewage sludge in the region.
下水汚泥は終末処理場で高分子凝集剤や無機凝集剤を用いて脱水処理後、その殆どは脱水汚泥(脱水ケーキ;水分率75.5~78.0%)として産業廃棄物処理業者に高額で引き取られ、埋立処分されたり、建材利用(焼却後セメント原料)されたりしている。下水汚泥の成分の8割が有機物であるという特性を活かしたエネルギー利用、緑農地利用の実績は、それぞれ22%、10%程度に過ぎない。国土交通省の「生産性革命プロジェクト」では、2020年度(令和2年度)までに下水汚泥のエネルギー・農業利用率を40%とすることを目標としている。 Sewage sludge is dehydrated at a terminal treatment plant using a polymer flocculant or an inorganic flocculant, and most of it is collected as dehydrated sludge (dehydrated cake; moisture content 75.5 to 78.0%) by an industrial waste treatment company at a high price. It is disposed of in land or used as a building material (raw material for cement after incineration). Utilizing the characteristic that 80% of the components of sewage sludge are organic matter, the results of energy utilization and green farmland utilization are only about 22% and 10%, respectively. The Ministry of Land, Infrastructure, Transport and Tourism's "Productivity Revolution Project" aims to increase the energy and agricultural utilization rate of sewage sludge to 40% by 2020 (FY2).
下水汚泥から製造される汚泥肥料は肥料取締法により、普通肥料に分類され、肥料登録にあたっては、肥料として含有すべき主成分(窒素、リン酸、カリ等)の最小量、含有が許される有害成分(重金属)の最大量等の公定規格(基準値)を満たす必要がある。汚泥肥料の肥料成分は窒素、リン酸が多く、カリウム含有量が少ないという特徴がある。 Sludge fertilizer produced from sewage sludge is classified as ordinary fertilizer by the Fertilizer Control Law, and when registering fertilizer, the minimum amount of main components (nitrogen, phosphoric acid, potash, etc.) that should be contained as fertilizer, and harmful substances that are allowed to be contained. It is necessary to meet official standards (standard values) such as the maximum amount of components (heavy metals). The fertilizer components of sludge fertilizer are high in nitrogen and phosphoric acid, and low in potassium.
既存の汚泥肥料には水分を含むと泥状になり易く、利用しにくいという問題がある。また汚泥肥料の重金属含有量は、基準値(T-Hg:2mg/kg、As:50mg/kg、Cd:5mg/kg、Ni:300mg/kg、Cr:500mg/kg、Pb:100mg/kg)以下であるが、牛糞堆肥、馬糞堆肥、鶏糞、及び豚糞堆肥と比べると格段に高い。さらに汚泥肥料の用途はその殆どが葉菜類、果菜類の単年作物への利用や、牧草への農地還元が主であり、農畜産業が盛んな地域では他の資材(牛糞、鶏糞、豚糞)との競合となり、高い付加価値を付けることが難しく、汚泥肥料の利用は滞っている。 The existing sludge fertilizer has a problem that it tends to become muddy when it contains water and is difficult to use. The heavy metal content of sludge fertilizer is the standard value (T-Hg: 2mg / kg, As: 50mg / kg, Cd: 5mg / kg, Ni: 300mg / kg, Cr: 500mg / kg, Pb: 100mg / kg). Although it is as follows, it is much higher than cow dung compost, horse manure compost, chicken manure, and pig manure compost. Furthermore, most of the sludge fertilizers are used for single-year crops of leafy vegetables and fruit vegetables, and the main use is to return agricultural land to pasture. ), It is difficult to add high value, and the use of sludge fertilizer is stagnant.
特許文献1は、下水汚泥溶融スラグから金属類を除去したものを肥料に用いる、肥料の製造方法を開示している。しかし金属類の除去工程は手間がかかり、肥料の生産コストの増加につながる。生産コストを抑えつつ、高い付加価値を有する汚泥肥料を製造できる方法の開発が望まれている。 Patent Document 1 discloses a method for producing fertilizer, which uses a fertilizer obtained by removing metals from sewage sludge molten slag. However, the metal removal process is time-consuming and leads to an increase in fertilizer production costs. It is desired to develop a method capable of producing sludge fertilizer with high added value while suppressing the production cost.
本発明は、窒素無機化率の高い汚泥肥料を提供することを課題とする。 An object of the present invention is to provide a sludge fertilizer having a high nitrogen mineralization rate.
本発明者らは、上記課題を解決するため鋭意検討を重ねた結果、下水汚泥等の汚泥と好適な肥料原料とを積層した後、外側を汚泥で覆って外部からの通気を抑制し、条件的嫌気発酵させることにより、窒素無機化率の高い汚泥肥料を製造できることを見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventors have laminated sludge such as sewage sludge and a suitable fertilizer raw material, and then covered the outside with sludge to suppress ventilation from the outside. We have found that sludge fertilizer with a high nitrogen mineralization rate can be produced by anaerobic fermentation, and have completed the present invention.
すなわち、本発明は以下を包含する。
[1]汚泥層、有機質肥料資材層、及び木質系バイオマス層を含む積層体を形成した後、外側を汚泥層で覆うことにより、肥料原料体を作製し、それを条件的嫌気発酵させることを含む、汚泥肥料の製造方法。
[2]前記積層体が、有機質肥料資材層及び木質系バイオマス層のいずれか一方又は両方によって上下に挟み込まれた汚泥層を含む、上記[1]に記載の方法。
[3]前記積層体が最下層として汚泥層を含む、上記[1]又は[2]に記載の方法。
[4]前記積層体が、汚泥層、有機質肥料資材層、及び木質系バイオマス層をそれぞれ少なくとも2層含む、上記[1]~[3]のいずれかに記載の方法。
[5]前記積層体が、有機質肥料資材層として、油性有機質肥料資材層及び焼酎粕層の少なくとも一方を含む、上記[1]~[4]のいずれかに記載の方法。
[6]前記積層体が、下層から上層に向かって、汚泥層、油性有機質肥料資材層、木質系バイオマス層、焼酎粕層、汚泥層、焼酎粕層、木質系バイオマス層、及び油性有機質肥料資材層をこの順番で積層した構造を含む、上記[5]に記載の方法。
[7]肥料原料体が、汚泥、油性有機質肥料資材、木質系バイオマス、及び焼酎粕を、乾燥重量でそれぞれ30~50%:10~30%:20~40%:0~20%の配合比率となる量で含む、上記[5]又は[6]に記載の方法。
[8]有機質肥料資材層が、油性有機質肥料資材として米糠を含む、上記[1]~[7]のいずれかに記載の方法。
[9]汚泥層が下水汚泥を含む、上記[1]~[8]のいずれかに記載の方法。
[10]汚泥層が脱水汚泥を含む、上記[1]~[9]のいずれかに記載の方法。
[11]木質系バイオマス層がおが屑を含む、上記[1]~[10]のいずれかに記載の方法。
[12]焼酎粕層が甘藷焼酎粕を含む、上記[5]~[7]のいずれかに記載の方法。
[13]条件的嫌気発酵の期間中に、切り返しを行うことを含む、上記[1]~[12]のいずれかに記載の方法。
[14]外側を汚泥層で覆う前に、前記積層体の少なくとも一部を混合することをさらに含む、上記[1]~[13]のいずれかに記載の方法。
[15]上記[1]~[14]のいずれかに記載の方法により製造される、汚泥肥料。
[16]汚泥肥料がバシラス目細菌を優占種として含む、上記[15]に記載の汚泥肥料。
[17]C/N比が7以上である、上記[15]又は[16]に記載の汚泥肥料。
[18]重金属含量が、汚泥肥料1kg当たり50mg以下である、上記[15]~[17]のいずれかに記載の汚泥肥料。
[19]上記[15]~[18]のいずれかに記載の汚泥肥料を、植物に対して施肥することを含む、植物の栽培方法。
That is, the present invention includes the following.
[1] After forming a laminate containing a sludge layer, an organic fertilizer material layer, and a woody biomass layer, a fertilizer raw material is prepared by covering the outside with a sludge layer, and the fertilizer raw material is conditionally anaerobically fertilized. How to make sludge fertilizer, including.
[2] The method according to the above [1], wherein the laminate includes a sludge layer sandwiched vertically by either or both of an organic fertilizer material layer and a woody biomass layer.
[3] The method according to the above [1] or [2], wherein the laminate includes a sludge layer as the lowest layer.
[4] The method according to any one of [1] to [3] above, wherein the laminate contains at least two layers each of a sludge layer, an organic fertilizer material layer, and a woody biomass layer.
[5] The method according to any one of the above [1] to [4], wherein the laminate includes at least one of an oil-based organic fertilizer material layer and a shochu lees layer as an organic fertilizer material layer.
[6] From the lower layer to the upper layer, the sludge layer, the oily organic fertilizer material layer, the woody biomass layer, the shochu lees layer, the sludge layer, the shochu lees layer, the woody biomass layer, and the oily organic fertilizer material are formed. The method according to [5] above, which comprises a structure in which layers are laminated in this order.
[7] The fertilizer raw material contains sludge, oily organic fertilizer material, woody biomass, and lees in dry weight at a mixing ratio of 30 to 50%: 10 to 30%: 20 to 40%: 0 to 20%, respectively. The method according to the above [5] or [6], which comprises the amount of the above.
[8] The method according to any one of the above [1] to [7], wherein the organic fertilizer material layer contains rice bran as an oil-based organic fertilizer material.
[9] The method according to any one of [1] to [8] above, wherein the sludge layer contains sewage sludge.
[10] The method according to any one of the above [1] to [9], wherein the sludge layer contains dehydrated sludge.
[11] The method according to any one of the above [1] to [10], wherein the woody biomass layer contains sawdust.
[12] The method according to any one of the above [5] to [7], wherein the lees lees layer contains sweet potato lees.
[13] The method according to any one of the above [1] to [12], which comprises performing turning back during the period of conditional anaerobic fermentation.
[14] The method according to any one of [1] to [13] above, further comprising mixing at least a part of the laminate before covering the outside with a sludge layer.
[15] Sludge fertilizer produced by the method according to any one of the above [1] to [14].
[16] The sludge fertilizer according to [15] above, wherein the sludge fertilizer contains Bacillus order bacteria as a dominant species.
[17] The sludge fertilizer according to the above [15] or [16], which has a C / N ratio of 7 or more.
[18] The sludge fertilizer according to any one of the above [15] to [17], wherein the heavy metal content is 50 mg or less per 1 kg of sludge fertilizer.
[19] A method for cultivating a plant, which comprises applying the sludge fertilizer according to any one of the above [15] to [18] to the plant.
本発明によれば、窒素無機化率の高い汚泥肥料を製造することができる According to the present invention, sludge fertilizer having a high nitrogen mineralization rate can be produced.
以下、本発明を詳細に説明する。
本発明は、汚泥及び他の肥料原料を積層し、好ましくは汚泥を他の肥料原料で上下に挟むようにサンドウィッチ状に積み重ねて積層体を形成(作製)した後、外側を汚泥層で覆って、条件的嫌気発酵させることによる、汚泥肥料の製造方法に関するものである。外側を汚泥層で覆うことにより、外部からの通気を抑制(低減)し、条件的嫌気条件の生成を促進することができる。
Hereinafter, the present invention will be described in detail.
