JP2022003348A - 改良された溶融燃料型反応炉の熱管理の構成 - Google Patents

改良された溶融燃料型反応炉の熱管理の構成 Download PDF

Info

Publication number
JP2022003348A
JP2022003348A JP2021166984A JP2021166984A JP2022003348A JP 2022003348 A JP2022003348 A JP 2022003348A JP 2021166984 A JP2021166984 A JP 2021166984A JP 2021166984 A JP2021166984 A JP 2021166984A JP 2022003348 A JP2022003348 A JP 2022003348A
Authority
JP
Japan
Prior art keywords
core
heat exchanger
fuel
salt
fuel salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021166984A
Other languages
English (en)
Other versions
JP7170816B2 (ja
Inventor
アボット,ライアン
Abbott Ryan
シスネロス,アンセルモ,ティー.ジュニア
T Cisneros Anselmo Jr
フラワーズ,ダニエル
Flowers Daniel
フリーマン,チャールズ,グレゴリー
gregory freeman Charles
ハブスタッド,マーク,エー.
A Havstad Mark
ジョーンズ,クリストファー,ジェイ.
J Johns Christopher
ケッレヘール,ブライアン,シー.
c kelleher Brian
クレーマー,ケヴィン
Kramer Kevin
ラトコフスキー,ジェフリー,エフ.
F Latkowski Jeffery
マックフィルター,ジョン,ディー.
D Mcwhirter Jon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TerraPower LLC
Original Assignee
TerraPower LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TerraPower LLC filed Critical TerraPower LLC
Publication of JP2022003348A publication Critical patent/JP2022003348A/ja
Application granted granted Critical
Publication of JP7170816B2 publication Critical patent/JP7170816B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/02Arrangements or disposition of passages in which heat is transferred to the coolant; Coolant flow control devices
    • G21C15/12Arrangements or disposition of passages in which heat is transferred to the coolant; Coolant flow control devices from pressure vessel; from containment vessel
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/02Fast fission reactors, i.e. reactors not using a moderator ; Metal cooled reactors; Fast breeders
    • G21C1/03Fast fission reactors, i.e. reactors not using a moderator ; Metal cooled reactors; Fast breeders cooled by a coolant not essentially pressurised, e.g. pool-type reactors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/04Thermal reactors ; Epithermal reactors
    • G21C1/06Heterogeneous reactors, i.e. in which fuel and moderator are separated
    • G21C1/22Heterogeneous reactors, i.e. in which fuel and moderator are separated using liquid or gaseous fuel
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/32Integral reactors, i.e. reactors wherein parts functionally associated with the reactor but not essential to the reaction, e.g. heat exchangers, are disposed inside the enclosure with the core
    • G21C1/326Integral reactors, i.e. reactors wherein parts functionally associated with the reactor but not essential to the reaction, e.g. heat exchangers, are disposed inside the enclosure with the core wherein the heat exchanger is disposed next to or beside the core
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/32Integral reactors, i.e. reactors wherein parts functionally associated with the reactor but not essential to the reaction, e.g. heat exchangers, are disposed inside the enclosure with the core
    • G21C1/328Integral reactors, i.e. reactors wherein parts functionally associated with the reactor but not essential to the reaction, e.g. heat exchangers, are disposed inside the enclosure with the core wherein the prime mover is also disposed in the vessel
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C11/00Shielding structurally associated with the reactor
    • G21C11/06Reflecting shields, i.e. for minimising loss of neutrons
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/02Arrangements or disposition of passages in which heat is transferred to the coolant; Coolant flow control devices
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/02Arrangements or disposition of passages in which heat is transferred to the coolant; Coolant flow control devices
    • G21C15/14Arrangements or disposition of passages in which heat is transferred to the coolant; Coolant flow control devices from headers; from joints in ducts
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/24Promoting flow of the coolant
    • G21C15/243Promoting flow of the coolant for liquids
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/24Promoting flow of the coolant
    • G21C15/243Promoting flow of the coolant for liquids
    • G21C15/25Promoting flow of the coolant for liquids using jet pumps
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/24Promoting flow of the coolant
    • G21C15/26Promoting flow of the coolant by convection, e.g. using chimneys, using divergent channels
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/28Selection of specific coolants ; Additions to the reactor coolants, e.g. against moderator corrosion
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/24Fuel elements with fissile or breeder material in fluid form within a non-active casing
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C5/00Moderator or core structure; Selection of materials for use as moderator
    • G21C5/14Moderator or core structure; Selection of materials for use as moderator characterised by shape
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/04Thermal reactors ; Epithermal reactors
    • G21C1/06Heterogeneous reactors, i.e. in which fuel and moderator are separated
    • G21C1/14Heterogeneous reactors, i.e. in which fuel and moderator are separated moderator being substantially not pressurised, e.g. swimming-pool reactor
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/44Fluid or fluent reactor fuel
    • G21C3/54Fused salt, oxide or hydroxide compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

【課題】固体型燃料の反応炉に比べて高い出力密度を提供する、改良された溶融燃料型反応炉の熱管理の構成。【解決手段】自然循環する反応炉の構成が記載され、該構成では、上記反応炉の炉心304の熱的中心が一次熱交換器310の出口よりも下方であるように、炉心304が実質的に錐台状である。【選択図】図3

