JP2021515411A - n-type Mg-Sb-based room temperature thermoelectric material and its manufacturing method - Google Patents

n-type Mg-Sb-based room temperature thermoelectric material and its manufacturing method Download PDF

Info

Publication number
JP2021515411A
JP2021515411A JP2020547072A JP2020547072A JP2021515411A JP 2021515411 A JP2021515411 A JP 2021515411A JP 2020547072 A JP2020547072 A JP 2020547072A JP 2020547072 A JP2020547072 A JP 2020547072A JP 2021515411 A JP2021515411 A JP 2021515411A
Authority
JP
Japan
Prior art keywords
room temperature
type
sintering
ball mill
thermoelectric material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020547072A
Other languages
Japanese (ja)
Other versions
JP2021515411A5 (en
JP6976012B2 (en
Inventor
ウェイシュ リィゥ
ウェイシュ リィゥ
ルェイ シュ
ルェイ シュ
ヂージャ ハン
ヂージャ ハン
ヨンビン ヂュ
ヨンビン ヂュ
シーダー フォン
シーダー フォン
シュゥァンモン ヂャン
シュゥァンモン ヂャン
ヨン リィゥ
ヨン リィゥ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southern University of Science and Technology
Original Assignee
Southern University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southern University of Science and Technology filed Critical Southern University of Science and Technology
Publication of JP2021515411A publication Critical patent/JP2021515411A/en
Publication of JP2021515411A5 publication Critical patent/JP2021515411A5/ja
Application granted granted Critical
Publication of JP6976012B2 publication Critical patent/JP6976012B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C12/00Alloys based on antimony or bismuth
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

n-型Mg-Sb基室温熱電材料であって、化学一般式はMg3+δMnxSb2-y-zBiyAzであり、Aは酸素族元素S、Se又はTe、−0.2≦δ≦0.3であり、x、y、zは原子比率で、x=0.001〜0.4、y=0〜1.0、z=0〜0.2である。化学一般式に従う純度≧99%の単体材料を原料とし、それぞれアルゴン雰囲気でバッチ計量し、且つボールミルにステンレス製の小球を加え、ボールミルを高速回転させて粉体を得る。粉体をそれぞれ秤量して黒鉛金型に詰め、金型を高温炉に入れて真空にして、総気圧4Pa未満で焼結し、焼結終了後室温まで冷却する。熱電材料の室温熱電性能指数及び力学性能は伝統的なn-型テルル化ビスマスのレベルより明らかに優れ、且つコストが安く、製造方法が簡単で、制御性が強く、再現性が良い。It is an n-type Mg-Sb group room temperature thermoelectric material, and the general chemical formula is Mg3 + δMnxSb2-y-zBiiAz, where A is an oxygen group element S, Se or Te, −0.2 ≦ δ ≦ 0.3. Yes, x, y, z are atomic ratios, x = 0.001 to 0.4, y = 0 to 1.0, z = 0 to 0.2. Using a single material having a purity of ≥99% according to the general chemical formula as a raw material, batch weighing each in an argon atmosphere, adding small balls made of stainless steel to the ball mill, and rotating the ball mill at high speed to obtain powder. The powders are weighed and packed in a graphite mold, and the mold is placed in a high-temperature furnace to create a vacuum, sintered at a total pressure of less than 4 Pa, and cooled to room temperature after the sintering is completed. The room temperature thermoelectric figure of merit and mechanical performance of thermoelectric materials are clearly superior to those of traditional n-type tellurized bismuth, and are cheaper, easier to manufacture, more controllable and more reproducible.

Description

本発明は熱電材料の技術分野に属し、特にn-型Mg-Sb基室温熱電材料及びその製造方法に関する。 The present invention belongs to the technical field of thermoelectric materials, and particularly relates to n-type Mg-Sb-based room temperature thermoelectric materials and methods for producing the same.

熱電材料は排熱と太陽エネルギーとを熱源とする発電技術のキー材料として、常に世界各国の注目を集めている。優れた熱電材料は、通常良好な導電性能と劣悪な伝熱性能とを有する。熱電材料は、通常n-型とp型とに分けられ、マルチペアp−型とn−型の熱電材料を集積することで熱電デバイスを形成し、直接電気エネルギーと熱エネルギーとの相互変換を実現する。熱電デバイスのエネルギー変換効率は主に熱電材料の熱電性能指数(ZT)に依存する。熱電材料の性能をどのように高めるかは学界と工業界とで人気の高い研究方向であり、研究者たちは既知の熱電材料中の電子とフォノンとの転送過程を制御する以外に、新型の熱電材料を探すことにも力を入れている。中でも、n−型伝統熱電材料の研究はナノ化、フォノン工程などの手段の最適化により、性能がある程度向上した。テルル化ビスマス基熱電材料は室温付近の性能が最も優れた熱電材料(150℃,ZTm≒1.06)であるが、中温熱電材料がSkutterudites(450℃,ZTm≒1.08)、テルル化鉛(500℃,ZTm≒1.4)及びHalf−Heuslers(600℃,ZTm≒1.0)などの熱電性能指数は400〜600℃の範囲だけでピークに達し、室温付近のZTも0.4未満である。熱電デバイスの小型化に伴い、材料の加工可能性能と力学性能とに対しても一定の要求を提出した。現在商用の室温n-型熱電材料はテルル化ビスマス基材であるが、その悪い力学性能は熱電デバイスの多様性を制限し、その破裂靭性は0.8〜1.3MPam1/2の間である。 Thermoelectric materials are constantly attracting attention from all over the world as key materials for power generation technology that uses waste heat and solar energy as heat sources. A good thermoelectric material usually has good conductivity and poor heat transfer performance. Thermoelectric materials are usually divided into n-type and p-type, and a thermoelectric device is formed by integrating multiple p-type and n-type thermoelectric materials to realize mutual conversion between direct electrical energy and thermal energy. To do. The energy conversion efficiency of thermoelectric devices mainly depends on the thermoelectric figure of merit (ZT) of the thermoelectric material. How to improve the performance of thermoelectric materials is a popular research direction in academia and industry, and researchers are not only controlling the transfer process of electrons and phonons in known thermoelectric materials, but also new types. We are also focusing on searching for thermoelectric materials. In particular, research on n-type traditional thermoelectric materials has improved performance to some extent by optimizing means such as nanonization and phonon processes. The tellurized bismuth-based thermoelectric material is a thermoelectric material (150 ° C, ZT m ≈ 1.06) with the best performance near room temperature, while the medium-temperature thermoelectric material is Skutterudes (450 ° C, ZT m ≈ 1.08). Thermoelectric performance indices such as lead telluride (500 ° C, ZT m ≈ 1.4) and Half-Heuslers (600 ° C, ZT m ≈ 1.0) peak only in the range of 400 to 600 ° C and are near room temperature. ZT is also less than 0.4. With the miniaturization of thermoelectric devices, we have submitted certain requirements for the processability and mechanical performance of materials. Currently commercial room temperature n-type thermoelectric materials are tellurized bismuth substrates, but their poor mechanical performance limits the variety of thermoelectric devices and their fracture toughness is between 0.8 and 1.3 MPam 1/2. is there.

現在、多くの学者は上述の問題に対して研究を行い、例えばMg-Sb基Zintl化合物を新型の熱電材料として採用したが、室温条件では熱電性能指数及び力学性能があまり理想的ではなく、この材料の使用温度範囲と応用領域とを制限した。 Currently, many scholars have studied the above problems and adopted, for example, Mg-Sb-based Zintl compounds as a new thermoelectric material, but the thermoelectric figure of merit and mechanical performance are not very ideal at room temperature. The operating temperature range and application area of the material were limited.

そのため、これらの技術的欠陥を解決する必要がある。 Therefore, it is necessary to solve these technical defects.

本発明の目的は上述の従来技術の不足を克服することにあり、まず室温熱電性能が優れたn-型Mg-Sb基熱電材料を提供し、その室温熱電性能指数及び力学性能は伝統的なn-型テルル化ビスマス熱電材料のレベルより優れ、コストも安い。 An object of the present invention is to overcome the above-mentioned deficiency of the prior art. First, an n-type Mg-Sb-based thermoelectric material having excellent room temperature thermoelectric performance is provided, and its room temperature thermoelectric performance index and mechanical performance are traditional. It is superior to the level of n-type tellurized bismuth thermoelectric materials and is cheaper.

本発明により提供されたn-型Mg-Sb基室温熱電材料の化学一般式はMg3+δMnxSb2-y-zBiyzであり、ここでAは酸素族元素S、Se又はTe、−0.2≦δ≦0.3であり、x、y、zは原子比率で、x=0.001〜0.4、y=0〜1.99.0、z=0〜0.2である。 Chemical formulas of the n- type Mg-Sb based room temperature thermoelectric material provided by the present invention is a Mg 3 + δ Mn x Sb 2 -yz Bi y A z, wherein A is an oxygen group element S, Se or Te , -0.2 ≤ δ ≤ 0.3, and x, y, and z are atomic ratios, x = 0.001 to 0.4, y = 0 to 1.99.0, z = 0 to 0. It is 2.

本発明のn-型Mg-Sb基室温熱電材料として好ましい化学一般式Mg3+δMnxSb2-y-zBiyzでは、x=0.001〜0.4、y=0〜1.0、z=0〜0.2である。 In n- type Mg-Sb based room temperature thermoelectric materials as preferred chemical formula Mg 3 + δ Mn x Sb 2 -yz Bi y A z of the present invention, x = 0.001~0.4, y = 0~1 . 0, z = 0 to 0.2.

本発明が提供する上述の室温n型Mg−Sb基熱電材料は、その室温熱電性能指数は従来技術のn−型テルル化ビスマス性能(0.8−1.06)より優れていて、しかもその材料は安価で入手しやすい酸素族元素を選んで混ぜて、これらの元素は自然界での貯蔵量が比較的大きく、価格は安く、商用n-型室温熱電材料として既存のテルル化ビスマスに取って代わることが可能であり、工業化の量産化の需要を満たし、使用価値が高い。 The above-mentioned room temperature n-type Mg-Sb-based thermoelectric material provided by the present invention has a room temperature thermoelectric performance index superior to that of the prior art n-type tellurized bismuth performance (0.8-1.06). The materials are selected and mixed with inexpensive and easily available oxygen group elements, and these elements are relatively large in storage in nature, are inexpensive, and are used as commercial n-type room temperature thermoelectric materials for existing tellurized bismuth. It can be replaced, meets the demand for mass production of industrialization, and has high utility value.

本発明はまた、前述のn-型Mg-Sb基室温熱電材料の製造方法を提供する。 The present invention also provides a method for producing the above-mentioned n-type Mg-Sb-based room temperature thermoelectric material.

一般式Mg3+δMnxSb2-y-zBiyzに従う純度≧99%の単体材料を原料とし、酸素含有量が1ppm未満のアルゴン雰囲気でバッチ計量し、そしてボールミルにセットし、ボールミルにステンレス製の小球を一定量加え、ボールミルを高速回転させて粉体を得る。 The general formula Mg 3 + δ Mn x Sb 2 -yz Bi y A purity ≧ 99% of a single material according to z as the raw material, the oxygen content is batch weighed in an argon atmosphere of less than 1 ppm, and was set in a ball mill, a ball mill A certain amount of stainless steel globules are added, and the ball mill is rotated at high speed to obtain powder.

上記の工程で得られた粉体をそれぞれ秤量して黒鉛金型に詰め、金型を高温炉に入れて真空にして、総気圧4Pa未満で焼結し、焼結終了後室温まで冷却することによって密度3.6〜5.8g/cm3の塊体熱電材料が得られる。 The powders obtained in the above steps are weighed and packed in a graphite mold, the mold is placed in a high temperature furnace to create a vacuum, sintered at a total pressure of less than 4 Pa, and cooled to room temperature after sintering. A mass thermoelectric material having a density of 3.6 to 5.8 g / cm 3 can be obtained.

本発明の製造方法のオプションの工程として、前記ステンレス製の小球と原料とがボールミル内で回転する際にアルゴンガスを注入して保護する。 As an optional step of the manufacturing method of the present invention, when the stainless steel globules and the raw material rotate in the ball mill, argon gas is injected to protect them.

