JP7467252B2 - Circuit wiring board and its manufacturing method - Google Patents

Circuit wiring board and its manufacturing method Download PDF

Info

Publication number
JP7467252B2
JP7467252B2 JP2020107887A JP2020107887A JP7467252B2 JP 7467252 B2 JP7467252 B2 JP 7467252B2 JP 2020107887 A JP2020107887 A JP 2020107887A JP 2020107887 A JP2020107887 A JP 2020107887A JP 7467252 B2 JP7467252 B2 JP 7467252B2
Authority
JP
Japan
Prior art keywords
wiring board
circuit wiring
electrode
base film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020107887A
Other languages
Japanese (ja)
Other versions
JP2022003669A (en
Inventor
富士男 森
祐樹 松井
喜博 坂田
勇人 中家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissha Co Ltd
Original Assignee
Nissha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissha Co Ltd filed Critical Nissha Co Ltd
Priority to JP2020107887A priority Critical patent/JP7467252B2/en
Publication of JP2022003669A publication Critical patent/JP2022003669A/en
Application granted granted Critical
Publication of JP7467252B2 publication Critical patent/JP7467252B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Aerials (AREA)
  • Optical Integrated Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

本発明は基材フィルム上に電極が形成された回路配線板に関し、本発明の回路配線板の上部に光導波路などを形成することで次世代通信網における光電変換素子(光変調器)に適用できる。光電変換素子(光変調器など)は、光ファイバーを用いた光通信において、電気信号をある変換回路を用いて光源の強度を変調して光信号に変換したり、その逆の光信号を電気信号に変換するデバイスである。 The present invention relates to a circuit wiring board in which electrodes are formed on a base film, and by forming an optical waveguide or the like on the top of the circuit wiring board of the present invention, it can be applied to photoelectric conversion elements (optical modulators) in next-generation communication networks. Photoelectric conversion elements (optical modulators, etc.) are devices that convert electrical signals into optical signals by modulating the intensity of a light source using a certain conversion circuit in optical communications using optical fibers, and vice versa, converting optical signals into electrical signals.

そして、本発明の基材フィルムに用いる環状オレフィン系樹脂は、極めて低吸水性・低透湿性でかつ誘電特性が非常に優秀な特性をもつ樹脂であり、次世代通信網で使用されると予想されるミリ波帯電波対応の回路基板材料の候補の一つにも挙げられている。 The cyclic olefin resin used in the base film of the present invention is a resin with extremely low water absorption and moisture permeability, as well as excellent dielectric properties, and is one of the candidates for circuit board materials compatible with millimeter wave bands, which are expected to be used in next-generation communication networks.

従来、環状オレフィン系樹脂からなる基材フィルム上に電極が形成された回路配線板(タッチセンサ)の発明として、特許文献1の発明があった。特許文献1の発明では、前記基材フィルムが、式(1)の置換基RとRがつながった環構造の水素化開環メタセシス重合体を主成分とし、電極が銅電極からなるタッチセンサの発明であり、透明性および耐熱性等に対応することを特長としていた。

Figure 0007467252000001
・・・式(1) Conventionally, there is an invention of a circuit wiring board (touch sensor) in which electrodes are formed on a substrate film made of a cyclic olefin resin, as disclosed in Patent Document 1. In the invention of Patent Document 1, the substrate film is mainly composed of a hydrogenated ring-opening metathesis polymer having a ring structure in which the substituents R1 and R2 of formula (1) are linked, and the electrodes are copper electrodes, and the invention is characterized by its transparency, heat resistance, and the like.
Figure 0007467252000001
...Equation (1)

特許第6267056号Patent No. 6267056

しかし、上記のような式(1)の置換基RとRがつながった環構造の水素化開環メタセシス重合体は、前記環構造が大きくなるほど非晶性になるため。透明性は優れていくものの誘電特性が多少低下する傾向になる課題があった。タッチセンサ用途では高透明性が必須の特性であるため高い誘電特性が多少低下しても許容されるが、高い誘電特性を必要とするミリ波帯通信対応の光電変換素子用回路配線板では、このような特性は不適であった。 However, the hydrogenated ring-opening metathesis polymer having a ring structure in which the substituents R 1 and R 2 of the formula (1) are connected becomes amorphous as the ring structure becomes larger. Although the transparency is excellent, there is a problem that the dielectric properties tend to decrease slightly. Since high transparency is an essential characteristic for touch sensor applications, a slight decrease in high dielectric properties is acceptable, but such properties are inappropriate for circuit wiring boards for photoelectric conversion elements compatible with millimeter wave band communication, which require high dielectric properties.

また、非晶性になればなるほど、化学的に金属材料などの電極との密着性が低下し、さらに表面が平滑になることにより物理的にも電極との密着性が低下する課題があった。したがって、一定の密着強度を維持するために、基材フィルムと金属材料などの電極との間に他の材質から成るアンカー層を設ける必要があり、そのアンカー層の相対的に低い誘電特性性能によって、回路配線板全体の誘電特性が大幅に低下してしまう課題があった。本発明らは、これらの課題を解決するために以下の回路配線板の発明をした。 Furthermore, the more amorphous the film becomes, the lower the chemical adhesion to electrodes such as metal materials, and the smoother the surface becomes, which also leads to a problem of a physical decrease in adhesion to the electrode. Therefore, in order to maintain a certain level of adhesion strength, it is necessary to provide an anchor layer made of another material between the base film and the electrode such as a metal material, but the relatively poor dielectric property performance of this anchor layer causes a significant decrease in the dielectric properties of the entire circuit wiring board. In order to solve these problems, the inventors have invented the following circuit wiring board.