Description

発明の詳細な説明
〔関連出願〕
本願は、PCT国際特許出願として2017年5月1日に出願されており、2016年5月2日に出願された米国仮出願第62/330,726号の優先権の利益を主張するものである。上記米国仮出願は、引用により本願に組み込まれる。
〔序論〕
原子核反応炉にて溶融燃料を利用して出力を生成することは、固体型燃料の場合に比べて著しい利点を提供する。例えば、溶融燃料型反応炉は、一般に、固体型燃料の反応炉に比べて高い出力密度を提供すると同時に、固体型燃料製品(fabrication)のコストが比較的高い故に、燃料コストが低減される。
溶融型フッ化燃料塩は、原子核反応炉での使用に適しており、四フッ化ウラン(UF)と、UF、UFなどの他のフッ化塩との混合物を用いて開発されている(developed)。溶融型フッ化塩の反応炉は、平均温度が600℃と860℃との間で運転される。ウランその他の核分裂性元素の燃料塩であって、二元、三元、および四元の塩化物の燃料塩は、共通の譲渡人の米国特許出願第14/981,512号、発明の名称「溶融核燃料塩並びに関連のシステムおよび方法」に記載されており、該米国特許出願は、この引用により本願に記載加入される。PuCl、UCl、UClF、UCl、UCl、およびUClFの1つ以上を含む塩化燃料塩に加えて、本願は、37Clの量が変更された燃料塩、UBr、UBr等の臭化燃料塩、塩化トリウム(例、ThCl)の燃料塩、並びに、溶融燃料型反応炉にて上記燃料塩を用いるための方法およびシステムをさらに開示している。塩化物塩の反応炉における平均運転温度は、300℃と600℃との間が予想されるが、例えば1000℃よりもさらに高くてもよい。
〔図面の簡単な説明〕
以下に示す図面は、本願の一部を形成し、記載される技術を例示するものであるが、任意の形態で求められるような本発明の範囲を限定することを意味するものではない。本発明の範囲は、本願に添付の特許請求の範囲に基づくであろう。
図1は、溶融燃料型反応炉の基本構成の幾つかをブロック図の形態で示す図である。
図2A〜図2Cは、自然循環のみを用いて燃料塩を燃料ループにて循環させる反応炉の実施形態を示す種々の図である。
図3は、自然循環型核分裂反応炉の炉心における改良された構成の実施形態であって、上記炉心は頂部よりも底部の方が大きい実施形態を示す図である。
図4は、円錐台の炉心デザインの別の実施形態を示す図である。
図5は、十角錐(10側面の角錐)の錐台の炉心であって、自然循環型炉心に好適な炉心を示す図である。
図6A〜図6Cは、格納容器のアクティブ冷却を一次冷却材ループに統合する反応炉デザインの実施形態を示す図である。
図7は、アクティブ容器冷却のための方法の実施形態におけるフロー図である。
図8は、シェル側燃料の熱交換器の構成を有する反応炉の実施形態を示す図である。
図9は、図8における反応炉の別の実施形態を示す図である。
図10は、シェル側燃料のU字チューブの熱交換器の構成であって、1枚の管板(tubesheet)が炉心の上方に配置された構成を有する反応炉の実施形態を示す図である。
図11は、シェル側燃料のU字チューブの熱交換器の構成であって、1枚の管板が、炉心内ではあるが、該炉心から側方に離れた位置に設置された構成を有する反応炉の実施形態を示す図である。
図12Aおよび図12Bは、ラジアルループ型反応炉と称する別の反応炉デザインを示す図である。
〔詳細な説明〕
本開示では、溶融燃料型原子核反応炉の種々の構成および構成要素が説明される。本願のために、塩化物燃料を使用する溶融燃料型反応炉の実施形態が説明されるであろう。該塩化物燃料としては、例えばPuCl、UCl、および/または、UClのような1または複数の燃料塩と、例えばNaClおよび/またはMgClのような非核分裂性塩との例えば混合物が挙げられる。しかしながら、現在知られており、或いは将来開発される任意の種類の燃料塩が使用されてもよく、また、本願に記載の技術は、使用される燃料の種類に関係なく同様に適用可能であってもよいことが理解されるであろう。例えば、燃料塩は1または複数の非核分裂性塩を含んでもよい。該非核分裂性塩の例としては、NaCl、MgCl、CaCl、BaCl、KCl、SrCl、VCl、CrCl、TiCl、ZrCl、ThCl、AcCl、NpCl、AmCl、LaCl、CeCl、PrCl、および/または、NdClが挙げられるが、これらに限定されるものではない。なお、反応炉内の燃料の運転温度の最低値および最高値は、使用される上記燃料塩に依存して、上記反応炉の全体にわたって上記塩を液相に維持するように変化してもよい。最低温度は300℃〜350℃程度の低さでよく、最高温度は、1400℃程度またはそれ以上の高さでよい。同様に、熱交換器は、その他のものを明示的に記載する場合を除いて、チューブのセットを有し、かつ何れかの端部に管板を有する、単純な1パスのシェルアンドチューブ型熱交換器との観点で、本開示において一般的に提示されるであろう。しかしながら、一般的に、任意のデザインの熱交換器が使用されてもよいことが理解されるであろう。なお、幾つかのデザインはその他のデザインよりも好適であってもよい。例えば、シェルアンドチューブ型熱交換器に加えて、プレート型、プレートアンドシェル型、プリント回路型、および、プレートフィン型の熱交換器が好適であってもよい。
図1は、溶融燃料型反応炉の基本構成の幾つかをブロック図の形態で示している。一般に、溶融燃料型反応炉100は、炉心104を含み、炉心104は、運転温度にて液体である核分裂性燃料塩106を含む。核分裂性燃料塩は、低エネルギーの熱中性子または高エネルギーの中性子に曝されると核分裂することができる任意の核種の塩を含む。さらに、本開示のために、核分裂性物質は、任意の核分裂性核種の物質、任意の親物質、またはこれらの物質の組合せを含む。燃料塩106は、炉心104を完全に満たしていてもよいし、満たしていなくてもよい。図示の実施形態では、炉心104において燃料塩106のレベルの上方に任意の上部空間102を有している。炉心104のサイズは、上記燃料を、継続的な臨界状態に達成しかつ維持するために使用される具体的な燃料塩106の特性および種類に基づいて選択されてもよい。上記継続的な臨界状態の間、上記燃料における中性子の継続的な生成により発生する熱により、上記炉心にある上記溶融燃料の温度が上昇する。臨界とは、上記炉心において中性子の損失率が中性子の生成率に比べて等しいまたは小さい状態をいう。反応炉100の性能は、炉心104の周囲に1または複数の反射体108A・108B・108Cを設けて、中性子を上記炉心内に反射することによって改善される。反射体は、例えばグラフファイト、ベリリウム、鋼、炭化タングステンなど、現在知られており、或いは将来開発される任意の中性子反射物質によって生成されてもよい。上記溶融型燃料塩106は、炉心104と、炉心104の外側に配置された1または複数の一次熱交換器110との間にて循環される。上記循環は1または複数のポンプ112を用いて駆動されてもよい。
上記一次熱交換器110は、溶融型燃料塩106から、一次冷却材ループ115を介して循環する一次冷却材114への熱伝達を行う。一実施形態において、上記一次冷却材は、別の塩(NaCl−MgClなど)または鉛であってもよい。また、利用可能な他の冷却材としては、Na、NaK、臨界超過のCO、および鉛ビスマス共晶混合物が挙げられる。一実施形態において、反射体108は、図1に示すように、各一次熱交換器110および炉心104の間にある。例えば、一実施形態において、円筒形の炉心104は、直径が2メートル(m)であり、高さが3mであり、頂部および底部のそれぞれに上記円筒の平坦な端部が存在するように直立している。炉心104全体は、複数の反射体108で完全に覆われ、反射体108の間には、燃料塩106の炉心104内外への流路が設けられている。
図1は、1個の熱交換器110を示しているが、上記実施形態に依存して、任意の個数の熱交換器110が使用されてもよく、該熱交換器110は、炉心104の外部の周囲に離間して配置されてもよい。例えば、2個、4個、6個、8個、10個、12個、および16個の一次熱交換器を有する実施形態が予想される。
上述のように、任意のデザインの熱交換器が使用されてもよいが、上記熱交換器110としては、シェルアンドチューブ型熱交換器の観点から概括的に議論されるであろう。シェルアンドチューブ型熱交換器の実施形態では、上記燃料塩は、複数のチューブ内を流れ、該チューブは、一次冷却材で満たされたシェル内に含まれてもよい。上記燃料塩は、該記燃料塩と一次冷却材との混合を防止するために、上記シェルにおける1または複数の管板を介して上記チューブに流入する。これは、チューブ側燃料構成、またはシェル側冷却材構成と称される。或いは、上記燃料塩が上記シェル内を流れ、一次冷却材が上記チューブ内を流れてもよい。これは、チューブ側冷却材構成、またはシェル側燃料構成と称される。
熱交換器部品の塩接触面は、腐食から保護するために被覆されてもよい。その他の保護オプションとしては、保護用コーティング(protective coatings)、非密着ライナ(loose fittingliners)、または、圧入ライナ(press-fit liners)が挙げられる。一実施形態では、上記チューブの内面における被覆はモリブデンであり、該モリブデンは、ベースの熱交換器材料と共に共有押出し成形される。他の燃料塩接触面(上記管板の外面および上記シェルの外面)について、上記被覆の材料はモリブデン合金である。ニッケルおよびニッケル合金は、他の利用可能な被覆の材料である。モリブデン−レニウム合金は、溶接が要求される場合に使用されてもよい。一次冷却の塩と接触する部品は、Alloy200で被覆されてもよいし、或いは、アメリカ機械学会の圧力容器の基準に合致する材料など、その他の同等な任意の材料で被覆されてもよい。上記チューブの主要な材料は、316ステンレス鋼であってもよく、或いは、その他の同等な任意の材料であってもよい。例えば、一実施形態では、Alloy617は、上記シェルおよび上記管板の材料である。
チューブ側燃料の実施形態において、上記燃料塩は、熱交換器110における上記チューブを流れ、上記燃料塩の出口通路へ流出する。熱交換器110のシェル内の上記一次冷却材は、上記チューブ内を移動する上記燃料塩から熱を除去する。その後、加熱された冷却材は、パワー生成システム120に送られる。
図1に示すように、一次熱交換器110からの加熱された一次冷却材114は、例えば、熱的パワー、電気的パワー、または機械的パワーのような、或る形態のパワーの生成のためにパワー生成システム120に送られる。炉心104、一次熱交換器110、ポンプ112、溶融燃料循環用配管(例えば、チェックバルブ、遮断バルブ、フランジ、ドレインタンクなど、図示していないその他の補助部品を含む)、および、上記溶融燃料が運転中に循環し或いは接触するその他の任意の部品は、燃料ループ116と称されることができる。同様に、一次冷却材ループ115は、一次冷却材が循環する部品を含み、一次熱交換器110と、一次冷却材循環用配管(例えば、冷却材用ポンプ113、チェックバルブ、遮断バルブ、フランジ、ドレインタンクなど、図示していないその他の補助部品を含む)とを含む。
さらに、溶融燃料型反応炉100は、少なくとも1つの格納容器118を含み、該格納容器118は、燃料ループ116を含み、上記燃料ループの部品の1つからのリークがあった場合に溶融型燃料塩106の放出を阻止するためのものである。なお、一次冷却材ループ115の全てが格納容器118内にあるとは限らない。
一実施形態では、燃料塩は、該燃料塩が燃料ループ116内を循環するように、ポンプ112によって駆動される。図示の実施形態では、各一次熱交換器110に1個のポンプ112が存在する。少数の或いはより多くのポンプが使用されてもよい。例えば、別の実施形態では、複数の小型ポンプが各熱交換器110のために使用されてもよい。一実施形態では、ポンプ112は、回転時に燃料ループ116における燃料塩の流れを駆動する羽根車を、上記燃料ループ内の或る位置に含んでもよい。上記羽根車は、該羽根車をモータに接続する回転シャフトに取り付けられてもよく、上記モータは、上記格納容器の外部に配置されてもよい。本実施形態の例は、後述するように、図6A〜図6Cにて見出されることができる。また、他のポンプ構成も利用可能である。
広義に言えば、本開示は、図1に関して説明される反応炉100の性能を改善する複数の変更および複数の部品構成を記載している。
〔円錐台の炉心構成〕
通常の燃料塩では、高温の溶融塩は、低温の塩よりも低密度である。例えば、或る燃料塩(71mol%UCl−17mol%UCl−12mol%NaCl)では、300℃の温度上昇(例えば、627℃から927℃へ)により、上記燃料塩の密度が、3660kg/mから3010kg/mへと、18%低下することが計算された。一実施形態では、上記燃料ループ内での燃料の循環は、上記炉心における高温な塩と、燃料ループ116における上記炉心とは別の場所の低温な塩との間の温度差によって生じる密度差によって駆動されることができるように、上記炉心および上記一次熱交換器が構成されることが望ましい。この循環の流れは、定常状態の運転の間に上記燃料塩における密度差の結果として自然に発生することから、上記循環を自然循環と称してもよい。
図2A〜図2Cは、自然循環のみを用いて、燃料塩を燃料ループにて循環させる反応炉の実施形態を示している。この構成は、燃料塩ポンプの必要性を取り除くことができ、どのようなポンプも示されていない。これにより、反応炉200の複雑性が減少する。しかしながら、自然循環のみに依拠することは、除去する熱量が限定され、その結果、反応炉200の全出力パワーが限定されるかもしれない。
図2Aに示す反応炉200は、略円筒形の炉心204を含む。該炉心204の体積は、頂部の上部反射体208Aと、底部の下部反射体208Bと、上記炉心の周囲を取り囲む側部(または内部)反射体208Cとによって規定される。図1の場合と同様に、上記燃料塩が側部反射体208Cの周囲を流れることができるように、流路は炉心204の上部および下部に設けられている。この自然循環の実施形態では、定常状態の核分裂中において、加熱された燃料塩は、側部反射体208Cの頂部の上を越えて、1または複数の熱交換器210に流れる。次に、上記燃料塩は、熱交換器210内を巡って下方に移動し、冷却された燃料塩は、下部反射体208Bと側部反射体208Cとの間の1または複数の流路を介して炉心204に戻る。図示の実施形態では、側部反射体208Bには流れ案内部が設けられており、該流れ案内部は熱交換器210の下方に膨らみとして形成されており、該膨らみにより、冷却された燃料塩を炉心204に戻す流路が絞られている。上記流れ案内部の形状として任意の種類が使用されてもよい。
図2Bは、図2Aの反応炉の半体の断面図であり、燃料塩の流路を示している。図示の実施形態では、モデリングの目的で、炉心204は、1メートル(m)の半径であり、高さが3mである。固体の上部および下部の反射体208A・208Bによって、上記燃料塩の上部および下部の範囲がそれぞれ規定される。上記反射体の間の空間は流路を形成し、該流路は、通路またはダクトと別途称されてもよい。これにより、燃料塩が、上記炉心から上記内側反射体の上を通り、上記一次熱交換器を通り、上記内側反射体の下を通って、上記炉心の底部に戻る上記燃料塩の循環が可能になる。1または複数の流れを方向付けるバッフルまたは案内羽根が上記燃料ループの上記燃料塩ダクトに設けられてもよい。この場合、上記燃料ループを通る燃料塩の流れについて、より一様な流れが獲得され、かつ、等分布となる。また、上記燃料ループにおける滞留ゾーンが低減される。
上記炉心にて加熱された燃料塩は、浮力により上昇し、内部反射体208Cを回り、熱交換器210を通過し、それから、内部反射体208Cの膨らみ形状と下部反射体208Bとによって規定される戻り通路を通過するように流れるであろう。一実施形態では、上記反射体は、鉛充填の容器であってもよく、案内構造(例えば翼板212)は、ステンレス鋼の熱特性により固体である。図示のような外形に合わせた案内構造は、上記熱交換器の入口における良好な流れを促し、かつ、上記燃料ループ内における再循環セル(cells)の発生および衝突を低減するように与えられる。
図2Cは、図2Bに示す実施形態について、代表的な燃料塩(71mol%UCl−17mol%UCl−12mol%NaCl)の代表的な運転条件のセット下における温度および流れのモデリング結果を示している。上記モデリングから、最高温度は、炉心204の中央上部における略1150℃であり、最低温度は、熱交換器210の出口における約720℃であることが見出された。上記温度の結果によって、上記モデルの条件下では、濃密で冷たい燃料塩が炉心204の底部に流れ込み、これにより、より軽くて熱い燃料塩を熱交換器210に追い遣るという自然循環セルが生成されることが示される。炉心204の中央部において進行中の核分裂よって、冷却された燃料塩が再加熱されて、上記循環セルが、例えば、減速体の導入、または、上記燃料塩の減損によって上記核分裂が遮断されるまで駆動される。
別の実施形態では、反応炉は、ポンプおよび自然循環の両方を使用して、通常のパワー生成の運転中に上記燃料ループを介して上記燃料塩を移動させる。このような実施形態では、目標の流速への到達に必要とされるポンプのサイズを減少する点と、1または複数のポンプのパワー損失の観点とから、自然循環は依然として有益である。なぜならば、ポンプにより燃料塩が上記燃料ループを介して移動することがなくても、上記循環、故に冷却が継続するからである。
自然循環を増強する一方法は、高温の炉心204を一次熱交換器210の下方に終始選択的に配置することである。これにより、燃料ループ116の或る位置であって、上記炉心の「熱的中心」にて見出されることができる最も高温な(従って最も薄い)塩の物理的上方における位置に、最も濃い塩(例えば、上記一次熱交換器によって出力される冷却された塩)を配置することによって、上記循環における密度差の効果が強化される。
本開示の目的のために、上記「熱的中心」とは、上記炉心の形状およびサイズに基づく上記炉心内の位置であって、上記反応炉を介しての流れが無い場合に上記炉心にて進行中の核分裂反応によって最も多い熱が発生する位置をいう。この地点は、図2Bにて特定され、円筒形の上記炉心における垂直方向および水平方向の中心に位置づけられる。臨界未満の均質な燃料塩では、崩壊熱による上記熱的中心の位置は、炉心204によって規定される燃料塩の体積の質量中心を用いて近似することができる。しかしながら、これは全くの近似である。なぜならば、反射体208および他の部品の構成および形状は、炉心204内の核分裂反応、従って上記熱的中心の位置に或る程度の影響を与えるからである。
最も簡便な実施形態(図示せず)では、自然循環を使用するようになっている反応炉は、上記炉心の全く上方に上記一次熱交換器を配置することができる。しかしながら、このような垂直方向に積み重ねるデザインは、核分裂中に上記燃料塩にて気体が発生することによって複雑化すると共に、より大きな格納容器が潜在的に要求される。上記熱交換器内の気体の発生により、蒸気によって熱交換が停止する機会が増加し、一般に複雑性が増加し、熱交換器の効率が減少する。このため、上記炉心の上記塩が通常作用する表面レベル、または該表面レベルの下方に熱交換器を有する反応炉は、或る利点を有する。
図3は、自然循環型核分裂反応炉の炉心における改良された構成の実施形態を示している。該実施形態では、上記炉心は、頂部よりも底部の方が大きい。図示の実施形態では、炉心304は、略円錐台の形状を有する。円錐台とは、円錐に対し、該円錐の底面に平行な面で先端部が切り取られた形状をいう。図3は、炉心300の半体の断面図であり、図2A〜図2Cと同様である。炉心304は、上部反射体308A、下部反射体308B、および内部反射体308Cによって取り囲まれており、内部反射体308Cは、上記炉心と一次熱交換器310とを離間させるものである。図2Bの反応炉と同様に、頭部空間は存在せず、上記反応炉の全体、すなわち、炉心304、通路、および一次熱交換器310は、燃料塩で満たされている。反射体308A・308B・308Cの間の空間により通路が形成され、該通路により炉心304から内部反射体308Cの上を通り、一次熱交換器310を通り、内部反射体308Cの下を通って、炉心304の底部に戻る燃料塩の循環が可能になる。上記円錐台の形状により、質量中心を移動させ、かつそれ故に、炉心304の下部にある上記燃料塩の熱的中心324を移動させる効果がもたらされ、上記熱的中心が上記炉心の頂部および底部の中点よりも下方にあることが要求される。上記炉心に対する上記一次熱交換器の位置が固定である場合、円錐または角錐の錐台のように、上記炉心の底部が頂部よりも大きい形状に変化させることにより、上記燃料ループにおける上記燃料塩の自然循環が改善されるであろう。
