JP2022003669A - Circuit wiring board and manufacturing method thereof - Google Patents

Circuit wiring board and manufacturing method thereof Download PDF

Info

Publication number
JP2022003669A
JP2022003669A JP2020107887A JP2020107887A JP2022003669A JP 2022003669 A JP2022003669 A JP 2022003669A JP 2020107887 A JP2020107887 A JP 2020107887A JP 2020107887 A JP2020107887 A JP 2020107887A JP 2022003669 A JP2022003669 A JP 2022003669A
Authority
JP
Japan
Prior art keywords
wiring board
electrode
circuit wiring
base film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020107887A
Other languages
Japanese (ja)
Other versions
JP7467252B2 (en
Inventor
富士男 森
Fujio Mori
祐樹 松井
Yuki Matsui
喜博 坂田
Yoshihiro Sakata
勇人 中家
Yuto Nakaya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissha Co Ltd
Original Assignee
Nissha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissha Co Ltd filed Critical Nissha Co Ltd
Priority to JP2020107887A priority Critical patent/JP7467252B2/en
Publication of JP2022003669A publication Critical patent/JP2022003669A/en
Application granted granted Critical
Publication of JP7467252B2 publication Critical patent/JP7467252B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a circuit wiring board in which an electrode having high adhesion strength to a base material film is formed and which is suitable for millimeter-wave band communication.SOLUTION: A circuit wiring board is a circuit wiring board in which an electrode is formed directly in contact with a surface of a base material film. A main component of the base material film is a cyclic olefin resin with a crystallinity of 1%-30%. Arithmetic mean roughness Ra of the surface of the base material film is 0.01-0.3 μm. The electrode is a metal film with a thickness of 3-20 times the arithmetic mean roughness Ra of the basic material film.SELECTED DRAWING: Figure 1

Description

本発明は基材フィルム上に電極が形成された回路配線板に関し、本発明の回路配線板の上部に光導波路などを形成することで次世代通信網における光電変換素子(光変調器)に適用できる。光電変換素子(光変調器など)は、光ファイバーを用いた光通信において、電気信号をある変換回路を用いて光源の強度を変調して光信号に変換したり、その逆の光信号を電気信号に変換するデバイスである。 The present invention relates to a circuit wiring board in which electrodes are formed on a base film, and is applied to a photoelectric conversion element (optical modulator) in a next-generation communication network by forming an optical waveguide or the like on the circuit wiring board of the present invention. can. In optical communication using optical fibers, photoelectric conversion elements (optical modulators, etc.) modulate the intensity of a light source using a conversion circuit to convert an electrical signal into an optical signal, and vice versa. It is a device that converts to.

そして、本発明の基材フィルムに用いる環状オレフィン系樹脂は、極めて低吸水性・低透湿性でかつ誘電特性が非常に優秀な特性をもつ樹脂であり、次世代通信網で使用されると予想されるミリ波帯電波対応の回路基板材料の候補の一つにも挙げられている。 The cyclic olefin resin used for the base film of the present invention is a resin having extremely low water absorption, low moisture permeability, and extremely excellent dielectric properties, and is expected to be used in next-generation communication networks. It is also listed as one of the candidates for circuit board materials compatible with millimeter-wave charged waves.

従来、環状オレフィン系樹脂からなる基材フィルム上に電極が形成された回路配線板(タッチセンサ)の発明として、特許文献1の発明があった。特許文献1の発明では、前記基材フィルムが、式(1)の置換基RとRがつながった環構造の水素化開環メタセシス重合体を主成分とし、電極が銅電極からなるタッチセンサの発明であり、透明性および耐熱性等に対応することを特長としていた。

Figure 2022003669
・・・式(1) Conventionally, there has been the invention of Patent Document 1 as an invention of a circuit wiring board (touch sensor) in which an electrode is formed on a base film made of a cyclic olefin resin. In the invention of Patent Document 1, the base film is composed mainly of hydrogenated ring-opening metathesis polymer of the ring structure substituent R 1 and R 2 of formula (1) is led, the electrode is made of copper electrodes touch It was an invention of a sensor, and was characterized by being compatible with transparency, heat resistance, and the like.
Figure 2022003669
... Equation (1)

特許第6267056号Patent No. 6267056

しかし、上記のような式(1)の置換基RとRがつながった環構造の水素化開環メタセシス重合体は、前記環構造が大きくなるほど非晶性になるため。透明性は優れていくものの誘電特性が多少低下する傾向になる課題があった。タッチセンサ用途では高透明性が必須の特性であるため高い誘電特性が多少低下しても許容されるが、高い誘電特性を必要とするミリ波帯通信対応の光電変換素子用回路配線板では、このような特性は不適であった。 However, hydrogenated ring-opening metathesis polymer of the substituents R 1 and R 2 are linked ring structure of formula (1) as described above, to become a more amorphous the ring structure increases. Although the transparency is excellent, there is a problem that the dielectric property tends to be slightly deteriorated. Since high transparency is an essential characteristic for touch sensor applications, it is permissible even if the high dielectric property deteriorates to some extent, but in circuit wiring boards for photoelectric conversion elements that support millimeter-wave band communication that require high dielectric property, Such properties were unsuitable.

また、非晶性になればなるほど、化学的に金属材料などの電極との密着性が低下し、さらに表面が平滑になることにより物理的にも電極との密着性が低下する課題があった。したがって、一定の密着強度を維持するために、基材フィルムと金属材料などの電極との間に他の材質から成るアンカー層を設ける必要があり、そのアンカー層の相対的に低い誘電特性性能によって、回路配線板全体の誘電特性が大幅に低下してしまう課題があった。本発明らは、これらの課題を解決するために以下の回路配線板の発明をした。 In addition, the more amorphous, the more chemically the adhesion with the electrode such as a metal material is lowered, and the smoother the surface, the more physically the adhesion with the electrode is lowered. .. Therefore, in order to maintain a constant adhesion strength, it is necessary to provide an anchor layer made of another material between the base film and the electrode such as a metal material, and due to the relatively low dielectric property performance of the anchor layer. There is a problem that the dielectric property of the entire circuit wiring board is significantly deteriorated. The present inventions have invented the following circuit wiring boards in order to solve these problems.