すなわち、本発明の第一の特徴構成は、基材フィルム表面に、直接、接して電極が形成された回路配線板であって、前記基材フィルムが結晶化度1%~30%の環状オレフィン系樹脂を主成分とし、基材フィルム表面の算術平均粗さRaが0.01~0.3μmであって、前記電極が、前記基材フィルム表面の算術平均粗さRaの3~20倍の厚さの金属膜である回路配線板である。 That is, the first characteristic feature of the present invention is a circuit wiring board in which an electrode is formed in direct contact with the surface of a base film, the base film being composed primarily of a cyclic olefin resin with a crystallinity of 1% to 30%, the arithmetic mean roughness Ra of the base film surface being 0.01 to 0.3 μm, and the electrode being a metal film with a thickness 3 to 20 times the arithmetic mean roughness Ra of the base film surface.

また、本発明の第二の特徴構成は、前記電極が、前記基材フィルムの一方の面に形成されたアンテナ受信または送信の電極パターンと、前記基材フィルムの他方の面に形成されたグラウンド電極とからなる回路配線板である。また、本発明の第三の特徴構成は、前記環状オレフィン系樹脂が、式(1)の置換基RとRとがつながらず、かつC2n+1(n=0~8)の構造からなる回路配線板である。

Figure 0007467252000002
・・・式(1) A second characteristic feature of the present invention is a circuit wiring board in which the electrodes are formed of an antenna receiving or transmitting electrode pattern formed on one surface of the base film and a ground electrode formed on the other surface of the base film. A third characteristic feature of the present invention is a circuit wiring board in which the cyclic olefin resin has a structure of C n H 2n+1 (n = 0 to 8) in which the substituents R 1 and R 2 in formula (1) are not connected to each other.
Figure 0007467252000002
...Equation (1)

また、本発明の第四の特徴構成は、電極の上部に光導波路が形成された回路配線板である。また、本発明の第五の特徴構成は、基材フィルムの表面に、表面の算術平均粗さRaが0.01~0,3μmになるように紫外線照射またはプラズマ処理をし、その表面に前記算術平均粗さRaの3~20倍の厚さの金属膜である電極を形成する回路配線板の製造方法である。 The fourth characteristic feature of the present invention is a circuit wiring board in which an optical waveguide is formed on top of an electrode. The fifth characteristic feature of the present invention is a method for manufacturing a circuit wiring board in which the surface of a base film is irradiated with ultraviolet light or treated with plasma so that the arithmetic mean roughness Ra of the surface is 0.01 to 0.3 μm, and an electrode that is a metal film and has a thickness 3 to 20 times that of the arithmetic mean roughness Ra is formed on the surface.

本発明の第一の特徴構成によれば、本発明の回路配線板は、基材フィルム表面に、直接、接して電極が形成された回路配線板であって、前記基材フィルムが結晶化度1%~30%の環状オレフィン系樹脂を主成分とし、基材フィルム表面の算術平均粗さRaが0.01~0.3μmであって、前記電極が前記基材フィルム表面の算術平均粗さRaの3~20倍の厚さの金属膜であることを特徴とする。したがって、基材フィルムの結晶質部分にあるC-H結合がほぼ規則的および密に配向し、基材フィルム表面もミリ波帯通信対応に適した適度の凹凸を有していて、金属膜の電極もその基材フィルム表面の凹凸に適応した厚みの範囲にあるため、C-H結合の一部を切断し電極材料と親和性のある官能基に改質する処理をすれば、基材フィルムとの密着強度の高い電極が形成されたミリ波帯通信に適する回路配線板を得ることができる効果がある。 According to the first characteristic configuration of the present invention, the circuit wiring board of the present invention is a circuit wiring board in which an electrode is formed directly on and in contact with the surface of a base film, and is characterized in that the base film is mainly composed of a cyclic olefin resin with a crystallinity of 1% to 30%, the arithmetic mean roughness Ra of the base film surface is 0.01 to 0.3 μm, and the electrode is a metal film with a thickness 3 to 20 times the arithmetic mean roughness Ra of the base film surface. Therefore, since the C-H bonds in the crystalline part of the base film are almost regularly and densely oriented, the base film surface also has appropriate unevenness suitable for millimeter wave band communication, and the metal film electrode is also in a thickness range suitable for the unevenness of the base film surface, by performing a process to cut some of the C-H bonds and modify them into functional groups that have affinity with the electrode material, it is possible to obtain a circuit wiring board suitable for millimeter wave band communication in which an electrode with high adhesive strength to the base film is formed.

また、本発明の第二の特徴構成によれば、前記電極が、前記基材フィルムの一方の面に形成されたアンテナ受信または送信の電極パターンと、前記基材フィルムの他方の面に形成されたグラウンド電極とからなる回路配線板であることを特徴とする。したがって、グラウンド電極と基材フィルムとが背面から来る電波のノイズを遮蔽するため、アンテナ受信または送信の性能が向上する効果がある。また、各電極パターンは誘電特性の高い基材フィルムに直接接して形成されているため、受信または送信する電気信号の減衰が少なく、高性能のミリ波帯通信に適する回路配線板を得ることができる効果がある。 The second characteristic feature of the present invention is that the electrode is a circuit wiring board consisting of an antenna receiving or transmitting electrode pattern formed on one side of the base film and a ground electrode formed on the other side of the base film. Therefore, the ground electrode and base film shield radio wave noise coming from the back, which has the effect of improving the performance of the antenna receiving or transmitting. In addition, since each electrode pattern is formed in direct contact with the base film with high dielectric properties, there is little attenuation of the received or transmitted electrical signal, and it is possible to obtain a circuit wiring board suitable for high-performance millimeter wave band communication.

また、本発明の第三の特徴構成によれば、前記環状オレフィン系樹脂が、式(1)の置換基RとRとがつながらず、かつC2n+1(n=0~8)の構造からなることを特徴とする。したがって、置換基が嵩らないため、ポリマーの主鎖が規則的に配向しやすく、結晶質部分の多い環状オレフィン系樹脂を製造しやすくできる効果がある。 According to a third characteristic configuration of the present invention, the cyclic olefin resin is characterized in that the substituents R1 and R2 in formula (1) are not linked and have a structure of CnH2n +1 (n = 0 to 8). Therefore, since the substituents are not bulky, the polymer main chain is likely to be regularly oriented, and there is an effect that it is easy to produce a cyclic olefin resin with a large amount of crystalline portion.