図4は、円錐台の炉心デザインの別の実施形態を示している。図4は、図2A〜図2Cおよび図3と同様に、炉心400の半体の断面図である。炉心404は、上部反射体408A、下部反射体408B、および内部反射体408Cによって取り囲まれており、内部反射体408Cは、上記炉心と垂直向きの一次熱交換器410とを離間するものである。反射体408A・408B・408Cの間の空間により通路が形成され、該通路により炉心404から内部反射体408Cの上を通り、一次熱交換器410を通り、内部反射体408Cの下を通って、炉心404の底部に戻る燃料塩の循環が可能になる。また、上記円錐台の形状により、質量中心を移動させ、上記炉心の下部にある上記燃料塩の熱的中心424を移動させる効果がもたらされる。
図2A〜図2C、図3、および図4は、同じスケールで大まかに示されており、この3図の比較により、各熱的中心の大まかな位置の違いが示される。図2Bでは、上記熱的中心は、大まかには、上記炉心の中心にあり、上記一次熱交換器の底部とほぼ同じレベルである。図3および図4では、上記熱的中心は、上記炉心の著しく下部に位置づけられ、明らかに上記一次熱交換器の底部よりも下方に位置づけられる。上記熱交換器の底部が意味する位置は、最も冷たい溶融塩が上記システムに存在する位置であり、上記熱交換器の出口である。例えば、シェルアンドチューブ型熱交換器では、熱交換器の底部は、下部の管板に存在するであろう。
図3および図4にて示されるように、頂部よりも底部が広い炉心を使用することによって、上記熱交換器の頂部は、上記燃料塩と同じまたは下方のレベルであり、上記炉心のレベルである、任意に与えられた熱交換器の構成について、上記循環ループにおける最も冷たい燃料塩の位置に対する上記熱的中心の位置は、変化することができる。さらにこれにより、自然循環の量を制御することができる。一実施形態では、反応炉における自然循環の強度を決定する1つの性能ファクタは、上記炉心における塩の深さである上記炉心の頂部および底部の垂直距離A(図3および図4に距離Aとして示されている。)と、上記熱交換器の底部から下方の上記炉心の熱的中心の距離(図3および図4に距離Bとして示されている。)との比である。一実施形態では、上記比B/Aは正であり、上記熱的中心は、上記熱交換器の底部よりも下である。上記比B/Aが大きくなるにつれて、自然循環セルの強度が大きくなる。一実施形態では、上記比B/Aは0.01と0.45との間である。さらに別の実施形態では、上記比は0.1と0.4との間である。
円錐の錐台として形成された炉心は、頂部よりも底部が広く、それ故に、一次熱交換器を介しての自然循環を強化する炉心形状の一例にすぎない。その他の形状も利用可能である。特に、上記炉心の形状は、本質的には、上部反射体、下部反射体、および内部反射体によって規定される。例えば、上記錐台は、正確な円錐形である必要はなく、任意の数の平坦な或いは曲がった側面を有する角錐の錐台であってもよい。例えば、3側面の角錐、4側面の角錐(すなわち四角錐)、5側面の角錐(すなわち五角錐)、6側面の角錐(すなわち六角錐)、その他、それ以上の任意の数の側面を有する角錐であって、それぞれ先端部が切り取られているものであってもよい。
例えば、図5は、自然循環型炉心に好適な形状である十角錐(10側面の角錐)の錐台を示している。なお、上記形状は軸対称である必要はない。すなわち、炉心は、基部、頂部、平行垂直辺(parallel vertical sides)の1セット、および、傾斜しかつ平坦な側面の対向セットを有する台形状の角柱として形成されることもできる。なお、上記角柱の側面の幾つかは、平面の代わりに曲面であってもよい。また、上記炉心は、幾つかの核施設にて一般的に目にする冷却塔の形状のように、双曲面状に形成されることもでき、或いは、不均整な形状に形成されることもできる。そのような任意の錐台の形状は、以下の場合に限り好適である。すなわち、上記熱的中心が上記炉心における燃料塩のレベルと上記炉心の底部との中間点よりも低くなるように、上記炉心の基部の領域が頂部の領域よりも大きいか、或いは、上記燃料塩の質量の大部分が上記炉心の頂部と底部との中間点よりも下方である場合である。上記炉心における燃料塩のレベルまたはそれ以下に入口を有し、かつ、上記熱的中心の上方に出口を有する熱交換器と組み合わせると、上記錐台状の炉心は、パワー生成運転中における上記燃料塩の自然循環が、同じ高さの円筒形の炉心よりも著しく改善される。
〔統合型アクティブ容器冷却〕
図6A〜図6Cは、上記格納容器のアクティブ冷却を上記一次冷却材ループに統合する反応炉デザインの実施形態を示している。図6Aは、溶融塩型反応炉600における8個の交換機の構成を示す斜視図である。図示の溶融塩型反応炉600は、種々の内部部品を示すように一部を切り欠いている。図6Bは、上記反応炉の中央部と対向する2個の熱交換器を通る断面図である。図6Cは、上記熱交換器のデザインと上記一次冷却材の流れ(routing)とについて、より詳細に示す斜視断面図である。図6Bおよび図6Cでは、括弧記号は、冷却材または燃料塩の流れによりアクティブ冷却が行われる格納容器618の部分をそれぞれ示すようになっている。
図示の実施形態では、炉心604および熱交換器610は、格納容器618内に存在する。一次格納容器618は、ライナまたはライナのセットによって規定され、該ライナまたはライナのセットは頂部開口型容器を形成している。冷やされた上記一次冷却材は、上記頂部から上記容器618に出入する。これにより、上記格納容器を一体成形かつ非貫通とすることが可能である。上記一次冷却材ループは、流入した一次冷却材が格納容器618の少なくとも一部を最初に冷却するように、反応炉600に統合される。図示の実施形態では、上記冷却材は、一次冷却材入口通路630において、格納容器618の内面の隣りを或る程度の距離移動した後、一次熱交換器610の底部に移動する。上記冷却材は、一次熱交換器610の頂部を出て、それから、格納容器618の外部に移動して、パワー生成システム(図示せず)に移動する。
図示の実施形態では、燃料塩は、熱交換器610の上方に配置された、上記燃料ループの8個の別々の羽根車612Aを介して駆動される。各羽根車612Aは、反応炉600の上方に配置されたモータ(図示せず)に対し、回転シャフト612Bによって接続される。上記燃料ループを通る上記塩の流れは破線606によって示される一方、一次冷却材の流れは点線614によって示される。
図示のデザインの別の態様は、冷却された燃料塩であって、熱交換器610を出た燃料塩が、炉心604に入る前に上記格納容器の一部に沿って移動するというものである。これにより、追加のアクティブ冷却が上記格納容器に統合される。図示の実施形態のように、上記格納容器は、任意の地点で上記炉心に密接してはいない。実際、図6A〜図6Cの格納容器618は、以下の3個の部品にのみ密接している。すなわち、冷却された一次冷却材の入口通路630と、冷却された塩を炉心604に戻す、冷却された燃料塩の通路632と、下部反射体608Bとである。なお、下部反射体608B自身は、炉心604に入る冷却された燃料塩の流れによって冷却され、それから、上記下部反射体と隣り合う格納容器618の部分が間接的に冷却される。従って、格納容器618は、冷却された一次冷却材または冷却された燃料塩の何れかと接触することによってアクティブ冷却される部品と隣り合うのみである。
運転時に、上記一次冷却材ループは、溶融型燃料塩から熱を除去するだけでなく、上記格納容器から熱を直接除去して、上記格納容器の温度を維持するために役立つ。なお、図示のようなシステムでは、燃料塩の流れと一次冷却材の流れとを独立して制御することにより、上記燃料の温度と格納容器の温度との両方を独立して制御することが考慮されている。上記2つの流れを調節することによって、オペレータは、上記炉心の温度と、上記格納容器の温度との両方を、独立したレベルに選択的に維持することができる。さらに、上記流れの経路を定め、かつ、種々の位置における絶縁を提供することにより、種々の部品間の熱伝達の特性は、必要に応じて冷却の多少を提供するようになっていてもよい。
図7は、アクティブ容器冷却のための方法の実施形態におけるフロー図である。図示の実施形態では、統合されたアクティブ冷却は、溶融塩と格納容器の少なくとも一部との両方から一次冷却材ループを介して熱を直接的に除去することによって、溶融燃料塩型原子核反応炉の格納容器をアクティブ冷却するための方法700として考慮されてもよい。格納容器を直接冷却する第1の動作702では、上記冷却材が上記燃料塩熱交換器に実際に入る前に、上記格納容器の少なくとも第1部分が上記一次冷却材によって冷却される。このことは、冷却された一次冷却材を一次熱交換器に移動させる前に、上記格納容器の少なくとも一部の内面と隣り合って上記一次冷却材を移動させることによって達成される。このことは、上記格納容器の当該部分をアクティブ冷却するのに役立つ。一実施形態では、上記冷却材の入口通路と、当該部分における上記冷却材の上記格納容器との熱接触とは、上記冷却材と上記容器との熱伝達を強化するようにデザインされてもよい。
また、格納容器を直接冷却する第1の動作702は、上記一次冷却材を上記反応炉の頭部を介して移動させることによって、上記反応炉の頭部を冷却することを含んでもよい。一実施形態では、この移動は、上記反応炉の上記上部反射体を特に冷却するために使用されてもよい。このことは、次に上記熱交換器に流れる同じ冷却材を用いて実行されてもよいし、次に冷却材の主ストリームと合流する冷却材の副ストリームを用いて実行されてもよいし、或いは、完全に別々の冷却材ストリームを用いて実行されてもよい。
図示の実施形態では、格納容器を直接冷却する第2の動作704において、上記格納容器の少なくとも第2の部分が、上記一次熱交換器を出てから上記炉心に入る前の上記冷却された燃料塩によって冷却される。このことは、図6A〜図6Cに示されるように、上記格納容器の上記第2部分の内面と隣り合って、上記冷却された燃料塩を移動させることによって達成されてもよい。上記冷却材の入口通路と同様に、上記冷却された燃料塩の通路と、当該部分における上記燃料塩の上記格納容器との熱接触とは、上記燃料塩と上記容器との熱伝達を強化するようにデザインされてもよい。
間接冷却する第3の動作706が同様に行われてもよい。第3の動作では、上記冷却された燃料塩は、上記格納容器の或る第3の部分と接触する中性子反射体の表面と隣り合って移動してもよい。これにより、上記中性子反射体が冷却されて、該中性子反射体と接触する上記格納容器の第3の部分が間接的に冷却される。この動作706では、上記実施形態に依存して、上記反射体は、図6A〜図6Cに示す反射体608B等の下部反射体であってもよいし、或いは、上記格納容器の一部と隣り合う側部反射体であってもよい。
〔一次熱交換器のシェル側燃料構成〕
上述の詳細な説明において、一次熱交換器は、上記燃料塩がチューブ内を流れ、一次冷却材がシェル内かつ上記チューブの周囲を流れるシェルアンドチューブ型熱交換器に関して説明されている。上述のように、これは、「チューブ側燃料」構成、或いは「シェル側冷却材」構成として代替的に称されてもよい。しかしながら、上記反応炉における全体の動作の改善は、シェル側燃料構成に移し替えることによって得られてもよい。
金属部品が長期間にわたって高線量の放射線に曝される環境下では、非溶接の物質の劣化を予測するよりも溶接された部品の劣化を予測する方が困難であることが確認されている。溶接部分は、弱く、高線量における放射線の損傷および経年劣化に曝される可能性がある。従って、特定のデザインに固有のリスクを低減し、該デザインに固有の予測性のレベルを向上するために、溶接された部品を高い中性子束の領域から可及的遠くに移動させる、或いは、溶接された部品を上記デザインから完全に排除することは有益である。
排除が困難な溶接された部品の1つは、シェルアンドチューブ型熱交換器における管板である。該管板の溶接により、上記燃料塩と上記一次冷却材との混合を防止するので、上記溶接の経年劣化の低減は、デザイン要因である。
上記反応炉のデザインの改善は、熱交換器のデザインをシェル側燃料のデザインに切り替えて、対向する管板を、上記格納容器内に残す一方、上記炉心の中心から可及的遠くに移動させることである。これにより、上記管板によって受け取る相対的な線量が、図2A〜図2C、図3、図4、および図6A〜6Cにおけるデザインに比べて低減される。
図8は、シェル側燃料の熱交換器の構成を有する反応炉の実施形態を示している。本実施形態では、図4A〜図6と同様に、反応炉800の半体が示されている。上記炉心804は、上部反射体808A、下部反射体808B、および内部反射体808Cによって取り囲まれており、内部反射体808Cは、上記炉心と一次熱交換器810とを離間させるものである。反射体808A・808B・808Cの間の空間により通路が形成され、該通路により炉心804から内部反射体808Cの上を通り、一次熱交換器810を通り、内部反射体808Cの下を通って、炉心804の底部に戻る燃料塩の循環(破線806で示される)が可能になる。複数のバッフル812が上記シェル内に設けられ、上記熱交換器におけるチューブの周囲の迂回経路(circuitous path)を上記燃料塩に進ませる。
冷却材は、熱交換器810のチューブ側にて流れるが、上記熱交換器の底部に入る前に、まず、格納容器818の側壁と一部の底部とに隣り合う冷却材の入口通路830の長さを下方に流れる。従って、図示の反応炉800は、上述のアクティブ冷却方法700の実施形態を、図7を参照して使用すると、上記反応炉の容器818の一部分が、上記冷たい一次冷却材によって直接冷却され、下部反射体808Bは、炉心804に戻る上記冷たい燃料塩によって直接冷却される。
上記一次冷却材は、下部管板831を介して流れることにより熱交換器810のチューブに入る。下部管板831は、上記炉心の底部と同程度のレベルとして示されている。下部管板831は、本実施形態に依存する下部反射体808Bのレベルまたはそれ以下であってもよい。上記冷却材は、上部管板832にて上記熱交換器のチューブを出る。上部管板832は、図8において、炉心804および格納容器818から上方の或る程度の距離に配置されている。また、上記冷却材の流れは破線814によって示されている。
図8に示す領域834は、上記熱交換器のシェル内の領域であって、炉心804における塩のレベルよりも上方の領域である。この領域は、貫通するチューブ以外は中身が詰まっていてもよく、或いは、不活性ガスで満たされた上部空間であってもよい。
1または複数のポンプ(図示せず)は、上記燃料塩の循環、上記一次冷却材の循環、またはその両方を支援するように設けられてもよい。例えば、羽根車は、炉心804の頂部における上記加熱された燃料塩の入口通路と、炉心804の底部における上記冷却された燃料の出口通路との一方または両方に設けられてもよい。同様に、羽根車は、上記冷却材の入口通路830に設けられて、上記一次冷却材の流れの制御を支援してもよい。
図9は、図8における反応炉の別の実施形態を示している。図示の実施形態において、参照番号は、図8の同じ構成要素に関する参照番号に対応する。図9は、管板931・932の別の構成を示しており、当該構成により、上記溶接された管板が上記燃料塩からの中性子束に曝されることが、なおいっそう低減される。図示の実施形態では、上記チューブのセットのチューブは、熱交換器910の何れか端部において上部および下部の反射体908A・908Bの少なくとも一部を貫通している。さらに別の実施形態では、燃料塩がシェル側から上記チューブ側の上記冷却材に漏出することを防止するという管板の役割を反射体908A・908Bが実行することにより、上記管板が排除されている。
なお、図9には、熱交換器910と上記冷却材の入口通路930との間に第2の側部反射体908Dが示されている。これは、付加的な反射を提供することができ、或いは単純に、炉心904の外部の中性子束を低減するための減速体その他の保護体であってもよい。
〔一次熱交換器におけるU字チューブの構成〕
上記反応炉のデザインにおける別の改良点は、熱交換器のデザインをシェル側燃料のデザインに切り替えて、U字チューブの熱交換器を利用することにある。このデザインでは、上記U字チューブの交換器における単一の管板は、上記炉心の上方であって上記格納容器の外側に配置され、従って、図2A〜図2C、図3、図4、および図6A〜図6Cのデザインと比較して、比較的低減された線量の環境下に配置される。
図10は、シェル側燃料のU字チューブの熱交換器の構成を有する反応炉の実施形態を示しており、当該構成では、上記単一の管板が上記炉心の上方に配置されている。本実施形態では、図8および図9と同様に、反応炉1000の半体が示されている。炉心1004は、上部反射体1008A、下部反射体1008B、および内部反射体1008Cによって取り囲まれており、内部反射体1008Cは、上記炉心を規定し、かつ、上記炉心と一次熱交換器1010とを離間させるものである。反射体1008A・1008B・1008Cの間の空間により通路が形成され、該通路により炉心1004から内部反射体1008Cの上を通り、一次熱交換器1010のシェル側を通り、内部反射体1008Cの下を通って、炉心1004の底部に戻る燃料塩の循環(破線1006で示される)が可能になる。複数のバッフル1012が上記シェル内に設けられ、上記熱交換器におけるチューブの周囲の迂回経路を上記燃料塩に進ませる。冷却材は、熱交換器1010のU字状チューブ内を流れ、その結果、上記冷却材は、上記チューブに入り、かつ、上記頂部から上記単一の管板1032を通って上記チューブを出る。上部の管板1032は、図10において、炉心1004および格納容器1018の上方の或る程度の距離に配置され、従って、上述の他のデザインに比べて放射線の被曝が低減される。また、上記冷却材の流れは、破線1014によって示されている。
図10に示す領域1034は、上記熱交換器のシェル内の領域であって、炉心1004における塩のレベルよりも上方の領域である。また、この領域は、貫通するチューブ以外は中身が詰まっていてもよく、或いは、不活性ガスで満たされた上部空間であってもよい。中身が詰まっている場合、上記領域は反射体の材料で満たされ、該材料をチューブのセットが貫通していてもよい。
また、1または複数のポンプ、或いは該ポンプの少なくとも羽根車(図示せず)が、燃料塩の循環、および/または、冷却材の循環を支援するように設けられてもよい。例えば、羽根車は、炉心1004の頂部における上記加熱された燃料塩の入口通路と、炉心1004の底部における上記冷却された燃料の出口通路との一方または両方に設けられてもよい。
さらに別の実施形態では、管板1032等の溶接された部品は、中性子吸収物質のシートで中性子から遮蔽されてもよい。上記中性子吸収物質は、炉心1004に対向する側に上記管板と隣り合って配置されてもよい。このような、管板と中性子吸収物質との組合せは、上述の任意の実施形態にて使用されてもよい。上記中性子吸収物質は、上記管板と隣り合うまたは離間するコーティング、付加層、または独立した構造の部品であってもよい。
U字チューブの熱交換器のデザインのさらに別の実施形態では、上記冷却材が上記熱交換器を、上記格納容器に対し横方向に出入するように、熱交換器を90度回転している。
図11は、シェル側燃料のU字チューブの熱交換器の構成を有する反応炉の実施形態を示しており、当該構成では、上記単一の管板が上記炉心内ではあるが、該炉心から側方に離間した位置に設置されている。本実施形態では、図4A〜図6と同様に、反応炉1100の半体が示されている。炉心1104は、上部反射体1108A、下部反射体1108B、および内部反射体1108Cによって取り囲まれており、内部反射体1108Cは、上記炉心と一次熱交換器1110とを離間させるものである。反射体1108A・1108B・1108Cの間の空間により通路が形成され、該通路により炉心1104から内部反射体1108Cの上を通り、一次熱交換器1110のシェル側を通り、内部反射体1108Cの下を通って、炉心1104の底部に戻る燃料塩の循環(破線1106で示される)が可能になる。複数のバッフル1112が上記シェルに設けられ、上記熱交換器におけるチューブの周囲の迂回経路を上記燃料塩に進ませる。冷却材は、熱交換器1110のU字状チューブ内を流れ、その結果、上記冷却材は、上記チューブに入り、かつ、反応炉1000の頂部から上記チューブを出る。図示の実施形態では、冷却材は、格納容器1118の隣りの通路において上記反応炉に入り、下方に流れ、それから管板1132の下部を通って横方向に流れ、かつ、熱交換器1110内に流れる。次に、上記冷却材は、管板1132の上部から出て、格納容器1118の頂部の外に出る。上記冷却材の流れは、破線1114によって示されている。管板1132は上述のデザインに比べて上記炉心から遠いため、放射線の被曝が低減される。なお、このデザインは、上述のようなアクティブ冷却された格納容器の別の実施形態でもある。