すなわち、本発明の第一の特徴構成は、基材フィルム表面に、直接、接して電極が形成された回路配線板であって、前記基材フィルムが結晶化度1%〜30%の環状オレフィン系樹脂を主成分とし、基材フィルム表面の算術平均粗さRaが0.01〜0.3μmであって、前記電極が、前記基材フィルム表面の算術平均粗さRaの3〜20倍の厚さの金属膜である回路配線板である。 That is, the first characteristic configuration of the present invention is a circuit wiring board in which an electrode is formed in direct contact with the surface of a base film, and the base film is a cyclic olefin having a crystallinity of 1% to 30%. The main component is a based resin, and the arithmetic mean roughness Ra of the surface of the base film is 0.01 to 0.3 μm, and the electrode is 3 to 20 times the arithmetic average roughness Ra of the surface of the base film. It is a circuit wiring board that is a thick metal film.

また、本発明の第二の特徴構成は、前記電極が、前記基材フィルムの一方の面に形成されたアンテナ受信または送信の電極パターンと、前記基材フィルムの他方の面に形成されたグラウンド電極とからなる回路配線板である。また、本発明の第三の特徴構成は、前記環状オレフィン系樹脂が、式(1)の置換基RとRとがつながらず、かつC2n+1(n=0〜8)の構造からなる回路配線板である。

Figure 2022003669
・・・式(1) The second characteristic configuration of the present invention is that the electrode has an antenna receiving or transmitting electrode pattern formed on one surface of the base film and a ground formed on the other surface of the base film. It is a circuit wiring board composed of electrodes. A third aspect of the present invention, the cyclic olefin resin, the structure of the not connected and the substituents R 1 and R 2 of formula (1), and C n H 2n + 1 (n = 0~8) It is a circuit wiring board consisting of.
Figure 2022003669
... Equation (1)

また、本発明の第四の特徴構成は、電極の上部に光導波路が形成された回路配線板である。また、本発明の第五の特徴構成は、基材フィルムの表面に、表面の算術平均粗さRaが0.01〜0,3μmになるように紫外線照射またはプラズマ処理をし、その表面に前記算術平均粗さRaの3〜20倍の厚さの金属膜である電極を形成する回路配線板の製造方法である。 Further, the fourth characteristic configuration of the present invention is a circuit wiring board in which an optical waveguide is formed on the upper part of the electrode. The fifth characteristic configuration of the present invention is to irradiate the surface of the base film with ultraviolet rays or plasma treatment so that the arithmetic average roughness Ra of the surface is 0.01 to 0.3 μm, and the surface thereof is described. This is a method for manufacturing a circuit wiring board for forming an electrode which is a metal film having a thickness of 3 to 20 times the arithmetic average roughness Ra.

本発明の第一の特徴構成によれば、本発明の回路配線板は、基材フィルム表面に、直接、接して電極が形成された回路配線板であって、前記基材フィルムが結晶化度1%〜30%の環状オレフィン系樹脂を主成分とし、基材フィルム表面の算術平均粗さRaが0.01〜0.3μmであって、前記電極が前記基材フィルム表面の算術平均粗さRaの3〜20倍の厚さの金属膜であることを特徴とする。したがって、基材フィルムの結晶質部分にあるC−H結合がほぼ規則的および密に配向し、基材フィルム表面もミリ波帯通信対応に適した適度の凹凸を有していて、金属膜の電極もその基材フィルム表面の凹凸に適応した厚みの範囲にあるため、C−H結合の一部を切断し電極材料と親和性のある官能基に改質する処理をすれば、基材フィルムとの密着強度の高い電極が形成されたミリ波帯通信に適する回路配線板を得ることができる効果がある。 According to the first characteristic configuration of the present invention, the circuit wiring board of the present invention is a circuit wiring board in which electrodes are formed in direct contact with the surface of the base film, and the base film has a degree of crystallization. The main component is 1% to 30% cyclic olefin resin, the arithmetic mean roughness Ra of the surface of the base film is 0.01 to 0.3 μm, and the electrode has the arithmetic mean roughness of the surface of the base film. It is characterized by having a metal film having a thickness of 3 to 20 times that of Ra. Therefore, the CH bonds in the crystalline portion of the base film are oriented almost regularly and densely, and the surface of the base film also has appropriate irregularities suitable for millimeter wave band communication, and the metal film has appropriate irregularities. Since the electrode is also in the thickness range adapted to the unevenness of the surface of the base film, if a treatment of cutting a part of the CH bond and modifying it into a functional group compatible with the electrode material is performed, the base film can be formed. There is an effect that it is possible to obtain a circuit wiring board suitable for millimeter wave band communication in which an electrode having a high adhesion strength is formed.

また、本発明の第二の特徴構成によれば、前記電極が、前記基材フィルムの一方の面に形成されたアンテナ受信または送信の電極パターンと、前記基材フィルムの他方の面に形成されたグラウンド電極とからなる回路配線板であることを特徴とする。したがって、グラウンド電極と基材フィルムとが背面から来る電波のノイズを遮蔽するため、アンテナ受信または送信の性能が向上する効果がある。また、各電極パターンは誘電特性の高い基材フィルムに直接接して形成されているため、受信または送信する電気信号の減衰が少なく、高性能のミリ波帯通信に適する回路配線板を得ることができる効果がある。 Further, according to the second characteristic configuration of the present invention, the electrodes are formed on the antenna receiving or transmitting electrode pattern formed on one surface of the substrate film and on the other surface of the substrate film. It is characterized by being a circuit wiring board composed of a ground electrode. Therefore, since the ground electrode and the base film shield the noise of the radio wave coming from the back surface, there is an effect of improving the antenna reception or transmission performance. Further, since each electrode pattern is formed in direct contact with a base film having high dielectric properties, it is possible to obtain a circuit wiring board suitable for high-performance millimeter-wave band communication with little attenuation of electric signals received or transmitted. There is an effect that can be done.