In the present invention, sludge and other fertilizer raw materials are laminated, and preferably sludge is stacked in a sandwich shape so as to be sandwiched between other fertilizer raw materials to form (manufacture) a laminate, and then the outside is covered with a sludge layer. It relates to a method for producing sludge fertilizer by conditional anaerobic fermentation. By covering the outside with a sludge layer, it is possible to suppress (reduce) ventilation from the outside and promote the generation of conditioned anaerobic conditions.
より具体的には、本発明は、汚泥層、有機質肥料資材層、及び木質系バイオマス層を含む積層体を形成した後、外側を汚泥層で覆うことにより、肥料原料体を作製し、それを条件的嫌気発酵させることを含む、汚泥肥料の製造方法に関する。 More specifically, the present invention prepares a fertilizer raw material by forming a laminate including a sludge layer, an organic fertilizer material layer, and a woody biomass layer, and then covering the outside with a sludge layer. The present invention relates to a method for producing sludge fertilizer, including conditional anaerobic fermentation.
本発明の方法では、汚泥、有機質肥料資材及び木質系バイオマスを、まず、積層体を形成するように層状に積み上げることにより、それらを単に混合して積み上げる場合と比較して、積層体及び肥料原料体における水分量の調整を容易にし、また全体的な均一性を確保しやすくすることができる。 In the method of the present invention, sludge, organic fertilizer materials and woody biomass are first stacked in layers so as to form a laminate, so that the laminate and the fertilizer raw material are compared with the case where they are simply mixed and stacked. It can facilitate the adjustment of water content in the body and facilitate the assurance of overall uniformity.
積層体を形成する際、少なくとも1つの汚泥層が、有機質肥料資材層及び木質系バイオマス層のいずれか一方又は両方によって上下に挟み込まれるように、汚泥、有機質肥料資材、及び木質系バイオマスをサンドウィッチ状に積層することが好ましい。すなわち、好ましい実施形態では、本発明の方法において形成される積層体は、有機質肥料資材層及び木質系バイオマス層のいずれか一方又は両方によって上下に挟み込まれた汚泥層を少なくとも1つ含む。 When forming the laminate, the sludge, the organic fertilizer material, and the woody biomass are sandwiched so that at least one sludge layer is vertically sandwiched by either or both of the organic fertilizer material layer and the woody biomass layer. It is preferable to stack them on. That is, in a preferred embodiment, the laminate formed in the method of the present invention contains at least one sludge layer sandwiched vertically by either or both of the organic fertilizer material layer and the woody biomass layer.
ここで「有機質肥料資材層及び木質系バイオマス層のいずれか一方又は両方によって上下に挟み込まれた汚泥層」は、(i)汚泥層の下側に隣接した有機質肥料資材層と汚泥層の上側に隣接した有機質肥料資材層によって挟まれた汚泥層、(ii)汚泥層の下側に隣接した木質系バイオマス層と汚泥層の上側に隣接した木質系バイオマス層によって挟まれた汚泥層、(iii)汚泥層の下側に隣接した有機質肥料資材層と汚泥層の上側に隣接した木質系バイオマス層によって挟まれた汚泥層、(iv)汚泥層の下側に隣接した木質系バイオマス層と汚泥層の上側に隣接した有機質肥料資材層によって挟まれた汚泥層、及び(v)汚泥層の下側に隣接した、少なくとも1つの有機質肥料資材層及び少なくとも1つの木質系バイオマス層の組み合わせ(例えば、以下に限定するものではないが、汚泥層に隣接した有機質肥料資材層とその有機質肥料資材層の反対側に隣接した木質系バイオマス層を含む組み合わせ)と、汚泥層の上側に隣接した、少なくとも1つの有機質肥料資材層及び少なくとも1つの木質系バイオマス層の組み合わせ(例えば、以下に限定するものではないが、汚泥層に隣接した有機質肥料資材層とその有機質肥料資材層の反対側に隣接した木質系バイオマス層を含む組み合わせ)によって挟まれた汚泥層の、いずれの態様も含む。有機質肥料資材層及び木質系バイオマス層のいずれか一方又は両方によって汚泥層を上下に挟み込むことにより、水分量の多い汚泥層から、水分量の比較的少ない有機質肥料資材層及び木質系バイオマス層へと水分を吸収させ、全体的に水分量をより均一にすることができるだけでなく、その後の操作や発酵にとってより好適な条件を作り出すことができる。 Here, "the sludge layer sandwiched above and below by either or both of the organic fertilizer material layer and the woody biomass layer" is (i) above the organic fertilizer material layer and the sludge layer adjacent to the lower side of the sludge layer. A sludge layer sandwiched between adjacent organic fertilizer material layers, (ii) a woody biomass layer adjacent to the lower side of the sludge layer and a sludge layer sandwiched between a woody biomass layer adjacent to the upper side of the sludge layer, (iii). A sludge layer sandwiched between an organic fertilizer material layer adjacent to the lower side of the sludge layer and a woody biomass layer adjacent to the upper side of the sludge layer, and (iv) a woody biomass layer and a sludge layer adjacent to the lower side of the sludge layer. A combination of a sludge layer sandwiched by an organic fertilizer material layer adjacent to the upper side, and (v) at least one organic fertilizer material layer and at least one woody biomass layer adjacent to the lower side of the sludge layer (for example, below). A combination including, but not limited to, an organic fertilizer material layer adjacent to the sludge layer and a woody biomass layer adjacent to the opposite side of the organic fertilizer material layer) and at least one organic material adjacent to the upper side of the sludge layer. A combination of a fertilizer material layer and at least one woody biomass layer (eg, but not limited to, an organic fertilizer material layer adjacent to the sludge layer and a woody biomass layer adjacent to the opposite side of the organic fertilizer material layer). Includes any aspect of the sludge layer sandwiched by (a combination comprising). By sandwiching the sludge layer up and down with either or both of the organic fertilizer material layer and the woody biomass layer, the sludge layer with a high water content can be changed to the organic fertilizer material layer and the woody biomass layer with a relatively low water content. Not only can it absorb water and make the water content more uniform overall, but it can also create more suitable conditions for subsequent operations and fermentation.
好ましい実施形態では、積層体の形成の際、最下層として汚泥層を用いてもよい。すなわち、積層体は最下層として汚泥層を含み得る。積層体の最下層を汚泥層とすることにより、その積層体の外側をそのまま汚泥層で覆った際には、全体が完全に汚泥層で覆われた肥料原料体を作製することができる。 In a preferred embodiment, a sludge layer may be used as the bottom layer when forming the laminate. That is, the laminate may include a sludge layer as the bottom layer. By making the bottom layer of the laminated body a sludge layer, when the outside of the laminated body is covered with the sludge layer as it is, a fertilizer raw material body completely covered with the sludge layer can be produced.
一実施形態では、本発明の積層体及び肥料原料体において、汚泥層、有機質肥料資材層、及び木質系バイオマス層はまた、汚泥層と汚泥層の間に有機質肥料資材層及び木質系バイオマス層が挟まれるようにサンドウィッチ状に積層されてもよい。 In one embodiment, in the laminate and fertilizer raw material of the present invention, the sludge layer, the organic fertilizer material layer, and the woody biomass layer also have an organic fertilizer material layer and a woody biomass layer between the sludge layer and the sludge layer. It may be laminated in a sandwich shape so as to be sandwiched.
本発明の方法では、汚泥層、有機質肥料資材層、及び木質系バイオマス層を含む積層体を形成した後、汚泥層で外側を覆って肥料原料体とすることにより、肥料原料体において条件的嫌気条件を作り出すことができる。 In the method of the present invention, after forming a laminate including a sludge layer, an organic fertilizer material layer, and a woody biomass layer, the sludge layer covers the outside to form a fertilizer raw material, whereby conditioned anaerobic in the fertilizer raw material. Conditions can be created.
本明細書において、常に嫌気性(酸素欠乏状態)が保たれる状態(例えば、肥料原料体等の全体がビニールで覆われて密閉された状態)を絶対的嫌気条件と呼ぶ。一方、本明細書において、肥料原料体等について、強制通気(例えば、空気又は酸素を肥料原料体内に直接的かつ継続的に送り込む操作)が行われず、嫌気性(酸素欠乏状態)となっているものの、空気又は酸素の限定的な流入までは排除されていない状態、例えば、肥料原料体の一部(例えば、表層)が空気又は酸素に触れており自然通気が限定的に可能になっていたり、限られた回数(例えば発酵過程を通じて1~4回)の切り返しの際に空気又は酸素に限定的に触れたりする状態を、条件的嫌気条件と呼ぶ。 In the present specification, a state in which anaerobic condition (oxygen deficiency state) is always maintained (for example, a state in which the whole fertilizer raw material or the like is covered with vinyl and sealed) is referred to as an absolute anaerobic condition. On the other hand, in the present specification, the fertilizer raw material and the like are anaerobic (oxygen deficient state) because forced aeration (for example, an operation of directly and continuously sending air or oxygen into the fertilizer raw material) is not performed. However, the state where the limited inflow of air or oxygen is not excluded, for example, a part of the fertilizer raw material (for example, the surface layer) is in contact with air or oxygen, and natural ventilation is limited. The condition of limited contact with air or oxygen during a limited number of turns (for example, 1 to 4 times throughout the fermentation process) is called a conditional anaerobic condition.
より具体的には、本発明において、肥料原料体の表層部付近に水分を多く含んだ層(特に、汚泥層)を形成することにより表層を通じた外部からの通気が抑制(少なくとも一部の通気が遮断)され、一方で肥料原料体内部の酸素が好気性菌により消費されることにより、肥料原料体の内部は速やかに嫌気性となる。肥料原料体の表層部付近に設けられた汚泥層を通じたわずかな通気は、肥料原料体内部の嫌気性を失わせることはない。また、肥料原料体の後述する切り返しの際には一時的に酸素が供給されるが、表層より30cm超の深さでは、その後すぐに好気性菌により酸素が消費され再び嫌気性となる。 More specifically, in the present invention, by forming a layer containing a large amount of water (particularly a sludge layer) near the surface layer portion of the fertilizer raw material body, ventilation from the outside through the surface layer is suppressed (at least a part of ventilation). On the other hand, oxygen inside the fertilizer raw material is consumed by aerobic bacteria, so that the inside of the fertilizer raw material quickly becomes anaerobic. The slight ventilation through the sludge layer provided near the surface layer of the fertilizer raw material does not cause the anaerobic inside of the fertilizer raw material to be lost. In addition, oxygen is temporarily supplied when the fertilizer raw material is turned back, which will be described later, but at a depth of more than 30 cm from the surface layer, oxygen is consumed by aerobic bacteria immediately after that, and the fertilizer becomes anaerobic again.