本発明の製造方法のオプションの工程として、ボールミルに入っているステンレス製の小球として、少なくとも2種類の異なる直径のステンレス製の小球を使用する。 As an optional step of the manufacturing method of the present invention, at least two kinds of stainless steel globules having different diameters are used as the stainless steel globules contained in the ball mill.

本発明の製造方法のオプションの工程として、2種類のステンレス製の小球を用いた場合、直径はそれぞれ6mmと20mmであり、その数量比率は10:1〜5:3である。 When two types of stainless steel globules are used as an optional step of the manufacturing method of the present invention, the diameters are 6 mm and 20 mm, respectively, and the quantity ratio thereof is 10: 1 to 5: 3.

本発明の製造方法のオプションの工程として、前記ボールミルに置かれたステンレス製の小球及び原料の重量は10:1〜20:1である。 As an optional step of the manufacturing method of the present invention, the weight of the stainless steel globules and raw materials placed on the ball mill is 10: 1 to 20: 1.

本発明の製造方法のオプションの工程として、前記ステンレス製の小球と原料とのボールミル内のボール磨き時間は7〜12時間である。 As an optional step of the manufacturing method of the present invention, the ball polishing time in the ball mill of the stainless steel globules and the raw material is 7 to 12 hours.

本発明の製造方法のオプションの工程として、前記ボールミルの運転速度は300〜500r/minである。 As an optional step of the manufacturing method of the present invention, the operating speed of the ball mill is 300 to 500 r / min.

本発明の製造方法のオプションの工程として、前記金型を高温炉に入れて焼結する場合、焼結温度は500℃〜900℃、焼結時間は5min〜40minである。 As an optional step of the manufacturing method of the present invention, when the mold is placed in a high temperature furnace for sintering, the sintering temperature is 500 ° C. to 900 ° C. and the sintering time is 5 min to 40 min.

本発明の製造方法のオプションの工程として、前記金型を高温炉に入れて焼結する場合、焼結温度は600℃〜900℃、焼結時間は5min〜40minである。 As an optional step of the manufacturing method of the present invention, when the mold is placed in a high temperature furnace for sintering, the sintering temperature is 600 ° C. to 900 ° C. and the sintering time is 5 min to 40 min.

本発明の製造方法のオプションの工程として、前記金型を高温炉に入れて焼結する場合、焼結軸方向圧力は40〜120MPaである。 As an optional step of the manufacturing method of the present invention, when the mold is placed in a high temperature furnace and sintered, the sintering axial pressure is 40 to 120 MPa.

本発明により提供されたn-型Mg-Sb基室温熱電材料の製造方法は、異なる直径のステンレス製の小球を用いて原料に機械的に衝撃を与え、合金化した粉体を形成し、また、黒鉛金型による放電プラズマ活性化焼結成形を行い、その操作は簡単で、工芸プロセスが短く、コストが低く、得られた熱電材料の制御性が強く、再現性も良く、熱電材料の分野で良い将来性がある。 The method for producing an n-type Mg-Sb-based room temperature thermoelectric material provided by the present invention mechanically impacts a raw material with small balls made of stainless steel having different diameters to form an alloyed powder. In addition, discharge plasma activated sintering molding is performed using a graphite mold, the operation is simple, the craft process is short, the cost is low, the controllability of the obtained thermoelectric material is strong, the reproducibility is good, and the thermoelectric material There is a good future in the field.

本発明の実施例における技術的解決手段をより明確に説明するために、以下では、実施例で使用する図面を簡単に説明する。明らかに、以下に説明される図面は、本発明のいくつかの実施例に過ぎず、当業者であれば、創造的な労力を払わずに、これらの図面から他の図面を得ることもできる。 In order to more clearly explain the technical solutions in the examples of the present invention, the drawings used in the examples will be briefly described below. Obviously, the drawings described below are only a few embodiments of the present invention, and one of ordinary skill in the art can obtain other drawings from these drawings without any creative effort. ..

図1は、本発明のプラズマ焼結の製造に用いられる黒鉛金型の概略図である。FIG. 1 is a schematic view of a graphite mold used in the production of plasma sintering of the present invention. 図2は本発明により製造したn−型Mg3+δMnxSb2-y-zBiyTez室温熱電材料の実施例1のXRDスペクトル図である。Figure 2 is a XRD spectrum of Example 1 of producing the n- type Mg 3 + δ Mn x Sb 2 -yz Bi y Te z room temperature thermoelectric material according to the present invention. 図3は本発明により製造したn−型Mg3+δMnxSb2-y-zBiyTez室温熱電材料の実施例1のサイクル試験における熱電性能図である。Figure 3 is a thermoelectric performance view in the cycle test of Example 1 of producing the n- type Mg 3 + δ Mn x Sb 2 -yz Bi y Te z room temperature thermoelectric material according to the present invention. 図4は本発明により製造したn−型Mg3+δMnxSb2-y-zBiyTez室温熱電材料の実施例1と従来のn-型テルル化ビスマス材料との熱電性能指数比較図である。Figure 4 is a thermoelectric figure of merit comparison diagram of manufacturing the n- type Mg 3 + δ Mn x Sb 2 -yz Bi y Te z room temperature thermoelectric material in Example 1 and the conventional n- type bismuth telluride material by the present invention is there. 図5は本発明により製造したn−型Mg3+δMnxSb2-y-zBiyTez室温熱電材料の実施例1と従来のn-型熱電材料との破断靱性比較図である。Figure 5 is a cutaway toughness comparison diagram of manufacturing the n- type Mg 3 + δ Mn x Sb 2 -yz Bi y Te z room temperature thermoelectric material in Example 1 and the conventional n- type thermoelectric material according to the present invention. 図6は本発明により製造したn−型Mg3+δMnxSb2-y-zBiySez室温熱電材料の実施例3のXRDスペクトル図である。6 is an XRD spectrum of Example 3 of the manufactured n- type Mg 3 + δ Mn x Sb 2 -yz Bi y Se z room temperature thermoelectric material according to the present invention.

本発明の目的、技術的解決手段、及び利点をより明確にするために、以下に添付の図面及び実施例を合わせて、本発明を更に詳細に説明する。ここに記載する具体的な実施例は、本発明についての説明であって、本発明を限定するものではないことを理解されたい。 In order to clarify the object, technical solution, and advantage of the present invention, the present invention will be described in more detail with reference to the following drawings and examples. It should be understood that the specific examples described herein are descriptions of the present invention and are not intended to limit the present invention.

本発明は、化学一般式がMg3+δMnxSb2-y-zBiyzであるn-型Mg-Sb基室温熱電材料を提供した。ここで、Aは酸素族元素S、Se又はTe、−0.2≦δ≦0.3であり、x、y、zは原子比率で、x=0.001〜0.4、y=0〜1.99、z=0〜0.2である。 The present invention has the chemical formula has provided Mg 3 + δ Mn x Sb 2 -yz Bi y is A z n-type Mg-Sb based room temperature thermoelectric materials. Here, A is an oxygen group element S, Se or Te, −0.2 ≦ δ ≦ 0.3, and x, y, z are atomic ratios, x = 0.001 to 0.4, y = 0. ~ 1.99, z = 0 to 0.2.

前述のn-型Mg-Sb基室温熱電材料として、化学一般式Mg3+δMnxSb2-y-zBiyzにおけるx値の範囲として0.001〜0.4が好ましい。y値の範囲は0〜1.0が好ましい。z値の範囲は0〜0.2が好ましい。 As aforementioned n- type Mg-Sb based room temperature thermoelectric material, 0.001 to 0.4 is preferred as the range of x values in the chemical formula Mg 3 + δ Mn x Sb 2 -yz Bi y A z. The range of y value is preferably 0 to 1.0. The range of the z value is preferably 0 to 0.2.

現在、Mg-Sb基熱電材料は、新型熱電材料として優れた熱電性能を有しているが、中低温での応用はMg空位の影響を受け、室温付近のZT値は0.4未満となり、この新型材料の使用温度範囲と応用分野とを制限している。Mg3Sb2はa−La23構造のZintl相層状材料であり、通常は大きな固溶度を有し、ドーピング元素に大きな空間を提供し、Mg空位濃度の調節に有利であり、材料の導電率を大きく向上させ、Sb位ドープBiは熱伝導率の低下に有利である。しかし、異なる元素のドーピングは電子構造の面でもMg3Sb2エネルギーバンドに異なる影響を与え、それによって熱電性能指数ピーク値に達する温度を変化させ、理想的な熱電性能を達成できなくなり、この材料の使用温度範囲と応用領域とを制限する。本発明はMg3Sb2のZintl相層に微量のS、Se又はTeなどの酸素族元素をドーピングし、キャリア濃度を制御し、格子熱伝導率を下げ、Mg-Sb基熱電材料の熱電性能を向上させることができる。特に室温条件下での熱電性能指数は、従来技術のn-型テルル化ビスマスの性能水準(0.8-1.06)に達し、中高温時にはn-型テルル化ビスマスの性能水準を上回る。且つドーピング材料は安価で入手しやすい酸素族元素を選んだため、これらの元素は自然界で貯蔵量が比較的大きく、価格が安く、コストがテルル化ビスマス熱電材料より遥かに低く、工業化の量産が可能であることから、既存のテルル化ビスマスに取って代わる商用n-型室温熱電材材として十分に利用価値がある。 Currently, the Mg-Sb-based thermoelectric material has excellent thermoelectric performance as a new type of thermoelectric material, but its application at medium and low temperatures is affected by the Mg vacancy, and the ZT value near room temperature is less than 0.4. It limits the operating temperature range and application fields of this new material. Mg 3 Sb 2 is a Zintl phase layered material with an a-La 2 O 3 structure, which usually has a large solid solubility, provides a large space for doping elements, is advantageous for adjusting the Mg emptyness concentration, and is a material. The Sb-position doped Bi is advantageous in lowering the thermal conductivity. However, doping of different elements also affects the Mg 3 Sb 2 energy band differently in terms of electronic structure, which changes the temperature at which the thermoelectric figure of merit peaks, making it impossible to achieve ideal thermoelectric performance. Limit the operating temperature range and application area of. In the present invention, the Zintl phase layer of Mg 3 Sb 2 is doped with a trace amount of oxygen group elements such as S, Se or Te to control the carrier concentration, lower the lattice thermal conductivity, and the thermoelectric performance of the Mg-Sb-based thermoelectric material. Can be improved. In particular, the thermoelectric figure of merit under room temperature conditions reaches the performance level of n-type tellurized bismuth (0.8-1.06) of the prior art, and exceeds the performance level of n-type tellurized bismuth at medium and high temperatures. In addition, since we chose cheap and easily available oxygen group elements as the doping material, these elements are relatively large in storage in nature, cheap in price, much lower in cost than tellurized bismuth thermoelectric materials, and can be mass-produced for industrialization. Since it is possible, it is sufficiently useful as a commercial n-type room temperature thermoelectric material to replace the existing tellurized bismuth.

本発明は、更に、下記の工程を含む、上記のn-型Mg-Sb基室温熱電材料の製造方法を提供する。 The present invention further provides a method for producing the above-mentioned n-type Mg-Sb-based room temperature thermoelectric material, which comprises the following steps.

S1は、化学一般式Mg3+δMnxSb2-y-zBiyzに従う純度≧99%の単体材料を原料として選択し、それぞれに酸素含有量が1ppm未満のアルゴン雰囲気でバッチ計量し、そして遊星ボールミルにセットし、ボールミルにステンレス製の小球を一定量加え、ボールミル中のステンレス製の小球の衝突エネルギーを利用して上述の原料を粉砕かつ混合し、粉体Mg3+δMnxSb2-y-zBiyz相を初歩的に合成した。 S1 is the chemical formula Mg 3 + δ Mn x Sb 2 -yz Bi y A purity ≧ 99% of a single material according to z is selected as the raw material, the oxygen content is batch weighed in an argon atmosphere of less than 1ppm, respectively, Then, it is set in a planetary ball mill, a certain amount of stainless steel globules are added to the ball mill, and the above-mentioned raw materials are crushed and mixed by utilizing the collision energy of the stainless steel globules in the ball mill, and powder Mg 3 + δ Mn is used. was rudimentary synthesized x Sb 2-yz Bi y a z phase.