さらに別の実施形態では、上記U字チューブは、図11に示される垂直向きのU字チューブに対して、水平向き(図示せず)であってもよい。この向きは、高い中性子束の環境から上記管板を未だ離れて配置している間、熱伝達に関して利益をもたらしてもよい。
さらに、一実施形態では、上記管板と上記燃料塩との間に第2の内部中性子反射体(図示せず)を設けることにより、管板1132は、中性子による損傷から保護される。本実施形態では、上記チューブは、上記燃料塩と接触状態に入るのに先立って、第2の内部中性子反射体を貫通している。このことは、上記燃料塩が放射する中性子から上記管板をさらに離間するのに役立つ。別の実施形態では、管板1132は、中性子減速体によって燃料塩から離間している。該中性子減速体は、例えば、Ag、In、Cd、Bo、Co、Hf、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luを含む鋼合金その他の物質のような、比較的大きな中性子吸収断面積を有する物質の或る程度の量によって生成される。例えば、高ホウ素鋼、Ag−In−Cd合金、炭化ホウ素、二ホウ化チタン、二ホウ化ハフニウム、ガドリニウム硝酸塩、その他の、現在知られており、或いは将来開発される制御棒または中性子吸収体として使用される任意の物質が使用されてもよい。一実施形態では、上記反射体または吸収体は、単に、管板1132の塩との接触側における適当な物質のコーティングであってもよい。
〔ラジアルループ型反応炉〕
図12Aおよび図12Bは、ラジアルループ型反応炉と称する別の反応炉のデザインを示している。図12Aは、反応炉1200の平面図であり、図12Bは、図12Aに示すA−A線に沿った断面図である。図示のラジアルループ型反応炉1200の実施形態では、炉心1204は、上部反射体1208A、下部反射体1208B、およびチューブ状の側部(または内部)反射体1208Cによって規定される。反射体1208は、炉心の格納容器1218A内にあり、格納容器1218Aは、8本の加熱された燃料塩の出口パイプ1209と、8本の冷却された燃料塩の帰還パイプ1211とによって貫通されている。出口パイプ1209は、格納容器1218Aの頂部に配置されており、帰還パイプ1211は、炉心1204の底部のレベルにて上記格納容器を貫通している。出口パイプ1209、熱交換器1210、および帰還パイプ1211の各セットを、熱交換器脚体と称してもよい。
8個の一次熱交換器1210が、炉心の格納容器1218Aの周囲を傾斜構成にて示されているが、本実施形態に依存して、より多くの、或いはより少しの一次熱交換器1210が使用されてもよい。また、上記熱交換器脚体は、垂直であってもよいし、図示よりも大きな傾斜であってもよいし、小さな傾斜であってもよいことに留意すべきである。
図示の実施形態では、加熱された燃料塩は、炉心1204から出口パイプ1209を通り、かつ熱交換器1210を通って移動する。上記熱交換器は、上記燃料塩を冷却し、それから、該燃料塩は、帰還パイプ1211を介して炉心1204の底部に戻る。
図示の実施形態では、炉心2204は、形状において円筒形である。しかしながら、この形状は、運転中の上記燃料塩の自然循環を改善するために、上述のように、実質的に円錐台形状の炉心に変更することもでき、或いは、実質的に角錐台状の炉心に変更することもできる。上記の「実質的」との言葉は、上記炉心の形状は、底部および頂部が完全に平坦な表面であり、かつ、側面が完全に平坦または円錐状である完全な錐台でなくてもよいということを表すために、本願で使用されている。例えば、図3および図4は、流れを誘導する膨らみその他の形状が上記炉心における頂部および底部の中央に設けられたり、側部に設けられたりしたとしても、実質的に錐台状の炉心を示している。
一実施形態(図示せず)では、1または複数のポンプ(または該ポンプにおける少なくとも上記羽根車の部品)が、帰還パイプ1211と出口パイプ1209との一方または両方に設けられている。また、さらに別の実施形態(図示せず)では、遮断バルブが帰還パイプ1211と出口パイプ1209との一方または両方に設けられてもよく、同様に、上記8個の熱交換器脚体における任意の1つが炉心1204から独立に遮断されて、メインテナンスを容易にするために燃料塩を排出させることができるドレインタップ(drain taps)が設けられてもよい。或る実施形態(図示せず)では、排出された燃料塩を受け取る1または複数のドレインタンクが、上記熱交換器のレベル、炉心格納容器1218A、または上記熱交換器脚体の下方に設けられてもよい。別の実施形態では、各熱交換器脚体は、上記入口パイプにポンプを含んでもよく、該ポンプは、燃料塩の排出時に上記熱交換器から燃料塩を吸引し、上記燃料塩をドレインタンクに代えて炉心1204に戻してもよい。このレイアウトの利点の1つは、上記ループの脚体と、上記熱交換器の角度とを調節して、上記熱交換器の底部に配置されるべき燃料ポンプ(図示せず)の位置について、新たなフレキシビリティをもたらすことができることにある。さらに、上記熱交換器またはその付近を通るポンプシャフト、或いは下方からの容器の貫通は、本実施形態では要求されない。
図12Dに示すように、二次格納容器1218Bが、炉心の組立品の全体の周囲すなわち、反応炉1200の上記燃料ループにおける全部品の周囲に設けられてもよい。一実施形態では、上記二次格納容器は、上記反応炉に含まれる燃料塩の全てを少なくとも保持するのに十分な体積を有している。さらに、そのサイズは、安全マージンを与えるように増加されてもよいし、上記反応炉における冷却材の体積と、燃料塩の全体積の両方を保持するのに十分に大きいサイズであってもよい。上記格納容器は、図示のように、ラジアルループ型反応炉1200を完全に包囲してもよいし、上記反応炉を部分的に包囲してもよいし、或いは、単に、反応炉1200の下方の大容器であって十分なサイズの大容器であってもよい。上記実施形態では、一次冷却材は、上述の二次格納容器1218Bから一次熱交換器1210を介して循環される。
ラジアルループ型反応炉1200では、炉心1204の高さによっては限定されないように、一次熱交換器1210のサイズが考慮される。さらに、上記熱交換器は、炉心格納容器1218Aの外側に存在するので、上記熱交換器は、サービスおよび制御がさらに容易である。
また、上記熱交換器は、上記炉心からさらに遠く離れており、それ故に、受け取る放射線の線量が低減される。
また、添付の請求の範囲に関係なく、本開示は下記の項目によって規定される。
<1>溶融塩型原子核反応炉であって、
核分裂性燃料塩を含み実質的に錐台状の炉心であって、加熱された燃料塩の出口と、冷却された燃料塩の入口と、上記冷却された燃料塩の入口の上方における熱的中心とを有する炉心と、
少なくとも1つの熱交換器であって、上記炉心における上記加熱された燃料塩の出口の下方における熱交換器の燃料塩の入口にて、加熱された燃料塩を受け取り、上記燃料塩から冷却材への熱伝達を行い、かつ、上記炉心における上記冷却された燃料塩の入口に流体的に(fluidly)接続された熱交換器の燃料塩の出口にて上記冷却された燃料塩を放出する熱交換器とを備え、
上記炉心の上記熱的中心は、上記熱交換器の燃料塩の出口の下方のレベルに存在し、
上記反応炉が臨界状態にある間に強制的な流れが損失している場合において、上記熱的中心の位置により自然循環が発生する、溶融塩型原子核反応炉。
<2>上記炉心の深さは、該炉心における上記燃料塩の頂部レベルと、上記炉心における上記燃料塩の底部との距離であり、
上記熱的中心の上記炉心の深さに対する、上記熱交換器の燃料塩の出口より下方の上記熱的中心の距離の比は、0.1および0.45の間である、項目1に記載の溶融塩型原子核反応炉。
<3>上記炉心の形状は、円錐の錐台、角錐の錐台、台形状の角柱、または双曲面から選択される、項目1または2に記載の溶融塩型原子核反応炉。
<4>上記炉心および少なくとも1つの熱交換器を含む格納容器をさらに備える、項目1または項目1に従属する任意の項目に記載の溶融塩型原子核反応炉。
<5>モータによって駆動される少なくとも1つの羽根車をさらに備えており、該羽根車は、上記熱交換器の燃料塩の入口と、上記炉心の上記加熱された燃料塩の出口との間の通路に配置され、上記燃料塩の流れを上記熱交換器の方に駆動するようになっている、項目1または項目1に従属する任意の項目に記載の溶融塩型原子核反応炉。
<6>上記反応炉が臨界未満の状態にある間に強制的な流れが損失している場合において、
上記熱的中心の位置により自然循環が発生する、項目1または項目1に従属する任意の項目に記載の溶融塩型原子核反応炉。
<7>流れを方向付ける少なくとも1つのバッフルをさらに備えており、該バッフルは、上記炉心と上記少なくとも1つの熱交換器との間における燃料塩の流れを方向付ける、項目1または項目1に従属する任意の項目に記載の溶融塩型原子核反応炉。
<8>上記炉心の頂部を規定する上部中性子反射体、
上記炉心の底部を規定する下部中性子反射体、および
上記炉心の側部を規定する少なくとも1つの内部中性子反射体であって、上記少なくとも1つの熱交換器と上記炉心との間に存在する内部中性子反射体をさらに備える、項目1または項目1に従属する任意の項目の溶融塩型原子核反応炉。
<9>上記炉心の上記加熱された燃料塩の出口は、上記上部中性子反射体と、少なくとも1つの内部中性子反射体との間のダクトである、項目8に記載の溶融塩型原子核反応炉。
<10>上記炉心の上記冷却された燃料塩の入口は、上記下部中性子反射体と、少なくとも1つの内部中性子反射体との間のダクトである、項目8または9に記載の溶融塩型原子核反応炉。
<11>上記少なくとも1つの熱交換器は、シェルアンドチューブ型熱交換器であり、該シェルアンドチューブ型熱交換器では、上記燃料塩がシェルアンドチューブ型熱交換器のチューブ内を流れる、項目1または項目1に従属する任意の項目に記載の溶融塩型原子核反応炉。
<12>上記少なくとも1つの熱交換器は、シェルアンドチューブ型熱交換器であり、該シェルアンドチューブ型熱交換器では、上記燃料塩がシェルアンドチューブ型熱交換器のシェル内を流れる、項目1〜10に記載の溶融塩型原子核反応炉。
<13>流入する冷たい冷却材は、該冷却材が上記少なくとも1つの熱交換器に流れ込む前に、上記格納容器の第1の部分を冷却する、項目4または項目4に従属する任意の項目に記載の溶融塩型原子核反応炉。
<14>上記熱交換器の燃料塩の出口から放出される上記冷却された燃料塩は、上記炉心の上記冷却された燃料塩の入口を介して上記炉心に入る前に、上記格納容器の第2の部分を冷却する、項目4または項目4に従属する任意の項目に記載の溶融塩型原子核反応炉。
<15>溶融燃料塩型原子核反応炉にて格納容器および燃料塩をアクティブ冷却する方法であって、
一次冷却材を格納容器内に流すステップであって、格納容器の第1の部分と隣り合って上記一次冷却材を流すことにより、第1の部分を冷却するステップ、
上記格納容器内で該格納容器から離間した熱交換器内に一次冷却材を流すステップであって、上記熱交換器は、冷却された燃料塩を放出するステップ、
冷却され放出された燃料塩を上記格納容器の第2の部分と隣り合う通路を介して送るステップであって、これにより第2の部分を冷却するステップ、および
冷却された燃料塩を中性子反射体と隣り合う通路を介して送るステップであって、これにより上記中性子反射体を冷却するステップを含んでおり、
冷却された上記中性子反射体は、上記格納容器の第3の部分と隣り合い、冷却された上記中性子反射体が第3の部分を間接的に冷却する、方法。
<16>上記一次冷却材を格納容器内に流すステップは、
上記格納容器内にあり、該格納容器の第1の部分に熱的に接続された冷却材入口のダクトを介して上記冷却材を流すステップをさらに含む、項目15に記載の方法。
<17>上記一次冷却材を格納容器内に流すステップは、
上記格納容器内の冷却材入口のダクトを介して、熱交換器の冷却された燃料塩の出口と隣り合う熱交換器の冷却材の入口に、上記冷却材を流すステップをさらに含む、項目15または16に記載の方法。
<18>上記一次冷却材を格納容器内に流すステップは、
上記格納容器内にあり、該格納容器の第1の部分に熱的に接続された冷却材入口のダクトを介して上記冷却材を流すステップをさらに含む、項目15または項目15に従属する任意の項目に記載の方法。
<19>上記燃料塩は、少なくとも1つの核分裂性塩と少なくとも1つの非核分裂性塩との混合物である、項目15または項目15に従属する任意の項目に記載の方法。
<20>上記燃料塩は、UF、UF、UF、ThCl、UBr、UBr、PuCl、UCl、UCl、UClF、およびUClの核分裂性塩の1つまたは複数を含む、項目15または項目15に従属する任意の項目に記載の方法。
<21>上記燃料塩は、NaCl、MgCl、CaCl、BaCl、KCl、SrCl、VCl、CrCl、TiCl、ZrCl、ThCl、AcCl、NpCl、AmCl、LaCl、CeCl、PrCl、および/または、NdClの非核分裂性塩の1つまたは複数を含む、項目15または項目15に従属する任意の項目に記載の方法。
<22>上記燃料塩は、UClと、UClと、NaClおよびMgClの一方または両方との混合物である、項目15または項目15に従属する任意に記載の項目の方法。
<23>溶融燃料型原子核反応炉であって、
炉心の頂部を規定する上部中性子反射体と、
上記炉心の底部を規定する下部中性子反射体と、
上記炉心の側部を規定する少なくとも1つの内部中性子反射体と、
少なくとも1つの熱交換器であって、上記炉心における加熱された燃料塩の出口の下方における熱交換器の燃料塩の入口にて、上記加熱された燃料塩を受け取り、上記燃料塩から冷却材への熱伝達を行い、かつ、上記炉心における上記冷却された燃料塩の入口に流体的に接続された熱交換器の燃料塩の出口にて上記冷却された燃料塩を放出する熱交換器とを備え、
上記少なくとも1つの熱交換器は、溶接された部品を含み、該溶接された部品は、上記上部中性子反射体、上記下部中性子反射体、上記内部中性子反射体、または中性子減速体の1つによって上記燃料塩から離間されている、溶融燃料型原子核反応炉。
<24>上記溶接された部品は管板である、項目23に記載の溶融燃料型原子核反応炉。
<25>上記溶接された部品である管板を介して、上記冷却材は、上記少なくとも1つの熱交換器を出て行き、上記管板は、上記上部中性子反射体によって上記燃料塩から離間されている、項目24に記載の溶融燃料型原子核反応炉。
<26>上記溶接された部品である管板を介して、上記冷却材は、上記少なくとも1つの熱交換器に入り、上記管板は、上記下部中性子反射体によって上記燃料塩から離間されている、項目24に記載の溶融燃料型原子核反応炉。
<27>上記溶接された部品である管板を介して、上記冷却材は、上記少なくとも1つの熱交換器に入り、かつ出て行く、項目24に記載の溶融燃料型原子核反応炉。
<28>上記管板を介して、上記冷却材が上記少なくとも1つの熱交換器に入り、かつ出て行き、上記管板は、上記炉心の上方に配置される、項目27に記載の溶融燃料型原子核反応炉。
<29>上記管板を介して、上記冷却材が上記少なくとも1つの熱交換器に入り、かつ出て行き、上記管板は、上記上部中性子反射体によって上記燃料塩から離間されている、項目27または28に記載の溶融燃料型原子核反応炉。
<30>上記管板を介して、上記冷却材が上記少なくとも1つの熱交換器に入り、かつ出て行き、上記管板は、中性子吸収体によって上記燃料塩から離間されている、項目27または28に記載の溶融燃料型原子核反応炉。
<31>ラジアルループ溶融塩型反応炉であって、
炉心格納容器、
該炉心格納容器において、該炉心格納容器内の炉心体積を規定する1または複数の反射体、および
上記炉心格納容器の外側に離間して配置される複数の熱交換器脚体であって、各熱交換器脚体は、加熱された燃料塩を上記炉心体積から受け取るようになっている反応炉出口パイプと、上記加熱された燃料塩から一次冷却材への熱伝達を行い、これにより、冷却された燃料塩を生成する熱交換器と、上記冷却された燃料塩を上記炉心体積内に戻す反応炉入口パイプとを有する熱交換器脚体を備えるラジアルループ溶融塩型反応炉。
<32>上記炉心体積内に核分裂性燃料塩をさらに備える、項目31に記載のラジアルループ溶融塩型反応炉。
<33>上記炉心格納容器および上記複数の熱交換器脚体を含む二次格納容器をさらに備えており、該二次格納容器は、炉心格納容器および上記複数の熱交換器脚体に含まれる全ての上記燃料塩を少なくとも保持するのに十分な体積を規定する、項目30または31に記載のラジアルループ溶融塩型反応炉。
<34>上記複数の熱交換器脚体の少なくとも1つに少なくとも1つの羽根車をさらに備えており、上記少なくとも1つの羽根車は、上記複数の熱交換器脚体の少なくとも1つを介して、燃料塩の流れを駆動するようになっている、項目30または項目30に従属する任意の項目に記載のラジアルループ溶融塩型反応炉。
<35>上記複数の熱交換器脚体のそれぞれに羽根車をさらに備えており、該羽根車は、上記熱交換器脚体を介して燃料塩の流れを駆動するようになっている、項目30または項目30に従属する任意の項目に記載のラジアルループ溶融塩型反応炉。
<36>上記熱交換器は、シェルアンドチューブ型熱交換器である、項目30または項目30に従属する任意の項目に記載のラジアルループ溶融塩型反応炉。
<37>上記一次冷却材は、上記熱交換器のシェル側を介して流れる、項目36に記載のラジアルループ溶融塩型反応炉。
<38>上記燃料塩は、上記熱交換器のシェル側を介して流れる、項目36に記載のラジアルループ溶融塩型反応炉。
<39>上記燃料塩は、UF、UF、UF、ThCl、UBr、UBr、PuCl、UCl、UCl、UClF、およびUClの核分裂性塩の1つまたは複数を含む、項目30または項目30に従属する任意の項目に記載のラジアルループ溶融塩型反応炉。
<40>上記燃料塩は、NaCl、MgCl、CaCl、BaCl、KCl、SrCl、VCl、CrCl、TiCl、ZrCl、ThCl、AcCl、NpCl、AmCl、LaCl、CeCl、PrCl、および/または、NdClの非核分裂性塩の1つまたは複数を含む、項目30または項目30に従属する任意の項目に記載のラジアルループ溶融塩型反応炉。
<41>上記燃料塩は、UClと、UClと、NaClおよびMgClの一方または両方との混合物である、項目30または項目30に従属する任意の項目に記載のラジアルループ溶融塩型反応炉。
本願に記載のシステムおよび方法は、上述の目的および利点と共に、それらに本来備わっている目的および利点を達成するために良好に適合されることは、明らかであろう。本明細書内の上記方法および上記システムは、多くの様式にて実施されてもよく、上述の例示された実施形態および実施例によって限定されるべきではないことが、当業者であれば、理解されるであろう。この点に関して、本願に記載の種々の実施形態における任意の数の特徴点を組み合わせて単一の実施形態としてもよいし、本願に記載の特徴点の全てに比べて、より少ない或いはより多い特徴点を有する別の実施形態が可能である。
種々の実施形態を本開示の目的のために説明してきたが、本開示によって予期される範囲内で好適な種々の変更および修正がなされてもよい。
当業者であれば彼らによって容易に示唆され、かつ、本開示の精神に包含されるその他の莫大な変更がなされてもよい。
溶融燃料型反応炉の基本構成の幾つかをブロック図の形態で示す図である。 自然循環のみを用いて燃料塩を燃料ループにて循環させる反応炉の実施形態を示す或る種類の図である。 自然循環のみを用いて燃料塩を燃料ループにて循環させる反応炉の実施形態を示す別の種類の図である。 自然循環のみを用いて燃料塩を燃料ループにて循環させる反応炉の実施形態を示す他の種類の図である。 自然循環型核分裂反応炉の炉心における改良された構成の実施形態であって、上記炉心は頂部よりも底部の方が大きい実施形態を示す図である。 円錐台の炉心デザインの別の実施形態を示す図である。 十角錐(10側面の角錐)の錐台の炉心であって、自然循環型炉心に好適な炉心を示す図である。 格納容器のアクティブ冷却を一次冷却材ループに統合する反応炉デザインの実施形態を示す図である。 格納容器のアクティブ冷却を一次冷却材ループに統合する反応炉デザインの実施形態を示す図である。 格納容器のアクティブ冷却を一次冷却材ループに統合する反応炉デザインの実施形態を示す図である。 アクティブ容器冷却のための方法の実施形態におけるフロー図である。 シェル側燃料の熱交換器の構成を有する反応炉の実施形態を示す図である。 図8における反応炉の別の実施形態を示す図である。 シェル側燃料のU字チューブの熱交換器の構成であって、1枚の管板が炉心の上方に配置された構成を有する反応炉の実施形態を示す図である。 シェル側燃料のU字チューブの熱交換器の構成であって、1枚の管板が、炉心内ではあるが、該炉心から側方に離れた位置に設置された構成を有する反応炉の実施形態を示す図である。 ラジアルループ型反応炉と称する別の反応炉デザインを示す図である。 ラジアルループ型反応炉と称する別の反応炉デザインを示す図である。