また、本発明の第三の特徴構成によれば、前記環状オレフィン系樹脂が、式(1)の置換基RとRとがつながらず、かつC2n+1(n=0〜8)の構造からなることを特徴とする。したがって、置換基が嵩らないため、ポリマーの主鎖が規則的に配向しやすく、結晶質部分の多い環状オレフィン系樹脂を製造しやすくできる効果がある。 Further, according to the third characteristic configuration of the present invention, in the cyclic olefin resin, the substituents R 1 and R 2 of the formula (1) are not connected, and C n H 2n + 1 (n = 0 to 8). It is characterized by having the structure of. Therefore, since the substituent is not bulky, the main chain of the polymer is easily oriented regularly, which has the effect of facilitating the production of a cyclic olefin resin having many crystalline portions.

また、本発明の第四の特徴構成によれば、本発明の回路配線板は、電極の上部に光導波路が形成された回路配線板であることを特徴とする。したがって、環状オレフィン系樹脂を基板とする光電変換素子を得られる効果がある。その結果、ミリ波帯通信に適する非常に高性能な光電変換素子を得ることができる効果がある。 Further, according to the fourth characteristic configuration of the present invention, the circuit wiring board of the present invention is a circuit wiring board in which an optical waveguide is formed on an upper portion of an electrode. Therefore, there is an effect of obtaining a photoelectric conversion element using a cyclic olefin resin as a substrate. As a result, there is an effect that a very high-performance photoelectric conversion element suitable for millimeter-wave band communication can be obtained.

また、本発明の第五の特徴構成によれば、本発明の回路配線板の製造方法は、基材フィルムの表面に、表面の算術平均粗さRaが0.01〜0.3μmになるように紫外線照射またはプラズマ処理をし、その表面に前記算術平均粗さRaの3〜20倍の厚さの金属膜である電極を形成することを特徴とする。したがって、紫外線またはプラズマガスの照射により基材フィルムの表面にミリ波帯通信対応に適しかつ密着強度の向上に寄与する微細な凹凸表面を形成できる効果がある。 Further, according to the fifth characteristic configuration of the present invention, in the method for manufacturing the circuit wiring board of the present invention, the arithmetic average roughness Ra of the surface of the base film is 0.01 to 0.3 μm. Is irradiated with ultraviolet rays or subjected to plasma treatment, and an electrode which is a metal film having a thickness of 3 to 20 times the arithmetic mean roughness Ra is formed on the surface thereof. Therefore, by irradiating with ultraviolet rays or plasma gas, there is an effect that a fine uneven surface suitable for millimeter wave band communication and contributing to improvement of adhesion strength can be formed on the surface of the base film.

本発明の第一の特徴構成における回路配線板の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the circuit wiring board in the 1st characteristic structure of this invention. 本発明の第二の特徴構成における回路配線板の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the circuit wiring board in the 2nd characteristic structure of this invention. 本発明の第四の特徴構成における回路配線板および光電変換素子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the circuit wiring board and the photoelectric conversion element in the 4th characteristic structure of this invention. 本発明の第四の特徴構成における回路配線板および光電変換素子の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the circuit wiring board and the photoelectric conversion element in the 4th characteristic structure of this invention.

以下、本発明に係る用回路配線板の実施形態を図面に基づいて説明する。本発明の回路配線板1は、基材フィルム10上に、直接、接して電極20が形成された回路配線板であって、前記基材フィルム10が結晶化度1%〜30%の環状オレフィン系樹脂を主成分とし、基材フィルム10の表面の算術平均粗さRaが0.01〜0.3μmであって、前記電極20が、前記基材フィルム10表面の算術平均粗さRaの3〜20倍の厚さの金属膜であることを特徴とする(図1参照)。 Hereinafter, embodiments of the circuit wiring board according to the present invention will be described with reference to the drawings. The circuit wiring board 1 of the present invention is a circuit wiring board in which an electrode 20 is formed in direct contact with a base film 10, and the base film 10 is a cyclic olefin having a crystallinity of 1% to 30%. The main component is a based resin, the arithmetic average roughness Ra of the surface of the base film 10 is 0.01 to 0.3 μm, and the electrode 20 is 3 of the arithmetic average roughness Ra of the surface of the base film 10. It is characterized by having a metal film having a thickness of about 20 times (see FIG. 1).

上記前記基材フィルム10の環状オレフィン系樹脂の結晶化度は、X線回折法を用いて測定し、ピーク形状部となる結晶質部分とベースライン部となる非晶質部分のフィッティングを行い、各積分強度を以下の式に代入して結晶化度を算出する。なお、式中、Xは結晶性の散乱積分強度(すなわち、結晶質部分に由来する散乱積分強度)を示し、Yは非晶性散乱積分強度(すなわち非晶質部分に由来する散乱積分強度)を示す。
結晶化度(%)=[X/(X+Y)]×100
The crystallinity of the cyclic olefin resin of the base film 10 is measured by using an X-ray diffraction method, and the crystalline portion to be the peak shape portion and the amorphous portion to be the baseline portion are fitted. The crystallinity is calculated by substituting each integrated intensity into the following equation. In the equation, X indicates the crystalline scattering integral strength (that is, the scattering integral strength derived from the crystalline portion), and Y indicates the amorphous scattering integral strength (that is, the scattering integral strength derived from the amorphous portion). Is shown.
Crystallinity (%) = [X / (X + Y)] x 100

上記結晶化度1%〜30%の環状オレフィン系樹脂の例としては、式(1)の置換基RとRとがつながらず、かつC2n+1(n=0〜8)の構造からなる環状オレフィン系樹脂が挙げられる。式(1)の置換基RとRとがつながった環構造の環状ポリオレフィン系ポリマーであると、その嵩高い置換基のためにポリマーの主鎖どうしの距離が離れ、ポリマーの主鎖の配向が阻害され、結果として結晶性部分が1%未満の非晶性ポリマーとなりやすい。