この工程では、ボールミルに入ったステンレス製の小球と原料とがボールミル内で回転する際に、アルゴンガスを注入して保護し、粉体の酸化を防ぐことができる。 In this step, when the stainless steel globules in the ball mill and the raw material rotate in the ball mill, argon gas can be injected to protect them and prevent the powder from being oxidized.

結晶粒のサイズを更に変えるために、加入したステンレス製の小球としては少なくとも2種類の異なる直径の小球を選び、異なる径の小球が絶えず衝突することを通じて、得られた粉体材料の粒径を更に小さくし、混合を更に均一にすることができる。直径が6mmと20mmとの2種類のステンレス製の小球を選び、2種類の小球の数量比率は10:1〜5:3である。 In order to further change the size of the crystal grains, at least two kinds of globules of different diameters were selected as the joined stainless steel globules, and the globules of different diameters constantly collided with each other to obtain the powder material. The particle size can be further reduced and the mixing can be made more uniform. Two types of stainless steel globules having diameters of 6 mm and 20 mm are selected, and the quantity ratio of the two types of globules is 10: 1 to 5: 3.

この工程では、前記ボールミルにセットしたステンレス製の小球と原料との重量比は10:1〜20:1であり、ボールミルの運転速度は300〜500r/minであり、ステンレス製の小球と原料とのボールミル内でのボール磨き時間は7〜12時間であり、理想的な粉体が得られた。 In this step, the weight ratio of the stainless steel globules set in the ball mill to the raw material is 10: 1 to 20: 1, and the operating speed of the ball mill is 300 to 500 r / min. The ball polishing time with the raw material in the ball mill was 7 to 12 hours, and an ideal powder was obtained.

S2は上述の工程で得られた粉体をそれぞれ秤量して黒鉛金型に詰め、そして金型を高温炉に入れて真空にし、総気圧が4Pa未満の場合に焼結して塊状合金になり、焼結完了後、室温まで冷却する。 In S2, the powders obtained in the above steps are weighed and packed in a graphite mold, and the mold is placed in a high temperature furnace to create a vacuum, which is sintered when the total pressure is less than 4 Pa to form a massive alloy. After the sintering is completed, cool to room temperature.

図1を参照すると、この工程では、黒鉛金型は黒鉛圧力ヘッド1、黒鉛圧力室2及び熱電対3を含み、粉体4は黒鉛圧力室2内に配置され、黒鉛圧力ヘッド1によって塊状に圧縮される。黒鉛金型を高温炉内で焼結する場合、その焼結温度は500℃〜900℃、好ましくは600℃〜900℃であり、焼結時間は5min〜40min、焼結軸方向圧力は40〜120MPaである。 Referring to FIG. 1, in this step, the graphite mold includes a graphite pressure head 1, a graphite pressure chamber 2 and a thermocouple 3, and the powder 4 is arranged in the graphite pressure chamber 2 and agglomerated by the graphite pressure head 1. It is compressed. When a graphite mold is sintered in a high temperature furnace, the sintering temperature is 500 ° C. to 900 ° C., preferably 600 ° C. to 900 ° C., the sintering time is 5 min to 40 min, and the sintering axial pressure is 40 to 40. It is 120 MPa.

上述の工程で製造された塊体の密度は3.6〜5.8g/cm3の間で、抵抗率が5〜180μΩm、ゼーベック係数が80〜340μV/K、力率が0.6〜4.0mW/m/K2、熱コンダクタンスが0.45〜1.25Wm-1-1、破断靱性は2.1MPam1/2より大きく、その熱電性能指数ZTは室温で0.6〜0.9に達し、250℃の時は1.42に達し、テルル化ビスマス熱電材料より明らかに優れている。 The density of the mass produced in the above step is between 3.6 and 5.8 g / cm 3 , the resistivity is 5 to 180 μΩm, the Seebeck coefficient is 80 to 340 μV / K, and the power factor is 0.6 to 4. 0.0 mW / m / K 2 , thermal conductance 0.45 to 1.25 Wm -1 K -1 , breaking toughness greater than 2.1 MPam 1/2 , its thermoelectric performance index ZT is 0.6 to 0 at room temperature. It reaches 9 and 1.42 at 250 ° C, which is clearly superior to the tellurized bismuth thermoelectric material.

X線回折器(XRD)を用いて2θ=10°〜80°の範囲内で測定して、上述の製造方法で製造された5元Mg-Sb基熱電材料Mg3+δMnxSb2-y-zBiyzは、Mg3Sb2相の対応する回折ピークを有し、かつ他の異質なピーク(Hetero peak)の出現はなく、合成された材料はMg3 Sb2単相であることが示唆された。 Measured within the range of 2θ = 10 ° to 80 ° using an X-ray diffractometer (XRD), the 5-element Mg-Sb-based thermoelectric material Mg 3 + δ Mn x Sb 2- it yz Bi y a z has a corresponding diffraction peaks of Mg 3 Sb 2-phase, and no appearance of other extraneous peaks (Hetero peak), synthetic material is a Mg 3 Sb 2 single phase Was suggested.

本発明により提供されたn-型Mg-Sb基室温熱電材料の製造方法は、異なる直径のステンレス製の小球を用いてボールミルの中で機械的に衝撃を与え、原料を合金化した粉体に形成し、そして黒鉛金型に入れて放電プラズマ活性化焼結成形を行うものであり、その製造方法は、操作が簡単で、コストが低く、制御性が強く、再現性が良く、工業化生産に有利である。 The method for producing an n-type Mg-Sb-based room temperature thermoelectric material provided by the present invention is a powder in which raw materials are alloyed by mechanically impacting in a ball mill using small balls made of stainless steel having different diameters. It is formed in a stainless steel mold and placed in a graphite mold for discharge plasma activation sintering molding. The manufacturing method is simple to operate, low in cost, strong in controllability, good reproducibility, and industrial production. It is advantageous to.

以下、本発明の製造方法を実施例を合わせて詳細に説明する。 Hereinafter, the production method of the present invention will be described in detail together with examples.

実施例1
以下の工程で製造した。
S1において、シート状Mg(純度99.8%)、粒状Sb(純度99.999%)、Bi(純度99.999%)、Te(純度99.999%)、粉状Mn(純度99.95%)を選んで原料とし、一般式がMg3+δMnxSb2-y-zBiyTezである化学量論比(ここでδ=-0.1、x=0.1、y=0.5、z=0.01、すなわち化学一般式はMg2.9Mn0.1Sb1.49Bi0.5Te0.01である)に従い、酸素含有量は1ppm未満のアルゴン雰囲気の真空干燥箱の中でバッチ計量し、且つ直径6mmと20mmのステンレス製の小球を10:1の量の割合で遊星ボールミルに入れ、アルゴンガスを注入して保護し、粉体酸化を防止し、ボールミルと原料との重量比は20:1であった。遊星ボールミルの運転速度は500r/min、ボール磨き時間は7.5時間であった。
Example 1
Manufactured by the following process.
In S1, sheet Mg (purity 99.8%), granular Sb (purity 99.999%), Bi (purity 99.999%), Te (purity 99.999%), powder Mn (purity 99.95). %) and pick raw materials, the general formula Mg 3 + δ Mn x Sb 2 -yz Bi y Te z in which the stoichiometric ratio (where δ = -0.1, x = 0.1, y = 0 According to .5, z = 0.01, that is, the general formula of chemistry is Mg 2.9 Mn 0.1 Sb 1.49 Bi 0.5 Te 0.01 ), the oxygen content is batch-weighed in an argon atmosphere vacuum dry box with an oxygen content of less than 1 ppm. Small balls made of stainless steel with diameters of 6 mm and 20 mm are placed in a planetary ball mill at a ratio of 10: 1, and argon gas is injected to protect them to prevent powder oxidation. The weight ratio of the ball mill to the raw material is 20: It was 1. The operating speed of the planetary ball mill was 500 r / min, and the ball polishing time was 7.5 hours.

S2において、上述の工程で得られた粉体を酸素含有量0.1ppm未満のアルゴン雰囲気の真空干燥箱から取り出し、それぞれ秤量した後、図1に示す黒鉛金型に入れ、金型の内壁には0.1mmの黒鉛カーボン紙を敷き、続いて金型を高温炉キャビティに入れた。 In S2, the powder obtained in the above step is taken out from a vacuum drying box having an oxygen content of less than 0.1 ppm in an argon atmosphere, weighed, placed in the graphite mold shown in FIG. 1, and placed on the inner wall of the mold. Was laid with 0.1 mm graphite carbon paper, and then the mold was placed in the high temperature furnace cavity.

炉内は真空にして、高温焼結を総気圧4Pa未満で行い、焼結温度は600℃、オーバーバーン(overburn)温度は10℃以内に制御し、焼結過程中の印加された圧力は75MPaであり、焼結時間はおよそ10minに制御した。 The inside of the furnace is evacuated, high temperature sintering is performed at a total pressure of less than 4 Pa, the sintering temperature is controlled within 600 ° C, the overburn temperature is controlled within 10 ° C, and the applied pressure during the sintering process is 75 MPa. The sintering time was controlled to about 10 min.

焼結完了後、成形された塊体密度はおよそ4.0g/cm3であった。 After the completion of sintering, the density of the formed mass was about 4.0 g / cm 3 .

図2に示すように、X線回折の分析を経て、本実施例1で得られた塊体材料はいずれもMg3Sb2単相であり、且つこの5元Mg-Sb基熱電材料Mg2.9Mn0.1Sb1.49Bi0.5Te0.01には、それぞれ22.46°、24.61°、25.65°、33.56°、37.29°、43.96°等に、それぞれMg3Sb2の(100)、(002)、(011)、(012)、(103)の回折ピークが現れた。 As shown in FIG. 2, the mass materials obtained in Example 1 through the analysis of X-ray diffraction are all Mg 3 Sb 2 single-phase, and the quintuple Mg-Sb-based thermoelectric material Mg 2.9. Mn 0.1 Sb 1.49 Bi 0.5 Te 0.01 has Mg 3 Sb 2 at 22.46 °, 24.61 °, 25.65 °, 33.56 °, 37.29 °, 43.96 °, etc., respectively. Diffraction peaks of (100), (002), (011), (012), and (103) appeared.

図3を参照すると、本実施例1で製造したn−型Mg2.9Mn0.1Sb1.49Bi0.5Te0.01材料は、0℃−500℃の範囲内で、サイクル試験の熱電力率は1.5〜2.7mW/m/K2である。 Referring to FIG. 3, the n-type Mg 2.9 Mn 0.1 Sb 1.49 Bi 0.5 Te 0.01 material produced in Example 1 has a thermal power ratio of 1.5 to 1.5 in a cycle test in the range of 0 ° C. to 500 ° C. It is 2.7 mW / m / K 2 .

図4を参照すると、本実施例1で製造されたn−型Mg2.9Mn0.1Sb1.49Bi0.5Te0.01材料の熱電性能指数ZTは、室温で0.69に達し、250℃の時に1.42に達し、25℃〜125℃の間でテルル化ビスマスに相当し、125℃の後にZT値はテルル化ビスマス材料より明らかに優れていた。 Referring to FIG. 4, the thermoelectric performance index ZT of the n-type Mg 2.9 Mn 0.1 Sb 1.49 Bi 0.5 Te 0.01 material produced in Example 1 reaches 0.69 at room temperature and 1.42 at 250 ° C. Responded to tellurized bismuth between 25 ° C and 125 ° C, and after 125 ° C the ZT value was clearly superior to the tellurized bismuth material.

図5に示すように、本実施例1で製造された5元n-型Mg2.9Mn0.1Sb1.49Bi0.5Te0.01材料の力学的性能は、破断靱性が2.95MPam1/2、ヤング率が43GPa、弾性率がテルル化ビスマス基材に相当し、破断靱性がテルル化ビスマス基材の2.5〜3倍である。 As shown in FIG. 5, the mechanical performance of the 5-element n-type Mg 2.9 Mn 0.1 Sb 1.49 Bi 0.5 Te 0.01 material produced in Example 1 is that the fracture toughness is 2.95 MPam 1/2 and the Young's modulus is At 43 GPa, the elastic modulus corresponds to the tellurized bismuth base material, and the fracture toughness is 2.5 to 3 times that of the tellurized bismuth base material.