また、本発明の第四の特徴構成によれば、本発明の回路配線板は、電極の上部に光導波路が形成された回路配線板であることを特徴とする。したがって、環状オレフィン系樹脂を基板とする光電変換素子を得られる効果がある。その結果、ミリ波帯通信に適する非常に高性能な光電変換素子を得ることができる効果がある。 Furthermore, according to a fourth characteristic configuration of the present invention, the circuit wiring board of the present invention is characterized in that it is a circuit wiring board in which an optical waveguide is formed on the upper part of the electrode. Therefore, it is possible to obtain a photoelectric conversion element having a substrate made of a cyclic olefin resin. As a result, it is possible to obtain a very high-performance photoelectric conversion element suitable for millimeter wave band communication.

また、本発明の第五の特徴構成によれば、本発明の回路配線板の製造方法は、基材フィルムの表面に、表面の算術平均粗さRaが0.01~0.3μmになるように紫外線照射またはプラズマ処理をし、その表面に前記算術平均粗さRaの3~20倍の厚さの金属膜である電極を形成することを特徴とする。したがって、紫外線またはプラズマガスの照射により基材フィルムの表面にミリ波帯通信対応に適しかつ密着強度の向上に寄与する微細な凹凸表面を形成できる効果がある。 Furthermore, according to a fifth characteristic configuration of the present invention, the method for manufacturing a circuit wiring board of the present invention is characterized in that the surface of a base film is irradiated with ultraviolet light or treated with plasma so that the arithmetic mean roughness Ra of the surface is 0.01 to 0.3 μm, and an electrode that is a metal film with a thickness 3 to 20 times the arithmetic mean roughness Ra is formed on the surface. Therefore, irradiation with ultraviolet light or plasma gas has the effect of forming a finely uneven surface on the surface of the base film that is suitable for millimeter wave band communication and contributes to improving adhesion strength.

本発明の第一の特徴構成における回路配線板の一例を示す概略断面図である。1 is a schematic cross-sectional view showing an example of a circuit wiring board according to a first characteristic configuration of the present invention. 本発明の第二の特徴構成における回路配線板の一例を示す概略斜視図である。FIG. 4 is a schematic perspective view showing an example of a circuit wiring board according to a second characteristic configuration of the present invention. 本発明の第四の特徴構成における回路配線板および光電変換素子の一例を示す概略断面図である。FIG. 11 is a schematic cross-sectional view showing an example of a circuit wiring board and a photoelectric conversion element according to a fourth characteristic configuration of the present invention. 本発明の第四の特徴構成における回路配線板および光電変換素子の一例を示す概略斜視図である。FIG. 11 is a schematic perspective view showing an example of a circuit wiring board and a photoelectric conversion element according to a fourth characteristic configuration of the present invention.

以下、本発明に係る用回路配線板の実施形態を図面に基づいて説明する。本発明の回路配線板1は、基材フィルム10上に、直接、接して電極20が形成された回路配線板であって、前記基材フィルム10が結晶化度1%~30%の環状オレフィン系樹脂を主成分とし、基材フィルム10の表面の算術平均粗さRaが0.01~0.3μmであって、前記電極20が、前記基材フィルム10表面の算術平均粗さRaの3~20倍の厚さの金属膜であることを特徴とする(図1参照)。 The following describes an embodiment of the circuit wiring board according to the present invention with reference to the drawings. The circuit wiring board 1 of the present invention is a circuit wiring board in which an electrode 20 is formed directly on and in contact with a base film 10, the base film 10 being mainly composed of a cyclic olefin resin with a crystallinity of 1% to 30%, the arithmetic mean roughness Ra of the surface of the base film 10 being 0.01 to 0.3 μm, and the electrode 20 being a metal film with a thickness 3 to 20 times the arithmetic mean roughness Ra of the surface of the base film 10 (see FIG. 1).

上記前記基材フィルム10の環状オレフィン系樹脂の結晶化度は、X線回折法を用いて測定し、ピーク形状部となる結晶質部分とベースライン部となる非晶質部分のフィッティングを行い、各積分強度を以下の式に代入して結晶化度を算出する。なお、式中、Xは結晶性の散乱積分強度(すなわち、結晶質部分に由来する散乱積分強度)を示し、Yは非晶性散乱積分強度(すなわち非晶質部分に由来する散乱積分強度)を示す。
結晶化度(%)=[X/(X+Y)]×100
The crystallinity of the cyclic olefin resin of the substrate film 10 is measured by X-ray diffraction, and the crystalline portion that forms the peak shape portion and the amorphous portion that forms the baseline portion are fitted, and the crystallinity is calculated by substituting each integrated intensity into the following formula: In the formula, X represents the crystalline scattering integrated intensity (i.e., the scattering integrated intensity derived from the crystalline portion), and Y represents the amorphous scattering integrated intensity (i.e., the scattering integrated intensity derived from the amorphous portion).
Crystallinity (%) = [X / (X + Y)] x 100

上記結晶化度1%~30%の環状オレフィン系樹脂の例としては、式(1)の置換基RとRとがつながらず、かつC2n+1(n=0~8)の構造からなる環状オレフィン系樹脂が挙げられる。式(1)の置換基RとRとがつながった環構造の環状ポリオレフィン系ポリマーであると、その嵩高い置換基のためにポリマーの主鎖どうしの距離が離れ、ポリマーの主鎖の配向が阻害され、結果として結晶性部分が1%未満の非晶性ポリマーとなりやすい。

Figure 0007467252000003
・・・式(1) Examples of the cyclic olefin resin having a crystallinity of 1% to 30% include cyclic olefin resins in which the substituents R 1 and R 2 in formula (1) are not connected and have a structure of C n H 2n+1 (n = 0 to 8). In the case of a cyclic polyolefin polymer having a ring structure in which the substituents R 1 and R 2 in formula (1) are connected, the bulky substituents increase the distance between the main chains of the polymer, inhibiting the orientation of the main chains of the polymer, and as a result, the polymer tends to become an amorphous polymer with a crystalline portion of less than 1%.
Figure 0007467252000003
...Equation (1)

この前記基材フィルム10の環状オレフィン系樹脂表面に何らかの表面改質処理を施すことによって、C-H結合の一部を切断し、金属材料などとの親和性のある-OH基、-COOH基、-CO基などの官能基に変化させることにより、基材フィルム10と電極20との密着強度を向上させることができる。 By carrying out some kind of surface modification treatment on the cyclic olefin resin surface of the base film 10, some of the C-H bonds are cut and converted into functional groups such as -OH groups, -COOH groups, and -CO groups that have affinity with metal materials, etc., thereby improving the adhesive strength between the base film 10 and the electrode 20.