Figure 2022003669
・・・式(1) Examples of the crystallinity of 1% to 30% of a cyclic olefin resin, the structure of the not connected and the substituents R 1 and R 2 of formula (1), and C n H 2n + 1 (n = 0~8) Examples thereof include a cyclic olefin resin composed of. When it is cyclic polyolefin polymer substituents R 1 and R 2 and led ring structure of formula (1), its bulky length of the main chain each other polymers for substituents away, of the main chain of the polymer Orientation is inhibited, resulting in an amorphous polymer with less than 1% crystalline moiety.
Figure 2022003669
... Equation (1)

この前記基材フィルム10の環状オレフィン系樹脂表面に何らかの表面改質処理を施すことによって、C−H結合の一部を切断し、金属材料などとの親和性のある−OH基、−COOH基、−CO基などの官能基に変化させることにより、基材フィルム10と電極20との密着強度を向上させることができる。 By subjecting the surface of the cyclic olefin resin of the base film 10 to some kind of surface modification treatment, a part of the C—H bond is cleaved, and a −OH group and a −COOH group having an affinity with a metal material or the like are cut. By changing to a functional group such as a −CO group, the adhesion strength between the base film 10 and the electrode 20 can be improved.

とくに、結晶質部分にあるC−H結合はほぼ規則的にかつ密集して配向しているため、その箇所の部分を上記の官能基に改質すれば、効果的に密着強度を向上させることができる。したがって、結晶化度が高いほど効果的に密着強度を向上させることができるため、置換基RとRはC2n+1のnの値が低い置換基の方が好ましい。nの値が8を越えるような大きな置換基になれば、RとRとがつながった置換基の場合と大きな差がなくなる傾向になる。 In particular, since the CH bonds in the crystalline portion are oriented almost regularly and densely, if the portion at that portion is modified to the above-mentioned functional group, the adhesion strength can be effectively improved. Can be done. Therefore, it is possible to effectively improve the adhesion strength higher crystallinity, the substituents R 1 and R 2 are preferably towards the C n H 2n + 1 values is low substituents n. If the value of n becomes a large substituent exceeding 8, there is a tendency that there is no big difference from the case of a substituent in which R 1 and R 2 are connected.

さらに、この前記基材フィルム10の表面に微細な凹凸11を形成して(図1参照)、直接その表面に電極20を形成すれば、微細な凹凸11の凹部深部に金属粒子などが喰い込むように析出形成され、そのアンカー効果により基材フィルム10と電極20との密着強度をより向上させることができる。 Further, if the fine unevenness 11 is formed on the surface of the base film 10 (see FIG. 1) and the electrode 20 is directly formed on the surface thereof, metal particles or the like bite into the deep portion of the concave portion of the fine unevenness 11. As described above, the adhesion strength between the base film 10 and the electrode 20 can be further improved by the anchor effect.

しかし、この前記基材フィルム10の表面を一般的なメッキ手法で適用されているような数十μm〜数百μmレベルの大きな凹凸形状にすれば、電極20内を移動する電気信号のうち基材フィルム10との界面付近を移動する電気信号の経路が減少するため、その界面付近を移動する電気信号の割合が高いミリ波帯電波対応の回路基板に適用するには、不都合が生じた。したがって、アンカー効果を維持しつつかつ界面付近を移動する電気信号の経路が充分確保できる微細な凹凸11の形状と、その製造方法を新たに発明考案する必要があった。 However, if the surface of the base film 10 is formed into a large concavo-convex shape on the level of several tens of μm to several hundreds of μm as applied by a general plating method, it is possible to base the electric signal moving in the electrode 20. Since the path of the electric signal moving near the interface with the material film 10 is reduced, it is inconvenient to apply it to a circuit board compatible with millimeter-wave charged waves in which the ratio of the electric signal moving near the interface is high. Therefore, it is necessary to newly invent and devise the shape of the fine unevenness 11 that can sufficiently secure the path of the electric signal moving near the interface while maintaining the anchor effect, and the manufacturing method thereof.

発明者らは、どの程度の微細な凹凸11の形状が適切か創意工夫を重ねた結果、微細な凹凸11が算術平均粗さRaで0.01〜0.3μmであるようにすれば、アンカー効果を維持しつつかつ界面付近を移動する電気信号の経路が充分確保できることを見出した。すなわち、Raが0.01μm未満であれば充分な密着強度が得られず、Raが0.3μmより大きければミリ波帯電波対応の回路基板に適用するには不充分であった(表1参照)。 As a result of repeated ingenuity and ingenuity to determine how fine the shape of the unevenness 11 is appropriate, the inventors set that the fine unevenness 11 has an arithmetic average roughness Ra of 0.01 to 0.3 μm. It was found that the path of the electric signal moving near the interface can be sufficiently secured while maintaining the effect. That is, if Ra is less than 0.01 μm, sufficient adhesion strength cannot be obtained, and if Ra is larger than 0.3 μm, it is insufficient for application to a circuit board compatible with millimeter-wave charged waves (see Table 1). ).

また、その微細な凹凸11をどのようにして製造するか鋭意工夫を重ねた結果、特定の条件による紫外線照射またはプラズマ処理による表面改質の方法を発明した。熱インプリント法も方法の一つとして挙げられるが、大面積でもってエンドレスに大量生産する場合には余り適していない。また、汎用的に用いられるコロナ放電処理も方法の一つとして挙げられるが、安定的に上記の範囲の微細な凹凸11を形成できる設定条件が狭かった。 Further, as a result of repeated diligent efforts on how to manufacture the fine unevenness 11, he invented a method of surface modification by ultraviolet irradiation or plasma treatment under specific conditions. The thermal imprint method is also mentioned as one of the methods, but it is not very suitable for endless mass production with a large area. Further, although the corona discharge treatment used for general purposes can be mentioned as one of the methods, the setting conditions for stably forming the fine unevenness 11 in the above range are narrow.