また、この5元n-型Mg2.9Mn0.1Sb1.49Bi0.5Te0.01塊体材料は25−500℃の範囲内で、抵抗率が20〜90μΩm、ゼーベック係数が−220〜−300μV/K、熱コンダクタンスが1.1〜0.6Wm-1-1である。 In addition, this 5-element n-type Mg 2.9 Mn 0.1 Sb 1.49 Bi 0.5 Te 0.01 mass material has a resistivity of 20 to 90 μΩm, a Seebeck coefficient of -220 to -300 μV / K, and heat within a range of 25 to 500 ° C. The conductance is 1.1 to 0.6 Wm -1 K -1 .

実施例2:
以下の工程で製造した。
S1において、シート状Mg(純度99.8%)、粒状Sb(純度99.999%)、Bi(純度99.999%)、Te(純度99.999%)、粉状Mn(純度99.95%)を原料とし、Mg3+δMnxSb2-y-zBiyTezである化学量論比(δ=0.1、x=0.2、y=0.3、z=0.05、すなわち化学一般式Mg3.1Mn0.2Sb1.65Bi0.3Te0.05)に従い、酸素含有量は1ppm未満のアルゴン雰囲気の真空干燥箱の中でバッチ計量し、且つ直径6mmと20mmのステンレス製の小球を10:2の量の割合で一緒に遊星ボールミルに入れ、アルゴンガスを注入して、粉体酸化を防止し、ボールミルと原料との重量比は15:1であった。遊星ボールミルの運転速度は400r/min、ボール磨き時間は10時間であった。
Example 2:
Manufactured by the following process.
In S1, sheet Mg (purity 99.8%), granular Sb (purity 99.999%), Bi (purity 99.999%), Te (purity 99.999%), powder Mn (purity 99.95). %) as a raw material, Mg 3 + δ Mn x Sb 2-yz Bi y Te z in which the stoichiometric ratio (δ = 0.1, x = 0.2 , y = 0.3, z = 0.05 That is, according to the general formula Mg 3.1 Mn 0.2 Sb 1.65 Bi 0.3 Te 0.05 ), the oxygen content was batch-weighed in a vacuum drying box with an argon atmosphere of less than 1 ppm, and small balls made of stainless steel with diameters of 6 mm and 20 mm were used. They were placed together in a planetary ball mill at a ratio of 10: 2 and argon gas was injected to prevent powder oxidation, and the weight ratio of the ball mill to the raw material was 15: 1. The operating speed of the planetary ball mill was 400 r / min, and the ball polishing time was 10 hours.

S2において、上述の工程で得られた粉体を酸素含有量0.1ppm未満のアルゴン雰囲気の真空干燥箱から取り出し、それぞれ秤量した後、図1に示す黒鉛金型に入れ、金型の内壁には0.1mmの黒鉛カーボン紙を敷き、続いて金型を高温炉キャビティに入れた。 In S2, the powder obtained in the above step is taken out from a vacuum drying box having an oxygen content of less than 0.1 ppm in an argon atmosphere, weighed, placed in the graphite mold shown in FIG. 1, and placed on the inner wall of the mold. Was laid with 0.1 mm graphite carbon paper, and then the mold was placed in the high temperature furnace cavity.

炉内は真空にして、焼結を総気圧4Pa未満で行い、焼結温度は700℃、オーバーバーン温度は10℃以内に制御し、焼結過程中の印加された圧力は80MPaであり、焼結時間は20minに制御した。焼結完成後、室温まで冷却して焼結サンプルを取り出した。 The inside of the furnace is evacuated, sintering is performed at a total pressure of less than 4 Pa, the sintering temperature is controlled within 700 ° C., the overburn temperature is controlled within 10 ° C., and the applied pressure during the sintering process is 80 MPa. The firing time was controlled to 20 min. After the sintering was completed, the material was cooled to room temperature and a sintered sample was taken out.

焼結完了後、成形された塊体密度はおよそ4.2g/cm3であった。 After the completion of sintering, the density of the formed mass was approximately 4.2 g / cm 3 .

X線回折の分析を経て、本実施例2で製造された5元n-型Mg3.1Mn0.2Sb1.65Bi0.3Te0.05塊体材料はMg3Sb2単相であり、且つそれぞれ22.46°、24.61°、25.65°、33.56°、37.29°、43.96°などの近傍にそれぞれMg3Sb2の(100)、(002)、(011)、(012)、(103)回折ピークが出現し、他の異質なピークの出現はなかった。 After analysis of X-ray diffraction, the quintuple n-type Mg 3.1 Mn 0.2 Sb 1.65 Bi 0.3 Te 0.05 mass material produced in Example 2 is Mg 3 Sb 2 single phase and 22.46 ° each. , 24.61 °, 25.65 °, 33.56 °, 37.29 °, 43.96 °, etc. of Mg 3 Sb 2 (100), (002), (011), (012), respectively. , (103) Diffraction peaks appeared, and no other heterogeneous peaks appeared.

また、この5元n-型Mg3.1Mn0.2Sb1.65Bi0.3Te0.05塊体材料は25−500℃の範囲内で、抵抗率が10〜80μΩm、ゼーベック係数が−150〜−350μV/K、熱コンダクタンスが1.2〜0.7Wm-1-1である。 In addition, this 5-element n-type Mg 3.1 Mn 0.2 Sb 1.65 Bi 0.3 Te 0.05 mass material has a resistivity of 10 to 80 μΩm, a Seebeck coefficient of −150 to −350 μV / K, and heat within a range of 25 to 500 ° C. The conductance is 1.2 to 0.7 Wm -1 K -1 .

力学的性能破断靱性が2.56MPam1/2、ヤング率が45GPaである。 Mechanical performance Fracture toughness is 2.56 MPam 1/2 and Young's modulus is 45 GPa.

熱電性能指数ZTは室温で0.74に達し、250℃の時は1.42に達し、テルル化ビスマス材料より明らかに優れている。 The thermoelectric figure of merit ZT reaches 0.74 at room temperature and 1.42 at 250 ° C, clearly superior to the tellurized bismuth material.

実施例3
以下の工程で製造した。
S1において、シート状Mg(純度99.8%)、粒状Sb(純度99.999%)、Bi(純度99.999%)、Se(純度99.999%)、粉状Mn(純度99.95%)を原料とし、Mg3+δMnxSb2-y-zBiySezである化学量論比(δ=0、x=0.3、y=0.1、z=0.1、すなわち化学一般式Mg3Mn0.3Sb1.8Bi0.1Se0.1)に従い、酸素含有量は1ppm未満のアルゴン雰囲気の真空干燥箱の中でバッチ計量し、且つ直径6mmと20mmのステンレス製の小球を5:3の量の割合で一緒に遊星ボールミルに入れ、アルゴンガスを注入して、粉体酸化を防止し、ボールミルと原料との重量比は10:1であった。遊星ボールミルの運転速度は500r/min、ボール磨き時間は7.5時間であった。
Example 3
Manufactured by the following process.
In S1, sheet Mg (purity 99.8%), granular Sb (purity 99.999%), Bi (purity 99.999%), Se (purity 99.999%), powder Mn (purity 99.95). the%) as a raw material, Mg 3 + δ Mn x Sb 2-yz Bi y Se z in a stoichiometric ratio (δ = 0, x = 0.3 , y = 0.1, z = 0.1, i.e. According to the general formula Mg 3 Mn 0.3 Sb 1.8 Bi 0.1 Se 0.1 ), the oxygen content is batch-weighed in a vacuum drying box with an argon atmosphere of less than 1 ppm, and small balls made of stainless steel with diameters of 6 mm and 20 mm are 5 :. They were placed together in a planetary ball mill at a ratio of 3 and injected with argon gas to prevent powder oxidation, and the weight ratio of the ball mill to the raw material was 10: 1. The operating speed of the planetary ball mill was 500 r / min, and the ball polishing time was 7.5 hours.

S2において、上述の工程で得られた粉体を酸素含有量0.1ppm未満のアルゴン雰囲気の真空干燥箱から取り出し、それぞれ秤量した後、図1に示す黒鉛金型に入れ、金型の内壁には0.1mmの黒鉛カーボン紙を敷き、続いて金型を高温炉キャビティに入れた。 In S2, the powder obtained in the above step is taken out from a vacuum drying box having an oxygen content of less than 0.1 ppm in an argon atmosphere, weighed, placed in the graphite mold shown in FIG. 1, and placed on the inner wall of the mold. Was laid with 0.1 mm graphite carbon paper, and then the mold was placed in the high temperature furnace cavity.

炉内は真空にして、焼結を総気圧4Pa未満で行い、焼結温度は800℃、オーバーバーン温度は10℃以内に制御し、焼結過程中の印加された圧力は100MPaであり、焼結時間は8minに制御した。焼結完成後、室温まで冷却して焼結サンプルを取り出した。 The inside of the furnace is evacuated, sintering is performed at a total pressure of less than 4 Pa, the sintering temperature is controlled within 800 ° C., the overburn temperature is controlled within 10 ° C., the applied pressure during the sintering process is 100 MPa, and baking is performed. The firing time was controlled to 8 min. After the sintering was completed, the material was cooled to room temperature and a sintered sample was taken out.

焼結完了後、成形された塊体密度はおよそ4.5g/cm3であった。 After the completion of sintering, the density of the formed mass was about 4.5 g / cm 3 .

図6に示すように、X線回折の分析を経て、本実施例3で製造された5元n-型Mg3Mn0.3Sb1.8Bi0.1Se0.1塊体材料はMg3Sb2単相であり、且つそれぞれ22.46°、24.61°、25.65°、33.56°、37.29°、43.96°などの近傍にそれぞれMg3Sb2の(100)、(002)、(011)、(012)、(103)回折ピークが出現し、他の異質なピークの出現はなかった。 As shown in FIG. 6, the quintuple n-type Mg 3 Mn 0.3 Sb 1.8 Bi 0.1 Se 0.1 mass material produced in Example 3 through the analysis of X-ray diffraction is Mg 3 Sb 2 single phase. And, in the vicinity of 22.46 °, 24.61 °, 25.65 °, 33.56 °, 37.29 °, 43.96 °, etc. of Mg 3 Sb 2 , (100), (002), respectively. (011), (012), and (103) diffraction peaks appeared, and no other heterogeneous peaks appeared.

また、この5元n-型Mg3Mn0.3Sb1.8Bi0.1Se0.1塊体材料は25−500℃の範囲内で、抵抗率が30〜120μΩm、ゼーベック係数が−240〜−350μV/K、熱コンダクタンスが1.0〜0.6Wm-1-1であった。 Further, this 5-element n-type Mg 3 Mn 0.3 Sb 1.8 Bi 0.1 Se 0.1 agglomerate material has a resistivity of 30 to 120 μΩm, a Seebeck coefficient of −240 to −350 μV / K, and heat within a range of 25 to 500 ° C. The conductance was 1.0 to 0.6 Wm -1 K -1 .

力学的性能破断靱性が2.37MPam1/2、ヤング率が44GPaである。 Mechanical performance Fracture toughness is 2.37 MPam 1/2 and Young's modulus is 44 GPa.

熱電性能指数ZTは室温で0.65に達し、250℃の時は1.38に達し、テルル化ビスマス材料より明らかに優れている。 The thermoelectric figure of merit ZT reaches 0.65 at room temperature and 1.38 at 250 ° C, clearly superior to the tellurized bismuth material.