とくに、結晶質部分にあるC-H結合はほぼ規則的にかつ密集して配向しているため、その箇所の部分を上記の官能基に改質すれば、効果的に密着強度を向上させることができる。したがって、結晶化度が高いほど効果的に密着強度を向上させることができるため、置換基RとRはC2n+1のnの値が低い置換基の方が好ましい。nの値が8を越えるような大きな置換基になれば、RとRとがつながった置換基の場合と大きな差がなくなる傾向になる。 In particular, since the C-H bonds in the crystalline portion are oriented almost regularly and densely, modifying these portions with the above-mentioned functional groups can effectively improve the adhesive strength. Therefore, the higher the crystallinity, the more effectively the adhesive strength can be improved, so it is preferable that the substituents R1 and R2 have a low value of n in C n H 2n+1 . If the value of n is large, such as exceeding 8, there is a tendency for there to be no significant difference from the case of a substituent in which R1 and R2 are connected.

さらに、この前記基材フィルム10の表面に微細な凹凸11を形成して(図1参照)、直接その表面に電極20を形成すれば、微細な凹凸11の凹部深部に金属粒子などが喰い込むように析出形成され、そのアンカー効果により基材フィルム10と電極20との密着強度をより向上させることができる。 Furthermore, by forming fine irregularities 11 on the surface of the base film 10 (see Figure 1) and forming an electrode 20 directly on that surface, metal particles and the like are deposited so as to penetrate into the deep recesses of the fine irregularities 11, and this anchor effect can further improve the adhesive strength between the base film 10 and the electrode 20.

しかし、この前記基材フィルム10の表面を一般的なメッキ手法で適用されているような数十μm~数百μmレベルの大きな凹凸形状にすれば、電極20内を移動する電気信号のうち基材フィルム10との界面付近を移動する電気信号の経路が減少するため、その界面付近を移動する電気信号の割合が高いミリ波帯電波対応の回路基板に適用するには、不都合が生じた。したがって、アンカー効果を維持しつつかつ界面付近を移動する電気信号の経路が充分確保できる微細な凹凸11の形状と、その製造方法を新たに発明考案する必要があった。 However, if the surface of the base film 10 is made uneven with large projections and recesses on the order of tens to hundreds of microns, as is done in general plating methods, the path of the electrical signals that move within the electrode 20 near the interface with the base film 10 is reduced, which creates problems when applied to millimeter wave-compatible circuit boards, where a high proportion of electrical signals move near the interface. Therefore, it was necessary to newly invent and devise a shape of fine projections and recesses 11 that maintains the anchor effect while ensuring sufficient paths for electrical signals that move near the interface, and a method for producing the same.

発明者らは、どの程度の微細な凹凸11の形状が適切か創意工夫を重ねた結果、微細な凹凸11が算術平均粗さRaで0.01~0.3μmであるようにすれば、アンカー効果を維持しつつかつ界面付近を移動する電気信号の経路が充分確保できることを見出した。すなわち、Raが0.01μm未満であれば充分な密着強度が得られず、Raが0.3μmより大きければミリ波帯電波対応の回路基板に適用するには不充分であった(表1参照)。 After much ingenuity in determining what the appropriate shape of the fine irregularities 11 should be, the inventors discovered that if the fine irregularities 11 have an arithmetic mean roughness Ra of 0.01 to 0.3 μm, the anchor effect can be maintained while a sufficient path for electrical signals moving near the interface can be secured. In other words, if Ra is less than 0.01 μm, sufficient adhesion strength cannot be obtained, and if Ra is more than 0.3 μm, it is insufficient for application to circuit boards compatible with millimeter wave band waves (see Table 1).

また、その微細な凹凸11をどのようにして製造するか鋭意工夫を重ねた結果、特定の条件による紫外線照射またはプラズマ処理による表面改質の方法を発明した。熱インプリント法も方法の一つとして挙げられるが、大面積でもってエンドレスに大量生産する場合には余り適していない。また、汎用的に用いられるコロナ放電処理も方法の一つとして挙げられるが、安定的に上記の範囲の微細な凹凸11を形成できる設定条件が狭かった。 Furthermore, after much ingenuity in figuring out how to produce the fine irregularities 11, they invented a method of surface modification using ultraviolet irradiation or plasma treatment under specific conditions. Thermal imprinting is one method, but it is not very suitable for endless mass production over a large area. Corona discharge treatment, which is also widely used, is also one method, but the set conditions for stably forming the fine irregularities 11 within the above range are narrow.

紫外線照射による表面改質の条件としては、例えば、紫外線ランプを用いて基材フィルム10から1~3cm離して3~10分程度照射するとよい(表2および表3参照)。前記以上に距離を離たり照射時間を短くすると、前記所望の微細な凹凸11が得られない。逆に、前記距離よりも近づけたり、照射時間を長くすると、前記凹凸が大きくなりすぎたり凹凸のバラツキが大きくなりすぎる問題があった。 The conditions for surface modification by ultraviolet irradiation are, for example, to use an ultraviolet lamp and irradiate the substrate film 10 from a distance of 1 to 3 cm for about 3 to 10 minutes (see Tables 2 and 3). If the distance is greater than the above or the irradiation time is shorter, the desired fine irregularities 11 cannot be obtained. Conversely, if the distance is closer than the above or the irradiation time is longer, there is a problem that the irregularities become too large or the variation in the irregularities becomes too large.