紫外線照射による表面改質の条件としては、例えば、紫外線ランプを用いて基材フィルム10から1〜3cm離して3〜10分程度照射するとよい(表2および表3参照)。前記以上に距離を離たり照射時間を短くすると、前記所望の微細な凹凸11が得られない。逆に、前記距離よりも近づけたり、照射時間を長くすると、前記凹凸が大きくなりすぎたり凹凸のバラツキが大きくなりすぎる問題があった。 As a condition for surface modification by ultraviolet irradiation, for example, it is advisable to irradiate the base film 10 to 1 to 3 cm away from the base film 10 for about 3 to 10 minutes using an ultraviolet lamp (see Tables 2 and 3). If the distance is longer than the above or the irradiation time is shortened, the desired fine unevenness 11 cannot be obtained. On the contrary, when the distance is closer than the distance or the irradiation time is lengthened, there is a problem that the unevenness becomes too large or the unevenness of the unevenness becomes too large.

プラズマ処理による表面改質の条件としては、例えば、酸素や四フッ化炭素雰囲気中で真空紫外光のキセノンエキシマランプを用いて、基材フィルム10から0.5〜2cm離して2〜5分程度照射するとよい。前記距離を離したり、照射時間を短くすると前記所望の微細な凹凸11が得られず、逆に前記距離よりも近づけたり照射時間を長くすると前記凹凸が大きくなりすぎたり凹凸のバラツキが大きくなりすぎる問題があった。 As conditions for surface modification by plasma treatment, for example, using a xenon excimer lamp of vacuum ultraviolet light in an oxygen or carbon tetrafluoride atmosphere, the substrate film 10 is separated from the base film 10 by 0.5 to 2 cm for about 2 to 5 minutes. It is good to irradiate. If the distance is increased or the irradiation time is shortened, the desired fine unevenness 11 cannot be obtained. Conversely, if the distance is shorter or the irradiation time is longer, the unevenness becomes too large or the unevenness becomes too large. There was a problem.

そして、電極20の厚みを、前記基材フィルム10表面の算術平均粗さRaの3〜20倍にする必要がある。電極20の厚みが30nm(すなわち、前記基材フィルム10表面の算術平均最小粗さRa=0.01μmの3倍)未満になると電極20の断面積が小さくなり、充分な電気信号を伝播させるための経路が確保できない。一方、電極20の厚みが前記基材フィルム10表面の算術平均粗さの20倍を越えると、前記基材フィルム10表面に所望範囲の微細な凹凸11が形成されていても、アンカー効果が低下して電極20が基材フィルム10表面から剥がれやすくなる。 Then, the thickness of the electrode 20 needs to be 3 to 20 times the arithmetic average roughness Ra of the surface of the base film 10. When the thickness of the electrode 20 is less than 30 nm (that is, three times the arithmetic average minimum roughness Ra of the surface of the base film 10 = 0.01 μm), the cross-sectional area of the electrode 20 becomes small and sufficient electric signals are propagated. The route cannot be secured. On the other hand, when the thickness of the electrode 20 exceeds 20 times the arithmetic mean roughness of the surface of the base film 10, the anchor effect is lowered even if the surface of the base film 10 has fine irregularities 11 in a desired range. As a result, the electrode 20 is easily peeled off from the surface of the base film 10.

電極20は金属膜から成る層であり、材質の例としては、銅、金、銀、アルミニウム、ニッケル、パラジウム、インジウムなどの純粋な導体金属のほか、前記金属を含む導電ペースト膜、前記金属を含む導電繊維、前記金属を含む酸化膜であってもよい。電極20の製膜方法としては、電解または無電解のメッキ法のほか、スパッタリング、真空蒸着、拡散転写などにより形成する方法が挙げられる。 The electrode 20 is a layer made of a metal film, and examples of the material include a pure conductor metal such as copper, gold, silver, aluminum, nickel, palladium, and indium, a conductive paste film containing the metal, and the metal. It may be a conductive fiber containing or an oxide film containing the metal. Examples of the film forming method of the electrode 20 include a method of forming by sputtering, vacuum vapor deposition, diffusion transfer and the like, in addition to an electrolytic or electroless plating method.

また電極20は、外部から送信された電波信号を受信したり外部に対して電波信号を送信するようなアンテナ受信または送信の電極パターン201であってもよい。また、それらの電波信号ノイズを遮蔽するグラウンド電極202であってもよい。そして、このアンテナ受信または送信の電極パターンからなる電極201と、電波信号ノイズを遮蔽するグラウンド電極からなる電極202とを、基材フィルム10の両面に形成してもよい(図2参照)。 Further, the electrode 20 may be an electrode pattern 201 for receiving or transmitting an antenna that receives a radio wave signal transmitted from the outside or transmits a radio wave signal to the outside. Further, the ground electrode 202 may be used to shield the radio signal noise. Then, the electrode 201 made of the electrode pattern for receiving or transmitting the antenna and the electrode 202 made of the ground electrode for shielding the radio signal noise may be formed on both sides of the base film 10 (see FIG. 2).

このように前記所望の微細な凹凸11からなる基材フィルム10の両面に、前記所望の厚みの電極201,202を形成することで、受信または送信する電気信号の減衰が少なく、アンテナ受信または送信の性能が向上した回路配線板1が得られる。そして、前記誘電特性の高い基材フィルム10に、直接、接して電極201,202が形成されているため、高性能のミリ波帯通信に適する回路配線板1になる。その結果、ミリ波光変調器、ミリ波受光電池、光ファイバーを利用した衝突防止ミリ波レーダー、アンテナ用コンバータ、船舶用レーダー、無線LAN、FWA、ETCなど様々な用途の製品に展開が可能となる。 By forming the electrodes 201 and 202 having the desired thickness on both sides of the base film 10 made of the desired fine unevenness 11 in this way, the attenuation of the electric signal to be received or transmitted is small, and the antenna is received or transmitted. A circuit wiring board 1 having improved performance can be obtained. Since the electrodes 201 and 202 are formed in direct contact with the base film 10 having high dielectric properties, the circuit wiring board 1 is suitable for high-performance millimeter-wave band communication. As a result, it can be applied to products for various purposes such as millimeter wave light modulators, millimeter wave light receiving batteries, collision prevention millimeter wave radars using optical fibers, antenna converters, marine radars, wireless LANs, FWAs, and ETCs.