Claims (14)

  1. 溶融塩型原子核反応炉であって、
    核分裂性燃料塩を含み実質的に錐台状の炉心であって、加熱された燃料塩の出口と、冷却された燃料塩の入口と、上記冷却された燃料塩の入口の上方における熱的中心とを有する炉心と、
    少なくとも1つの熱交換器であって、上記炉心における上記加熱された燃料塩の出口の下方における熱交換器の燃料塩の入口にて、加熱された燃料塩を受け取り、上記燃料塩から冷却材への熱伝達を行い、かつ、上記炉心における上記冷却された燃料塩の入口に流体的に接続された熱交換器の燃料塩の出口にて上記冷却された燃料塩を放出する熱交換器とを備え、
    上記炉心の上記熱的中心は、上記熱交換器の燃料塩の出口の下方のレベルに存在し、
    上記反応炉が臨界状態にある間に強制的な流れが損失している場合において、上記熱的中心の位置により自然循環が発生する、溶融塩型原子核反応炉。
  2. 上記炉心の深さは、該炉心における上記燃料塩の頂部レベルと、上記炉心における上記燃料塩の底部との距離であり、
    上記熱的中心の上記炉心の深さに対する、上記熱交換器の燃料塩の出口より下方の上記熱的中心の距離の比は、0.1および0.45の間である、請求項1に記載の溶融塩型原子核反応炉。
  3. 上記炉心の形状は、円錐の錐台、角錐の錐台、台形状の角柱、または双曲面から選択される、請求項1または2に記載の溶融塩型原子核反応炉。
  4. 上記炉心および少なくとも1つの熱交換器を含む格納容器をさらに備える、請求項1に記載の溶融塩型原子核反応炉。
  5. モータによって駆動される少なくとも1つの羽根車をさらに備えており、該羽根車は、上記熱交換器の燃料塩の入口と、上記炉心の上記加熱された燃料塩の出口との間の通路に配置され、上記燃料塩の流れを上記熱交換器の方に駆動するようになっている、請求項1に記載の溶融塩型原子核反応炉。
  6. 上記反応炉が臨界未満の状態にある間に強制的な流れが損失している場合において、
    上記熱的中心の位置により自然循環が発生する、請求項1に記載の溶融塩型原子核反応炉。
  7. 流れを方向付ける少なくとも1つのバッフルをさらに備えており、該バッフルは、上記炉心と上記少なくとも1つの熱交換器との間における燃料塩の流れを方向付ける、請求項1に記載の溶融塩型原子核反応炉。
  8. 上記炉心の頂部を規定する上部中性子反射体、
    上記炉心の底部を規定する下部中性子反射体、および
    上記炉心の側部を規定する少なくとも1つの内部中性子反射体であって、上記少なくとも1つの熱交換器と上記炉心との間に存在する内部中性子反射体をさらに備える、請求項1に記載の溶融塩型原子核反応炉。
  9. 上記炉心の上記加熱された燃料塩の出口は、上記上部中性子反射体と、少なくとも1つの内部中性子反射体との間のダクトである、請求項8に記載の溶融塩型原子核反応炉。
  10. 上記炉心の上記冷却された燃料塩の入口は、上記下部中性子反射体と、少なくとも1つの内部中性子反射体との間のダクトである、請求項8または9に記載の溶融塩型原子核反応炉。
  11. 上記少なくとも1つの熱交換器は、シェルアンドチューブ型熱交換器であり、該シェルアンドチューブ型熱交換器では、上記燃料塩がシェルアンドチューブ型熱交換器のチューブ内を流れる、請求項1に記載の溶融塩型原子核反応炉。
  12. 上記少なくとも1つの熱交換器は、シェルアンドチューブ型熱交換器であり、該シェルアンドチューブ型熱交換器では、上記燃料塩がシェルアンドチューブ型熱交換器のシェル内を流れる、請求項1〜9および11の何れか1項に記載の溶融塩型原子核反応炉。
  13. 上記格納容器に流入する冷たい冷却材であって、上記燃料塩から熱を除去するための冷たい冷却材は、該冷却材が上記少なくとも1つの熱交換器に流れ込む前に、上記格納容器の第1の部分を冷却する、請求項4に記載の溶融塩型原子核反応炉。
  14. 上記熱交換器の燃料塩の出口から放出される上記冷却された燃料塩は、上記炉心の上記冷却された燃料塩の入口を介して上記炉心に入る前に、上記格納容器の第2の部分を冷却する、請求項4に記載の溶融塩型原子核反応炉。
JP2021166984A 2016-05-02 2021-10-11 改良された溶融燃料型反応炉の熱管理の構成 Active JP7170816B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662330726P 2016-05-02 2016-05-02
US62/330,726 2016-05-02
JP2018557804A JP6960413B2 (ja) 2016-05-02 2017-05-01 改良された溶融燃料型反応炉の熱管理の構成