プラズマ処理による表面改質の条件としては、例えば、酸素や四フッ化炭素雰囲気中で真空紫外光のキセノンエキシマランプを用いて、基材フィルム10から0.5~2cm離して2~5分程度照射するとよい。前記距離を離したり、照射時間を短くすると前記所望の微細な凹凸11が得られず、逆に前記距離よりも近づけたり照射時間を長くすると前記凹凸が大きくなりすぎたり凹凸のバラツキが大きくなりすぎる問題があった。 Conditions for surface modification by plasma treatment include, for example, using a xenon excimer lamp emitting vacuum ultraviolet light in an oxygen or carbon tetrafluoride atmosphere, irradiating the light for about 2 to 5 minutes from a distance of 0.5 to 2 cm from the substrate film 10. If the distance is increased or the irradiation time is shortened, the desired fine irregularities 11 cannot be obtained, while if the distance is reduced or the irradiation time is longer than the above, the irregularities become too large or the variation in the irregularities becomes too large.

そして、電極20の厚みを、前記基材フィルム10表面の算術平均粗さRaの3~20倍にする必要がある。電極20の厚みが30nm(すなわち、前記基材フィルム10表面の算術平均最小粗さRa=0.01μmの3倍)未満になると電極20の断面積が小さくなり、充分な電気信号を伝播させるための経路が確保できない。一方、電極20の厚みが前記基材フィルム10表面の算術平均粗さの20倍を越えると、前記基材フィルム10表面に所望範囲の微細な凹凸11が形成されていても、アンカー効果が低下して電極20が基材フィルム10表面から剥がれやすくなる。 The thickness of the electrode 20 must be 3 to 20 times the arithmetic mean roughness Ra of the surface of the base film 10. If the thickness of the electrode 20 is less than 30 nm (i.e., 3 times the arithmetic mean minimum roughness Ra of the surface of the base film 10 = 0.01 μm), the cross-sectional area of the electrode 20 becomes small, and a path for transmitting a sufficient electrical signal cannot be secured. On the other hand, if the thickness of the electrode 20 exceeds 20 times the arithmetic mean roughness of the surface of the base film 10, the anchor effect decreases and the electrode 20 becomes easily peeled off from the surface of the base film 10, even if fine irregularities 11 of the desired range are formed on the surface of the base film 10.

電極20は金属膜から成る層であり、材質の例としては、銅、金、銀、アルミニウム、ニッケル、パラジウム、インジウムなどの純粋な導体金属のほか、前記金属を含む導電ペースト膜、前記金属を含む導電繊維、前記金属を含む酸化膜であってもよい。電極20の製膜方法としては、電解または無電解のメッキ法のほか、スパッタリング、真空蒸着、拡散転写などにより形成する方法が挙げられる。 The electrode 20 is a layer made of a metal film, and examples of materials include pure conductive metals such as copper, gold, silver, aluminum, nickel, palladium, and indium, as well as conductive paste films containing the above metals, conductive fibers containing the above metals, and oxide films containing the above metals. Methods for forming the electrode 20 include electrolytic or electroless plating, as well as methods such as sputtering, vacuum deposition, and diffusion transfer.

また電極20は、外部から送信された電波信号を受信したり外部に対して電波信号を送信するようなアンテナ受信または送信の電極パターン201であってもよい。また、それらの電波信号ノイズを遮蔽するグラウンド電極202であってもよい。そして、このアンテナ受信または送信の電極パターンからなる電極201と、電波信号ノイズを遮蔽するグラウンド電極からなる電極202とを、基材フィルム10の両面に形成してもよい(図2参照)。 The electrode 20 may also be an antenna receiving or transmitting electrode pattern 201 that receives radio signals transmitted from the outside and transmits radio signals to the outside. It may also be a ground electrode 202 that blocks radio signal noise. The electrode 201 consisting of the antenna receiving or transmitting electrode pattern and the electrode 202 consisting of a ground electrode that blocks radio signal noise may be formed on both sides of the base film 10 (see FIG. 2).

このように前記所望の微細な凹凸11からなる基材フィルム10の両面に、前記所望の厚みの電極201,202を形成することで、受信または送信する電気信号の減衰が少なく、アンテナ受信または送信の性能が向上した回路配線板1が得られる。そして、前記誘電特性の高い基材フィルム10に、直接、接して電極201,202が形成されているため、高性能のミリ波帯通信に適する回路配線板1になる。その結果、ミリ波光変調器、ミリ波受光電池、光ファイバーを利用した衝突防止ミリ波レーダー、アンテナ用コンバータ、船舶用レーダー、無線LAN、FWA、ETCなど様々な用途の製品に展開が可能となる。 By forming electrodes 201, 202 of the desired thickness on both sides of the base film 10 consisting of the desired fine irregularities 11, a circuit wiring board 1 is obtained in which the attenuation of received or transmitted electrical signals is reduced and the performance of antenna reception or transmission is improved. And because the electrodes 201, 202 are formed in direct contact with the base film 10 with high dielectric properties, the circuit wiring board 1 is suitable for high-performance millimeter wave band communications. As a result, it can be deployed in products for various applications such as millimeter wave optical modulators, millimeter wave photocells, collision prevention millimeter wave radar using optical fibers, antenna converters, marine radar, wireless LAN, FWA, ETC, etc.