その中でも、この回路配線板1の上部に光導波路3を形成することで、ミリ波帯通信に適する次世代の光電変換素子5、例えば次世代のミリ波光変調器を得ることができる(図3、図4参照)。光導波路3は、例えば、厚さ0.3mm程度のニオブ酸リチウムなどの板状基板の一部をアニールプロトン交換法によって屈折率を変化させて形成するとよい。屈折率の差によって光は光導波路3内に閉じ込められるため、一方向から光を入力すると光導波路3に沿って光が進行し出力するまでの間に、入力された光信号に応じて変換された無線電気信号が前記アンテナ送信の電極パターン201から電波として発信される。また、前記アンテナ受信の電極パターン201で受信された電波の無線電気信号を光信号に変換することもできる。前記板状基板と回路配線板との積層には、例えば低誘電のポリイミド接着剤を塗布・載置する方法が挙げられる。 Among them, by forming the optical waveguide 3 on the circuit wiring board 1, a next-generation photoelectric conversion element 5 suitable for millimeter-wave band communication, for example, a next-generation millimeter-wave optical modulator can be obtained (FIG. 3). , See Figure 4). The optical waveguide 3 may be formed by, for example, forming a part of a plate-shaped substrate such as lithium niobate having a thickness of about 0.3 mm by changing the refractive index by an annealing proton exchange method. Since light is confined in the optical waveguide 3 due to the difference in refractive index, when light is input from one direction, it is converted according to the input optical signal until the light travels along the optical waveguide 3 and is output. The radio electric signal is transmitted as a radio wave from the electrode pattern 201 of the antenna transmission. Further, it is also possible to convert the radio electric signal of the radio wave received by the electrode pattern 201 of the antenna reception into an optical signal. Examples of the lamination of the plate-shaped substrate and the circuit wiring board include a method of applying and placing a low-dielectric polyimide adhesive.

(実施例1)
基材フィルムとして、式(1)の置換基RとRとが水素原子、エチル基、n−オクタン基、n−ノナン基の構造からなる厚み200μmの環状オレフィン系樹脂ポリマーフィルムの両面に、波長254nmの紫外線ランプを用いて前記基材フィルムから2cm離して10分間照射したあと、25℃の無電解銅メッキ浴(硫酸銅・五水和物0.03mol/L、ホルマリン0.3mol/L、ロッシェル塩錯化剤0.3mol/L、PH12.5)に浸漬させ、続いて25℃の電解銅メッキ浴(硫酸銅・五水和物10%、硫酸18%、塩酸0.5%、有機系添加剤等1%、イオン交換水70.5%)に浸漬させて、厚み0.3〜5μmの銅膜を両面に形成した。
(Example 1)
As the base film, the substituents R 1 and R 2 is a hydrogen atom of the formula (1), ethyl, n- octane group, on both sides of the cyclic olefin resin polymer film having a thickness of 200μm made of the structure of the n- nonane group After irradiating with an ultraviolet lamp having a wavelength of 254 nm at a distance of 2 cm from the substrate film for 10 minutes, a copper sulfate-free copper plating bath (copper sulfate / pentahydrate 0.03 mol / L, formalin 0.3 mol / L) at 25 ° C. Immerse in L, Rochelle salt complexing agent 0.3 mol / L, PH 12.5), followed by an electrolytic copper plating bath at 25 ° C (copper sulfate / pentahydrate 10%, sulfuric acid 18%, hydrochloric acid 0.5%). , 1% of organic additives, etc., 70.5% of ion-exchanged water) to form a copper film having a thickness of 0.3 to 5 μm on both sides.

得られた回路配線板の基材フィルムに対する銅膜の引き剥がし強度結果を表1に示す。相対的に銅膜の厚みが薄いほど引き剥がし強度が高く、置換基RとRが小さいほど引き剥がし強度が高くなる傾向が見られた。そして、各基材フィルムの結晶化度を予め測定しておいたところ、置換基RとRが小さい官能基ほど結晶化度が高い傾向が見られた。また、得られた回路配線板の周波数60GHzにおける誘電特性を評価したところ、いずれの回路配線板においても誘電正接が0.0008〜0.0015、比誘電率が2.3〜2.7と低く、とくに置換基RとRが小さいほど良好であった。 Table 1 shows the peeling strength results of the copper film with respect to the base film of the obtained circuit wiring board. Relatively copper film is thin enough peel strength is high thickness, tended to higher peel strength smaller substituents R 1 and R 2 is high. Then, when measured in advance the crystallinity of the base film, crystallinity smaller functional group substituents R 1 and R 2 are a high tendency was observed. Moreover, when the dielectric characteristics of the obtained circuit wiring board at a frequency of 60 GHz were evaluated, the dielectric loss tangent was 0.0008 to 0.0015 and the relative permittivity was as low as 2.3 to 2.7 in all the circuit wiring boards. , was particularly good as the substituents R 1 and R 2 are small.

Figure 2022003669
Figure 2022003669

続いて、前記銅膜の両面に光感光性フィルムを貼付しフォトマスクを用いて露光、現像してアンテナ送信パターンの電極と電磁波シールドパターンの電極とを形成した回路配線板を得た。そして、得られた回路配線板のアンテナ送信パターン電極の上部に厚さ0.25mmのニオブ酸リチウムからなる光導波路を積層し、光電変換素子を作製した。得られた光電変換素子を光ファイバーと接続し、光ファイバーから光信号を入力すると光導波路を介して、光信号に応じた無線電気信号が周波数60GHzの電波としてアンテナ送信パターンの電極から発せられていることが確認された。 Subsequently, a photosensitive film was attached to both sides of the copper film and exposed and developed using a photomask to obtain a circuit wiring board in which an electrode of an antenna transmission pattern and an electrode of an electromagnetic wave shield pattern were formed. Then, an optical waveguide made of lithium niobate having a thickness of 0.25 mm was laminated on the antenna transmission pattern electrode of the obtained circuit wiring board to produce a photoelectric conversion element. When the obtained photoelectric conversion element is connected to an optical fiber and an optical signal is input from the optical fiber, a wireless electric signal corresponding to the optical signal is emitted from an electrode of an antenna transmission pattern as a radio wave having a frequency of 60 GHz via an optical waveguide. Was confirmed.