本発明において、汚泥は、特に限定されないが、下水汚泥、工業汚泥等であってよい。汚泥は、脱水処理したものであってよく、そのような汚泥は脱水汚泥と称される。脱水汚泥は、以下に限定するものではないが、通常は65~85%、例えば70~80%又は75~78%の含水率を有する。汚泥は、例えば、下水汚泥又は工業汚泥の脱水汚泥であってもよい。本発明に係る積層体や肥料原料体に含まれるそれぞれの汚泥層は、1種又は2種以上のそのような汚泥を含む。脱水汚泥により構成される汚泥層を脱水汚泥層とも称する。 In the present invention, the sludge is not particularly limited, but may be sewage sludge, industrial sludge, or the like. The sludge may be dehydrated, and such sludge is referred to as dehydrated sludge. Dewatered sludge usually has a water content of 65-85%, for example 70-80% or 75-78%, but not limited to: The sludge may be, for example, sewage sludge or dehydrated sludge of industrial sludge. Each sludge layer contained in the laminate and the fertilizer raw material according to the present invention contains one kind or two or more kinds of such sludge. A sludge layer composed of dehydrated sludge is also referred to as a dehydrated sludge layer.
本発明において、有機質肥料資材は、特に限定されないが、油性有機質肥料資材若しくは焼酎粕、又はその両方であってよい。本発明において「油性有機質肥料資材」は、油分に富んだ有機質肥料資材を意味する。油性有機質肥料資材としては、特に限定されないが、例えば、米糠、油分を多く含む油粕(例えば、大豆粕、菜種粕(菜種油粕)、綿実粕、茶実粕など)が挙げられる。積層体は、1種又は2種以上の有機質肥料資材を含んでもよい。積層体に含まれるそれぞれの有機質肥料資材層は、1種又は2種以上の有機質肥料資材を含み得る。積層体は、有機質肥料資材層として、油性有機質肥料資材層及び焼酎粕層の少なくとも一方を含み得る。積層体において、油性有機質肥料資材、及び焼酎粕は、それぞれが別個の有機質肥料資材層に含まれることが好ましい。一実施形態では、有機質肥料資材層は、油性有機質肥料資材として、好ましくは米糠を含む。焼酎粕は、甘藷焼酎粕、馬鈴薯焼酎粕、麦焼酎粕、米焼酎粕等の任意の焼酎粕であってよい。焼酎粕は、焼酎粕乾燥固形物、焼酎粕原液、脱水焼酎粕(例えば、焼酎粕原液を遠心分離機等で固液分離して得られる固形画分、すなわち、脱水ケーキ)などの任意の形態であってよい。 In the present invention, the organic fertilizer material is not particularly limited, but may be an oil-based organic fertilizer material, shochu lees, or both. In the present invention, the "oil-based organic fertilizer material" means an organic fertilizer material rich in oil. The oil-based organic fertilizer material is not particularly limited, and examples thereof include rice bran, oil cake containing a large amount of oil (for example, soybean meal, rapeseed meal (rapeseed meal), cottonseed meal, tea meal cake, etc.). The laminate may contain one or more organic fertilizer materials. Each organic fertilizer material layer contained in the laminate may contain one or more organic fertilizer materials. The laminate may include at least one of the oil-based organic fertilizer material layer and the shochu lees layer as the organic fertilizer material layer. In the laminate, the oily organic fertilizer material and the lees are preferably contained in separate organic fertilizer material layers. In one embodiment, the organic fertilizer material layer comprises rice bran, preferably the oily organic fertilizer material. The lees may be any lees such as sweet potato lees, potato lees, barley lees, and rice lees. The lees lees are in any form such as a dried lees lees solid, a lees stock solution, and a dehydrated lees (for example, a solid fraction obtained by solid-liquid separating the lees stock solution with a centrifuge or the like, that is, a dehydrated cake). May be.
本発明において、木質系バイオマスは、リグノセルロース(リグニン、セルロース、及びヘミセルロース)に富む植物由来有機材料を指す。一般的に、木質系バイオマスは、そのまま(堆肥化なし)では肥料資材として適さないとされている。木質系バイオマスは、例えば、おが屑(竹おが屑、針葉樹おが屑、広葉樹おが屑等)、ダンチク、ヨシ、ススキ、イネなどの草本植物の刈り草、樹皮、端材、葉、木質チップ等が挙げられるが、これらに限定されない。積層体に含まれるそれぞれの木質系バイオマス層は、1種又は2種以上の木質系バイオマスを含み得る。 In the present invention, woody biomass refers to a plant-derived organic material rich in lignocellulosic (lignin, cellulose, and hemicellulose). Generally, woody biomass is not suitable as a fertilizer material as it is (without composting). Examples of woody biomass include sawdust (bamboo sawdust, coniferous sawdust, broad-leaved sawdust, etc.), cut grass of herbaceous plants such as dunchiku, yoshi, suki, and rice, bark, scraps, leaves, and wood chips. Not limited to these. Each woody biomass layer contained in the laminate may contain one or more woody biomasses.
積層体は、少なくとも1つ又は少なくとも2つの汚泥層を含むものであってよい。積層体は、少なくとも1つ又は少なくとも2つの有機質肥料資材層を含むものであってよい。積層体は、少なくとも1つ又は少なくとも2つの木質系バイオマス層を含むものであってよい。好ましい実施形態では、積層体は、汚泥層、有機質肥料資材層、及び木質系バイオマス層をそれぞれ少なくとも2層含むものであってよい。 The laminate may include at least one or at least two sludge layers. The laminate may include at least one or at least two organic fertilizer material layers. The laminate may include at least one or at least two woody biomass layers. In a preferred embodiment, the laminate may include at least two layers each of a sludge layer, an organic fertilizer material layer, and a woody biomass layer.
一実施形態では、積層体は、下層から上層に向かって、汚泥層、有機質肥料資材層、木質系バイオマス層、有機質肥料資材層、汚泥層、有機質肥料資材層、木質系バイオマス層、及び有機質肥料資材層をこの順番で積層した構造を、1つ以上(例えば、1つ、2つ、又は3つ以上)含むものであってよい。別の実施形態では、積層体は、下層から上層に向かって、汚泥層、有機質肥料資材層、木質系バイオマス層、有機質肥料資材層、汚泥層をこの順番で積層した構造を、1つ以上(例えば、1つ、2つ、又は3つ以上)含むものであってよい。例えば、積層体は、下層から上層に向かって、汚泥層、有機質肥料資材層、木質系バイオマス層、有機質肥料資材層、汚泥層、有機質肥料資材層、木質系バイオマス層、有機質肥料資材層、及び汚泥層をこの順番で積層した構造を1つ以上含むものであってよい。 In one embodiment, the laminate is a sludge layer, an organic fertilizer material layer, a woody biomass layer, an organic fertilizer material layer, a sludge layer, an organic fertilizer material layer, a woody biomass layer, and an organic fertilizer from the lower layer to the upper layer. It may include one or more (for example, one, two, or three or more) structures in which material layers are laminated in this order. In another embodiment, the laminate has one or more structures in which a sludge layer, an organic fertilizer material layer, a woody biomass layer, an organic fertilizer material layer, and a sludge layer are laminated in this order from a lower layer to an upper layer ( For example, one, two, or three or more) may be included. For example, from the lower layer to the upper layer, the laminated body includes a sludge layer, an organic fertilizer material layer, a woody biomass layer, an organic fertilizer material layer, a sludge layer, an organic fertilizer material layer, a woody biomass layer, an organic fertilizer material layer, and It may include one or more structures in which sludge layers are laminated in this order.
一実施形態では、積層体は、下層から上層に向かって、汚泥層、油性有機質肥料資材層、木質系バイオマス層、焼酎粕層、汚泥層、焼酎粕層、木質系バイオマス層、及び油性有機質肥料資材層をこの順番で積層した構造を含むものであってよい。 In one embodiment, the laminate is a sludge layer, an oily organic fertilizer material layer, a woody biomass layer, a shochu lees layer, a sludge layer, a shochu lees layer, a woody biomass layer, and an oily organic fertilizer from the lower layer to the upper layer. It may include a structure in which material layers are laminated in this order.
本発明においては、積層体の形成後、外側を汚泥層で覆って肥料原料体を作製することが好ましい。汚泥層により外側を覆うことにより、外部からの通気(すなわち、空気や酸素の透過)を抑制して、上述のとおり条件的嫌気条件の生成を促進することができる。ここで、「外側を汚泥層で覆う」とは、少なくとも、露出する部分全体を汚泥層で覆うことを意味する。積層体や肥料原料体の接地面(底面)は、汚泥層であってもよいが、汚泥層でなくてもよい。いいかえれば、接地状態の肥料原料体において接地面を除く全体が汚泥層で覆われている場合には、その肥料原料体は、外側を汚泥層で覆うことによって得られたものであり、全体的に汚泥層で覆われていると考えることができる。 In the present invention, it is preferable to cover the outside with a sludge layer to prepare a fertilizer raw material after forming the laminate. By covering the outside with a sludge layer, ventilation from the outside (that is, permeation of air and oxygen) can be suppressed, and the generation of conditional anaerobic conditions can be promoted as described above. Here, "covering the outside with a sludge layer" means that at least the entire exposed portion is covered with a sludge layer. The ground contact surface (bottom surface) of the laminate or the fertilizer raw material may be a sludge layer, but may not be a sludge layer. In other words, when the entire grounded fertilizer raw material except the ground surface is covered with a sludge layer, the fertilizer raw material is obtained by covering the outside with a sludge layer, and is overall. It can be considered that it is covered with a sludge layer.
積層体の形成後、直接、積層体の外側を汚泥層で覆うことができる。あるいは、積層体の形成後、外側を汚泥層で覆う前に、積層体の少なくとも一部(例えば、積層体の一部又は全体)を切り返し等により混合してから、外側を汚泥層で覆ってもよい。積層体の少なくとも一部を混合後、場合により全体的な堆積形状を整えてから、外側を汚泥層で覆うことも好ましい。外側を汚泥層で覆う前に、積層体の少なくとも一部を混合することにより、局所的な塊ができにくくなる。積層体の少なくとも一部を混合してから外側を汚泥層で覆う場合であっても、いったん積層体の形態に積み上げることにより、最初から肥料原料を混合する場合と比較して、水分量の調整を容易にし、また全体的な均一性を確保できるという上記の利点を享受することができる。したがって本発明の方法は、積層体の形成後、外側を汚泥層で覆う前に、積層体の少なくとも一部を混合することをさらに含み得る。このような場合も、本発明における「積層体を形成した後、外側を汚泥層で覆うことにより、肥料原料体を作製する」ことに含まれるものとする。 After forming the laminate, the outside of the laminate can be directly covered with a sludge layer. Alternatively, after the formation of the laminate, before covering the outside with the sludge layer, at least a part of the laminate (for example, a part or the whole of the laminate) is mixed by cutting back or the like, and then the outside is covered with the sludge layer. May be good. It is also preferable to mix at least a part of the laminate, and if necessary, adjust the overall sedimentary shape, and then cover the outside with a sludge layer. By mixing at least a portion of the laminate before covering the outside with a sludge layer, local masses are less likely to form. Even when at least a part of the laminate is mixed and then the outside is covered with a sludge layer, the water content is adjusted by stacking the laminate once in the form of the laminate as compared with the case where the fertilizer raw materials are mixed from the beginning. And can enjoy the above-mentioned advantages of ensuring overall uniformity. Therefore, the method of the present invention may further comprise mixing at least a portion of the laminate after formation of the laminate and before covering the outside with a sludge layer. Such a case is also included in the present invention of "making a fertilizer raw material by covering the outside with a sludge layer after forming a laminated body".