その中でも、この回路配線板1の上部に光導波路3を形成することで、ミリ波帯通信に適する次世代の光電変換素子5、例えば次世代のミリ波光変調器を得ることができる(図3、図4参照)。光導波路3は、例えば、厚さ0.3mm程度のニオブ酸リチウムなどの板状基板の一部をアニールプロトン交換法によって屈折率を変化させて形成するとよい。屈折率の差によって光は光導波路3内に閉じ込められるため、一方向から光を入力すると光導波路3に沿って光が進行し出力するまでの間に、入力された光信号に応じて変換された無線電気信号が前記アンテナ送信の電極パターン201から電波として発信される。また、前記アンテナ受信の電極パターン201で受信された電波の無線電気信号を光信号に変換することもできる。前記板状基板と回路配線板との積層には、例えば低誘電のポリイミド接着剤を塗布・載置する方法が挙げられる。 Among them, by forming an optical waveguide 3 on the upper part of this circuit wiring board 1, a next-generation photoelectric conversion element 5 suitable for millimeter wave band communication, for example, a next-generation millimeter wave optical modulator, can be obtained (see Figures 3 and 4). The optical waveguide 3 may be formed, for example, by changing the refractive index of a part of a plate-shaped substrate such as lithium niobate having a thickness of about 0.3 mm by annealing and proton exchange. Since light is confined within the optical waveguide 3 due to the difference in refractive index, when light is input from one direction, the light travels along the optical waveguide 3 and a wireless electric signal converted according to the input optical signal is transmitted as a radio wave from the antenna transmission electrode pattern 201 during the time until it is output. In addition, the radio electric signal of the radio wave received by the antenna reception electrode pattern 201 can also be converted into an optical signal. For lamination of the plate-shaped substrate and the circuit wiring board, for example, a method of applying and placing a low-dielectric polyimide adhesive can be used.

(実施例1)
基材フィルムとして、式(1)の置換基RとRとが水素原子、エチル基、n-オクタン基、n-ノナン基の構造からなる厚み200μmの環状オレフィン系樹脂ポリマーフィルムの両面に、波長254nmの紫外線ランプを用いて前記基材フィルムから2cm離して10分間照射したあと、25℃の無電解銅メッキ浴(硫酸銅・五水和物0.03mol/L、ホルマリン0.3mol/L、ロッシェル塩錯化剤0.3mol/L、PH12.5)に浸漬させ、続いて25℃の電解銅メッキ浴(硫酸銅・五水和物10%、硫酸18%、塩酸0.5%、有機系添加剤等1%、イオン交換水70.5%)に浸漬させて、厚み0.3~5μmの銅膜を両面に形成した。
Example 1
As a substrate film, a 200 μm thick cyclic olefin resin polymer film having a structure in which the substituents R 1 and R 2 of formula (1) are hydrogen atoms, ethyl groups, n-octane groups, or n-nonane groups was used. Both sides of the substrate film were irradiated with a 254 nm ultraviolet lamp at a distance of 2 cm from the substrate film for 10 minutes, and then immersed in an electroless copper plating bath at 25° C. (copper sulfate pentahydrate 0.03 mol/L, formalin 0.3 mol/L, Rochelle salt complexing agent 0.3 mol/L, pH 12.5), and then immersed in an electrolytic copper plating bath at 25° C. (copper sulfate pentahydrate 10%, sulfuric acid 18%, hydrochloric acid 0.5%, organic additives 1%, ion-exchanged water 70.5%) to form a copper film having a thickness of 0.3 to 5 μm on both sides.

得られた回路配線板の基材フィルムに対する銅膜の引き剥がし強度結果を表1に示す。相対的に銅膜の厚みが薄いほど引き剥がし強度が高く、置換基RとRが小さいほど引き剥がし強度が高くなる傾向が見られた。そして、各基材フィルムの結晶化度を予め測定しておいたところ、置換基RとRが小さい官能基ほど結晶化度が高い傾向が見られた。また、得られた回路配線板の周波数60GHzにおける誘電特性を評価したところ、いずれの回路配線板においても誘電正接が0.0008~0.0015、比誘電率が2.3~2.7と低く、とくに置換基RとRが小さいほど良好であった。 The peel strength results of the copper film from the substrate film of the obtained circuit wiring board are shown in Table 1. The peel strength tended to be higher as the copper film was relatively thinner, and higher as the substituents R 1 and R 2 were smaller. The crystallinity of each substrate film was measured in advance, and it was found that the smaller the substituents R 1 and R 2 were, the higher the crystallinity of the functional group. The dielectric properties of the obtained circuit wiring board at a frequency of 60 GHz were evaluated, and the dielectric loss tangent was low at 0.0008 to 0.0015 and the relative dielectric constant was low at 2.3 to 2.7 in all the circuit wiring boards, and the smaller the substituents R 1 and R 2 were, the better the properties were.

Figure 0007467252000004
Figure 0007467252000004

続いて、前記銅膜の両面に光感光性フィルムを貼付しフォトマスクを用いて露光、現像してアンテナ送信パターンの電極と電磁波シールドパターンの電極とを形成した回路配線板を得た。そして、得られた回路配線板のアンテナ送信パターン電極の上部に厚さ0.25mmのニオブ酸リチウムからなる光導波路を積層し、光電変換素子を作製した。得られた光電変換素子を光ファイバーと接続し、光ファイバーから光信号を入力すると光導波路を介して、光信号に応じた無線電気信号が周波数60GHzの電波としてアンテナ送信パターンの電極から発せられていることが確認された。 Subsequently, photosensitive films were attached to both sides of the copper film, and exposed and developed using a photomask to obtain a circuit wiring board in which an antenna transmission pattern electrode and an electromagnetic wave shielding pattern electrode were formed. An optical waveguide made of lithium niobate with a thickness of 0.25 mm was then laminated on top of the antenna transmission pattern electrode of the obtained circuit wiring board to produce a photoelectric conversion element. When the obtained photoelectric conversion element was connected to an optical fiber and an optical signal was input from the optical fiber, it was confirmed that a wireless electrical signal corresponding to the optical signal was emitted from the antenna transmission pattern electrode as a radio wave with a frequency of 60 GHz via the optical waveguide.