発せられた周波数60GHzの電波を100m先にある受信機で受信し評価したところ、通信速度は平均1.2Gb/sであり、伝送密度は1m当たり5〜8Gb/sであり、1m当たり接続可能な回線密度は4〜7チャンネルに相当して、伝送による損失は2割以下に低く抑制されていた。よって、本発明の光電変換素子用回路配線板を使用すれば、高速・大容量の光信号データを効率的に60GHz帯の電波に変換して伝送できることが確認された。 When the emitted radio wave with a frequency of 60 GHz was received and evaluated by a receiver 100 m away, the average communication speed was 1.2 Gb / s, the transmission density was 5 to 8 Gb / s per 1 m 2, and per 1 m 2. The line density that can be connected corresponds to 4 to 7 channels, and the loss due to transmission is suppressed to 20% or less. Therefore, it has been confirmed that if the circuit wiring board for the photoelectric conversion element of the present invention is used, high-speed and large-capacity optical signal data can be efficiently converted into radio waves in the 60 GHz band and transmitted.

(実施例2)
基材フィルムとして、式(1)の置換基RとRとがn−オクタン基の構造からなる厚み200μmの環状オレフィン系樹脂ポリマーフィルムを用いて、紫外線ランプの照射時間や距離を変え、あとは実施例1と同じ条件にして回路配線板および光電変換素子を作製し、評価した。評価については、紫外線ランプが照射された環状オレフィン系樹脂ポリマーフィルムの表面に対し表面粗さ計を用いて算術平均粗さRaを測定した。その結果を表 2および表3に示す。評価の結果、環状オレフィン系樹脂ポリマーフィルムの表面の算術平均粗さRaが0.01〜0.3μmの範囲にあり、かつ銅膜の厚みがRaの3〜20倍の範囲なら銅膜と接着をし、光信号に応じた無線電気信号が周波数60GHzの電波としてアンテナ送信パターンの電極から発せられていることが確認された。とくにRaが0.04〜0.3μmで銅膜の厚みがRaの3〜5倍の範囲の範囲にあれば引き剥がし強度が10N/cm以上の回路配線板も得られた。一方で、算術平均粗さRaが0.3μmを越えた場合、銅膜との接着は強力であったが、周波数60GHzの電波は未検出になった。
(Example 2)
As the base film, using a cyclic olefin-based resin polymer film having a thickness of 200μm the substituents R 1 of the formula (1) and R 2 is the structure of n- octane group, changing the irradiation time and distance of the ultraviolet lamp, After that, a circuit wiring board and a photoelectric conversion element were manufactured and evaluated under the same conditions as in Example 1. For the evaluation, the arithmetic average roughness Ra was measured on the surface of the cyclic olefin resin polymer film irradiated with the ultraviolet lamp using a surface roughness meter. The results are shown in Tables 2 and 3. As a result of the evaluation, if the arithmetic average roughness Ra of the surface of the cyclic olefin resin polymer film is in the range of 0.01 to 0.3 μm and the thickness of the copper film is in the range of 3 to 20 times Ra, it adheres to the copper film. It was confirmed that the radio electric signal corresponding to the optical signal was emitted from the electrode of the antenna transmission pattern as a radio wave having a frequency of 60 GHz. In particular, if Ra is 0.04 to 0.3 μm and the thickness of the copper film is in the range of 3 to 5 times that of Ra, a circuit wiring board having a peel strength of 10 N / cm or more can be obtained. On the other hand, when the arithmetic average roughness Ra exceeded 0.3 μm, the adhesion with the copper film was strong, but the radio wave having a frequency of 60 GHz was not detected.

Figure 2022003669
Figure 2022003669

Figure 2022003669
Figure 2022003669

(実施例3、4)
前記、紫外線ランプの代わりに酸素雰囲気中で真空紫外光のキセノンエキシマランプを用いて、同様にテストをした結果、基材フィルムからの距離や照射時間などの条件に相違があるものの、環状オレフィン系樹脂ポリマーフィルムの表面の算術平均粗さRaと銅膜との接着性、周波数60GHzの電波性能など評価結果については、同様の結果であった。このことから、環状オレフィン系樹脂ポリマーフィルムの表面の算術平均粗さRaや、銅膜の厚みとRaの関係性が前記所定の範囲内になるようにすれば、基材ファイルの表面改質の方法に関わらず所望の光電変換素子用の回路配線板を製造できることが確認された。
(Examples 3 and 4)
As a result of the same test using the xenon excimer lamp of vacuum ultraviolet light in an oxygen atmosphere instead of the ultraviolet lamp, although there are differences in conditions such as the distance from the base film and the irradiation time, the cyclic olefin system is used. Similar results were obtained for the evaluation results such as the adhesiveness between the arithmetic average roughness Ra of the surface of the resin polymer film and the copper film, and the radio wave performance at a frequency of 60 GHz. From this, if the arithmetic average roughness Ra of the surface of the cyclic olefin resin polymer film and the relationship between the thickness of the copper film and Ra are within the predetermined ranges, the surface of the substrate file can be modified. It was confirmed that a circuit wiring board for a desired photoelectric conversion element can be manufactured regardless of the method.