なお本発明における条件的嫌気条件は、条件的嫌気条件の上記定義を満たす限り、汚泥層が肥料原料体を覆う構造が発酵期間を通じて維持されることを必要としない。すなわち、肥料原料体の表層部の汚泥層が切り返し等により失われた場合でも、条件的嫌気条件を保持することができる。 The conditional anaerobic condition in the present invention does not require that the structure in which the sludge layer covers the fertilizer raw material is maintained throughout the fermentation period as long as the above definition of the conditional anaerobic condition is satisfied. That is, even if the sludge layer on the surface layer of the fertilizer raw material is lost due to turning back or the like, the conditional anaerobic condition can be maintained.
好ましい実施形態では、積層体は、下水汚泥層、米糠層、おが屑層(例えば、竹おが屑)、及び焼酎粕層(例えば、甘藷焼酎粕層)を含んでもよい。 In a preferred embodiment, the laminate may include a sewage sludge layer, a rice bran layer, a sawdust layer (eg, bamboo sawdust), and a shochu lees layer (eg, sweet potato lees layer).
一実施形態では、肥料原料体は、以下に限定するものではないが、全体として、好ましくは50cm~700cm、例えば60cm~400cm、70cm~200cm、又は70cm~100cmの高さを有するものであってよい。一実施形態では、肥料原料体は、肥料原料の全容積が5m3の場合、全体として、好ましくは50cm~200cm、例えば60cm~200cm、70cm~150cm、又は70cm~100cmの高さを有するものであってよく、10m3の場合、全体として、好ましくは100cm~400cm、例えば120cm~400cm、140cm~300cm、又は140cm~200cmの高さを有するものであってよい。 In one embodiment, the fertilizer raw material is not limited to the following, but is preferably one having a height of 50 cm to 700 cm, for example, 60 cm to 400 cm, 70 cm to 200 cm, or 70 cm to 100 cm as a whole. good. In one embodiment, the fertilizer raw material has a height of preferably 50 cm to 200 cm, for example 60 cm to 200 cm, 70 cm to 150 cm, or 70 cm to 100 cm as a whole when the total volume of the fertilizer raw material is 5 m 3 . In the case of 10 m 3 , it may have a height of 100 cm to 400 cm, for example, 120 cm to 400 cm, 140 cm to 300 cm, or 140 cm to 200 cm as a whole.
肥料原料体の底面の幅及び奥行は特に限定されないが、例えば底面の幅が1m~10m、奥行が1m~10mであってよく、一実施形態では底面の幅が1m~5mであり奥行が1m~5mであってよい。一実施形態では、肥料原料体の底面はほぼ正方形であってもよいが、それに限定されない。 The width and depth of the bottom surface of the fertilizer raw material are not particularly limited, but for example, the width of the bottom surface may be 1 m to 10 m and the depth may be 1 m to 10 m. In one embodiment, the width of the bottom surface is 1 m to 5 m and the depth is 1 m. It may be up to 5m. In one embodiment, the bottom surface of the fertilizer raw material may be substantially square, but is not limited thereto.
肥料原料体は、以下に限定するものではないが、汚泥、油性有機質肥料資材、木質系バイオマス、及び焼酎粕を、乾燥重量で、汚泥:油性有機質肥料資材:木質系バイオマス:焼酎粕=30~50%:10~30%:20~40%:0~20%の配合比率で含んでもよい。一実施形態では、肥料原料体は、汚泥、油性有機質肥料資材、木質系バイオマス、及び焼酎粕を、乾燥重量で、汚泥:油性有機質肥料資材:木質系バイオマス:焼酎粕=35~45%:15~25%:25~35%:5~15%の配合比率、又は38~42%:20~30%:25~35%:0~10%の配合比率で、含んでもよい。特に好ましい実施形態では、肥料原料体は、汚泥、油性有機質肥料資材、木質系バイオマス、及び焼酎粕を、乾燥重量で、汚泥:油性有機質肥料資材:木質系バイオマス:焼酎粕=約40%:約20%:約30%:約10%の配合比率で含む。本発明において「約」とは、記載された数値の±5%の範囲を意味する。 The fertilizer raw material is not limited to the following, but sludge, oily organic fertilizer material, woody biomass, and shochu lees are classified by dry weight, sludge: oily organic fertilizer material: woody biomass: shochu lees = 30 ~. It may be contained in a blending ratio of 50%: 10 to 30%: 20 to 40%: 0 to 20%. In one embodiment, the fertilizer raw material is sludge, oily organic fertilizer material, woody biomass, and shochu lees by dry weight, sludge: oily organic fertilizer material: woody biomass: shochu lees = 35-45%: 15 It may be contained in a blending ratio of ~ 25%: 25 to 35%: 5 to 15%, or 38 to 42%: 20 to 30%: 25 to 35%: 0 to 10%. In a particularly preferred embodiment, the fertilizer raw material is sludge, oily organic fertilizer material, woody biomass, and shochu lees by dry weight, sludge: oily organic fertilizer material: woody biomass: shochu lees = about 40%: about. 20%: Approximately 30%: Approximately 10% is included. In the present invention, "about" means a range of ± 5% of the stated numerical value.
汚泥、有機質肥料資材、及び木質系バイオマスを積層して積層体を形成する際、積層体の水分率を、全体として、通常は55~65%、好ましくは58~63%、より好ましくは60~63%に調整することが好ましい。また、汚泥、有機質肥料資材、及び木質系バイオマスを含むその積層体を用いて肥料原料体を作製する際、肥料原料体の水分率を、全体として、通常は55~65%、好ましくは58~63%、より好ましくは60~63%に調整することも好ましい。使用する肥料原料の水分量が低い場合には、積層の合間に、積層中に、又は積層後に、上記の水分率になるように適量の水を積層体に添加することができる。あるいは、水分量の多い肥料原料、例えば焼酎粕原液などを使用する場合には、添加する水の量を減らすことが好ましい。一実施形態では、水を適用する際には、水を層表面にまんべんなく散布することが好ましい。 When sludge, organic fertilizer materials, and woody biomass are laminated to form a laminate, the moisture content of the laminate as a whole is usually 55 to 65%, preferably 58 to 63%, and more preferably 60 to. It is preferable to adjust to 63%. In addition, when preparing a fertilizer raw material using a laminate containing sludge, organic fertilizer material, and woody biomass, the water content of the fertilizer raw material as a whole is usually 55 to 65%, preferably 58 to 58. It is also preferable to adjust to 63%, more preferably 60 to 63%. When the water content of the fertilizer raw material used is low, an appropriate amount of water can be added to the laminate so as to have the above-mentioned moisture content during or after the lamination between the laminations. Alternatively, when a fertilizer raw material having a large amount of water, for example, a lees stock solution, is used, it is preferable to reduce the amount of water added. In one embodiment, when applying water, it is preferable to spread the water evenly on the surface of the layer.
一実施形態では、積層体の形成の際、木質系バイオマス層の上、及び有機質肥料資材層の上の、少なくとも一方に、上記の水分率になるように、水を適用してもよい。 In one embodiment, water may be applied to at least one of the woody biomass layer and the organic fertilizer material layer at the time of forming the laminate so as to have the above-mentioned water content.
一実施形態では、積層体の形成の際、及び/又は肥料原料体の作製の際、木質系バイオマス層と有機質肥料資材層の間、又は有機質肥料資材層と汚泥層の間に、上記の水分率になるように、水を適用してもよい。一実施形態では、下層から上層に向かって、汚泥層、油性有機質肥料資材層、木質系バイオマス層、焼酎粕層、汚泥層、焼酎粕層、木質系バイオマス層、及び油性有機質肥料資材層をこの順番で積層した構造を1つ以上含む積層体の形成の際、並びにその積層体を含む肥料原料体の作製の際に、汚泥層とその上に隣接した油性有機質肥料資材層の間、油性有機質肥料資材層とその上に隣接した木質系バイオマス層の間、木質系バイオマス層とその上に隣接した焼酎粕層の間、焼酎粕層とその上に隣接した汚泥層の間、汚泥層とその上に隣接した焼酎粕層の間、焼酎粕層とその上に隣接した木質系バイオマス層の間、木質系バイオマス層とその上に隣接した油性有機質肥料資材層の間、及び油性有機質肥料資材層とその上に隣接した汚泥層の間からなる群から選択される1つ、2つ、又は3つ以上の層間に水を適用してもよい。好ましい実施形態では、木質系バイオマス層とその上に隣接した焼酎粕層の間、及び油性有機質肥料資材層とその上に隣接した汚泥層の間に水を適用することができる。 In one embodiment, the above moisture is formed between the woody biomass layer and the organic fertilizer material layer, or between the organic fertilizer material layer and the sludge layer during the formation of the laminate and / or the preparation of the fertilizer raw material. Water may be applied to the rate. In one embodiment, the sludge layer, the oily organic fertilizer material layer, the woody biomass layer, the shochu lees layer, the sludge layer, the shochu lees layer, the woody biomass layer, and the oily organic fertilizer material layer are formed from the lower layer to the upper layer. Oily organic between the sludge layer and the adjacent oily organic fertilizer material layer when forming a laminate containing one or more stacked structures in order and when producing a fertilizer raw material containing the laminate. Between the fertilizer material layer and the woody biomass layer adjacent to it, between the woody biomass layer and the shochu lees layer adjacent to it, between the shochu lees layer and the sludge layer adjacent to it, the sludge layer and its Between the shochu lees layer adjacent to the top, between the shochu lees layer and the woody biomass layer adjacent to it, between the woody biomass layer and the oily organic fertilizer material layer adjacent to it, and the oily organic fertilizer material layer. Water may be applied between one, two, or three or more layers selected from the group consisting of and adjacent sludge layers on it. In a preferred embodiment, water can be applied between the woody biomass layer and the lees layer adjacent thereto, and between the oily organic fertilizer material layer and the sludge layer adjacent thereto.
本発明の肥料原料体は、上記のとおり、外側を汚泥層で覆うことで条件的嫌気条件の生成を促進することにより、条件的嫌気発酵させることができる。条件的嫌気発酵とは、条件的嫌気条件下で行われる発酵、例えば、条件的嫌気性細菌が関与する発酵を意味する。 As described above, the fertilizer raw material of the present invention can be subjected to conditional anaerobic fermentation by accelerating the generation of conditional anaerobic conditions by covering the outside with a sludge layer. Conditional anaerobic fermentation means fermentation performed under conditional anaerobic conditions, for example, fermentation involving conditioned anaerobic bacteria.
肥料原料体の発酵期間は、以下に限定されないが、例えば、30~150日間、好ましくは50~100日間、より好ましくは30~60日間であってよい。肥料原料体の発酵は、以下に限定されないが、0~40℃、好ましくは10~40℃、例えば20~35℃の気温条件下で行うことが好ましい。 The fermentation period of the fertilizer raw material is not limited to the following, but may be, for example, 30 to 150 days, preferably 50 to 100 days, and more preferably 30 to 60 days. Fermentation of the fertilizer raw material is not limited to the following, but is preferably carried out under temperature conditions of 0 to 40 ° C, preferably 10 to 40 ° C, for example, 20 to 35 ° C.
肥料原料体の発酵期間中、切り返しを行うことができる。切り返しは、例えば、1週間~6週間に1回、例えば2週間~5週間に1回、又は概ね1ヶ月(27~34日)に1回の頻度で行うことができる。切り返しは常法により行うことができる。なお本発明に関して1週間は7日とする。 It can be cut back during the fermentation period of the fertilizer raw material. The switching can be performed, for example, once every 1 to 6 weeks, for example, once every 2 to 5 weeks, or approximately once every 1 month (27 to 34 days). Switching can be done by a conventional method. One week is 7 days for the present invention.