発せられた周波数60GHzの電波を100m先にある受信機で受信し評価したところ、通信速度は平均1.2Gb/sであり、伝送密度は1m当たり5~8Gb/sであり、1m当たり接続可能な回線密度は4~7チャンネルに相当して、伝送による損失は2割以下に低く抑制されていた。よって、本発明の光電変換素子用回路配線板を使用すれば、高速・大容量の光信号データを効率的に60GHz帯の電波に変換して伝送できることが確認された。 When the emitted radio waves of 60 GHz frequency were received and evaluated by a receiver 100 m away, the communication speed was 1.2 Gb/s on average, the transmission density was 5-8 Gb/s per m2 , the line density that could be connected per m2 was equivalent to 4-7 channels, and the transmission loss was suppressed to less than 20%. Therefore, it was confirmed that by using the circuit wiring board for photoelectric conversion elements of the present invention, high-speed, large-capacity optical signal data can be efficiently converted into radio waves in the 60 GHz band and transmitted.

(実施例2)
基材フィルムとして、式(1)の置換基RとRとがn-オクタン基の構造からなる厚み200μmの環状オレフィン系樹脂ポリマーフィルムを用いて、紫外線ランプの照射時間や距離を変え、あとは実施例1と同じ条件にして回路配線板および光電変換素子を作製し、評価した。評価については、紫外線ランプが照射された環状オレフィン系樹脂ポリマーフィルムの表面に対し表面粗さ計を用いて算術平均粗さRaを測定した。その結果を表 2および表3に示す。評価の結果、環状オレフィン系樹脂ポリマーフィルムの表面の算術平均粗さRaが0.01~0.3μmの範囲にあり、かつ銅膜の厚みがRaの3~20倍の範囲なら銅膜と接着をし、光信号に応じた無線電気信号が周波数60GHzの電波としてアンテナ送信パターンの電極から発せられていることが確認された。とくにRaが0.04~0.3μmで銅膜の厚みがRaの3~5倍の範囲の範囲にあれば引き剥がし強度が10N/cm以上の回路配線板も得られた。一方で、算術平均粗さRaが0.3μmを越えた場合、銅膜との接着は強力であったが、周波数60GHzの電波は未検出になった。
Example 2
As the base film, a 200 μm thick cyclic olefin resin polymer film in which the substituents R 1 and R 2 in formula (1) are n-octane groups was used, and a circuit wiring board and a photoelectric conversion element were produced and evaluated under the same conditions as in Example 1, except for changing the irradiation time and distance of the ultraviolet lamp. For the evaluation, the arithmetic mean roughness Ra of the surface of the cyclic olefin resin polymer film irradiated with the ultraviolet lamp was measured using a surface roughness meter. The results are shown in Tables 2 and 3. As a result of the evaluation, it was confirmed that if the arithmetic mean roughness Ra of the surface of the cyclic olefin resin polymer film was in the range of 0.01 to 0.3 μm and the thickness of the copper film was in the range of 3 to 20 times Ra, the copper film was bonded to the film, and a wireless electric signal corresponding to the optical signal was emitted from the electrode of the antenna transmission pattern as a radio wave with a frequency of 60 GHz. In particular, if Ra was 0.04 to 0.3 μm and the thickness of the copper film was in the range of 3 to 5 times Ra, a circuit wiring board with a peel strength of 10 N/cm or more was obtained. On the other hand, when the arithmetic mean roughness Ra exceeded 0.3 μm, although the adhesion to the copper film was strong, radio waves with a frequency of 60 GHz were not detected.

Figure 0007467252000005
Figure 0007467252000005

Figure 0007467252000006
Figure 0007467252000006

(実施例3、4)
前記、紫外線ランプの代わりに酸素雰囲気中で真空紫外光のキセノンエキシマランプを用いて、同様にテストをした結果、基材フィルムからの距離や照射時間などの条件に相違があるものの、環状オレフィン系樹脂ポリマーフィルムの表面の算術平均粗さRaと銅膜との接着性、周波数60GHzの電波性能など評価結果については、同様の結果であった。このことから、環状オレフィン系樹脂ポリマーフィルムの表面の算術平均粗さRaや、銅膜の厚みとRaの関係性が前記所定の範囲内になるようにすれば、基材ファイルの表面改質の方法に関わらず所望の光電変換素子用の回路配線板を製造できることが確認された。
(Examples 3 and 4)
As a result of carrying out the same test using a vacuum ultraviolet xenon excimer lamp in an oxygen atmosphere instead of the ultraviolet lamp, although there are differences in conditions such as distance from the substrate film and irradiation time, the evaluation results of the arithmetic mean roughness Ra of the surface of the cyclic olefin resin polymer film and adhesion with the copper film, radio wave performance at a frequency of 60 GHz, etc. were similar. From this, it was confirmed that if the arithmetic mean roughness Ra of the surface of the cyclic olefin resin polymer film and the relationship between the thickness of the copper film and Ra are within the above-mentioned specified range, a circuit wiring board for a desired photoelectric conversion element can be manufactured regardless of the method of surface modification of the substrate file.

1 回路配線板
3 光導波路
5 光電変換素子
10 基材フィルム
11 基材フィルム表面の微細な凹凸
20 電極
201 アンテナ受信または送信の電極パターンからなる電極
202 グラウンド電極
REFERENCE SIGNS LIST 1 Circuit wiring board 3 Optical waveguide 5 Photoelectric conversion element 10 Base film 11 Fine irregularities on the surface of the base film 20 Electrode 201 Electrode consisting of an antenna receiving or transmitting electrode pattern 202 Ground electrode

Claims (4)