実施例4
S1において、シート状Mg(純度99.8%)、粒状Sb(純度99.999%)、Bi(純度99.999%)、粉状Mn(純度99.95%)、S(純度99.999%)を原料とし、Mg3+δMnxSb2-y-zBiyzである化学量論比(δ=−0.2、x=0.4、y=0.8、z=0.2、すなわち化学一般式Mg2.8Mn0.4Sb1Bi0.80.2)に従い、酸素含有量は1ppm未満のアルゴン雰囲気の真空干燥箱の中でバッチ計量し、且つ直径6mmと20mmのステンレス製の小球を10:2の量の割合で一緒に遊星ボールミルに入れ、アルゴンガスを注入して、粉体酸化を防止し、ボールミルと原料との重量比は20:1であった。遊星ボールミルの運転速度は500r/min、ボール磨き時間は12時間であった。
Example 4
In S1, sheet Mg (purity 99.8%), granular Sb (purity 99.999%), Bi (purity 99.999%), powder Mn (purity 99.95%), S (purity 99.999%). %) as a raw material, Mg 3 + δ Mn x Sb 2-yz Bi y S z is a stoichiometric ratio (δ = -0.2, x = 0.4 , y = 0.8, z = 0. 2. That is, according to the general formula Mg 2.8 Mn 0.4 Sb 1 Bi 0.8 S 0.2 ), the oxygen content is batch-weighed in a vacuum drying box in an argon atmosphere with an oxygen content of less than 1 ppm, and small balls made of stainless steel having diameters of 6 mm and 20 mm. Was put together in a planetary ball mill at a ratio of 10: 2 and argon gas was injected to prevent powder oxidation, and the weight ratio of the ball mill to the raw material was 20: 1. The operating speed of the planetary ball mill was 500 r / min, and the ball polishing time was 12 hours.

S2において、上述の工程で得られた粉体を酸素含有量0.1ppm未満のアルゴン雰囲気の真空干燥箱から取り出し、それぞれ秤量した後、図1に示す黒鉛金型に入れ、金型の内壁には0.1mmの黒鉛カーボン紙を敷き、続いて金型を高温炉キャビティに入れた。 In S2, the powder obtained in the above step is taken out from a vacuum drying box having an oxygen content of less than 0.1 ppm in an argon atmosphere, weighed, placed in the graphite mold shown in FIG. 1, and placed on the inner wall of the mold. Was laid with 0.1 mm graphite carbon paper, and then the mold was placed in the high temperature furnace cavity.

炉内は真空にして、焼結を総気圧4Pa未満で行い、焼結温度は900℃、焼結過程中のオーバーバーン温度は10℃以内に制御し、印加された圧力は120MPaであり、焼結時間は5minに制御した。焼結完成後、室温まで冷却して焼結サンプルを取り出した。 The inside of the furnace is evacuated, sintering is performed at a total pressure of less than 4 Pa, the sintering temperature is controlled to 900 ° C., the overburn temperature during the sintering process is controlled within 10 ° C., the applied pressure is 120 MPa, and baking is performed. The firing time was controlled to 5 min. After the sintering was completed, the material was cooled to room temperature and a sintered sample was taken out.

焼結完了後、成形された塊体密度はおよそ4.8g/cm3であった。 After the completion of sintering, the density of the formed mass was about 4.8 g / cm 3 .

X線回折の分析を経て、本実施例4で製造された5元n-型Mg2.8Mn0.4Sb1Bi0.80.2塊状材料はMg3Sb2単相であり、且つそれぞれ22.46°、24.61°、25.65°、33.56°、37.29°、43.96°などの近傍にそれぞれMg3Sb2の(100)、(002)、(011)、(012)、(103)回折ピークが出現し、他の異質なピークの出現はなかった。 After analysis of X-ray diffraction, the quintuple n-type Mg 2.8 Mn 0.4 Sb 1 Bi 0.8 S 0.2 massive material produced in Example 4 is Mg 3 Sb 2 single phase and 22.46 °, respectively. Mg 3 Sb 2 (100), (002), (011), (012), respectively, in the vicinity of 24.61 °, 25.65 °, 33.56 °, 37.29 °, 43.96 °, etc. (103) Diffraction peaks appeared, and no other heterogeneous peaks appeared.

また、この5元n-型Mg2.8Mn0.4Sb1Bi0.80.2塊体材料は25−500℃の範囲内で、抵抗率が20〜130μΩm、ゼーベック係数が−175〜−280μV/K、熱コンダクタンスが0.9〜0.6Wm-1-1であった。 In addition, this 5-element n-type Mg 2.8 Mn 0.4 Sb 1 Bi 0.8 S 0.2 mass material has a resistivity of 20 to 130 μΩm, a Seebeck coefficient of -175 to 280 μV / K, and heat within a range of 25 to 500 ° C. The conductance was 0.9 to 0.6 Wm -1 K -1 .

力学的性能破断靱性が2.55MPam1/2、ヤング率が49.5GPaである。 Mechanical performance Fracture toughness is 2.55 MPam 1/2 and Young's modulus is 49.5 GPa.

熱電性能指数ZTは室温で0.62に達し、250℃の時は1.29に達し、テルル化ビスマス材料より明らかに優れている。 The thermoelectric figure of merit ZT reaches 0.62 at room temperature and 1.29 at 250 ° C, clearly superior to the tellurized bismuth material.

実施例5
S1において、シート状Mg(純度99.8%)、粒状Sb(純度99.999%)、粉状Mn(純度99.95%)、S(純度99.999%)を原料とし、Mg3+δMnxSb2-y-zBiyzである化学量論比(δ=0.2、x=0.1、y=0、z=0、すなわち化学一般式Mg3.2Mn0.1Sb2)に従い、酸素含有量は1ppm未満のアルゴン雰囲気の真空干燥箱の中でバッチ計量し、且つ直径6mmと20mmのステンレス製の小球を10:1の量の割合で一緒に遊星ボールミルに入れ、アルゴンガスを注入して、粉体酸化を防止し、ボールミルと原料との重量比は15:1であった。遊星ボールミルの運転速度は500r/min、ボール磨き時間は12時間であった。
Example 5
In S1, sheet-like Mg (purity 99.8%), granular Sb (purity 99.999%), powdery Mn (purity 99.95%), and S (purity 99.999%) are used as raw materials, and Mg 3+ δ Mn x Sb 2-yz Bi y S z is a stoichiometric ratio (δ = 0.2, x = 0.1 , y = 0, z = 0, i.e. the chemical formula Mg 3.2 Mn 0.1 Sb 2) in accordance with , Oxygen content is batch weighed in a vacuum dry box with an argon atmosphere of less than 1 ppm, and 6 mm and 20 mm diameter stainless steel globules are put together in a planetary ball mill in a ratio of 10: 1 and argon gas. Was injected to prevent powder oxidation, and the weight ratio of the ball mill to the raw material was 15: 1. The operating speed of the planetary ball mill was 500 r / min, and the ball polishing time was 12 hours.

S2において、上述の工程で得られた粉体を酸素含有量0.1ppm未満のアルゴン雰囲気の真空干燥箱から取り出し、それぞれ秤量した後、図1に示す黒鉛金型に入れ、金型の内壁には0.1mmの黒鉛カーボン紙を敷き、続いて金型を高温炉キャビティに入れた。 In S2, the powder obtained in the above step is taken out from a vacuum drying box having an oxygen content of less than 0.1 ppm in an argon atmosphere, weighed, placed in the graphite mold shown in FIG. 1, and placed on the inner wall of the mold. Was laid with 0.1 mm graphite carbon paper, and then the mold was placed in the high temperature furnace cavity.

炉内は真空にして、焼結を総気圧4Pa未満で行い、焼結温度は700℃、焼結過程中のオーバーバーン温度は10℃以内に制御し、印加された圧力は120MPaであり、焼結時間は30minに制御した。焼結完成後、室温まで冷却して焼結サンプルを取り出した。 The inside of the furnace is evacuated, sintering is performed at a total pressure of less than 4 Pa, the sintering temperature is controlled within 700 ° C, the overburn temperature during the sintering process is controlled within 10 ° C, the applied pressure is 120 MPa, and baking is performed. The firing time was controlled to 30 min. After the sintering was completed, the material was cooled to room temperature and a sintered sample was taken out.

焼結完了後、成形された塊体密度はおよそ4.2g/cm3であった。 After the completion of sintering, the density of the formed mass was approximately 4.2 g / cm 3 .

X線回折の分析を経て、本実施例5で製造された5元n-型Mg3.2Mn0.1Sb2塊体材料はMg3Sb2単相であり、且つそれぞれ22.46°、24.61°、25.65°、33.56°、37.29°、43.96°などの近傍にそれぞれMg3Sb2の(100)、(002)、(011)、(012)、(103)回折ピークが出現し、他の異質なピークの出現はなかった。 After analysis of X-ray diffraction, the quintuple n-type Mg 3.2 Mn 0.1 Sb 2 mass material produced in Example 5 is Mg 3 Sb 2 single phase and 22.46 ° and 24.61, respectively. (100), (002), (011), (012), (103) of Mg 3 Sb 2 in the vicinity of °, 25.65 °, 33.56 °, 37.29 °, 43.96 °, etc., respectively. Diffraction peaks appeared and no other heterogeneous peaks appeared.

この5元n-型Mg3.2Mn0.1Sb2塊体材料は25−500℃の範囲内で、抵抗率が30〜100μΩm、ゼーベック係数が−180〜−250μV/K、熱コンダクタンスが1.3〜0.8Wm-1-1であった。 This 5-element n-type Mg 3.2 Mn 0.1 Sb 2 mass material has a resistivity of 30 to 100 μΩm, a Seebeck coefficient of −180 to −250 μV / K, and a thermal conductance of 1.3 to −500 ° C. in the range of 25-500 ° C. It was 0.8 Wm -1 K -1.

力学的性能破断靱性が2.15MPam1/2、ヤング率が45.5GPaである。 Mechanical performance Fracture toughness is 2.15 MPam 1/2 and Young's modulus is 45.5 GPa.

熱電性能指数ZTは室温で0.41に達し、250℃の時は0.96に達し、テルル化ビスマス材料のレベルに近い。 The thermoelectric figure of merit ZT reaches 0.41 at room temperature and 0.96 at 250 ° C, close to the level of tellurized bismuth material.

実施例6
S1において、糸状Mg(純度99.8%)、粒状Sb(純度99.999%)、Bi(純度99.999%)、Te(純度99.999%)、粉状Mn(純度99.95%)を原料とし、Mg3+δMnxSb2-y-zBiyTezである化学量論比(δ=0.2、x=0.01、y=1.8、z=0.01、すなわち化学一般式Mg3.2Mn0.01Sb0.19Bi1.8Te0.01)に従い、酸素含有量は1ppm未満のアルゴン雰囲気の真空干燥箱の中でバッチ計量し、且つ直径6mmと20mmのステンレス製の小球を10:1の量の割合でボールミルに入れ、アルゴンガスを注入して、粉体酸化を防止し、ボールミルと原料との重量比は15:1であった。遊星ボールミルの運転速度は500r/min、ボール磨き時間は10時間であった。
Example 6
In S1, filamentous Mg (purity 99.8%), granular Sb (purity 99.999%), Bi (purity 99.999%), Te (purity 99.999%), powdery Mn (purity 99.95%). ) as a raw material, Mg 3 + δ Mn x Sb 2-yz Bi y Te z in which the stoichiometric ratio (δ = 0.2, x = 0.01 , y = 1.8, z = 0.01, That is, according to the general chemical formula Mg 3.2 Mn 0.01 Sb 0.19 Bi 1.8 Te 0.01 ), the oxygen content was batch-measured in a vacuum drying box with an argon atmosphere of less than 1 ppm, and 10 small balls made of stainless steel with diameters of 6 mm and 20 mm were measured. It was placed in a ball mill at a ratio of 1: 1 and argon gas was injected to prevent powder oxidation, and the weight ratio of the ball mill to the raw material was 15: 1. The operating speed of the planetary ball mill was 500 r / min, and the ball polishing time was 10 hours.

S2において、上述の工程で得られた粉体を酸素含有量0.1ppm未満のアルゴン雰囲気の真空干燥箱から取り出し、それぞれ秤量した後、図1に示す黒鉛金型に入れ、金型の内壁には0.1mmの黒鉛カーボン紙を敷き、続いて金型を高温炉キャビティに入れた。 In S2, the powder obtained in the above step is taken out from a vacuum drying box having an oxygen content of less than 0.1 ppm in an argon atmosphere, weighed, placed in the graphite mold shown in FIG. 1, and placed on the inner wall of the mold. Was laid with 0.1 mm graphite carbon paper, and then the mold was placed in the high temperature furnace cavity.