好ましい実施形態では、発酵が進み、肥料原料体の温度が上昇し、ピークを超えて徐々に低下する状態に至ったとき、肥料化(堆肥化)を完了することができる。肥料化を完了した肥料原料体は、汚泥肥料として利用することができる。本発明は、このような汚泥肥料も提供する。 In a preferred embodiment, fertilization (composting) can be completed when fermentation proceeds, the temperature of the fertilizer raw material rises, and the temperature gradually decreases beyond the peak. The fertilizer raw material that has been fertilized can be used as sludge fertilizer. The present invention also provides such sludge fertilizers.
本発明の方法により得られる汚泥肥料は、肥料化(堆肥化)完了時において、バシラス目(Bacillales)細菌を優占種として含むことが好ましい。本発明において「優占種として含む」とは、被験試料中に含まれる微生物の細胞数に対し、目的の微生物の細胞数の割合が最も高いことを意味する。ここで「優占種」は、狭義の生物種に限定して解釈されず、例えば、バシラス目(Bacillales)に属する様々な種の細菌をまとめて「優占種」と呼ぶこともできる。一実施形態では、本発明の汚泥肥料は、バシラス目の高温性細菌を多く含み得る。そのような高温性細菌は、例えば、セラシバシラス・クイスクイリアラム(Cerasibacillus quisquiliarum)の近縁種やシニバシラス・ソリ(Sinibacillus soli)の近縁種であってよい。汚泥肥料に優占種として含まれるバシラス目細菌は、温度上昇(高温)やpH変化により芽胞を形成し、好気又は嫌気条件で生存可能な細菌である。バシラス目細菌は、本発明に係る汚泥肥料の製造過程(発酵過程)の後半時期に顕著に増加することが好ましい。汚泥肥料に含まれる細菌は、例えば、16S rRNA遺伝子配列解析に基づいて同定することができるが、それに限定されない。 The sludge fertilizer obtained by the method of the present invention preferably contains Bacillales bacteria as a dominant species at the completion of fertilization (composting). In the present invention, "included as a dominant species" means that the ratio of the number of cells of the target microorganism to the number of cells of the microorganism contained in the test sample is the highest. Here, "dominant species" is not construed as being limited to organisms in a narrow sense, and for example, various species of bacteria belonging to the order Bacillales can be collectively referred to as "dominant species". In one embodiment, the sludge fertilizer of the present invention may be high in high temperature bacteria of the order Bacillales. Such hyperthermic bacteria may be, for example, a relative of Cerasibacillus quisquiliarum or a relative of Sinibacillus soli. Bacillales bacteria contained in sludge fertilizer as a dominant species are bacteria that form spores due to temperature rise (high temperature) and pH change and can survive under aerobic or anaerobic conditions. It is preferable that the Bacillales bacteria increase remarkably in the latter half of the production process (fermentation process) of the sludge fertilizer according to the present invention. Bacteria contained in sludge fertilizer can be identified based on, for example, 16S rRNA gene sequence analysis, but is not limited thereto.
本発明の方法により得られる汚泥肥料は、高い窒素無機化率(無機化率/肥効率)を示す。本発明の汚泥肥料は、以下に限定するものではないが、例えば、窒素無機化試験での140日間の培養後に、好ましくは70%以上、より好ましくは70~95%、例えば75~95%、又は80~90%の窒素無機化率を示すことができる。 The sludge fertilizer obtained by the method of the present invention exhibits a high nitrogen mineralization rate (mineralization rate / fertilizer efficiency). The sludge fertilizer of the present invention is not limited to, for example, preferably 70% or more, more preferably 70 to 95%, for example, 75 to 95%, after 140 days of culturing in a nitrogen mineralization test. Alternatively, it can exhibit a nitrogen mineralization rate of 80 to 90%.
本発明の汚泥肥料はまた、低い重金属含有量を示すことが好ましい。好ましい実施形態では、本発明の汚泥肥料の重金属含有量は、汚泥肥料1kg当たり50mg以下、好ましくは30mg以下である。ここで重金属含有量とは、As、Cr、Cd、Pb、Al、Hg、Cu、Zn、Niの合計含量を意味する。重金属含有量が低いことにより、本発明の汚泥肥料は、施肥による土壌汚染や地下水汚染を低減できる。 The sludge fertilizer of the present invention also preferably exhibits a low heavy metal content. In a preferred embodiment, the heavy metal content of the sludge fertilizer of the present invention is 50 mg or less, preferably 30 mg or less per 1 kg of sludge fertilizer. Here, the heavy metal content means the total content of As, Cr, Cd, Pb, Al, Hg, Cu, Zn and Ni. Due to the low heavy metal content, the sludge fertilizer of the present invention can reduce soil pollution and groundwater pollution due to fertilization.
本発明の汚泥肥料は、C/N比(炭素C含有率(%)と窒素N含有率(%)の質量比)が高く肥料として有用である。本発明の汚泥肥料のC/N比は、7以上であることが好ましく、より好ましくは8以上、さらに好ましくは9以上である。 The sludge fertilizer of the present invention has a high C / N ratio (mass ratio of carbon C content (%) and nitrogen N content (%)) and is useful as a fertilizer. The C / N ratio of the sludge fertilizer of the present invention is preferably 7 or more, more preferably 8 or more, still more preferably 9 or more.
好ましい実施形態では、本発明の汚泥肥料は、リグノセルロース、典型的には、リグニン、セルロース、及びヘミセルロースからなる群から選択される少なくとも1種を含む。本発明の汚泥肥料は、例えば、汚泥肥料100g(乾燥重量)当たり、リグノセルロースを、少なくとも20g含むことが好ましく、少なくとも30g、少なくとも40g、又は少なくとも50g含むことがより好ましく、例えば40g~70g又は40g~60g含んでもよい。本発明の汚泥肥料は、リグノセルロースのような繊維成分を多く含むため、良好な保水性を有する。好ましい実施形態では、本発明の汚泥肥料は、繊維成分を多く含むことにより、良好な施工性を示す。 In a preferred embodiment, the sludge fertilizer of the present invention comprises at least one selected from the group consisting of lignocellulosic, typically lignin, cellulose, and hemicellulose. The sludge fertilizer of the present invention preferably contains, for example, at least 20 g of lignocellulosic per 100 g (dry weight) of sludge fertilizer, more preferably at least 30 g, at least 40 g, or at least 50 g, for example, 40 g to 70 g or 40 g. It may contain up to 60 g. Since the sludge fertilizer of the present invention contains a large amount of fiber components such as lignocellulosic, it has good water retention. In a preferred embodiment, the sludge fertilizer of the present invention exhibits good workability by containing a large amount of fiber components.
好ましい実施形態では、本発明の汚泥肥料は、牛糞堆肥や豚糞堆肥等と比較して低いカリウム含量を有する。 In a preferred embodiment, the sludge fertilizer of the present invention has a low potassium content as compared with cow dung compost, pig dung compost and the like.
本発明は、本発明の汚泥肥料を用いた植物の栽培方法も提供する。一実施形態では、本発明の方法は、汚泥肥料を、植物に対して施肥することを含む、植物の栽培方法に関する。汚泥肥料の施肥は、常法によって行えばよく、例えば、一般的な下水汚泥肥料の施肥方法に準じて行うことができる。植物は特に限定されないが、例えば、高窒素・低カリウムでの施肥が望ましい植物であり得る。植物としては、例えば、葉菜類、果菜類、根菜類、穀物(イネ、オオムギ、コムギ、トウモロコシ等)、きのこ類、果樹、チャ(茶)等の任意の植物が挙げられるが、これらに限定されない。施肥量(窒素換算量)は、特に限定されないが、例えば、10アール当たり1~70kgN/回又は1~50kgN/回であり得る。 The present invention also provides a method for cultivating a plant using the sludge fertilizer of the present invention. In one embodiment, the method of the present invention relates to a method for cultivating a plant, which comprises applying sludge fertilizer to the plant. The sludge fertilizer may be applied by a conventional method, and for example, it can be applied according to a general method for applying sewage sludge fertilizer. The plant is not particularly limited, but may be, for example, a plant in which fertilization with high nitrogen and low potassium is desirable. Examples of the plant include, but are not limited to, leafy vegetables, fruit vegetables, root vegetables, grains (rice, barley, wheat, corn, etc.), mushrooms, fruit trees, cha (tea), and the like. The amount of fertilizer applied (nitrogen equivalent amount) is not particularly limited, but may be, for example, 1 to 70 kgN / time or 1 to 50 kgN / time per 10 ares.
本発明の汚泥肥料は、植物の栽培に用いた場合、従来の多くの下水汚泥肥料と比較して収量増加をもたらすことができる。本発明の汚泥肥料は、即効性と遅効性を併せ持つ。 When used for plant cultivation, the sludge fertilizer of the present invention can bring about an increase in yield as compared with many conventional sewage sludge fertilizers. The sludge fertilizer of the present invention has both immediate and slow effects.
一実施形態では、本発明の汚泥肥料は、茶の栽培に用いた場合、収量増加をもたらすとともに、茶葉の成分比を調節することもできる。 In one embodiment, the sludge fertilizer of the present invention, when used for tea cultivation, can bring about an increase in yield and can also adjust the composition ratio of tea leaves.
例えば、本発明の汚泥肥料を、適切な配合割合で他の肥料原料(例えば、菜種油粕等の油粕)と共に使用することにより(例えば、本発明の汚泥肥料:菜種油粕等の油粕=10:90~60:40、15:85~55:45、又は25:75~50:50の質量比で使用することにより)、旨味成分(例えば、テアニン)の量を増加させることができる。 For example, by using the sludge fertilizer of the present invention together with other fertilizer raw materials (for example, oil cake such as rapeseed oil cake) in an appropriate mixing ratio (for example, sludge fertilizer of the present invention: oil cake such as rapeseed oil cake = 10:90). By using in a mass ratio of ~ 60: 40, 15: 85 ~ 55: 45, or 25: 75 ~ 50: 50), the amount of flavor component (eg, theanin) can be increased.
例えば、本発明の汚泥肥料を、適切な配合割合で他の肥料原料(例えば、菜種油粕等の油粕)と共に使用することにより(例えば、本発明の汚泥肥料:菜種油粕等の油粕=65:35~100:0、70:30~100:0、又は75:25~100:0の質量比で使用することにより)、一番茶のカテキン類の量を低下させることができる。 For example, by using the sludge fertilizer of the present invention in an appropriate mixing ratio together with other fertilizer raw materials (for example, oil cake such as rapeseed oil cake) (for example, sludge fertilizer of the present invention: oil cake such as rapeseed oil cake = 65:35. By using in a mass ratio of ~ 100: 0, 70: 30 ~ 100: 0, or 75: 25 ~ 100: 0), the amount of the first tea catechins can be reduced.
以下、実施例を用いて本発明をさらに具体的に説明する。但し、本発明の技術的範囲はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the technical scope of the present invention is not limited to these examples.