1 回路配線板
3 光導波路
5 光電変換素子
10 基材フィルム
11 基材フィルム表面の微細な凹凸
20 電極
201 アンテナ受信または送信の電極パターンからなる電極
202 グラウンド電極
1 Circuit wiring board 3 Optical wave guide 5 Photoelectric conversion element 10 Base film 11 Fine irregularities on the surface of the base film 20 Electrode 201 Electrode 201 Electrode 202 ground electrode consisting of an antenna receiving or transmitting electrode pattern

Claims (5)

基材フィルム表面に、直接、接して電極が形成された回路配線板であって、
前記基材フィルムが、結晶化度1%〜30%の環状オレフィン系樹脂を主成分とし、
前記基材フィルム表面の算術平均粗さRaが、0.01〜0.3μmであって、
前記電極が、前記基材フィルム表面の算術平均粗さRaの3〜20倍の厚さの金属膜である、回路配線板。
A circuit wiring board in which electrodes are formed in direct contact with the surface of a base film.
The base film contains a cyclic olefin resin having a crystallinity of 1% to 30% as a main component.
The arithmetic average roughness Ra of the surface of the base film is 0.01 to 0.3 μm.
A circuit wiring board in which the electrode is a metal film having a thickness of 3 to 20 times the arithmetic mean roughness Ra of the surface of the base film.
前記電極が、前記基材フィルムの一方の面に形成されたアンテナ受信または送信の電極パターンと、前記基材フィルムの他方の面に形成されたグラウンド電極とからなる、請求項1に記載の回路配線板。 The circuit according to claim 1, wherein the electrode comprises an antenna receiving or transmitting electrode pattern formed on one surface of the substrate film and a ground electrode formed on the other surface of the substrate film. Wiring board. 前記環状オレフィン系樹脂が、式(1)の置換基RとRとがつながらず、かつC2n+1(n=0〜8)の構造からなる、請求項1または請求項2に記載の回路配線板。
Figure 2022003669
・・・式(1)
The cyclic olefin resin, not connected and the substituents R 1 and R 2 of formula (1), and consisting of C n H 2n + 1 structure (n = 0 to 8), according to claim 1 or claim 2 Circuit wiring board.
Figure 2022003669
... Equation (1)
前記電極の上部に光導波路が形成された、請求項1ないし請求項3のいずれかに記載の回路配線板。 The circuit wiring board according to any one of claims 1 to 3, wherein an optical waveguide is formed on the electrode. 基材フィルムの表面に、前記表面の算術平均粗さRaが0.01〜0.3μmになるように紫外線照射またはプラズマ処理をし、その表面に前記算術平均粗さRaの3〜20倍の厚さの金属膜である電極を形成する、回路配線板の製造方法。 The surface of the base film is irradiated with ultraviolet rays or plasma-treated so that the arithmetic average roughness Ra of the surface is 0.01 to 0.3 μm, and the surface thereof is 3 to 20 times the arithmetic average roughness Ra. A method of manufacturing a circuit wiring board that forms an electrode that is a thick metal film.
JP2020107887A 2020-06-23 2020-06-23 Circuit wiring board and its manufacturing method Active JP7467252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020107887A JP7467252B2 (en) 2020-06-23 2020-06-23 Circuit wiring board and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020107887A JP7467252B2 (en) 2020-06-23 2020-06-23 Circuit wiring board and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2022003669A true JP2022003669A (en) 2022-01-11
JP7467252B2 JP7467252B2 (en) 2024-04-15

Family

ID=79246995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020107887A Active JP7467252B2 (en) 2020-06-23 2020-06-23 Circuit wiring board and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7467252B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110054025A (en) 2008-08-25 2011-05-24 가부시키가이샤 간토가쿠인다이가쿠 효멘코가쿠겐큐쇼 Laminate and process for producing the laminate
JP5706668B2 (en) 2010-11-09 2015-04-22 ポリプラスチックス株式会社 Cross-linked olefin elastomer
JP6299226B2 (en) 2014-01-10 2018-03-28 住友金属鉱山株式会社 Metal-clad laminated board, wiring board, and multilayer wiring board
WO2017126101A1 (en) 2016-01-22 2017-07-27 オリンパス株式会社 Medical manipulator system
JP2018166241A (en) 2017-03-28 2018-10-25 学校法人関東学院 Planar antenna and manufacturing method thereof

Also Published As

Publication number Publication date
JP7467252B2 (en) 2024-04-15

Similar Documents

Publication Publication Date Title
US10470302B2 (en) Aluminum nitride substrate with graphite foil
KR100610649B1 (en) Resin composition, prepreg, laminate sheet and printed wiring board using the same
US20210212243A1 (en) Electromagnetic shielding film and method for making same
WO2021120844A1 (en) Middle frame assembly, preparation method for middle frame assembly and electronic apparatus
KR20210122712A (en) Resin composition
JP2022003669A (en) Circuit wiring board and manufacturing method thereof
CN116313233A (en) Copper-clad laminate film and electronic device comprising same
KR100809396B1 (en) Opto-Electric Printed Circuit Board, method of preparing the same, and method of transmitting opto-electric using the same
CN103338596A (en) Manufacturing method of whole addition circuit board without photoresist
TW201212739A (en) Wiring board and method for manufacturing the same
JP6379378B2 (en) Opto-electric hybrid board
JP2015056555A (en) High-speed transmission substrate and electronic component
JP2022003670A (en) Photoelectric conversion element and manufacturing method thereof
JP6207064B2 (en) Method for manufacturing antenna substrate
WO2004068918A2 (en) Method for producing thin silver layers
JP6483947B2 (en) High-frequency flexible printed wiring board
JP6870036B2 (en) Antenna module and its manufacturing method
US20200329552A1 (en) Component Carrier With High Passive Intermodulation Performance
JP2012244056A (en) Method for manufacturing fluororesin substrate
JP2018166241A (en) Planar antenna and manufacturing method thereof
TWI825562B (en) Copper clad laminate film, electronic device including the same, and method of preparing the copper clad laminate film
TW456164B (en) Method for forming EMI shielding film on flexible wire and flexible printed circuit board and product manufactured by the same
CN111148418A (en) Shielding film and manufacturing method thereof
US11575190B2 (en) Transmission path for transmitting high-frequency signals greater than 14ghz, where the transmission path includes a nickel-phosphorous layer with phosphorous concentrations between 0 mass% to 8 mass%
JP2011244401A (en) Method of manufacturing planar antenna and planar antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240403

R150 Certificate of patent or registration of utility model

Ref document number: 7467252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150