炉内は真空にして、焼結を総気圧4Pa未満で行い、二段階焼結し、第1次の焼結温度は500℃、時間は20min、第2次の焼結温度は700℃、時間は10minであった。焼結過程中は、オーバーバーン温度を10℃以内に制御し、印加された圧力は120MPaであった。焼結完成後、室温まで冷却して焼結サンプルを取り出した。 The inside of the furnace is evacuated, sintering is performed at a total pressure of less than 4 Pa, and two-step sintering is performed. The primary sintering temperature is 500 ° C., the time is 20 min, and the secondary sintering temperature is 700 ° C., time. Was 10 min. During the sintering process, the overburn temperature was controlled within 10 ° C. and the applied pressure was 120 MPa. After the sintering was completed, the material was cooled to room temperature and a sintered sample was taken out.

焼結完了後、成形された塊体密度はおよそ5.5g/cm3である。 After the completion of sintering, the density of the formed mass is approximately 5.5 g / cm 3 .

X線回折の分析を経て、本実施例6で製造された5元n-型Mg3.2Mn0.01Sb0.2Bi1.8塊体材料はMg3Sb2単相であり、且つそれぞれ22.46°、24.61°、25.65°、33.56°、37.29°、43.96°などの近傍にそれぞれMg3Sb2の(100)、(002)、(011)、(012)、(103)回折ピークが出現し、他の異質なピークの出現はなかった。 After analysis of X-ray diffraction, the quintuple n-type Mg 3.2 Mn 0.01 Sb 0.2 Bi 1.8 mass material produced in Example 6 is Mg 3 Sb 2 single phase and 22.46 ° and 24, respectively. (100), (002), (011), (012), (012) of Mg 3 Sb 2 in the vicinity of .61 °, 25.65 °, 33.56 °, 37.29 °, 43.96 °, etc., respectively. 103) Diffraction peaks appeared, and no other heterogeneous peaks appeared.

このn-型Mg3.2Mn0.1Sb2塊体材料は25−500℃の範囲内で、抵抗率が5〜20μΩm、ゼーベック係数が−120〜−160μV/K、熱コンダクタンスが1.8〜2.2Wm-1-1である。 This n-type Mg 3.2 Mn 0.1 Sb 2 mass material has a resistivity of 5 to 20 μΩm, a Seebeck coefficient of −120 to −160 μV / K, and a thermal conductance of 1.8 to 2. It is 2 Wm -1 K -1 .

熱電性能指数ZTは室温で0.41に達し、250℃の時は0.68に達し、その熱電性能は実施例1〜5より低い。 The thermoelectric figure of merit ZT reaches 0.41 at room temperature and 0.68 at 250 ° C., and its thermoelectric performance is lower than that of Examples 1 to 5.

実施例7
S1において、糸状Mg(純度99.8%)、粒状Sb(純度99.999%)、Bi(純度99.999%)、Te(純度99.999%)、粉状Mn(純度99.95%)を原料とし、Mg3+δMnxSb2-y-zBiyTezである化学量論比(δ=0.2、x=0.01、y=1.2、z=0.05、すなわち化学一般式Mg3.2Mn0.01Sb0.75Bi1.2Te0.05)に従い、酸素含有量は1ppm未満のアルゴン雰囲気の真空干燥箱の中でバッチ計量し、且つ直径6mmと20mmのステンレス製の小球を10:1の量の割合でボールミルに入れ、アルゴンガスを注入して、粉体酸化を防止し、ボールミルと原料との重量比は15:1であった。遊星ボールミルの運転速度は500r/min、ボール磨き時間は10時間であった。
Example 7
In S1, filamentous Mg (purity 99.8%), granular Sb (purity 99.999%), Bi (purity 99.999%), Te (purity 99.999%), powdery Mn (purity 99.95%). ) as a raw material, Mg 3 + δ Mn x Sb 2-yz Bi y Te z in which the stoichiometric ratio (δ = 0.2, x = 0.01 , y = 1.2, z = 0.05, That is, according to the general chemical formula Mg 3.2 Mn 0.01 Sb 0.75 Bi 1.2 Te 0.05 ), the oxygen content was batch-measured in a vacuum drying box with an argon atmosphere of less than 1 ppm, and 10 small balls made of stainless steel with diameters of 6 mm and 20 mm were measured. It was placed in a ball mill at a ratio of 1: 1 and argon gas was injected to prevent powder oxidation, and the weight ratio of the ball mill to the raw material was 15: 1. The operating speed of the planetary ball mill was 500 r / min, and the ball polishing time was 10 hours.

S2において、上述の工程で得られた粉体を酸素含有量0.1ppm未満のアルゴン雰囲気の真空干燥箱から取り出し、それぞれ秤量した後、図1に示す黒鉛金型に入れ、金型の内壁には0.1mmの黒鉛カーボン紙を敷き、続いて金型を高温炉キャビティに入れた。 In S2, the powder obtained in the above step is taken out from a vacuum drying box having an oxygen content of less than 0.1 ppm in an argon atmosphere, weighed, placed in the graphite mold shown in FIG. 1, and placed on the inner wall of the mold. Was laid with 0.1 mm graphite carbon paper, and then the mold was placed in the high temperature furnace cavity.

炉内は真空にして、焼結を総気圧4Pa未満で行い、焼結温度は700℃、焼結過程中のオーバーバーン温度は10℃以内に制御し、印加された圧力は120MPaであり、焼結時間は30minに制御した。焼結完成後、室温まで冷却して焼結サンプルを取り出した。 The inside of the furnace is evacuated, sintering is performed at a total pressure of less than 4 Pa, the sintering temperature is controlled within 700 ° C, the overburn temperature during the sintering process is controlled within 10 ° C, the applied pressure is 120 MPa, and baking is performed. The firing time was controlled to 30 min. After the sintering was completed, the material was cooled to room temperature and a sintered sample was taken out.

焼結完了後、成形された塊体密度はおよそ5.0g/cm3であった。 After the completion of sintering, the density of the formed mass was about 5.0 g / cm 3 .

X線回折の分析を経て、本実施例7で製造されたn-型Mg3.2Mn0.1Sb2塊体材料はMg3Sb2単相であり、且つそれぞれ22.46°、24.61°、25.65°、33.56°、37.29°、43.96°などの近傍にそれぞれMg3Sb2の(100)、(002)、(011)、(012)、(103)回折ピークが出現し、他の異質なピークの出現はなかった。 After analysis of X-ray diffraction, the n-type Mg 3.2 Mn 0.1 Sb 2 mass material produced in Example 7 is Mg 3 Sb 2 single-phase, and 22.46 ° and 24.61 °, respectively. (100), (002), (011), (012), (103) diffraction peaks of Mg 3 Sb 2 in the vicinity of 25.65 °, 33.56 °, 37.29 °, 43.96 °, etc., respectively. Appeared, and no other heterogeneous peaks appeared.

このn-型Mg3.2Mn0.1Sb2塊体材料は25−500℃の範囲内で、抵抗率が10〜40μΩm、ゼーベック係数が−140〜−220μV/K、熱コンダクタンスが1.4〜1.0Wm-1-1である。 This n-type Mg 3.2 Mn 0.1 Sb 2 mass material has a resistance of 10 to 40 μΩm, a Seebeck coefficient of −140 to −220 μV / K, and a thermal conductance of 1.4 to 1. It is 0 Wm -1 K -1 .

熱電性能指数ZTは室温で0.60に達し、250℃の時は1.43に達し、テルル化ビスマス材料のレベルに近い。 The thermoelectric figure of merit ZT reaches 0.60 at room temperature and 1.43 at 250 ° C, close to the level of tellurized bismuth material.

実施例8
S1において、糸状Mg(純度99.8%)、粒状Sb(純度99.999%)、Bi(純度99.999%)、Te(純度99.999%)、粉状Mn(純度99.95%)を原料とし、Mg3+δMnxSb2-y-zBiyTezである化学量論比(δ=−0.2、x=0.001、y=1.9、z=0、すなわち化学一般式Mg2.8Mn0.001Sb0.1Bi1.9)に従い、酸素含有量は1ppm未満のアルゴン雰囲気の真空干燥箱の中でバッチ計量し、且つ直径6mmと20mmのステンレス製の小球を10:1の量の割合でボールミルに入れ、アルゴンガスを注入して、粉体酸化を防止し、ボールミルと原料との重量比は15:1であった。遊星ボールミルの運転速度は500r/min、ボール磨き時間は10時間であった。
Example 8
In S1, filamentous Mg (purity 99.8%), granular Sb (purity 99.999%), Bi (purity 99.999%), Te (purity 99.999%), powdery Mn (purity 99.95%). ) as a raw material, Mg 3 + δ Mn x Sb 2-yz Bi y Te z in which the stoichiometric ratio (δ = -0.2, x = 0.001 , y = 1.9, z = 0, i.e. According to the general formula Mg 2.8 Mn 0.001 Sb 0.1 Bi 1.9 ), the oxygen content was batch-weighed in a vacuum-drying box with an argon atmosphere of less than 1 ppm, and 10: 1 stainless steel balls with diameters of 6 mm and 20 mm. It was placed in a ball mill in an amount ratio and argon gas was injected to prevent powder oxidation, and the weight ratio of the ball mill to the raw material was 15: 1. The operating speed of the planetary ball mill was 500 r / min, and the ball polishing time was 10 hours.

S2において、上述の工程で得られた粉体を酸素含有量0.1ppm未満のアルゴン雰囲気の真空干燥箱から取り出し、それぞれ秤量した後、図1に示す黒鉛金型に入れ、金型の内壁には0.1mmの黒鉛カーボン紙を敷き、続いて金型を高温炉キャビティに入れた。 In S2, the powder obtained in the above step is taken out from a vacuum drying box having an oxygen content of less than 0.1 ppm in an argon atmosphere, weighed, placed in the graphite mold shown in FIG. 1, and placed on the inner wall of the mold. Was laid with 0.1 mm graphite carbon paper, and then the mold was placed in the high temperature furnace cavity.

炉内は真空にして、焼結を総気圧4Pa未満で行い、二段階焼結し、第1次の焼結温度は500℃、時間は20min、第2次の焼結温度は700℃、時間は20minであった。焼結過程中は、オーバーバーン温度を10℃以内に制御し、印加された圧力は120MPaであった。焼結完成後、室温まで冷却して焼結サンプルを取り出した。 The inside of the furnace is evacuated, sintering is performed at a total pressure of less than 4 Pa, and two-step sintering is performed. The primary sintering temperature is 500 ° C., the time is 20 min, and the secondary sintering temperature is 700 ° C., time. Was 20 min. During the sintering process, the overburn temperature was controlled within 10 ° C. and the applied pressure was 120 MPa. After the sintering was completed, the material was cooled to room temperature and a sintered sample was taken out.

焼結完了後、成形された塊体密度はおよそ5.8g/cm3であった。 After the completion of sintering, the density of the formed mass was about 5.8 g / cm 3 .

X線回折の分析を経て、本実施例8で製造されたn-型Mg2.8Mn0.001Sb0.1Bi1.9塊体材料はMg3Sb2単相であり、且つそれぞれ22.46°、24.61°、25.65°、33.56°、37.29°、43.96°などの近傍にそれぞれMg3Sb2の(100)、(002)、(011)、(012)、(103)回折ピークが出現し、他の異質なピークの出現はなかった。 After analysis of X-ray diffraction, the n-type Mg 2.8 Mn 0.001 Sb 0.1 Bi 1.9 mass material produced in Example 8 is Mg 3 Sb 2 single-phase, and 22.46 ° and 24.61, respectively. (100), (002), (011), (012), (103) of Mg 3 Sb 2 in the vicinity of °, 25.65 °, 33.56 °, 37.29 °, 43.96 °, etc., respectively. Diffraction peaks appeared and no other heterogeneous peaks appeared.

このn-型Mg2.8Mn0.001Sb0.1Bi1.9塊体材料は25−500℃の範囲内で、抵抗率が5〜13μΩm、ゼーベック係数が−70〜−110μV/K、熱コンダクタンスが2.1〜2.9Wm-1-1である。 This n-type Mg 2.8 Mn 0.001 Sb 0.1 Bi 1.9 mass material has a resistivity of 5 to 13 μΩm, a Seebeck coefficient of -70 to -110 μV / K, and a thermal conductance of 2.1 to ~ in the range of 25-500 ° C. It is 2.9 Wm -1 K -1 .