[実施例1]下水汚泥肥料の調製
下水汚泥(脱水汚泥;水分率75.5%)、米糠、竹おが屑、及び焼酎粕乾燥固形物を肥料原料として用いて、本発明の条件的嫌気発酵下水汚泥肥料SWを調製した。
[Example 1] Preparation of sewage sludge fertilizer Conditional anaerobic fermentation sewage sludge fertilizer of the present invention using sewage sludge (dehydrated sludge; moisture content 75.5%), rice bran, bamboo waste, and dried shochu lees as fertilizer raw materials. SW was prepared.
具体的には、下水汚泥(1/3量)を最下層に敷き詰め、その上に、米糠(1/2量)、竹おが屑(1/2量)、水(1/2量)、焼酎粕乾燥固形物(1/2量)、下水汚泥(1/3量)、焼酎粕乾燥固形物(1/2量)、竹おが屑(1/2量)、米糠(1/2量)、及び水(1/2量)をこの順番で層状に載せて積層体を形成し、最後に下水汚泥(1/3量)を載せて全体(上部及び側面)を含水率の高い下水汚泥で覆い、条件的嫌気条件の初期状態を構築した。各層の厚みは3~30cm程度であった。 Specifically, sewage sludge (1/3 amount) is spread on the bottom layer, and rice bran (1/2 amount), bamboo waste (1/2 amount), water (1/2 amount), and shochu lees are placed on top of it. Dry solids (1/2 amount), sewage sludge (1/3 amount), shochu lees dry solids (1/2 amount), bamboo waste (1/2 amount), rice bran (1/2 amount), and water (1/2 amount) is placed in layers in this order to form a laminate, and finally sewage sludge (1/3 amount) is placed and the whole (upper part and side surface) is covered with sewage sludge with high water content. The initial state of the anaerobic condition was constructed. The thickness of each layer was about 3 to 30 cm.
下水汚泥の水分の一部は米糠、竹おが屑、焼酎粕乾燥固形物によって吸収させ、一方で、肥料原料間に加えた水により、全体の含水率(水分率)が60%程度になるように調整した。肥料原料間に加えた水は肥料原料層の表面全体に散布した。 Part of the water content of the sewage sludge is absorbed by rice bran, bamboo scraps, and dried solids of shochu lees, while the water added between the fertilizer raw materials makes the total water content (moisture content) about 60%. It was adjusted. The water added between the fertilizer raw materials was sprayed over the entire surface of the fertilizer raw material layer.
このようにして、全体として底面2m×2m、上面1.5m×1.5m、高さ0.8mになる肥料原料体を形成するように、肥料原料を堆積させた。図1に、ここで用いたサンドウィッチ方式の肥料原料の積層(堆積)方法を模式的に示す。肥料原料体は条件的嫌気条件で3ヶ月間超にわたり発酵させた。条件的嫌気条件では、好気条件とは異なり、強制通気を行わないため、アンモニアガスが発散されず臭気が出にくい条件的嫌気性細菌が関与する発酵が行われる。 In this way, the fertilizer raw materials were deposited so as to form a fertilizer raw material body having a bottom surface of 2 m × 2 m, a top surface of 1.5 m × 1.5 m, and a height of 0.8 m as a whole. FIG. 1 schematically shows a method of laminating (depositing) a sandwich-type fertilizer raw material used here. The fertilizer raw material was fermented for over 3 months under conditional anaerobic conditions. Under conditioned anaerobic conditions, unlike aerobic conditions, forced aeration is not performed, so fermentation involving conditioned anaerobic bacteria is performed, in which ammonia gas is not emitted and odors are less likely to be emitted.
発酵期間中、概ね1ヶ月に1回(計3回;発酵36日目、67日目、98日目)、ホイールローダーにより切り返しを行った。肥料原料体の最上部表面から30cm及び60cm下の温度を経時的に測定したところ、発酵の進行に伴い温度は上昇し、発酵65日目~70日目で60℃を超えたが、その後55℃程度まで低下した。発酵開始から98日目に3回目の切り返しを行った後、肥料調製(堆肥化)を完了させた。
得られた条件的嫌気発酵下水汚泥肥料SWにおける原料の配合割合を表1に示す。
During the fermentation period, it was cut back by a wheel loader approximately once a month (3 times in total; 36th, 67th, and 98th days of fermentation). When the temperature 30 cm and 60 cm below the top surface of the fertilizer raw material was measured over time, the temperature rose as the fermentation progressed and exceeded 60 ° C on the 65th to 70th days of fermentation, but 55 after that. It dropped to about ℃. Fertilizer preparation (composting) was completed after the third rounding on the 98th day from the start of fermentation.
Table 1 shows the mixing ratio of the raw materials in the obtained conditional anaerobic fermentation sewage sludge fertilizer SW.
[実施例2]肥料調製過程の微生物群集構造解析
実施例1の肥料調製(堆肥化)中の、肥料原料体中の菌相の変化を経時的に調べた。それぞれの切り返しの際に採取した肥料原料体の試料(肥料原料体の最上部表面から深さ30~90cmにて採取)から、DNA抽出キット(FastDNA Spin Kit for Soil; MP Biomedicals)を用いてDNA抽出し、PCR増幅を行った。PCR増幅では、細菌/古細菌(Bacteria/Archaea)ユニバーサルプライマーセットUniv515F/Univ909R(Univ515F: 5'-GTGCCAGCMGCCGCGGTAA-3'(配列番号1);Univ909R: 5'-CCCCGYCAATTCMTTTRAGT-3'(配列番号2))を使用し、16S rRNA遺伝子を核酸増幅した。増幅産物を、QIAquick PCR Purification Kit(QIAGEN)を用いて精製した後、MiSeq(Illumina)及びMiSeq reagent kit v3(Illumina)を用いたDNAシークエンス解析を行い、オープンソースソフトウェアQIIME 2(Bolyen E., et al., (2019) Nature Biotechnology 37: 852-857., https://doi.org/10.1038/s41587-019-0209-9)を用いたデータ解析を実施した。
[Example 2] Organism community structure analysis in the fertilizer preparation process Changes in the bacterial flora in the fertilizer raw material during the fertilizer preparation (composting) in Example 1 were investigated over time. DNA from a sample of fertilizer raw material collected at each turning (collected at a depth of 30 to 90 cm from the top surface of the fertilizer raw material) using a DNA extraction kit (FastDNA Spin Kit for Soil; MP Biomedicals). Extraction was performed and PCR amplification was performed. For PCR amplification, Bacteria / Archaea Universal Primer Set Univ515F / Univ909R (Univ515F: 5'-GTGCCAGCMGCCGCGGTAA-3'(SEQ ID NO: 1); Univ909R: 5'-CCCCGYCAATTCMTTTRAGT-3' (SEQ ID NO: 2)) 16S rRNA gene was nucleic acid amplified using. The amplification product was purified using the QIAquick PCR Purification Kit (QIAGEN), followed by DNA sequence analysis using MiSeq (Illumina) and MiSeq reagent kit v3 (Illumina), and the open source software QIIME 2 (Bolyen E., et. Data analysis was performed using al., (2019) Nature Biotechnology 37: 852-857., Https://doi.org/10.1038/s41587-019-0209-9).
その結果、バシラス目(Bacillales)の細菌が堆肥化過程で増加し、堆肥化完了時には優占種として存在していたことが示された(1回目切り返し時:20.8%、2回目切り返し時:62.5%、3回目切り返し時:80.3%)。すなわち、堆肥化完了時の条件的嫌気発酵下水汚泥肥料SW中の微生物の8割を、バシラス目(Bacillales)の細菌が占めていた。 As a result, it was shown that the bacteria of the order Bacillales increased during the composting process and existed as a dominant species at the completion of composting (1st turn-back: 20.8%, 2nd turn-back: 62.5). %, At the time of the third turning back: 80.3%). That is, bacteria of the order Bacillales accounted for 80% of the microorganisms in the conditional anaerobic fermentation sewage sludge fertilizer SW at the time of completion of composting.
さらに、特に、バシラス目の高温性細菌であるセラシバシラス・クイスクイリアラム(Cerasibacillus quisquiliarum)の近縁種(16S rRNA遺伝子の相同性95%、存在割合:0.5~56.0%)やシニバシラス・ソリ(Sinibacillus soli)の近縁種(16S rRNA遺伝子の相同性98%、存在割合:0.2~26.8%)などが優占していることが示された。 Furthermore, in particular, related species of Cerasibacillus quisquiliarum, which is a high-temperature bacterium of the order Bacillales (16S rRNA gene homology 95%, abundance ratio: 0.5-56.0%) and Sinibacillus. It was shown that related species of soli) (16S rRNA gene homology 98%, abundance ratio: 0.2-26.8%) are predominant.
さらに、下水汚泥(脱水汚泥)に畑土及び土壌改良材TYK(成分分析結果を表3に示す)等の原料を用いて調製した2種類の肥料(下水汚泥混合堆肥A及びB)を調製し、同様に堆肥化過程の微生物群集構造解析を行った。表2に示す肥料原料を十分に混合し、それを堆積させて、無酸素供給で3ヶ月間超にわたり発酵させた。発酵期間中、約1ヶ月に1回、切り返しを行った。切り返しの際に採取した試料から上記と同様にDNAを抽出し、16S rRNA遺伝子を核酸増幅し、配列解析を行った。 Furthermore, two types of fertilizers (sewage sludge mixed compost A and B) prepared using raw materials such as field soil and soil improvement material TYK (component analysis results are shown in Table 3) were prepared for sewage sludge (dehydrated sludge). Similarly, the structure of the microbial community in the composting process was analyzed. The fertilizer raw materials shown in Table 2 were thoroughly mixed, deposited and fermented on an oxygen-free supply for over 3 months. During the fermentation period, it was cut back about once a month. DNA was extracted from the sample collected at the time of cutback in the same manner as above, the 16S rRNA gene was nucleic acid amplified, and sequence analysis was performed.
その結果、下水汚泥混合堆肥Aにおいては、クロストリジウム目(Clostridiales)に属する微生物群が優占種として存在していた(1回目切り返し時:20.2%、2回目切り返し時:12.4%、3回目切り返し時:21.6%)。下水汚泥混合堆肥Aには、クロストリジウム目に属する嫌気性細菌の他、バシラス目に属する条件的嫌気性のマシリバクテリウム・セネガレンス(Massilibacterium senegalense)の近縁種(相同性98%、存在割合:1.0~14.5%)などが存在していたことから、下水汚泥混合堆肥Aの堆肥化において嫌気発酵が起こっていたことが裏付けられた。一方、下水汚泥混合堆肥Bでは、放線菌を含むアクチノマイセス目(Actinomycetales)に属する細菌が優占種として存在し(1回目切り返し時:32.1%、2回目切り返し時:33.5%、3回目切り返し時:35.2%)、特にアクチノマデュラ属(Actinomadura)が存在していた。このように、下水汚泥の堆肥化によって製造される肥料であっても、原料や堆肥化方法により菌相は大きく異なることが示された。 As a result, in the sewage sludge mixed compost A, a group of microorganisms belonging to the order Clostridiales existed as dominant species (at the first turn-back: 20.2%, at the second turn-back: 12.4%, at the third turn-back). : 21.6%). In sewage sludge mixed compost A, in addition to anaerobic bacteria belonging to the order Crostridium, closely related species of conditional anaerobic Massilibacterium senegalense belonging to the order Basilidium (homologity 98%, abundance ratio: The presence of 1.0 to 14.5%) confirmed that anaerobic fermentation had occurred in the composting of sewage sludge mixed compost A. On the other hand, in the sewage sludge mixed compost B, bacteria belonging to Actinomycetales including actinomycetales exist as dominant species (1st turn-back: 32.1%, 2nd turn-back: 33.5%, 3rd turn-back). Time: 35.2%), especially the genus Actinomadura was present. As described above, it was shown that even in the case of fertilizer produced by composting sewage sludge, the bacterial flora differs greatly depending on the raw material and the composting method.