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018557804A Division JP6960413B2 (ja) 2016-05-02 2017-05-01 改良された溶融燃料型反応炉の熱管理の構成

Publications (2)

Publication Number Publication Date
JP2022003348A true JP2022003348A (ja) 2022-01-11
JP7170816B2 JP7170816B2 (ja) 2022-11-14

Family

ID=58708039

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2018557804A Active JP6960413B2 (ja) 2016-05-02 2017-05-01 改良された溶融燃料型反応炉の熱管理の構成
JP2018557865A Active JP6961620B2 (ja) 2016-05-02 2017-05-01 改良された溶融燃料型反応炉の冷却構成およびポンプ構成
JP2018557324A Active JP7039487B2 (ja) 2016-05-02 2017-05-02 中性子反射冷却材を有する溶融燃料原子炉
JP2021166984A Active JP7170816B2 (ja) 2016-05-02 2021-10-11 改良された溶融燃料型反応炉の熱管理の構成

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2018557804A Active JP6960413B2 (ja) 2016-05-02 2017-05-01 改良された溶融燃料型反応炉の熱管理の構成
JP2018557865A Active JP6961620B2 (ja) 2016-05-02 2017-05-01 改良された溶融燃料型反応炉の冷却構成およびポンプ構成
JP2018557324A Active JP7039487B2 (ja) 2016-05-02 2017-05-02 中性子反射冷却材を有する溶融燃料原子炉

Country Status (11)