熱電性能指数ZTは室温で0.35に達し、250℃の時は0.6に達する。 The thermoelectric figure of merit ZT reaches 0.35 at room temperature and 0.6 at 250 ° C.

比較例2
以下の工程で製造した。
S1において、シート状Mg(純度99.8%)、粒状Sb(純度99.999%)、Bi(純度99.999%)、Te(純度99.999%)、粉状Ti(純度99.99%)を原料とし、Mg3+δTixSb2-y-zBiyTezである化学量論比(δ=−0.2〜0.3、x=0〜0.4、y=0〜0.8、z=0〜0.2)に従い、酸素含有量は1ppm未満のアルゴン雰囲気の真空干燥箱の中でバッチ計量し、且つ直径6mmと20mmのステンレス製の小球を10:1の量の割合でボールミルに入れ、アルゴンガスを注入して、粉体酸化を防止し、ボールミルと原料との重量比は20:1であった。遊星ボールミルの運転速度は500r/min、ボール磨き時間は7.5時間であった。
Comparative Example 2
Manufactured by the following process.
In S1, sheet Mg (purity 99.8%), granular Sb (purity 99.999%), Bi (purity 99.999%), Te (purity 99.999%), powder Ti (purity 99.99). %) as a raw material, the stoichiometric ratio is Mg 3 + δ Ti x Sb 2 -yz Bi y Te z (δ = -0.2~0.3, x = 0~0.4, y = 0~ According to 0.8, z = 0 to 0.2), the oxygen content was batch weighed in a vacuum drying box with an argon atmosphere of less than 1 ppm, and stainless steel balls 6 mm and 20 mm in diameter were 10: 1. Argon gas was injected into the ball mill at a ratio of the amount to prevent powder oxidation, and the weight ratio of the ball mill to the raw material was 20: 1. The operating speed of the planetary ball mill was 500 r / min, and the ball polishing time was 7.5 hours.

S2において、上述の工程で得られた粉体を酸素含有量0.1ppm未満のアルゴン雰囲気の真空干燥箱から取り出し、それぞれ秤量した後、図1に示す黒鉛金型に入れ、その後、金型を石英管に入れた。炉内は真空にして、焼結を総気圧10Pa未満で行い、焼結過程中の印加された圧力は80MPaであり、昇温速さを5〜35℃に制御し、焼結時間は30〜60minに制御した。焼結完成後、室温まで冷却して焼結サンプルを取り出した。 In S2, the powder obtained in the above step is taken out from a vacuum drying box having an oxygen content of less than 0.1 ppm in an argon atmosphere, weighed, placed in the graphite mold shown in FIG. 1, and then the mold is placed. It was placed in a quartz tube. The inside of the furnace is evacuated, sintering is performed at a total pressure of less than 10 Pa, the applied pressure during the sintering process is 80 MPa, the heating speed is controlled to 5 to 35 ° C., and the sintering time is 30 to 30 to 35 ° C. It was controlled to 60 min. After the sintering was completed, the material was cooled to room temperature and a sintered sample was taken out.

X線回折の分析を経て、比較例1で得られた5元Mg3+δTixSb2-y-zBiyTez(y=0〜0.8、z=0〜0.4、z=0〜0.2)塊体材料はMg3Sb2単相であった。 Through the analysis of X-ray diffraction, 5 yuan Mg obtained in Comparative Example 1 3 + δ Ti x Sb 2 -yz Bi y Te z (y = 0~0.8, z = 0~0.4, z = 0-0.2) The mass material was Mg 3 Sb 2 single phase.

図6を参照すると、ドーピング元素はTiを選び且つ熱圧焼結する方式を採用して、その熱電性能指数は室温の時は0.38、250℃の時は1.24で、本発明実施例1の熱電性能指数より遥かに低い。 Referring to FIG. 6, a method in which Ti is selected as the doping element and thermoelectric sintering is adopted is adopted, and the thermoelectric performance index thereof is 0.38 at room temperature and 1.24 at 250 ° C. It is much lower than the thermoelectric performance index of Example 1.

比較例2
S1において、シート状Mg(純度99.8%)、粒状Sb(純度99.999%)、Bi(純度99.999%)、Te(純度99.999%)、粉状Fe(純度99.99%)を原料とし、Mg3+δFexSb2-y-zBiyTezである化学量論比(δ=−0.2〜0.3、x=0〜0.4、y=0〜0.8、z=0〜0.2)に従い、酸素含有量は1ppm未満のアルゴン雰囲気の真空干燥箱の中でバッチ計量し、且つ直径6mmと20mmのステンレス製の小球を10:1の量の割合でボールミルに入れ、アルゴンガスを注入して、粉体酸化を防止し、ボールミルと原料との重量比は20:1であった。遊星ボールミルの運転速度は500r/min、ボール磨き時間は7.5時間であった。
Comparative Example 2
In S1, sheet Mg (purity 99.8%), granular Sb (purity 99.999%), Bi (purity 99.999%), Te (purity 99.999%), powder Fe (purity 99.99). %) as a raw material, the stoichiometric ratio is Mg 3 + δ Fe x Sb 2 -yz Bi y Te z (δ = -0.2~0.3, x = 0~0.4, y = 0~ According to 0.8, z = 0 to 0.2), the oxygen content was batch weighed in a vacuum drying box with an argon atmosphere of less than 1 ppm, and 10: 1 stainless steel globules with diameters of 6 mm and 20 mm. It was placed in a ball mill at a ratio of the amount and argon gas was injected to prevent powder oxidation, and the weight ratio of the ball mill to the raw material was 20: 1. The operating speed of the planetary ball mill was 500 r / min, and the ball polishing time was 7.5 hours.

S2において、上述の工程で得られた粉体を酸素含有量1ppm未満のアルゴン雰囲気の真空干燥箱から取り出し、それぞれ秤量した後、図1に示す黒鉛金型に入れ、その後、金型を石英管に入れた。炉内は真空にして、焼結を総気圧10Pa未満で行い、昇温速さを5〜35℃に制御し、焼結時間は30〜60minに制御し、焼結過程中の印加された圧力は80MPaであった。焼結完成後、室温まで冷却して焼結サンプルを取り出した。 In S2, the powder obtained in the above step is taken out from a vacuum drying box having an oxygen content of less than 1 ppm in an argon atmosphere, weighed, placed in a graphite mold shown in FIG. 1, and then the mold is placed in a quartz tube. I put it in. The inside of the furnace is evacuated, sintering is performed at a total pressure of less than 10 Pa, the rate of temperature rise is controlled to 5 to 35 ° C., the sintering time is controlled to 30 to 60 min, and the applied pressure during the sintering process. Was 80 MPa. After the sintering was completed, the material was cooled to room temperature and a sintered sample was taken out.

X線回折の分析を経て、比較例2で得られた5元Mg3+δFexSb2-y-zBiyTez(y=0〜0.8、z=0〜0.4、z=0〜0.2)塊体材料はMg3Sb2単相であった。 Through the analysis of X-ray diffraction, 5 yuan Mg obtained in Comparative Example 2 3 + δ Fe x Sb 2 -yz Bi y Te z (y = 0~0.8, z = 0~0.4, z = 0-0.2) The mass material was Mg 3 Sb 2 single phase.

測定されたドーピング元素は遷移元素Feを選び、且つ熱圧焼結する方式を採用して、その熱電性能指数は室温の時は0.23、250℃の時は1.14で、本発明実施例1の熱電性能指数より遥かに低い。 A transition element Fe is selected as the measured doping element, and a thermoelectric sintering method is adopted. The thermoelectric performance index is 0.23 at room temperature and 1.14 at 250 ° C. It is much lower than the thermoelectric performance index of Example 1.

上述した内容は、本発明の好ましい実施例にすぎず、本発明を限定するものではない。本発明の精神及び原則の範囲内に限り、いかなる修正、同等置換、改良などのすべては本発明の保護範囲内に含まれるべきである。 The above-mentioned contents are merely preferable examples of the present invention, and do not limit the present invention. To the extent of the spirit and principles of the present invention, all modifications, equivalent substitutions, improvements, etc. should be included within the scope of protection of the present invention.

Claims (12)

熱電材料の化学一般式がMg3+δMnxSb2-y-zBiyzであり、Aは酸素族元素S、Se又はTe、−0.2≦δ≦0.3であり、
x、y、zは原子比率で、x=0.001〜0.4、y=0〜1.99、z=0〜0.2であることを特徴とするn-型Mg-Sb基室温熱電材料。
Chemical formulas of the thermoelectric material is Mg 3 + δ Mn x Sb 2 -yz Bi y A z, A is an oxygen group element S, Se or Te, a -0.2 ≦ δ ≦ 0.3,
x, y, z are atomic ratios, and are n-type Mg-Sb groups at room temperature, characterized in that x = 0.001 to 0.4, y = 0 to 1.99, and z = 0 to 0.2. Thermoelectric material.
前記熱電材料の化学一般式Mg3+δMnxSb2-y-zBiyzにおいて、x=0.001〜0.4、y=0〜1.0、z=0〜0.2であることを特徴とする請求項1に記載のn-型Mg-Sb基室温熱電材料。 In the chemical formula Mg 3 + δ Mn x Sb 2 -yz Bi y A z of the thermoelectric material, x = 0.001~0.4, y = 0~1.0 , is z = 0 to 0.2 The n-type Mg-Sb-based room temperature thermoelectric material according to claim 1. 一般式Mg3+δMnxSb2-y-zBiyzに従う純度≧99%の単体材料を原料とし、酸素含有量が1ppm未満のアルゴン雰囲気でバッチ計量し、そしてボールミルにセットし、ボールミルにステンレス製の小球を一定量加え、ボールミルを高速回転させて粉体を得る工程と、
上記の工程で得られた粉体をそれぞれ秤量して黒鉛金型に詰め、金型を高温炉に入れて真空にして、総気圧4Pa未満で焼結し、焼結終了後室温まで冷却することによって密度3.6〜5.8g/cm3の塊体熱電材料を得る工程とを含む請求項1又は2に記載のn-型Mg-Sb基室温熱電材料の製造方法。
The general formula Mg 3 + δ Mn x Sb 2 -yz Bi y A purity ≧ 99% of a single material according to z as the raw material, the oxygen content is batch weighed in an argon atmosphere of less than 1 ppm, and was set in a ball mill, a ball mill A process of adding a certain amount of small stainless steel balls and rotating the ball mill at high speed to obtain powder.
The powders obtained in the above steps are weighed and packed in a graphite mold, the mold is placed in a high temperature furnace to create a vacuum, sintered at a total pressure of less than 4 Pa, and cooled to room temperature after sintering. The method for producing an n-type Mg-Sb-based room temperature thermoelectric material according to claim 1 or 2, which comprises a step of obtaining a mass thermoelectric material having a density of 3.6 to 5.8 g / cm 3.
前記ステンレス製の小球と原料とがボールミル内で回転する際に、アルゴンガスを注入して保護することを特徴とする請求項3に記載のn-型Mg-Sb基室温熱電材料の製造方法。 The method for producing an n-type Mg-Sb-based room temperature thermoelectric material according to claim 3, wherein when the stainless steel globules and the raw material rotate in a ball mill, argon gas is injected to protect them. .. ボールミルに入っているステンレス製の小球として、少なくとも2種類の異なる直径のステンレス製の小球を使用することを特徴とする請求項4に記載のn-型Mg-Sb基室温熱電材料の製造方法。 The production of an n-type Mg-Sb-based room temperature thermoelectric material according to claim 4, wherein at least two kinds of stainless steel globules having different diameters are used as the stainless steel globules contained in the ball mill. Method. 2種類のステンレス製の小球を用いた場合、直径はそれぞれ6mmと20mmであり、数量比率は10:1〜5:3であることを特徴とする請求項5に記載のn-型Mg-Sb基室温熱電材料の製造方法。 The n-type Mg- according to claim 5, wherein when two types of stainless steel globules are used, the diameters are 6 mm and 20 mm, respectively, and the quantity ratio is 10: 1 to 5: 3. A method for producing an Sb-based room temperature thermoelectric material. 前記ボールミルにセットしたステンレス製の小球と原料との重量比は10:1〜20:1であることを特徴とする請求項3−6のいずれか1項に記載のn-型Mg-Sb基室温熱電材料の製造方法。 The n-type Mg-Sb according to any one of claims 3-6, wherein the weight ratio of the stainless steel globules set in the ball mill to the raw material is 10: 1 to 20: 1. A method for producing a base room temperature thermoelectric material. 前記ステンレス製の小球と原料とのボールミル内のボール磨き時間は7〜12時間であることを特徴とする請求項3−6のいずれか1項に記載のn-型Mg-Sb基室温熱電材料の製造方法。 The n-type Mg-Sb group room temperature thermoelectric according to any one of claims 3-6, wherein the ball polishing time in the ball mill of the stainless steel globules and the raw material is 7 to 12 hours. How to make the material. 前記ボールミルの運転速度は300〜500r/minであることを特徴とする請求項3−6のいずれか1項に記載のn-型Mg-Sb基室温熱電材料の製造方法。 The method for producing an n-type Mg-Sb-based room temperature thermoelectric material according to any one of claims 3-6, wherein the operating speed of the ball mill is 300 to 500 r / min. 前記金型を高温炉に入れて焼結する場合、焼結温度は500℃〜900℃、焼結時間は5min〜40minであることを特徴とする請求項3−6のいずれか1項に記載のn-型Mg-Sb基室温熱電材料の製造方法。 The invention according to any one of claims 3-6, wherein when the mold is placed in a high temperature furnace for sintering, the sintering temperature is 500 ° C. to 900 ° C. and the sintering time is 5 min to 40 min. A method for producing an n-type Mg-Sb-based room temperature thermoelectric material. 前記金型を高温炉に入れて焼結する場合、焼結温度は600℃〜900℃、焼結時間は5min〜40minであることを特徴とする請求項3−6のいずれか1項に記載のn-型Mg-Sb基室温熱電材料の製造方法。 The invention according to any one of claims 3-6, wherein when the mold is placed in a high temperature furnace for sintering, the sintering temperature is 600 ° C. to 900 ° C. and the sintering time is 5 min to 40 min. A method for producing an n-type Mg-Sb-based room temperature thermoelectric material. 前記金型を高温炉に入れて焼結する場合、焼結軸方向圧力は40〜120MPaであることを特徴とする請求項3−6のいずれか1項に記載のn-型Mg-Sb基室温熱電材料の製造方法。 The n-type Mg-Sb group according to any one of claims 3-6, wherein when the mold is placed in a high temperature furnace and sintered, the sintering axial pressure is 40 to 120 MPa. A method for manufacturing a room temperature thermoelectric material.
JP2020547072A 2018-03-07 2019-01-25 n-type Mg-Sb group Room temperature thermoelectric material and its manufacturing method Active JP6976012B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201810188151.2A CN108531795B (en) 2018-03-07 2018-03-07 N-type Mg-Sb based room temperature thermoelectric material and preparation method thereof
CN201810188151.2 2018-03-07
PCT/CN2019/073220 WO2019169970A1 (en) 2018-03-07 2019-01-25 N-type mg-sb-based room temperature thermoelectric material and preparation method therefor