[実施例3]窒素無機化率の測定
各種肥料の窒素無機化率(肥効率)を測定した。肥料としては、実施例1で表1に示す配合割合に従って製造した条件的嫌気発酵下水汚泥肥料SW、また比較例として、菜種油粕、牛糞堆肥、鶏糞堆肥、好気発酵下水汚泥肥料CSK(市販品)、好気発酵下水汚泥肥料KG(堆肥化装置かぐやひめにより調製)、下水汚泥混合堆肥C、下水汚泥混合堆肥Dを試験した。なお堆肥化装置かぐやひめは通気量を調節可能な小型堆肥化装置である(NFN300・農畜試式;富士平工業株式会社)。
[Example 3] Measurement of nitrogen mineralization rate The nitrogen mineralization rate (fertilizer efficiency) of various fertilizers was measured. As the fertilizer, the conditional anaerobic fertilized sewage sludge fertilizer SW produced according to the blending ratio shown in Table 1 in Example 1, and as a comparative example, rapeseed oil cake, cow manure compost, chicken manure compost, aerobic fertilized sewage sludge fertilizer CSK (commercially available product). ), Aerobic fermentation sewage sludge fertilizer KG (prepared by composting device Kaguya Hime), sewage sludge mixed compost C, sewage sludge mixed compost D were tested. The composting device Kaguya Hime is a small composting device that can adjust the air volume (NFN300, agricultural and livestock trial type; Fujihira Kogyo Co., Ltd.).
好気発酵下水汚泥肥料KG(堆肥化装置かぐやひめにより調製)は、下水汚泥(脱水汚泥)40%、竹おが屑30%、米糠20%、甘藷焼酎粕乾燥固形物10%(いずれも乾燥重量%)を、水分率を60%程度に調整し、混合撹拌した後、洗濯ネットに充填し(6.25kg;乾燥重量で2.5kg)、通気量0.4mL/分に調整した環境下で好気発酵を行い、堆肥化することによって製造した。 Aerobic fertilized sewage sludge fertilizer KG (prepared by composting device Kaguya Hime) is 40% sewage sludge (dehydrated sludge), 30% bamboo waste, 20% rice bran, 10% dry solids of sweet potato shochu (all dry weight%). After adjusting the water content to about 60%, mixing and stirring, fill the washing net (6.25 kg; 2.5 kg in dry weight), and perform aerobic fermentation in an environment adjusted to an aeration rate of 0.4 mL / min. Manufactured by composting.
下水汚泥混合堆肥Cは、下水汚泥(脱水汚泥)49.0%、畑土18.1%、土壌改良材TYK32.9%[乾燥重量%]を、水分率を60%程度に調整し、下水汚泥で外側を覆うことなく、混合撹拌した後、条件的嫌気条件で発酵させることにより調製した。 Sewage sludge mixed compost C is made by adjusting the water content of sewage sludge (dehydrated sludge) 49.0%, field soil 18.1%, soil improvement material TYK 32.9% [dry weight%] to about 60%, and using sewage sludge on the outside. It was prepared by mixing and stirring without covering and then fermenting under conditional anaerobic conditions.
下水汚泥混合堆肥Dは、下水汚泥(脱水汚泥)11.0%、竹おが屑8.7%、米糠5.6%、甘藷焼酎粕原液2.8%、畑土40.1%、土壌改良材TYK15.6%[乾燥重量%]を、水分率を60%程度に調整し、下水汚泥で外側を覆うことなく、混合撹拌した後、条件的嫌気条件で発酵させることにより調製した。 Sewage sludge mixed compost D is sewage sludge (dehydrated sludge) 11.0%, bamboo waste 8.7%, rice bran 5.6%, sweet potato shochu lees stock solution 2.8%, field soil 40.1%, soil improvement material TYK 15.6% [dry weight%]. The water content was adjusted to about 60%, and the mixture was mixed and stirred without covering the outside with sewage sludge, and then fermented under conditional anaerobic conditions.
黒ボク土(風乾土)10gと肥料200mgを混合し、100mLの培養瓶に入れ、蒸留水を加えて最大容水量の60%に水分率を調整した後、25℃で140日間にわたり培養することにより、窒素無機化試験を実施した。試験期間中、経時的に試料を採取した。10%塩化カリウム50mLを、試料が入った培養瓶に加え、30分間振とうした後、ろ紙でろ過し、ろ液10mLを蒸留法に供してアンモニア態窒素と硝酸態窒素の量を測定し、土壌由来窒素量を差し引き、無機態窒素含量を算出(定量)した。窒素無機化率(肥効率)%は、以下の式に従って算出した。
窒素無機化率(肥効率)%=[各試料中の無機態窒素含量(N mg/g肥料)]/[培養開始時の肥料中の全窒素含量(N mg/g肥料)]×100
Mix 10 g of Andosols (air-dried soil) and 200 mg of fertilizer, put them in a 100 mL culture bottle, add distilled water to adjust the water content to 60% of the maximum capacity, and then cultivate at 25 ° C for 140 days. The nitrogen mineralization test was carried out. Samples were taken over time during the test period. Add 50 mL of 10% potassium chloride to the culture bottle containing the sample, shake for 30 minutes, filter with a filter paper, and apply 10 mL of the filtrate to the distillation method to measure the amount of ammonia nitrogen and nitrate nitrogen. The amount of soil-derived nitrogen was subtracted to calculate (quantify) the inorganic nitrogen content. The nitrogen mineralization rate (fertilization efficiency)% was calculated according to the following formula.
Nitrogen mineralization rate (fertilizer efficiency)% = [Inorganic nitrogen content in each sample (N mg / g fertilizer)] / [Total nitrogen content in fertilizer at the start of culture (N mg / g fertilizer)] x 100
その結果を図2~図4に示す。菜種油粕、牛糞堆肥、鶏糞堆肥、及び既存の好気発酵下水汚泥肥料CSKの培養140日後の窒素無機化率(肥効率)はそれぞれ、58.5%、35.5%、27.0%、及び67.2%であったが、本発明の条件的嫌気発酵下水汚泥肥料SWのその窒素無機化率(肥効率)は88.3%でありそれらの比較例と比べても非常に高かった(図2)。一方、別の試験系で算出した、菜種油粕、好気発酵下水汚泥肥料CSK、及び好気発酵下水汚泥肥料KGの培養140日後の窒素無機化率(肥効率)は、それぞれ、60.3%、64.5%、62.3%であり、互いに同等の窒素無機化率を示した(図3)。さらに別の試験系で算出した、下水汚泥混合堆肥C及び下水汚泥混合堆肥Dの、25℃での培養140日後の窒素無機化率(肥効率)はそれぞれ49.8%、35.5%であり、それほど高い窒素無機化率は示さなかった(図4)。 The results are shown in FIGS. 2 to 4. The nitrogen mineralization rates (fertilizer efficiency) of rapeseed oil cake, cow dung compost, chicken manure compost, and existing aerobic fertilized sewage sludge fertilizer CSK after 140 days of cultivation were 58.5%, 35.5%, 27.0%, and 67.2%, respectively. However, the nitrogen mineralization rate (fertilizer efficiency) of the conditional anaerobic fermentation sewage sludge fertilizer SW of the present invention was 88.3%, which was much higher than those of the comparative examples (Fig. 2). On the other hand, the nitrogen mineralization rates (fertilizer efficiency) of rapeseed oil cake, aerobic fermented sewage sludge fertilizer CSK, and aerobic fermented sewage sludge fertilizer KG after 140 days of cultivation, calculated by another test system, were 60.3% and 64.5, respectively. % And 62.3%, showing the same nitrogen mineralization rates as each other (Fig. 3). The nitrogen mineralization rates (fertilization efficiency) of sewage sludge mixed compost C and sewage sludge mixed compost D calculated by another test system after 140 days of cultivation at 25 ° C were 49.8% and 35.5%, respectively, which are so high. The nitrogen mineralization rate was not shown (Fig. 4).
以上の結果から、本発明の条件的嫌気発酵下水汚泥肥料SWは、従来の肥料や他の下水汚泥肥料と比較して顕著に高い窒素無機化率(肥効率)を有することが示された。 From the above results, it was shown that the conditional anaerobic fermentation sewage sludge fertilizer SW of the present invention has a significantly higher nitrogen mineralization rate (fertilizer efficiency) than conventional fertilizers and other sewage sludge fertilizers.
なお条件的嫌気発酵下水汚泥肥料SWと同じ肥料原料を用いて同様の方法で積層体を形成した後、積層体を全体的にいったん混合してから積層体と同様の形状に整え、接地面を除く外側全体を下水汚泥(1/3量)で覆うことにより肥料原料体を作製し、同様に条件的嫌気発酵させたところ、条件的嫌気発酵下水汚泥肥料SWと類似の組成、窒素含量及び窒素無機化率を示す条件的嫌気発酵下水汚泥肥料SWMが得られた(条件的嫌気発酵下水汚泥肥料SWMの窒素含量4.04%、条件的嫌気発酵下水汚泥肥料SWの窒素含量3.91%)。この肥料SWMは全体的に塊をあまり含まなかった。 Conditional anaerobic fermentation Sewage sludge fertilizer After forming a laminate by the same method using the same fertilizer raw material as SW, the laminate is mixed once as a whole, then adjusted to the same shape as the laminate, and the ground surface is prepared. A fertilizer raw material was prepared by covering the entire outside except sewage sludge (1/3 amount), and when conditional anaerobic fermentation was carried out in the same manner, the composition, nitrogen content and nitrogen similar to those of the conditional anaerobic fermentation sewage sludge fertilizer SW were obtained. Conditional anaerobic fermentation sewage sludge fertilizer SWM showing the mineralization rate was obtained (nitrogen content 4.04% of conditional anaerobic fermentation sewage sludge fertilizer SWM, nitrogen content 3.91% of conditional anaerobic fermentation sewage sludge fertilizer SW). This fertilizer SWM was generally low in mass.