Country Link
US (4) US10741293B2 (ja)
EP (3) EP3453024B1 (ja)
JP (4) JP6960413B2 (ja)
KR (4) KR102377348B1 (ja)
CN (3) CN109074876B (ja)
AU (4) AU2017261231B2 (ja)
BR (2) BR112018072071B1 (ja)
CA (3) CA3018444C (ja)
EA (3) EA035652B1 (ja)
MX (3) MX2018013286A (ja)
WO (3) WO2017192464A2 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11276503B2 (en) 2014-12-29 2022-03-15 Terrapower, Llc Anti-proliferation safeguards for nuclear fuel salts
US20160189813A1 (en) 2014-12-29 2016-06-30 Terrapower, Llc Molten nuclear fuel salts and related systems and methods
US10665356B2 (en) 2015-09-30 2020-05-26 Terrapower, Llc Molten fuel nuclear reactor with neutron reflecting coolant
CA2999894A1 (en) 2015-09-30 2017-04-06 Terrapower, Llc Neutron reflector assembly for dynamic spectrum shifting
US10867710B2 (en) 2015-09-30 2020-12-15 Terrapower, Llc Molten fuel nuclear reactor with neutron reflecting coolant
EP3453024B1 (en) 2016-05-02 2020-09-09 TerraPower LLC Improved molten fuel reactor cooling and pump configurations
EP3485496B1 (en) 2016-07-15 2020-04-15 TerraPower, LLC Vertically-segmented nuclear reactor
EP3922605A1 (en) 2016-08-10 2021-12-15 TerraPower LLC Electro-synthesis of uranium chloride fuel salts
WO2018140117A2 (en) 2016-11-15 2018-08-02 Terrapower, Llc Thermal management of molten fuel nuclear reactors
KR101988265B1 (ko) * 2017-05-24 2019-06-12 한국원자력연구원 원자로용기 내 냉각 및 발전 시스템
CN108417277B (zh) * 2017-12-25 2021-06-11 中国科学院上海应用物理研究所 一种一体化堆本体系统及氯盐堆系统
WO2019152595A1 (en) 2018-01-31 2019-08-08 Terrapower, Llc Direct heat exchanger for molten chloride fast reactor
CA3092142A1 (en) 2018-03-12 2019-11-28 Terrapower, Llc Reflectors for molten chloride fast reactors
CN109887623A (zh) * 2019-01-25 2019-06-14 中广核研究院有限公司 一种具有迷宫式流道的池式铅基快堆
CN109830315B (zh) * 2019-01-29 2022-08-02 哈尔滨工程大学 一种展开式核反应堆堆芯
CN109859860A (zh) * 2019-02-01 2019-06-07 中国原子能科学研究院 研究性反应堆
CN110364273A (zh) * 2019-07-10 2019-10-22 华南理工大学 一种液态燃料空间堆
US11881320B2 (en) 2019-12-23 2024-01-23 Terrapower, Llc Molten fuel reactors and orifice ring plates for molten fuel reactors
JP7349379B2 (ja) 2020-01-28 2023-09-22 三菱重工業株式会社 燃料棒出力の解析方法、解析装置及び燃料棒出力の解析プログラム
RU2733900C1 (ru) 2020-03-06 2020-10-08 Государственная корпорация по атомной энергии "Росатом" Быстрый жидко-солевой реактор
CN111951985B (zh) * 2020-07-15 2022-10-18 四川大学 一种模块化空间核反应堆发电单元
US11728052B2 (en) 2020-08-17 2023-08-15 Terra Power, Llc Fast spectrum molten chloride test reactors
US11798697B2 (en) * 2020-08-17 2023-10-24 Terrapower, Llc Passive heat removal system for nuclear reactors
CN113756892B (zh) * 2021-08-30 2022-10-28 西安交通大学 模块化多用途小型氟盐冷却高温堆能量系统

Family Cites Families (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA631890A (en) 1961-11-28 Government Of The United States Of America As Represented By The Secretary Of The Navy (The) Experimental liquid metal fuel reactor
US2375009A (en) 1940-02-07 1945-05-01 Mathieson Alkali Works Process for the purification of magnesium chloride
US2945794A (en) 1952-11-18 1960-07-19 Charles E Winters Neutronic reactor operational method and core system
GB739968A (en) * 1953-04-06 1955-11-02 Babcock & Wilcox Ltd Improvements in tubulous vapour generators
US2874106A (en) * 1955-04-11 1959-02-17 Hammond R Philip Homogeneous nuclear reactor
CH345085A (de) * 1955-07-08 1960-03-15 Gen Electric Kernreaktoranlage
US2920024A (en) 1956-07-27 1960-01-05 Barton Charles Julian Molten fluoride nuclear reactor fuel
BE589679A (ja) 1959-04-14
BE591155A (ja) 1959-06-01 1900-01-01
US3216901A (en) 1960-08-24 1965-11-09 Dow Chemical Co Fuel element and method of operating reactor
US3029130A (en) 1960-09-21 1962-04-10 Raymond H Moore Plutonium recovery from neutronbombarded uranium fuel
US3018239A (en) * 1961-02-21 1962-01-23 John J Happell Experimental liquid metal fuel reactor
US3136700A (en) * 1961-05-17 1964-06-09 Heinz F Poppendiek Fuel channel elements for circulating fuel neutronic reactors
NL281623A (ja) 1961-08-01 1900-01-01
DE1439107A1 (de) 1961-09-26 1969-02-06 Siemens Ag Brennelement fuer heterogene Atomreaktoren
GB964841A (en) * 1962-02-14 1964-07-22 Atomic Energy Authority Uk Nuclear reactors cooled by liquid metal
US3356587A (en) 1963-06-21 1967-12-05 Westinghouse Electric Corp Fuel assemblies for a neutronic reactor
GB1102815A (en) 1964-06-02 1968-02-14 Atomic Energy Authority Uk Improvements in or relating to nuclear reactors
US3218160A (en) 1964-11-10 1965-11-16 James B Knighton Regeneration of nuclear fuel
US3262856A (en) 1965-01-14 1966-07-26 Edward S Bettis Fused-salt-fueled, molten-metal-cooled power breeder reactor system
NL130632C (ja) 1965-03-12
GB1161599A (en) * 1965-12-23 1969-08-13 Atomic Energy Authority Uk Improvements relating to Nuclear Reactors
US3743577A (en) 1968-06-03 1973-07-03 Atomic Energy Commission Single fluid molten salt nuclear breeder reactor
US3785924A (en) 1970-09-02 1974-01-15 Combustion Eng Nuclear reactor core shroud
FR2182648B1 (ja) 1972-05-02 1974-09-27 Commissariat Energie Atomique
JPS571991B2 (ja) * 1973-09-10 1982-01-13
CH592352A5 (ja) * 1974-03-20 1977-10-31 Commissariat Energie Atomique
FR2278136A1 (fr) 1974-07-11 1976-02-06 Commissariat Energie Atomique Chargement et dechargement du coeur d'un reacteur nucleaire
GB1494055A (en) * 1974-12-24 1977-12-07 Pechiney Ugine Kuhlmann Molten salt in a nuclear reactor
FR2296248A1 (fr) * 1974-12-24 1976-07-23 Electricite De France Reacteur nucleaire a sel combustible fondu
FR2296923A1 (fr) * 1975-01-03 1976-07-30 Commissariat Energie Atomique Generateur de vapeur a basse temperature
US3997413A (en) 1975-10-23 1976-12-14 Sven Fougner Purification of magnesium chloride cell bath material useful for the production of magnesium metal by electrolysis
FR2379881A1 (fr) 1977-02-04 1978-09-01 Commissariat Energie Atomique Bloc-pompe echangeur de chaleur pour reacteurs nucleaires
FR2419565A1 (fr) * 1978-03-07 1979-10-05 Commissariat Energie Atomique Echangeur d'ultime secours, notamment pour reacteur nucleaire a neutrons rapides
US4309252A (en) 1978-09-25 1982-01-05 Nuclear Power Company Limited Nuclear reactor constructions
CA1183287A (en) * 1980-04-15 1985-02-26 Kazuo Furukawa Single fluid type accelerator molten-salt breeder
JPS571991A (en) * 1980-06-05 1982-01-07 Sumitomo Corp Small-fluid molten salt reactor
JPS57101991A (en) * 1980-12-17 1982-06-24 Minolta Camera Co Ltd Preset counter device of copying machine and the like
US4397778A (en) 1981-01-09 1983-08-09 Lloyd Milton H Coprocessed nuclear fuels containing (U, Pu) values as oxides, carbides or carbonitrides
FR2529370A1 (fr) * 1982-06-29 1983-12-30 Commissariat Energie Atomique Reacteur nucleaire a sels fondus refroidi a l'helium
FR2535888A1 (fr) 1982-11-05 1984-05-11 Novatome Bouchon-couvercle du coeur d'un reacteur nucleaire a neutrons rapides
US4762667A (en) 1982-12-20 1988-08-09 Westinghouse Electric Corp. Passive reactor auxiliary cooling system
FR2598247B1 (fr) 1986-05-05 1988-09-09 Novatome Bouchon-couvercle du coeur d'un reacteur nucleaire a neutrons rapides
US4820476A (en) 1987-02-27 1989-04-11 Westinghouse Electric Corp. System and method for plugging the core barrel of a nuclear reactor
JPH03282397A (ja) 1990-03-30 1991-12-12 Toshiba Corp 原子炉の出力調整装置
FR2665290B1 (fr) 1990-07-24 1994-06-10 Toshiba Kk Reacteur rapide.
US5223210A (en) * 1991-08-16 1993-06-29 General Electric Company Passive cooling system for liquid metal cooled nuclear reactors with backup coolant flow path
US5185120A (en) 1991-10-10 1993-02-09 General Electric Company Liquid affected spectral shift reactor
DE69407459T2 (de) * 1993-03-24 1998-08-06 Kazuo Furukawa Plutonium zerstörender Kernreaktor mit Verwertung flüssigen Kernbrennstoffes
US5421855A (en) 1993-05-27 1995-06-06 The United States Of America As Represented By The United States Department Of Energy Process for continuous production of metallic uranium and uranium alloys
US5380406A (en) 1993-10-27 1995-01-10 The United States Of America As Represented By The Department Of Energy Electrochemical method of producing eutectic uranium alloy and apparatus
IT1289801B1 (it) * 1996-12-24 1998-10-16 Finmeccanica Spa Reattore nucleare a circolazione naturale migliorata del fluido di raffreddamento.
ITTO980400A1 (it) * 1998-05-12 1999-11-12 Finmeccanica Spa Sistema di refrigerazione perfezionato per un reattore nucleare.
US6181759B1 (en) 1999-07-23 2001-01-30 Westinghouse Electric Company Llc Method and apparatus for determining nearness to criticality of a nuclear fueled electric power generating unit
JP2001133572A (ja) 1999-10-29 2001-05-18 Toshiba Corp 溶融塩炉
WO2002079889A2 (en) 2001-03-29 2002-10-10 Pebble Bed Modular Reactor (Proprietary) Limited A method of and control system for controlling a nuclear reactor outlet temperature
US7864913B2 (en) 2004-02-19 2011-01-04 Kabushiki Kaisha Toshiba Fast reactor having reflector control system and neutron reflector thereof
JP4008448B2 (ja) * 2005-01-31 2007-11-14 三菱重工業株式会社 海塩粒子モニタリング方法
US7217402B1 (en) 2005-08-26 2007-05-15 United States Of America Department Of Energy Apparatus and method for making metal chloride salt product
ITMI20051752A1 (it) * 2005-09-21 2007-03-22 Ansaldo Energia Spa Reattore nucleare in particolare reattore nucleare raffreddato a metallo liquido
US20080232533A1 (en) 2006-02-15 2008-09-25 Anatoly Blanovsky High flux sub-critical reactor for nuclear waste transmulation
RU57040U1 (ru) 2006-05-12 2006-09-27 Роберт Михайлович Яковлев Ядерная реактроная установка с топливом-теплоносителем в виде расплавов солей фторидов
US9305668B2 (en) 2007-02-12 2016-04-05 Westinghouse Electric Company Llc Pressurized water reactor flow skirt apparatus
US8817942B2 (en) * 2007-09-26 2014-08-26 Del Nova Vis S.R.L. Nuclear reactor, in particular pool-type nuclear reactor, with new-concept fuel elements
US20110286570A1 (en) 2007-10-04 2011-11-24 Lawrence Livermore National Security, Llc Solid hollow core fuel for fusion-fission engine
US8891723B2 (en) * 2007-11-15 2014-11-18 State of Oregon Acting by and Through The State Board of Higher Education on Behalf or Oregon State University, The Oregon State University Stable startup system for a nuclear reactor
WO2009135286A1 (en) 2008-05-09 2009-11-12 Ottawa Valley Research Associates Ltd. Molten salt nuclear reactor
US20090279658A1 (en) 2008-05-09 2009-11-12 Ottawa Valley Research Associates Ltd. Molten salt nuclear reactor
FR2938691B1 (fr) 2008-11-19 2010-12-24 Commissariat Energie Atomique Reacteur nucleaire sfr de type integre a compacite et convection ameliorees
WO2011040989A1 (en) 2009-04-09 2011-04-07 The Regents Of The University Of California Annular core liquid-salt cooled reactor with multiple fuel and blanket zones
WO2010129836A1 (en) 2009-05-08 2010-11-11 Academia Sinica Two-fluid molten-salt reactor
RU2424587C1 (ru) 2010-02-18 2011-07-20 Николай Антонович Ермолов Жидкосолевой ядерный реактор (варианты)
US20120056125A1 (en) 2010-04-19 2012-03-08 Halotechnics, Inc Inorganic salt heat transfer fluid
US8867689B2 (en) * 2011-02-15 2014-10-21 Nuscale Power, Llc Heat removal system and method for use with a nuclear reactor
WO2012135957A1 (en) * 2011-04-06 2012-10-11 Ottawa Valley Research Associates Ltd. Molten salt nuclear reactor
US8416908B2 (en) 2011-05-13 2013-04-09 Neal Lawrence Mann Nuclear reactor control method and apparatus
US20130180520A1 (en) 2011-06-07 2013-07-18 Halotechnics, Inc. Thermal energy storage with molten salt
US20120314829A1 (en) 2011-06-08 2012-12-13 UB-Battelle, LLC Thermal energy integration and storage system
JP6326369B2 (ja) 2011-09-21 2018-05-16 フーケ・アルミン 二対流体原子炉
US20130083878A1 (en) 2011-10-03 2013-04-04 Mark Massie Nuclear reactors and related methods and apparatus
US20150010875A1 (en) 2012-01-31 2015-01-08 Halotechnics, Inc. Thermal energy storage with molten salt
SI2815404T1 (en) * 2012-02-06 2018-01-31 Terrestrial Energy Inc. Integrated liquid salt reactor
US9959944B2 (en) 2012-04-12 2018-05-01 Bwxt Mpower, Inc. Self-supporting radial neutron reflector
WO2015061641A1 (en) 2013-10-24 2015-04-30 Holtec International Steam generator for nuclear steam supply system
WO2014011632A2 (en) 2012-07-09 2014-01-16 Holtec International, Inc. Nuclear fuel core, nuclear fuel cartridge, and methods of fueling and/or defueling a nuclear reactor
JP5781013B2 (ja) 2012-05-30 2015-09-16 敬史 亀井 溶融塩原子炉
SG11201501621WA (en) 2012-09-05 2015-04-29 Transatomic Power Corp Nuclear reactors and related methods and apparatus
US8734738B1 (en) 2012-11-01 2014-05-27 U.S. Department Of Energy Molten salt extraction of transuranic and reactive fission products from used uranium oxide fuel
WO2014074930A1 (en) 2012-11-08 2014-05-15 Halotechnics, Inc. Very low cost, low-viscosity phosphorus-based liquid glass for heat transfer and thermal energy storage
JP2014119429A (ja) * 2012-12-19 2014-06-30 Toshiba Corp 熔融塩炉
GB201318470D0 (en) 2013-02-25 2013-12-04 Scott Ian R A practical molten salt fission reactor
US9721678B2 (en) 2013-05-17 2017-08-01 Terrapower, Llc Nuclear fuel assembly design
ES2806383T3 (es) * 2013-05-28 2021-02-17 Smr Inventec Llc Sistema de refrigeración de reactor pasivo
WO2014196338A1 (ja) 2013-06-07 2014-12-11 カルソニックカンセイ株式会社 複合型熱交換器
WO2015017928A1 (en) * 2013-08-05 2015-02-12 Terrestrial Energy Inc. Integral molten salt reactor
JP6249677B2 (ja) * 2013-08-21 2017-12-20 三菱重工業株式会社 冷却装置
US9368244B2 (en) 2013-09-16 2016-06-14 Robert Daniel Woolley Hybrid molten salt reactor with energetic neutron source
US20160217874A1 (en) 2013-09-27 2016-07-28 Transatomic Power Corporation Molten Salt Reactor
KR101513139B1 (ko) * 2013-11-28 2015-04-17 한국원자력연구원 원자로냉각재펌프 및 이를 구비하는 원전
US20150243376A1 (en) 2014-02-26 2015-08-27 Taylor Ramon WILSON Molten salt fission reactor
CN106133844B (zh) 2014-03-20 2018-04-20 伊恩·理查德·斯科特 熔盐反应堆中的化学优化
US20150357056A1 (en) 2014-04-09 2015-12-10 Colorado School Of Mines Reactor unit control system for space and terrestrial applications
RU2661883C2 (ru) 2014-04-29 2018-07-20 Айан Ричард СКОТТ Перемещение трубчатых тепловыделяющих элементов внутри сборки
US9502142B2 (en) * 2014-07-17 2016-11-22 Nico M. Bonhomme Containment for a water cooled and moderated nuclear reactor
US20160189813A1 (en) 2014-12-29 2016-06-30 Terrapower, Llc Molten nuclear fuel salts and related systems and methods
US20170301413A1 (en) 2014-12-29 2017-10-19 Terrapower, Llc Nuclear fuel salts
US11276503B2 (en) 2014-12-29 2022-03-15 Terrapower, Llc Anti-proliferation safeguards for nuclear fuel salts
KR102523114B1 (ko) 2015-03-03 2023-04-18 뉴스케일 파워, 엘엘씨 원자로 시스템용 체결장치
RU2696594C2 (ru) 2015-04-02 2019-08-05 Клир Инк. Малогабаритная система производства ядерной энергии с режимом следования за нагрузкой с использованием тепловой деформации отражателя, вызванной явлением теплового расширения
CN105023621B (zh) 2015-06-12 2017-11-10 陈安海 快堆型耦合核反应的实施方法及其核反应堆
US10665356B2 (en) 2015-09-30 2020-05-26 Terrapower, Llc Molten fuel nuclear reactor with neutron reflecting coolant
US10867710B2 (en) 2015-09-30 2020-12-15 Terrapower, Llc Molten fuel nuclear reactor with neutron reflecting coolant
CA2999894A1 (en) 2015-09-30 2017-04-06 Terrapower, Llc Neutron reflector assembly for dynamic spectrum shifting
WO2017106509A1 (en) * 2015-12-18 2017-06-22 Elysium Industries Ltd. Salt compositions for molten salt reactors
EP3435383B1 (en) 2016-04-26 2021-01-20 Clear Inc. Load-following small nuclear reactor system using liquid metal primary coolant
EP3453024B1 (en) 2016-05-02 2020-09-09 TerraPower LLC Improved molten fuel reactor cooling and pump configurations
EP3485496B1 (en) 2016-07-15 2020-04-15 TerraPower, LLC Vertically-segmented nuclear reactor
EP3922605A1 (en) 2016-08-10 2021-12-15 TerraPower LLC Electro-synthesis of uranium chloride fuel salts
WO2018140117A2 (en) 2016-11-15 2018-08-02 Terrapower, Llc Thermal management of molten fuel nuclear reactors
EP3607559B1 (en) 2017-03-21 2022-03-02 SMR Inventec, LLC Optimized nuclear fuel core design for a small modular reactor
WO2019152595A1 (en) 2018-01-31 2019-08-08 Terrapower, Llc Direct heat exchanger for molten chloride fast reactor
CA3092142A1 (en) 2018-03-12 2019-11-28 Terrapower, Llc Reflectors for molten chloride fast reactors
US20200122109A1 (en) 2018-10-17 2020-04-23 Kairos Power Llc Systems and methods for maintaining chemistry in molten salt systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
F. E. ROMIE AND B. W. KINYON: "1.4 Advanced reactor studies, A molten salt natural-convection reactor", MOLTEN-SALT REACTOR PROGRAM QUARTERLY PROGRESS REPORT, JPN6022027978, January 1958 (1958-01-01), pages 41 - 44, ISSN: 0004824331 *