Publications (3)

Publication Number Publication Date
JP2021515411A true JP2021515411A (en) 2021-06-17
JP2021515411A5 JP2021515411A5 (en) 2021-07-29
JP6976012B2 JP6976012B2 (en) 2021-12-01

Family

ID=63486712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020547072A Active JP6976012B2 (en) 2018-03-07 2019-01-25 n-type Mg-Sb group Room temperature thermoelectric material and its manufacturing method

Country Status (3)

Country Link
JP (1) JP6976012B2 (en)
CN (1) CN108531795B (en)
WO (1) WO2019169970A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108531795B (en) * 2018-03-07 2020-09-22 南方科技大学 N-type Mg-Sb based room temperature thermoelectric material and preparation method thereof
CN109616568B (en) * 2018-11-27 2021-02-02 同济大学 N-type antimony trimagneside alloy thermoelectric material with high mobility and preparation method thereof
CN109627002A (en) * 2019-01-31 2019-04-16 武汉理工大学 A kind of new method quickly preparing antimony Mg base thermoelectricity material
CN111613715B (en) * 2019-02-22 2022-02-11 中国科学院物理研究所 Magnesium-antimony-based thermoelectric element and preparation method and application thereof
CN110257667B (en) * 2019-05-30 2021-05-11 同济大学 N-type antimony trimagneside alloy thermoelectric material and preparation thereof
CN110635020B (en) * 2019-08-30 2021-05-25 中国科学院物理研究所 Magnesium-antimony-based thermoelectric element and preparation method and application thereof
CN112310269A (en) * 2020-11-03 2021-02-02 哈尔滨工业大学(深圳) Mg with power generation and refrigeration potentials3(Sb,Bi)2Base thermoelectric material and preparation method thereof
CN113488578B (en) * 2021-06-29 2023-02-07 同济大学 Low-grade waste heat recovery antimonide thermoelectric module with high conversion efficiency and preparation method thereof
CN114890791B (en) * 2022-05-06 2022-12-23 清华大学 Magnesium antimonide-based thermoelectric material and preparation method and application thereof
CN115090886B (en) * 2022-07-30 2024-06-04 太原理工大学 Improve Mg3Sb2Method for preparing thermoelectric material power factor
CN115537592B (en) * 2022-09-13 2023-10-13 安徽大学 Mg atmosphere annealing processN-type Mg 3 Sb 2 Method for preparing base thermoelectric material
WO2024060114A1 (en) * 2022-09-22 2024-03-28 南方科技大学 Mg-sb-based thermoelectric device comprising high-entropy thermoelectric interface material, and preparation method
CN115747565B (en) * 2022-10-17 2023-12-01 中国科学院电工研究所 Mg3Sb 2-based thermoelectric material and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11152503A (en) * 1997-11-19 1999-06-08 Kubota Corp Production of pb-te based compound powder
JP2007116156A (en) * 2005-10-21 2007-05-10 Qinghua Univ Compound thermoelectric material and manufacturing method thereof
JP2007324500A (en) * 2006-06-05 2007-12-13 Sps Syntex Inc Fesi2 system thermoelectric conversion material and its manufacturing method
JP2013138166A (en) * 2011-12-27 2013-07-11 Industrial Technology Research Institute Method for forming multi-element electro-thermal alloy
JP2016072594A (en) * 2014-09-30 2016-05-09 国立大学法人東北大学 Thermoelectric material, thermoelectric conversion element arranged by use thereof, and thermoelectric conversion module
JP2016529699A (en) * 2013-07-03 2016-09-23 ボード オブ トラスティーズ オブ ミシガン ステート ユニバーシティ Thermoelectric materials based on tetrahedral copper ore structure for thermoelectric elements
WO2017072982A1 (en) * 2015-10-27 2017-05-04 パナソニックIpマネジメント株式会社 Thermoelectric conversion material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002285274A (en) * 2001-03-27 2002-10-03 Daido Steel Co Ltd Mg-Si BASED THERMOELECTRIC MATERIAL AND PRODUCTION METHOD THEREFOR
KR101688528B1 (en) * 2010-03-31 2016-12-21 삼성전자주식회사 Thermoelectric materials, and thermoelectric module and thermoelectric device comprising same
KR20130126035A (en) * 2012-05-10 2013-11-20 삼성전자주식회사 Thermoelectric material having distortion of electronic density of states, thermoelectric module and thermoelectric apparatus comprising same
CN105308766B (en) * 2013-10-04 2017-12-05 株式会社Lg化学 Noval chemical compound semiconductor and application thereof
CN106986315B (en) * 2016-01-21 2019-04-16 中国科学院上海硅酸盐研究所 A kind of p-type bismuth telluride thermoelectric material and preparation method suitable for low-temperature electricity-generating
CN105695774A (en) * 2016-02-20 2016-06-22 北京工业大学 Preparation method for Mg3Sb2-based thermoelectric material
JP7209167B2 (en) * 2017-05-08 2023-01-20 パナソニックIpマネジメント株式会社 Jintle phase thermoelectric conversion material
CN108531795B (en) * 2018-03-07 2020-09-22 南方科技大学 N-type Mg-Sb based room temperature thermoelectric material and preparation method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11152503A (en) * 1997-11-19 1999-06-08 Kubota Corp Production of pb-te based compound powder
JP2007116156A (en) * 2005-10-21 2007-05-10 Qinghua Univ Compound thermoelectric material and manufacturing method thereof
JP2007324500A (en) * 2006-06-05 2007-12-13 Sps Syntex Inc Fesi2 system thermoelectric conversion material and its manufacturing method
JP2013138166A (en) * 2011-12-27 2013-07-11 Industrial Technology Research Institute Method for forming multi-element electro-thermal alloy
JP2016529699A (en) * 2013-07-03 2016-09-23 ボード オブ トラスティーズ オブ ミシガン ステート ユニバーシティ Thermoelectric materials based on tetrahedral copper ore structure for thermoelectric elements
JP2016072594A (en) * 2014-09-30 2016-05-09 国立大学法人東北大学 Thermoelectric material, thermoelectric conversion element arranged by use thereof, and thermoelectric conversion module
WO2017072982A1 (en) * 2015-10-27 2017-05-04 パナソニックIpマネジメント株式会社 Thermoelectric conversion material

Also Published As

Publication number Publication date
CN108531795B (en) 2020-09-22
CN108531795A (en) 2018-09-14
JP6976012B2 (en) 2021-12-01
WO2019169970A1 (en) 2019-09-12

Similar Documents

Publication Publication Date Title
JP6976012B2 (en) n-type Mg-Sb group Room temperature thermoelectric material and its manufacturing method
JP2021515411A5 (en)
WO2017041634A1 (en) Bisbtese-based thermoelectric material
CN105671344B (en) One step prepares high-performance CoSb3The method of base thermoelectricity material
JP7217547B2 (en) A method for rapid production of n-type Mg3Sb2-based materials with high thermoelectric performance
CN107681043A (en) A kind of bismuth telluride-base composite thermoelectric material of flexible thermo-electric device application and preparation method thereof
CN102931335A (en) Graphene compounded with stibine cobalt base skutterudite thermoelectric material and preparation method of material
CN108588838B (en) method for preparing SnSe polycrystalline block with high thermoelectric performance
CN107887495B (en) One-step preparation of Cu2Method for Se/BiCuSeO composite thermoelectric material
CN101101954A (en) A cadmium-stibium-based p type thermal electrical material and its making method
CN111640853B (en) By Sb and Cu 2 Method for improving thermoelectric performance of n-type PbTe by Te co-doping
CN110098310B (en) Preparation method of SnSe-based thermoelectric material oriented polycrystal
CN110078476A (en) A kind of Al doping BiCuSeO base thermoelectricity material and preparation method thereof
CN110408989B (en) Oxide thermoelectric material BiCuSeO monocrystal and preparation method thereof
CN101503765B (en) Method for preparing Mg-Si-Sn based thermoelectric material by fluxing medium
CN101857928A (en) P-type Zn4Sb3 based thermoelectric material and preparation method thereof
CN111048658A (en) SnI2Doped CsGeI3Perovskite thermoelectric material and preparation method thereof
CN109087987B (en) α -MgAgSb based nano composite thermoelectric material and preparation method thereof
CN103811653A (en) Multi-cobalt p type skutterudite filled thermoelectric material and preparation method thereof
CN109022863B (en) Ga-filled skutterudite thermoelectric material and preparation method thereof
CN106098922A (en) A kind of Cu doping Emission in Cubic Ca2si thermoelectric material
CN101857929A (en) Zinc antimony based porous p-type thermoelectric material and preparation method thereof
CN114804037A (en) Pb/In co-doped BiCuSeO thermoelectric material and preparation method thereof
CN101118946B (en) Barium zinc antimony based p type thermoelectric material and method for making same
CN109626446B (en) Preparation method of cubic CoSbS thermoelectric compound

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201016

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210611

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211101

R150 Certificate of patent or registration of utility model

Ref document number: 6976012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150