結晶化度1%~30%の環状オレフィン系樹脂を主成分とし、C-H結合が規則的にかつ密集して配向される、基材フィルムを準備する工程と、A step of preparing a substrate film mainly composed of a cyclic olefin resin having a crystallinity of 1% to 30% and having C-H bonds regularly and densely oriented;
前記基材フィルムの表面に、前記表面の算術平均粗さRaが0.01~0.3μmになるように紫外線照射またはプラズマ処理を施す工程と、a step of subjecting a surface of the base film to ultraviolet irradiation or plasma treatment so that the arithmetic mean roughness Ra of the surface is 0.01 to 0.3 μm;
前記紫外線照射またはプラズマ処理が施された基材フィルムの表面に、前記算術平均粗さRaの3~20倍の厚さの金属膜でなる電極を形成する工程と、forming an electrode made of a metal film having a thickness 3 to 20 times the arithmetic mean roughness Ra on the surface of the substrate film that has been subjected to the ultraviolet irradiation or plasma treatment;
を備えた、回路配線板の製造方法。The method for manufacturing a circuit wiring board comprising the steps of:
前記電極を形成する工程は、The step of forming the electrode includes:
前記基材フィルムの一方の面に、アンテナ受信または送信の電極パターンを形成する工程と、forming an antenna receiving or transmitting electrode pattern on one surface of the base film;
前記基材フィルムの他方の面に、グラウンド電極を形成する工程と、forming a ground electrode on the other surface of the base film;
を含む、請求項1に記載の回路配線板の製造方法。The method for producing a circuit wiring board according to claim 1 , comprising:
前記環状オレフィン系樹脂は、式(1)の置換基RThe cyclic olefin resin is a compound represented by the following formula (1): 1 とRand R 2 とがつながらず、かつCAnd it doesn't connect, and C n H 2n+12n+1 (n=0~8)の構造からなる、請求項1に記載の回路配線板の製造方法。The method for producing a circuit wiring board according to claim 1, wherein the circuit wiring board has a structure of (n=0 to 8).
Figure 0007467252000007
Figure 0007467252000007
・・・式(1)...Equation (1)
前記電極の上に光導波路を形成する工程を更に備えた、請求項1に記載の回路配線板の製造方法。The method for manufacturing a circuit wiring board according to claim 1 , further comprising the step of forming an optical waveguide on said electrode.
JP2020107887A 2020-06-23 2020-06-23 Circuit wiring board and its manufacturing method Active JP7467252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020107887A JP7467252B2 (en) 2020-06-23 2020-06-23 Circuit wiring board and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020107887A JP7467252B2 (en) 2020-06-23 2020-06-23 Circuit wiring board and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2022003669A JP2022003669A (en) 2022-01-11
JP7467252B2 true JP7467252B2 (en) 2024-04-15

Family

ID=79246995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020107887A Active JP7467252B2 (en) 2020-06-23 2020-06-23 Circuit wiring board and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7467252B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024175A1 (en) 2008-08-25 2010-03-04 株式会社関東学院大学表面工学研究所 Laminate and process for producing the laminate
JP2012102211A (en) 2010-11-09 2012-05-31 Daicel Corp Crosslinked olefinic elastomer
JP2015131421A (en) 2014-01-10 2015-07-23 住友金属鉱山株式会社 Metal-clad laminate board, wiring board, and multilayer wiring board
JP6157786B1 (en) 2016-01-22 2017-07-05 オリンパス株式会社 Medical manipulator system
JP2018166241A (en) 2017-03-28 2018-10-25 学校法人関東学院 Planar antenna and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024175A1 (en) 2008-08-25 2010-03-04 株式会社関東学院大学表面工学研究所 Laminate and process for producing the laminate
JP2012102211A (en) 2010-11-09 2012-05-31 Daicel Corp Crosslinked olefinic elastomer
JP2015131421A (en) 2014-01-10 2015-07-23 住友金属鉱山株式会社 Metal-clad laminate board, wiring board, and multilayer wiring board
JP6157786B1 (en) 2016-01-22 2017-07-05 オリンパス株式会社 Medical manipulator system
JP2018166241A (en) 2017-03-28 2018-10-25 学校法人関東学院 Planar antenna and manufacturing method thereof

Also Published As

Publication number Publication date
JP2022003669A (en) 2022-01-11

Similar Documents

Publication Publication Date Title
US10667388B2 (en) Optical waveguide having aluminum nitride thin film
KR102617568B1 (en) High-speed interconnects for printed circuit boards
US20210208430A1 (en) Liquid crystal antenna and manufacturing method thereof
US20210227729A1 (en) Manufacturing method for electromagnetic shielding film and electromagnetic shielding window
US20210212243A1 (en) Electromagnetic shielding film and method for making same
RU2009129827A (en) METHOD FOR PRODUCING ELECTRIC CONDUCTING SURFACES
US20200084923A1 (en) Electromagnetic wave shielding film and manufacturing method and application thereof
CN110798988B (en) Additive process for manufacturing high-frequency antenna packaging substrate and AiP packaging antenna structure
WO2003100484A3 (en) Three dimensional periodic structure and method of producing the same
JP7467252B2 (en) Circuit wiring board and its manufacturing method
CN103338596A (en) Manufacturing method of whole addition circuit board without photoresist
KR100809396B1 (en) Opto-Electric Printed Circuit Board, method of preparing the same, and method of transmitting opto-electric using the same
TW201212739A (en) Wiring board and method for manufacturing the same
EP1558067A4 (en) Electromagnetic wave shielding light transmitting window material and process for producin the same
US20200329552A1 (en) Component Carrier With High Passive Intermodulation Performance
KR101152266B1 (en) Preparation method of electromagnetic wave absorbing sheet using copper clad laminate film
JP7511395B2 (en) Photoelectric conversion element and its manufacturing method
CN111148418A (en) Shielding film and manufacturing method thereof
JP6341495B2 (en) High-speed transmission board and electronic components
JP6870036B2 (en) Antenna module and its manufacturing method
WO2004068918A2 (en) Method for producing thin silver layers
CN202231960U (en) Electronic component embedded circuit board
Geetha et al. Conducting fabric-reinforced polyaniline film using p-chlorophenol as secondary dopant for the control of electromagnetic radiations
KR101517553B1 (en) Method for forming metal patterns of printedcircuit board
JP6207064B2 (en) Method for manufacturing antenna substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240403

R150 Certificate of patent or registration of utility model

Ref document number: 7467252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150