Also Published As

Publication number Publication date
US10741293B2 (en) 2020-08-11
WO2017192463A8 (en) 2018-11-08
US20170316841A1 (en) 2017-11-02
US11367536B2 (en) 2022-06-21
AU2017260307A1 (en) 2018-09-27
BR112018069844A2 (pt) 2019-01-29
EA201892167A1 (ru) 2019-05-31
BR112018069844B1 (pt) 2023-05-02
WO2017192464A2 (en) 2017-11-09
US20220301729A1 (en) 2022-09-22
WO2017192463A2 (en) 2017-11-09
EP3453025A2 (en) 2019-03-13
KR102346034B1 (ko) 2021-12-31
WO2017192463A3 (en) 2018-03-01
MX2018013286A (es) 2019-08-26
CN109074875A (zh) 2018-12-21
MX2018013288A (es) 2019-08-26
EP3453024B1 (en) 2020-09-09
KR102377348B1 (ko) 2022-03-22
JP6960413B2 (ja) 2021-11-05
JP2019516975A (ja) 2019-06-20
EP3453025B8 (en) 2020-05-13
KR20190003704A (ko) 2019-01-09
CA3018444A1 (en) 2017-11-09
CN109074874A (zh) 2018-12-21
EA201892178A1 (ru) 2019-05-31
CA3018386A1 (en) 2017-11-09
KR102406810B1 (ko) 2022-06-13
KR20190004752A (ko) 2019-01-14
AU2017261230B2 (en) 2022-02-24
JP7039487B2 (ja) 2022-03-22
EP3453024A2 (en) 2019-03-13
KR20220038532A (ko) 2022-03-28
US20200279660A1 (en) 2020-09-03
MX2018013287A (es) 2019-05-09
CN109074876B (zh) 2023-04-25
CA3018444C (en) 2021-07-06
WO2017192464A3 (en) 2018-03-01
JP7170816B2 (ja) 2022-11-14
EP3453025B1 (en) 2020-02-19
BR112018072071B1 (pt) 2023-01-10
US20170316840A1 (en) 2017-11-02
EP3453023A1 (en) 2019-03-13
AU2021277692A1 (en) 2021-12-23
BR112018071325A2 (pt) 2019-02-05
EA038588B1 (ru) 2021-09-20
EA035652B1 (ru) 2020-07-22
EP3453023B1 (en) 2022-03-23
AU2017260307B2 (en) 2022-05-26
EA201892166A1 (ru) 2019-05-31
KR102515866B1 (ko) 2023-03-29
AU2017261230A8 (en) 2020-11-05
EA037791B8 (ru) 2021-06-28
JP6961620B2 (ja) 2021-11-05
JP2019516970A (ja) 2019-06-20
WO2017192607A1 (en) 2017-11-09
AU2021277692B2 (en) 2023-03-16
AU2017261231A1 (en) 2018-10-11
EA037791B1 (ru) 2021-05-21
JP2019516972A (ja) 2019-06-20
CA3018440A1 (en) 2017-11-09
KR20190004751A (ko) 2019-01-14
AU2017261230A1 (en) 2018-10-11
CN109074876A (zh) 2018-12-21
AU2017261231B2 (en) 2021-10-21
CA3018440C (en) 2021-07-06
BR112018072071A2 (pt) 2019-04-09

Similar Documents

Publication Publication Date Title
JP6960413B2 (ja) 改良された溶融燃料型反応炉の熱管理の構成
US11075013B2 (en) Removing heat from a nuclear reactor by having molten fuel pass through plural heat exchangers before returning to core
US11145424B2 (en) Direct heat exchanger for molten chloride fast reactor
US20150117589A1 (en) Molten Salt Reactor
CN110178186A (zh) 熔融燃料核反应堆的热管理
JP2014173984A (ja) 原子炉
BR112018071325B1 (pt) Método para resfriar ativamente um recipiente de contenção e sal combustível em um reator nuclear
CN116982120B (zh) 具有重液态金属冷却剂的核反应堆
EA042239B1 (ru) Ядерный реактор с тяжелым жидкометаллическим теплоносителем

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221101

R150 Certificate of patent or registration of utility model

Ref document number: 7170816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150