[実施例4]肥料の成分分析
実施例2及び3で試験した各種肥料について、常法により成分分析を行った。無機成分について、P2O5は、バナドモリブデン酸アンモニア法により、K2O、MgO、CaOは原子吸光法により分析した。重金属成分について、As、Cr、Cd、Pb、AlはICP質量分析法により、Hgは還元気化法により、Cu、Zn、Niは原子吸光法により分析した。C/N比は堆肥中の全炭素量と全窒素量から算出した。リグニン、セルロース、ヘミセルロースはP. J.Van Soestらの方法に従って、定量した。具体的には、繊維成分のうちADF(酸性デタージェント繊維:リグニン+セルロース)、NDF(中性デタージェント繊維:リグニン+セルロース+ヘミセルロース)はデタージェント分析法で、リグニン量はVan Soest and McQueenの方法で定量し、NDF量とADF量の差からヘミセルロース量を、ADF量とリグニン量の差からセルロース量を求めた。結果を表3に示す。
[Example 4] Component analysis of fertilizer The components of various fertilizers tested in Examples 2 and 3 were analyzed by a conventional method. Regarding the inorganic components, P 2 O 5 was analyzed by the ammonia vanadomolybdate method, and K 2 O, MgO, and Ca O were analyzed by the atomic absorption method. Heavy metal components were analyzed by ICP mass spectrometry for As, Cr, Cd, Pb and Al, reduction vaporization for Hg, and atomic absorption spectrometry for Cu, Zn and Ni. The C / N ratio was calculated from the total carbon content and total nitrogen content in the compost. Lignin, cellulose and hemicellulose were quantified according to the method of PJ Van Soest et al. Specifically, among the fiber components, ADF (acidic detergent fiber: lignin + cellulose) and NDF (neutral detergent fiber: lignin + cellulose + hemicellulose) are detergent analysis methods, and the amount of lignin is Van Soest and McQueen's. The amount was quantified by the method, and the amount of hemicellulose was determined from the difference between the amount of NDF and the amount of ADF, and the amount of cellulose was determined from the difference between the amount of ADF and the amount of lignin. The results are shown in Table 3.
表3に示されるように、本発明の条件的嫌気発酵下水汚泥肥料は、他の下水汚泥肥料と比較して重金属含有量が少なく、牛糞堆肥、馬糞堆肥、馬糞堆肥と同程度まで重金属含有量が低減されていることが示された。また本発明の条件的嫌気発酵下水汚泥肥料は、繊維成分を多く含み、保水性がよく、またカリウム含有量が少ないことも示された。 As shown in Table 3, the conditional anaerobic fertilized sewage sludge fertilizer of the present invention has a lower heavy metal content than other sewage sludge fertilizers, and has a heavy metal content to the same extent as cow dung compost, horse manure compost, and horse manure compost. Was shown to be reduced. It was also shown that the conditional anaerobic fermentation sewage sludge fertilizer of the present invention contains a large amount of fiber components, has good water retention, and has a low potassium content.
[実施例5]本発明の条件的嫌気発酵下水汚泥肥料の茶栽培への適用
茶栽培では一般的に肥料を7回に分けて施肥する。本実施例では、そのうちの3回、すなわち、樹体に栄養成分が貯蔵される時期の3回(秋肥2回目(9月下旬~10月上旬)、春肥1回目(2月中旬)、春肥2回目(3月上旬))について、被験肥料を用いた施肥を行った(6~24kgN/10a施肥)。
[Example 5] Application of conditional anaerobic fermentation sewage sludge fertilizer of the present invention to tea cultivation In tea cultivation, fertilizer is generally applied in 7 batches. In this example, three of them, that is, three times when nutrients are stored in the tree body (second autumn fertilizer (late September to early October), first spring fertilizer (mid-February), For the second spring fertilizer (early March)), fertilizer was applied using the test fertilizer (6 to 24 kgN / 10a fertilizer).
被験肥料としては、(i)菜種油粕と腐葉土を混合した慣用肥料、(ii)菜種油粕とマッシュルーム廃菌床を混合した慣用肥料、(iii)菜種油粕及び好気発酵下水汚泥肥料CSK(=50%:50%)とマッシュルーム廃菌床を混合した肥料、及び(iv)菜種油粕及び本発明の条件的嫌気発酵下水汚泥肥料SW(=50%:50%)とマッシュルーム廃菌床を混合した肥料を用いた。
施肥後、茶葉の生育状態及び収量を調査した。一番茶(茶葉)についての結果を表4に示す。
The test fertilizers were (i) conventional fertilizer mixed with rapeseed oil lees and leaf mold, (ii) conventional fertilizer mixed with rapeseed oil lees and mushroom waste fungus bed, (iii) rapeseed oil lees and aerobic fertilized sewage sludge fertilizer CSK (= 50). %: 50%) and mushroom waste bed mixed fertilizer, and (iv) rapeseed oil lees and conditional anaerobic fertilizer sewage sludge fertilizer SW (= 50%: 50%) and mushroom waste bed mixed fertilizer of the present invention. Was used.
After fertilization, the growth condition and yield of tea leaves were investigated. Table 4 shows the results for Ichibancha (tea leaves).
表4に示されるように、本発明の条件的嫌気発酵下水汚泥肥料は、他の肥料と比較して、新葉数を増加させ、全芽数の数及び重量も増加させ、顕著な収量増加をもたらした。
なお二番茶及び三番茶(茶葉)についても同様の結果が得られた。
さらに、一番茶(茶葉)(表5)及び三番茶(茶葉)(表6)の成分分析を行った。
As shown in Table 4, the conditional anaerobic fermented sewage sludge fertilizer of the present invention increases the number of new leaves, the number and weight of total shoots, and a remarkable increase in yield as compared with other fertilizers. Brought about.
Similar results were obtained for the second and third teas (tea leaves).
Furthermore, the components of the first tea (tea leaves) (Table 5) and the third tea (tea leaves) (Table 6) were analyzed.
表5及び表6に示すように、下水汚泥肥料CSK又は条件的嫌気発酵下水汚泥肥料SWを50%量(腐葉土、廃菌床を除く)で被験肥料に用いた試験区では、慣用肥料よりも茶葉のテアニン含量が増加し、特に条件的嫌気発酵下水汚泥肥料SWを用いた場合にはテアニン含量がより増加することが示された。一方、カテキン類含量は、下水汚泥肥料CSK又は条件的嫌気発酵下水汚泥肥料SWを50%量(腐葉土又は廃菌床を除く肥料成分に対して)で被験肥料に用いた試験区で、より低い傾向が示された。なお下水汚泥肥料CSKを50%量(腐葉土、廃菌床を除く)で被験肥料に用いて同様の試験を行った(下水汚泥肥料CSK+菜種油粕(25%:75%)+廃菌床)ところ、同様に、慣用肥料と比較して茶葉のテアニン含量が増加し、カテキン類含量は低下する傾向が示された。 As shown in Tables 5 and 6, in the test plots in which 50% of the sewage sludge fertilizer CSK or the conditional anaerobic fermentation sewage sludge fertilizer SW was used as the test fertilizer (excluding leaf mold and waste fungus bed), the fertilizer was higher than the conventional fertilizer. It was shown that the theanin content of tea leaves was increased, and that the theanin content was further increased, especially when the conditional anaerobic fermentation sewage sludge fertilizer SW was used. On the other hand, the content of catechins is lower in the test plots in which 50% of sewage sludge fertilizer CSK or conditional anaerobic fermentation sewage sludge fertilizer SW was used as the test fertilizer (for fertilizer components excluding humus or waste fungus bed). A trend was shown. A similar test was conducted using 50% of sewage sludge fertilizer CSK (excluding leaf mold and waste fungus bed) as a test fertilizer (sewage sludge fertilizer CSK + rapeseed oil cake (25%: 75%) + waste fungus bed). Similarly, the theanine content of tea leaves tended to increase and the catechin content tended to decrease as compared with conventional fertilizers.
テアニンは旨味成分であり、カテキンは抗酸化作用などの機能性を有する苦味成分である。本発明の条件的嫌気発酵下水汚泥肥料を用いて、旨味成分含量が多い茶葉を生産できることが示された。 Theanine is an umami component, and catechin is a bitter component having functionality such as an antioxidant effect. It was shown that the conditional anaerobic fermentation sewage sludge fertilizer of the present invention can be used to produce tea leaves having a high umami component content.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020110731A JP7488520B2 (en) | 2020-06-26 | 2020-06-26 | Sludge fertilizer with high nitrogen mineralization rate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020110731A JP7488520B2 (en) | 2020-06-26 | 2020-06-26 | Sludge fertilizer with high nitrogen mineralization rate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022007645A true JP2022007645A (en) | 2022-01-13 |
JP7488520B2 JP7488520B2 (en) | 2024-05-22 |
Family
ID=80109872
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020110731A Active JP7488520B2 (en) | 2020-06-26 | 2020-06-26 | Sludge fertilizer with high nitrogen mineralization rate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7488520B2 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003063885A (en) | 2001-08-27 | 2003-03-05 | Tateyama Engineering:Kk | Method for composting cut tree, cut root or pruned branch |
JP4948235B2 (en) | 2007-04-02 | 2012-06-06 | 太平洋セメント株式会社 | Incineration fly ash treatment method |
JP2009254243A (en) | 2008-04-14 | 2009-11-05 | Eco Green:Kk | Environmental preservation material for water area, method for producing the material, and method for composting the material |
-
2020
- 2020-06-26 JP JP2020110731A patent/JP7488520B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP7488520B2 (en) | 2024-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Effect of microbial inoculation on physicochemical properties and bacterial community structure of citrus peel composting | |
Arvanitoyannis et al. | Current and potential uses of composted olive oil waste | |
CN100509709C (en) | Process of twice fermenting garbage-sludge mixture to produce microbial fertilizer | |
CN105384480B (en) | A kind of biological humic type organic matter decomposing inoculant with deodorization functions | |
CN102219572B (en) | Biological organic fertilizer and preparation method thereof | |
CN102584467B (en) | Biological organic fertilizer prepared by municipal sludge and preparation method thereof | |
CN104045385B (en) | A kind of biological organic fertilizer and production method thereof | |
CN111254079B (en) | Composite fermentation microbial inoculum and application thereof in preparation of citrus pulp bio-organic fertilizer | |
CN107162647A (en) | A kind of riverway sludge processing method | |
CN103695317B (en) | There is the production method of the efficient phosphate-solubilizing penicillium oxalicum microbial inoculum of heavy metal tolerance characteristic | |
Toscano et al. | Olive mill by-products management | |
CN101830738A (en) | Microbial organic fertilizer produced by using vinegar residues and production process thereof | |
CN111171824A (en) | Fermented biomass multifunctional soil conditioner and preparation and application methods thereof | |
Pajura | Composting municipal solid waste and animal manure in response to the current fertilizer crisis-a recent review | |
CN101747101A (en) | Polybasic organic bio-fertilizer | |
CN106396783A (en) | Method for preparing organic fertilizer from grape peel pomace | |
Danish et al. | Succession and catabolic properties of fungal community during composting of fruit waste at sub-tropical environment | |
KR20210000690A (en) | A compost composition comprising coffee grounds and tobacco dust | |
CN111990212A (en) | Renewable eucalyptus seedling raising substrate based on kitchen waste raw materials and preparation method | |
JP7488520B2 (en) | Sludge fertilizer with high nitrogen mineralization rate | |
CN1359876A (en) | Mud fertilizer and its preparing process | |
Sarangi et al. | Compost from Sugar mill press mud and distillery spent wash for sustainable agriculture | |
KR101976009B1 (en) | Composition for treating solid organic wastes, treatment method of solid organic waste using thereof and compost manufactured by the same | |
RU2402510C1 (en) | Vermicompost preparation method | |
WO2006040601A1 (en) | Process for treatment of by-products of wine growing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A80 | Written request to apply exceptions to lack of novelty of invention |
Free format text: JAPANESE INTERMEDIATE CODE: A80 Effective date: 20200720 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230524 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240227 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240402 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240426 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7488520 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |