JP2007116156A - Compound thermoelectric material and manufacturing method thereof - Google Patents

Compound thermoelectric material and manufacturing method thereof Download PDF

Info

Publication number
JP2007116156A
JP2007116156A JP2006282380A JP2006282380A JP2007116156A JP 2007116156 A JP2007116156 A JP 2007116156A JP 2006282380 A JP2006282380 A JP 2006282380A JP 2006282380 A JP2006282380 A JP 2006282380A JP 2007116156 A JP2007116156 A JP 2007116156A
Authority
JP
Japan
Prior art keywords
powder
compound
thermoelectric material
thermoelectric
sbte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006282380A
Other languages
Japanese (ja)
Other versions
JP4291842B2 (en
Inventor
Jingfeng Li
敬▼鋒▲ 李
Ko O
衡 王
Takushi Kita
拓志 木太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qinghua University
Toyota Motor Corp
Original Assignee
Qinghua University
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qinghua University, Toyota Motor Corp filed Critical Qinghua University
Publication of JP2007116156A publication Critical patent/JP2007116156A/en
Application granted granted Critical
Publication of JP4291842B2 publication Critical patent/JP4291842B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a PbTe-based compound thermoelectric material having an enhanced thermoelectric property beyond the past limit, and a method of manufacturing the thermoelectric material that eliminates defects of the conventional compound thermoelectric materials. <P>SOLUTION: A PbTe (lead telluride)-based compound thermoelectric material with a rock salt structure has a chemical composition of Ag<SB>1-x</SB>Pb<SB>18+y</SB>SbTe<SB>20</SB>(when a stoichiometric composition of AgPb<SB>18</SB>SbTe<SB>20</SB>, in which Ag and Sb substitute for part of Pb in PbTe, is regarded as a reference, x is the amount of shortage relative to the stoichiometric value of Ag, y is the amount of excess relative to the stoichiometric value of Pb, x=0.2 to 0.6, and y=3 to 5), and is characterized in that the thermoelectric property is a dimensionless performance index ZT greater than 1. A method of manufacturing the compound thermoelectric material comprises: a step of mixing powders of constituent elements at the measurement ratio corresponding to the chemical composition; a step of producing compound powder having the chemical composition by subjecting the powder mixture to a high-energy ball milling process or mechanical alloying; and a step of subjecting the produced compound powder to spark plasma sintering to harden and form the powder. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、新エネルギ材料およびその製造方法に関し、特に高い温度差起電効果を有する熱電半導体化合物を利用した化合物熱電材料およびその製造方法に関する。   The present invention relates to a new energy material and a method for producing the same, and more particularly to a compound thermoelectric material using a thermoelectric semiconductor compound having a high temperature differential electromotive effect and a method for producing the compound thermoelectric material.

熱電材料は、温度差起電材料とも称され、2つの基本的な熱電効果−−ゼーベック(Seebeck)効果及びペルチェ(Peltier)効果に基づき、熱エネルギと電気エネルギとの間の変換を実現する類のエネルギ材料を指している。   Thermoelectric materials, also called temperature differential electromotive materials, are based on two basic thermoelectric effects--the Seebeck effect and the Peltier effect, which provide a conversion between thermal energy and electrical energy. Refers to energy materials.

熱電材料により製造される熱電発電デバイスを、従来の発電技術と比較した場合には、構造は簡単で、堅牢かつ耐久性が高く、可動部材は存在せず、マイクロ化は容易であり、メンテナンス不要で信頼性は高く、寿命は長く、騒音は発生せず、汚染も発生せず、低温の廃熱を利用可能であるなどの特徴が備わっている。   Compared to conventional power generation technology, thermoelectric power generation devices manufactured from thermoelectric materials have a simple structure, robustness and durability, no moving parts, easy microfabrication, and no maintenance required It has high reliability, long life, no noise, no pollution, and low temperature waste heat can be used.

熱電材料により製造される熱電冷却デバイスを、従来の圧縮冷却技術と比較した場合にも、フロン不要で汚染は発生せず、小型化は容易で、可動部材は存在せず、騒音も発生しないなどの利点が備わっている。   Compared with conventional compression cooling technology, thermoelectric cooling devices manufactured with thermoelectric materials do not require chlorofluorocarbon, do not cause contamination, are easy to downsize, have no moving parts, and do not generate noise. With the advantages of

そのため、近年におけるエネルギ問題や環境問題の日増しの重大化に伴い、熱電デバイスの応用も日々広まっており、航空・宇宙、国防建設、地質及び気象観測、医療衛生、マイクロ電子などの領域や石油化工、冶金、電力工業における廃熱利用方面などすべてにおいて広範な応用の前途が備わっている。   Therefore, as the energy and environmental issues have become more and more serious in recent years, the application of thermoelectric devices has been spreading day by day, such as aviation / space, national defense construction, geological and meteorological observation, medical hygiene, microelectronics, etc. There is a wide range of prospects for application in all areas such as chemicals, metallurgy, and waste heat utilization in the electric power industry.

以上のような応用の前途を有する熱電材料について、そのゼーベック係数S、導電率σ、熱伝動率Kを主な性能パラメータとした場合、その出力因子P=S2σ及び無次元性能指数ZT=(S2σ/K)Tは熱電材料を評価する際に最も常用される性能指数であり、良好な熱電材料には、高いゼーベック係数S、高い導電率σ、低い熱伝動率Kを有することが要求される。 For the thermoelectric material having the application prospects as described above, when its Seebeck coefficient S, conductivity σ, and thermal conductivity K are the main performance parameters, its output factor P = S 2 σ and dimensionless figure of merit ZT = (S 2 σ / K) T is the most commonly used figure of merit when evaluating thermoelectric materials, and good thermoelectric materials have a high Seebeck coefficient S, a high conductivity σ, and a low heat transfer coefficient K. Is required.

現在、研究が比較的活発な熱電材料は、低温領域に応用されるBi2Te3(Bismuth Telluride)及びその固溶体合金、中等度温度領域に応用されるPbTe(Lead Telluride)及びその合金、スクテルド鉱(Skutterudite)構造、高温領域に応用されるSiGe合金、包接体(Clathrate)構造、及びその他例えばhalf-Heysler合金、高ホウ素固体、酸化物や重合体熱電材料などである。 Thermoelectric materials that are currently under active research are Bi 2 Te 3 (Bismuth Telluride) and its solid solution alloys applied to low temperature regions, PbTe (Lead Telluride) and its alloys applied to moderate temperature regions, (Skutterudite) structure, SiGe alloy applied to high temperature region, clathrate structure, and others such as half-Heysler alloy, high boron solid, oxide and polymer thermoelectric material.

そのうち、Bi2Te3及びその固溶体合金の応用は相対的に比較的成熟しており、その無欠元性能指数ZTは1を超えている。しかし、その使用温度が比較的低いため、当該材料は主に電子冷却に使用されている。 Among them, the application of Bi 2 Te 3 and its solid solution alloy is relatively mature, and its intrinsic performance index ZT exceeds 1. However, since the use temperature is relatively low, the material is mainly used for electronic cooling.

PbTe系熱電化合物は温度差発電に適合しているが、その性能の向上が待たれている。従来のブロック体PbTe系熱電材料の無次元性能指数ZTは1を下回っている。最近の文献(非特許文献1)の報告によれば、PbTeベース化合物ブロック体材料にはBi2Te3合金より優れた熱電性能が備わっている。しかしその生成技術は比較的特殊であり、詳細な工程は不明である。現在、一部の研究機関でも当該材料体系関連の実験を実施しているが、そこで得られた無次元性能指数ZTはすべてK. F Hsuらの報告値を大きく下回っており、そのうちZTは最高で1.07である。 PbTe-based thermoelectric compounds are suitable for temperature difference power generation, but their performance is expected to improve. The dimensionless figure of merit ZT of the conventional block PbTe-based thermoelectric material is less than 1. According to a report in a recent document (Non-patent Document 1), the PbTe-based compound block body material has a thermoelectric performance superior to that of the Bi 2 Te 3 alloy. However, the production technique is relatively special, and the detailed process is unknown. Currently, some research institutions are also conducting experiments related to the material system, but the dimensionless figure of merit ZT obtained there is far below the value reported by K. F Hsu et al., Of which ZT is the highest 1.07.

別の面において、現在は、主に溶融法を採用して化合物を合成した後、粉砕及び加熱圧縮などの粉末冶金技術を使用して熱電材料が生成されている。この種の生成技術には、工程が煩雑で、設備は複雑であり、生産周期は長く、エネルギ消費は大きく、かつ材料の高温下への暴露時間が長いため、成分の揮発が重大であるなどの欠点が存在している。   In another aspect, at present, thermoelectric materials are produced using powder metallurgy techniques such as grinding and heat-compression, mainly after synthesizing compounds using a melting method. This type of production technology involves complex processes, complex equipment, long production cycles, high energy consumption, and long exposure times of materials to high temperatures, so the volatilization of components is critical. There are disadvantages.

また、特許文献1にはPbTe系素原料粉をメカニカル・アロイング(機械合金化)により単相化し、成形して焼結する方法が、特許文献2にはPbTe系素原料粉をボールミルで粉砕混合してプラズマ焼結する方法がそれぞれ提示されており、一方、非特許文献2にはAg−Pb−Sb−Te系熱電材料が、非特許文献3にはAg−Pb−Sb−Te系材料の熱電特性がそれぞれ開示されている。しかし、いずれも上記の限界を超えて熱電特性を向上させることはできなかった。   Patent Document 1 discloses a method in which a PbTe-based raw material powder is made into a single phase by mechanical alloying (mechanical alloying), molded and sintered, and Patent Document 2 discloses a method in which PbTe-based raw material powder is pulverized and mixed by a ball mill. On the other hand, non-patent literature 2 describes an Ag-Pb-Sb-Te thermoelectric material, and non-patent literature 3 describes an Ag-Pb-Sb-Te based material. Each thermoelectric property is disclosed. However, none of the thermoelectric characteristics could be improved beyond the above limit.

特開2004−296473号公報JP 2004-296473 A 特開平7−7186号公報Japanese Patent Laid-Open No. 7-7186 K. F Hsu et al., Science, 303(2004), 818K. F Hsu et al., Science, 303 (2004), 818 日本セラミク協会2005年年会講演予稿集(2005.3.)Proceedings of 2005 Annual Conference of Japan Ceramics Association (2005.3.) 第2回日本熱電学会学術講演会(TSJ2005)論文集、pp.38−39、8月、(2005)Proceedings of the 2nd Annual Meeting of the Thermoelectric Society of Japan (TSJ2005), pp. 38-39, August, (2005)

本発明の目的は、従来の限界を超えて熱電特性を向上させたPbTe系化合物熱電材料と、従来の欠点を解消した上記熱電材料の製造方法とを提供することである。   An object of the present invention is to provide a PbTe-based compound thermoelectric material that has improved thermoelectric characteristics beyond the conventional limit, and a method for producing the thermoelectric material that eliminates the conventional drawbacks.

上記の目的を達成するために、本発明によれば、テルル化鉛PbTeをベースとする岩塩構造の化合物熱電材料であって、
化学組成がAg1-xPb18+ySbTe20で表示され、PbTeのPbの一部をAgおよびSbで置換した化学量論組成AgPb18SbTe20を基準とした場合に、xはAgの化学量論値に対する不足量を示し、yはPbの化学量論値に対する過剰量を示しており、x値は0.2〜0.6の間を変化することができ、y値は3〜5の間を変化することができ、
無次元性能指数ZT>1であることを特徴とする化合物熱電材料が提供される。
In order to achieve the above object, according to the present invention, a compound thermoelectric material having a rock salt structure based on lead telluride PbTe,
When the chemical composition is represented by Ag 1-x Pb 18 + y SbTe 20 and the stoichiometric composition AgPb 18 SbTe 20 in which a part of Pb of PbTe is substituted with Ag and Sb is used, x is the chemistry of Ag. Indicates a deficiency relative to the stoichiometric value, y indicates an excess relative to the stoichiometric value of Pb, the x value can vary between 0.2 and 0.6, and the y value ranges from 3 to 5 Can vary between
A compound thermoelectric material characterized in that the dimensionless figure of merit ZT> 1 is provided.

本発明は更に、上記本発明の化合物熱電材料の製造方法であって、
上記化学組成に対応する計量比で各成分元素の粉末を配合し、
上記配合された粉末混合物に、高エネルギ・ボールミル過程または機械合金化を行うことにより、上記化学組成の化合物粉末を生成し、
上記生成された化合物粉末に放電プラズマ焼結を行なうことにより硬化成形することを特徴とする化合物熱電材料の製造方法をも提供する。
The present invention further relates to a method for producing the compound thermoelectric material of the present invention,
Blending the powder of each component element at a measurement ratio corresponding to the chemical composition,
The compounded powder mixture is subjected to a high energy ball mill process or mechanical alloying to produce a compound powder of the above chemical composition,
There is also provided a method for producing a compound thermoelectric material, characterized in that the produced compound powder is cured by performing discharge plasma sintering.

本発明の化合物熱電材料は、上記化学組成を採用して電気的性能及び熱電性能を調整することにより、高い熱電性能を備えた材料を得ることを可能とした。   The compound thermoelectric material of the present invention can obtain a material having high thermoelectric performance by adopting the above chemical composition and adjusting the electrical performance and thermoelectric performance.

本発明の化合物熱電材料の製造方法は、機械合金化を採用したことにより、従来の溶解工程に対して、合成温度が室温に近く、設備は簡単で、コストは低廉であり、大規模生産に適していると同時に、得られる合金結晶粒は細かく、導電率は顕著には低下せず、熱伝導率を低下させることができるため、より良好な熱電性能が獲得される。また、放電プラズマ焼結を採用したことにより、短時間且つ低温の焼結を可能とし、それにより生産効率を向上させると同時に焼結体結晶粒子の長大化を防止した。   The production method of the compound thermoelectric material of the present invention adopts mechanical alloying, so that the synthesis temperature is close to room temperature, the equipment is simple, the cost is low, and the large-scale production is compared with the conventional melting process. At the same time, the alloy crystal grains obtained are fine, the conductivity is not significantly reduced, and the thermal conductivity can be lowered, so that better thermoelectric performance is obtained. Moreover, by adopting discharge plasma sintering, sintering at a low temperature can be performed in a short time, thereby improving the production efficiency and at the same time preventing an increase in the length of the sintered crystal particles.

本発明は新たな熱電材料及びその製造方法を提供する。当該熱電材料はAg−Pb−Sb−Te系化合物に属しており、その無次元性能指数ZTは1.37にも達している。当該熱電材料については機械合金化(メカニカル・アロイング:Mechanical Alloying MA)を採用してその化合物粉末を合成し、放電プラズマ焼結(Spark Plasma Sintering SPS)技術を使用して比較的低い温度でブロック体材料を焼結・合成することが可能である。   The present invention provides a new thermoelectric material and a method for producing the same. The thermoelectric material belongs to an Ag—Pb—Sb—Te compound, and its dimensionless figure of merit ZT reaches 1.37. For the thermoelectric material, mechanical alloying (Mechanical Alloying MA) is used to synthesize the compound powder, and then the block body is produced at a relatively low temperature using the Spark Plasma Sintering SPS technology. It is possible to sinter and synthesize materials.

本発明では機械合金化(Mechanical Alloying MA)及び放電プラズマ焼結(Spark Plasma Sintering SPS)技術を採用して高性能のPbTeベースのAg−Pb−Sb−Te系化合物熱電材料を生成している。   In the present invention, high-performance PbTe-based Ag—Pb—Sb—Te compound thermoelectric materials are produced by employing mechanical alloying MA and spark plasma sintering SPS techniques.

機械合金化(メカニカル・アロイング)とは、高エネルギ・ボールミル過程における衝突で生成されるエネルギにより、金属粉末を金属間化合物または合金に直接合成する工程技術である。従来の溶解工程と比較した場合には、合成温度が室温に近く、設備は簡単で、コストは低廉であり、大規模生産に適しているという特徴が備わっており、かつそこで得られる合金結晶粒は細かく、導電率は顕著には低下しないとともにフォノンの粒界散乱を増加させることにより材料の熱伝動率を低下させることができるため、より良好な熱電性能が獲得される。   Mechanical alloying (mechanical alloying) is a process technology in which metal powder is directly synthesized into an intermetallic compound or alloy by energy generated by collision in a high energy ball mill process. Compared with the conventional melting process, the synthesis temperature is close to room temperature, the equipment is simple, the cost is low, and it is suitable for large-scale production. The electrical conductivity does not decrease remarkably and the thermal conductivity of the material can be decreased by increasing the phonon grain boundary scattering, so that better thermoelectric performance is obtained.

放電プラズマ焼結とは、真空環境下において、上・下2か所のグラファイト押圧ヘッドにより、焼結体に加圧するとともにパルス直流電流により放電プラズマを発生させ、焼結体内部の渦電流によりジュール熱を生成させ、かつ表面を活性化させることにより、非常に短い時間内に焼結を完成する工程技術であり、それには焼結温度は低く、焼結周期は短く、生産効率は高く、焼結体結晶粒子は容易には長大化しないなどの特徴が備わっている。   In discharge plasma sintering, in a vacuum environment, the upper and lower graphite pressing heads pressurize the sintered body and generate a discharge plasma by pulsed direct current. Joule current is generated by eddy current inside the sintered body. It is a process technology that completes sintering within a very short time by generating heat and activating the surface, which includes low sintering temperature, short sintering cycle, high production efficiency, The crystal particles are not easily elongated.

本発明で選択されている材料組成はAg1-xPb18+ySbTe20として示される。当該化合物にはPbTeと同一の岩塩構造が備わっている。PbTeの本来構造を変化なく維持するという条件下において、等量のAg、SbでPbの位置を置換しており、xでそれが等量置換を乖離する量を示し、yで計量比を超過するPb含有量を示し、それによりその電気的性能及び熱電性能を調整することにより、高い熱電性能を備えた材料を得ることが可能となっている。 The material composition selected in the present invention is shown as Ag 1−x Pb 18 + y SbTe 20 . The compound has the same rock salt structure as PbTe. Under the condition that the original structure of PbTe is maintained unchanged, the position of Pb is replaced with an equal amount of Ag and Sb, x indicates the amount of deviation from the equivalent replacement, and y exceeds the measurement ratio. It is possible to obtain a material with high thermoelectric performance by indicating the Pb content to be adjusted and thereby adjusting the electrical performance and thermoelectric performance.

本発明の化合物熱電材料の製造方法の望ましい形態による具体的工程は下記の通りである。   Specific steps according to a desirable mode of the method for producing the compound thermoelectric material of the present invention are as follows.

1.化学式Ag1-xPb18+ySbTe20に基づき、Ag、Pb、Sb及びTeの単体粉末を原料とし、一定のx、y値に基づき原料を調製した上で、ボールミルタンク内に投入するとともに、タンク内に少量(0.1体積%)のエタノールを添加した。エタノールの役割は粉末がタンク壁上に粘着して後続のボールミル効果に影響を及ぼすことを防止する点にある。 1. Based on the chemical formula Ag 1-x Pb 18 + y SbTe 20 , a single powder of Ag, Pb, Sb and Te is used as a raw material. A small amount (0.1% by volume) of ethanol was added to the tank. The role of ethanol is to prevent the powder from sticking onto the tank wall and affecting the subsequent ball mill effect.

2.事前に真空抽気した上で、ボールミル保護ガスとしての高純度アルゴンガス(Ar)を流入させた後、ボールミルタンクを遊星式ボールミルマシンに設置して乾式ミルを実施した。ボールミルの回転速度はボールミルマシンの型式番号、ミルボール及びボールミルタンクの材質や大きさなどに基づき確定した。本発明では南京大学儀器廠生産のQM−2型遊星型ボールミルマシン、250mLのステンレス製ボールミルタンク及び直径10mmのステンレス製ミルボールを採用した。回転速度を300回転/分とした場合、必要とするボールミル時間は5時間である。   2. After vacuum evacuation in advance, high purity argon gas (Ar) as a ball mill protective gas was flowed in, and then a ball mill tank was installed in a planetary ball mill machine to perform a dry mill. The rotation speed of the ball mill was determined based on the model number of the ball mill machine and the material and size of the mill ball and ball mill tank. In the present invention, a QM-2 type planetary ball mill machine produced by Nanjing University ceremonial bowl, a 250 mL stainless steel ball mill tank, and a stainless steel mill ball having a diameter of 10 mm are employed. When the rotation speed is 300 rpm, the required ball mill time is 5 hours.

3.破砕された粉末材料を取り出し、φ20mmのグラファイト製金型に装填し、グラファイト製押圧ヘッドで圧密した後、SPSマシン内に設置し、真空(約6Pa)条件下で焼結を実施した。SPSの昇温速度は50℃/min、最高保温温度は300〜500℃、SPS圧力は50MPaとし、保温後に炉の温度を室温まで冷却した。   3. The crushed powder material was taken out, loaded into a φ20 mm graphite mold, consolidated with a graphite pressing head, placed in an SPS machine, and sintered under vacuum (about 6 Pa) conditions. The temperature rising rate of SPS was 50 ° C./min, the maximum heat retention temperature was 300 to 500 ° C., the SPS pressure was 50 MPa, and the temperature of the furnace was cooled to room temperature after the heat retention.

4.試料を取り出した後、サンドペーパーで試料の表面を研磨した後、物性相分析及び顕微鏡構造分析を実施するとともに、熱電性能の測定試験を実施した。   4). After the sample was taken out, the surface of the sample was polished with sandpaper, then physical phase analysis and microscopic structure analysis were performed, and a measurement test of thermoelectric performance was performed.

上記の機械合金化と放電プラズマ焼結とを相互に結合した技術(略称:MA+SPS技術)を熱電材料の生成に使用した場合には下記の利点が備わっている。   When a technique (abbreviation: MA + SPS technique) in which the above-mentioned mechanical alloying and discharge plasma sintering are mutually coupled is used for the production of a thermoelectric material, the following advantages are provided.

(1)工程の流れは短く、効率は高いため、工業化された大規模生産に適している。   (1) Since the process flow is short and the efficiency is high, it is suitable for industrialized large-scale production.

(2)高温の溶融及び長時間の加熱圧縮は必要でないため、消費エネルギが少ない。   (2) Less energy is consumed because high temperature melting and long time heat compression are not required.

(3)有害元素の揮発が低減しているため、製造工程の環境に対する影響は比較的小さい。   (3) Since the volatilization of harmful elements is reduced, the environmental impact of the manufacturing process is relatively small.

(4)得られる材料の結晶粒は細かいため、熱電性能はより優れている。   (4) Since the crystal grains of the obtained material are fine, the thermoelectric performance is more excellent.

〔実施例1〕
銀(Ag)粉末、アンチモン(Sb)粉末、鉛(Pb)粉末、テルル(Te)粉末を原料とし、Ag0.8Pb22SbTe20の計量比で総量計20gの粉末を計量し、ステンレス製ボールミルタンク(容積250mL)内に入れるとともに、直径10mmのステンレス製ミルボール(ミルボールと粉末との重量比18:1)を投入した。ボールミルタンク内にはArを保護ガスとして充填し、遊星式ボールミルマシン(QM−2型、南京大学儀器廠)で遊星式ボールミルを5h(回転速度300r/min)実施した上で、機械合金化(MA)反応によりAg0.8Pb22SbTe20化合物粉末を生成した。図1(a)に示されている通り、上記MA処理後、そこで得られた粉末材料は単相となり、併せて立方構造を備えており、各回折ピークはPbTe相に基づき同定を実施することができる。得られた粉末材料を圧力50MPa、400℃下で2分間保温して焼結を実施すると、その相対密度は98%以上であった(図2に示されているSEM写真参照)。図1(b)に示されている通りその相構造はSPS焼結前の粉末と基本的に一致しており、変化は発生していない。図2に示されているのはAg0.8Pb22SbTe20組成のSPS焼結体の(1)SEM写真及び(2)TEM写真であり、MA及びSPSにより生成されたAg0.8Pb22SbTe20化合物熱電材料はその密度が高く、結晶粒は細かく(平均粒径約5μm)かつ比較的均一であることが示されている。
[Example 1]
Silver (Ag) powder, antimony (Sb) powder, lead (Pb) powder, tellurium (Te) powder as a raw material, weighing the powder of the total meter 20g with a metering ratio of Ag 0.8 Pb 22 SbTe 20, stainless steel ball mill tank (A volume of 250 mL) and a stainless steel mill ball having a diameter of 10 mm (weight ratio of mill ball to powder: 18: 1) were added. The ball mill tank is filled with Ar as a protective gas, and the planetary ball mill (QM-2 type, Nanjing University Gikijo) implements the planetary ball mill for 5 hours (rotation speed: 300 r / min) before mechanical alloying ( MA) reaction produced Ag 0.8 Pb 22 SbTe 20 compound powder. As shown in FIG. 1 (a), after the MA treatment, the powder material obtained there becomes a single phase and has a cubic structure, and each diffraction peak is identified based on the PbTe phase. Can do. When the obtained powder material was sintered under a pressure of 50 MPa and 400 ° C. for 2 minutes, the relative density was 98% or more (see the SEM photograph shown in FIG. 2). As shown in FIG. 1 (b), the phase structure basically coincides with the powder before SPS sintering, and no change has occurred. FIG. 2 shows (1) an SEM photograph and (2) a TEM photograph of an SPS sintered body having an Ag 0.8 Pb 22 SbTe 20 composition, and an Ag 0.8 Pb 22 SbTe 20 compound produced by MA and SPS. Thermoelectric materials have been shown to have high density, fine grains (average grain size of about 5 μm) and relatively uniform.

〔実施例2〕
銀(Ag)粉末、アンチモン(Sb)粉末、鉛(Pb)粉末、テルル(Te)粉末を原料とし、Ag0.8Pb21SbTe20、Ag0.8Pb22SbTe20、Ag0.8Pb23SbTe20の計量比でそれぞれ総量計20gの粉末を計量し、Pb含有量が異なる3組の試料を生成した。粉末の合成及びSPS焼結条件は実施例1と同一とした。図3及び図4は3種類の組成Ag1-xPb18+ySbTe20化合物のSPS焼結試料の抵抗率(ρ)及びゼーベック係数(S)と温度との関係をそれぞれ示している。他の2組と比較し、Ag0.8Pb22SbTe20は最低の抵抗率を有し、そのゼーベック係数の絶対値の大きさは他の両者の間に位置している。図5は図3及び図4のデータを利用して算出された出力因子(S2/ρ)と温度との関係である。図5に示されている通り、Ag0.8Pb22SbTe20組成は出力因子が最高であり、650Kで1766μW/mKに達している。図6は当該組成(Ag0.8Pb22SbTe20)の無次元性能指数ZTと温度との関係であり、最高測定温度(673K)でZTは1.37に達している。
[Example 2]
Ag 0.8 Pb 21 SbTe 20 , Ag 0.8 Pb 22 SbTe 20 , Ag 0.8 Pb 23 SbTe 20 based on silver (Ag) powder, antimony (Sb) powder, lead (Pb) powder and tellurium (Te) powder as raw materials A total amount of 20 g of powder was weighed to produce three sets of samples with different Pb contents. The powder synthesis and SPS sintering conditions were the same as in Example 1. 3 and 4 show the relationship between the resistivity (ρ) and Seebeck coefficient (S) of the SPS sintered samples of three types of compositions Ag 1-x Pb 18 + y SbTe 20 compounds and temperature, respectively. Compared with the other two sets, Ag 0.8 Pb 22 SbTe 20 has the lowest resistivity, and the magnitude of the absolute value of its Seebeck coefficient is located between the other two. FIG. 5 shows the relationship between the output factor (S 2 / ρ) calculated using the data shown in FIGS. 3 and 4 and the temperature. As shown in FIG. 5, the composition of Ag 0.8 Pb 22 SbTe 20 has the highest output factor, reaching 1766 μW / mK at 650K. FIG. 6 shows the relationship between the dimensionless figure of merit ZT of the composition (Ag 0.8 Pb 22 SbTe 20 ) and the temperature, and ZT reaches 1.37 at the highest measured temperature (673 K).

〔実施例3〕
銀(Ag)粉末、アンチモン(Sb)粉末、鉛(Pb)粉末、テルル(Te)粉末を原料とし、Ag0.4Pb22SbTe20、Ag0.6Pb22SbTe20、Ag0.8Pb22SbTe20の計量比でそれぞれ総量計20gの粉末を計量し、Ag含有量が異なる3組の試料を生成した。粉末の合成及びSPS焼結条件は実施例1と同一とした。銀含有量が0.4、0.6、0.8の試料の室温抵抗率はそれぞれ0.125Ωm、0.185Ωm、0.175×10-3Ωmである。銀含有量がそれぞれ0.4及び0.6の両試料は抵抗率が過度に高く、Ag含有量が約0.8の試料はその他両組成を大きく下回る抵抗率を示している。そのため、その総合的熱電性能は高く、無次元性能指数ZTは1.37に達している。
Example 3
Silver (Ag) powder, antimony (Sb) powder, lead (Pb) powder, tellurium (Te) powder as raw materials, Ag 0.4 Pb 22 SbTe 20 , Ag 0.6 Pb 22 SbTe 20 , Ag 0.8 Pb 22 SbTe 20 A total amount of 20 g of powder was weighed to produce three sets of samples with different Ag contents. The powder synthesis and SPS sintering conditions were the same as in Example 1. The room temperature resistivity of the samples having a silver content of 0.4, 0.6, and 0.8 is 0.125 Ωm, 0.185 Ωm, and 0.175 × 10 −3 Ωm, respectively. Both samples with a silver content of 0.4 and 0.6 have excessively high resistivity, and a sample with an Ag content of about 0.8 shows a resistivity significantly lower than both other compositions. Therefore, the overall thermoelectric performance is high, and the dimensionless figure of merit ZT reaches 1.37.

本発明では機械合金化(MA)と放電プラズマ焼結(SPS)を組み合わせた方法を採用してPbTe系高性能熱電材料を生成する方法が開示されており、当該材料の組成はAg1-xPb18+ySbTe20で表示され、そのうちxはAgの等量置換を乖離する量を示し、yは原料粉末内における計量比を超過するPb含有量を示している。従来の粉末冶金技術と比較した場合、本発明によるMA+SPS技術には工程の流れが短く、効率は高く、消費エネルギは少なく、工業化された大規模生産に適しているなどの利点が備わり、そこで得られる温度差起電材料にはより優れた熱電性能が備わっている。MA及びSPSを利用して生成されたAg1-xPb18+ySbTe20熱電材料の無次元性能指数ZTは450℃下で1.37に達している。 The present invention discloses a method for producing a PbTe-based high-performance thermoelectric material using a method combining mechanical alloying (MA) and spark plasma sintering (SPS), and the composition of the material is Ag 1-x. Pb 18 + y SbTe 20 is displayed, in which x indicates the amount deviating from the equivalent substitution of Ag, and y indicates the Pb content exceeding the measurement ratio in the raw material powder. Compared with conventional powder metallurgy technology, the MA + SPS technology according to the present invention has advantages such as short process flow, high efficiency, low energy consumption, and suitable for industrialized large-scale production. The temperature difference electromotive material obtained has better thermoelectric performance. The dimensionless figure of merit ZT of Ag 1-x Pb 18 + y SbTe 20 thermoelectric material produced using MA and SPS reaches 1.37 at 450 ° C.

図1は機械合金化により合成されたAg1-xPb18+ySbTe20(x=0.2、y=4)化合物粉末及びそのSPS焼結ブロック体(焼結温度=400度)のX線回折スペクトル図である。FIG. 1 shows X of Ag 1-x Pb 18 + y SbTe 20 (x = 0.2, y = 4) compound powder synthesized by mechanical alloying and its SPS sintered block (sintering temperature = 400 ° C.). It is a line diffraction spectrum figure. 図2は400℃下でSPS焼結されたAg1-xPb18+ySbTe20(x=0.2、y=4)化合物ブロック体試料の(1)走査型電子顕微鏡(SEM)及び(2)透過型電子顕微鏡(TEM)写真である。FIG. 2 shows (1) scanning electron microscope (SEM) and (1) of Ag 1-x Pb 18 + y SbTe 20 (x = 0.2, y = 4) compound block body sample sintered at 400 ° C. 2) A transmission electron microscope (TEM) photograph. 図3は組成が異なるAg1-xPb18+ySbTe20化合物のSPS焼結体試料の抵抗率と温度との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the resistivity and temperature of SPS sintered body samples of Ag 1-x Pb 18 + y SbTe 20 compounds having different compositions. 図4は組成が異なるAg1-xPb18+ySbTe20化合物のSPS焼結体試料のゼーベック係数と温度との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the Seebeck coefficient and the temperature of SPS sintered body samples of Ag 1-x Pb 18 + y SbTe 20 compounds having different compositions. 図5は組成が異なるAg1-xPb18+ySbTe20化合物のSPS焼結体試料の出力因子と温度との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the output factor and temperature of SPS sintered compact samples of Ag 1-x Pb 18 + y SbTe 20 compounds having different compositions. 図6は最も高い出力因子を有する組成(Ag0.8Pb22SbTe20)に対応するSPS焼結材料の無次元性能指数ZTと温度との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the dimensionless figure of merit ZT and temperature of the SPS sintered material corresponding to the composition having the highest output factor (Ag 0.8 Pb 22 SbTe 20 ).

Claims (2)

テルル化鉛PbTeをベースとする岩塩構造の化合物熱電材料であって、
化学組成がAg1-xPb18+ySbTe20で表示され、PbTeのPbの一部をAgおよびSbで置換した化学量論組成AgPb18SbTe20を基準とした場合に、xはAgの化学量論値に対する不足量を示し、yはPbの化学量論値に対する過剰量を示しており、x値は0.2〜0.6の間を変化することができ、y値は3〜5の間を変化することができ、
無次元性能指数ZT>1であることを特徴とする化合物熱電材料。
A compound thermoelectric material having a rock salt structure based on lead telluride PbTe,
When the chemical composition is represented by Ag 1-x Pb 18 + y SbTe 20 and the stoichiometric composition AgPb 18 SbTe 20 in which a part of Pb of PbTe is substituted with Ag and Sb is used, x is the chemistry of Ag. Indicates a deficiency relative to the stoichiometric value, y indicates an excess relative to the stoichiometric value of Pb, the x value can vary between 0.2 and 0.6, and the y value ranges from 3 to 5 Can vary between
A dimensionless figure of merit, ZT> 1, a compound thermoelectric material.
請求項1記載の化合物熱電材料の製造方法であって、
上記化学組成に対応する計量比で各成分元素の粉末を配合し、
上記配合された粉末混合物に、高エネルギ・ボールミル過程または機械合金化を行うことにより、上記化学組成の化合物粉末を生成し、
上記生成された化合物粉末に放電プラズマ焼結を行なうことにより硬化成形することを特徴とする化合物熱電材料の製造方法。
It is a manufacturing method of the compound thermoelectric material of Claim 1, Comprising:
Blending the powder of each component element at a measurement ratio corresponding to the chemical composition,
The compounded powder mixture is subjected to a high energy ball mill process or mechanical alloying to produce a compound powder of the above chemical composition,
A method for producing a compound thermoelectric material, characterized in that the produced compound powder is cured by performing discharge plasma sintering.
JP2006282380A 2005-10-21 2006-10-17 Compound thermoelectric material and method for producing the same Expired - Fee Related JP4291842B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005101142180A CN100391021C (en) 2005-10-21 2005-10-21 Ag-Pb-Sb-Te thermoelectric materials and preparation process thereof

Publications (2)

Publication Number Publication Date
JP2007116156A true JP2007116156A (en) 2007-05-10
JP4291842B2 JP4291842B2 (en) 2009-07-08

Family

ID=36689033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006282380A Expired - Fee Related JP4291842B2 (en) 2005-10-21 2006-10-17 Compound thermoelectric material and method for producing the same

Country Status (2)

Country Link
JP (1) JP4291842B2 (en)
CN (1) CN100391021C (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013138166A (en) * 2011-12-27 2013-07-11 Industrial Technology Research Institute Method for forming multi-element electro-thermal alloy
KR101417965B1 (en) 2013-05-30 2014-07-14 한국전기연구원 GeTe thermoelectric material doped with Ag and Sb and La and manufacturing method thereby
CN104124332A (en) * 2014-05-27 2014-10-29 浙江大学 P type FeNbTiSb thermoelectric material with high optimal value and preparation method thereof
WO2015126817A1 (en) * 2014-02-18 2015-08-27 University Of Houston System THERMOELECTRIC COMPOSITIONS AND METHODS OF FABRICATING HIGH THERMOELECTRIC PERFORMANCE MgAgSb-BASED MATERIALS
JP2016529699A (en) * 2013-07-03 2016-09-23 ボード オブ トラスティーズ オブ ミシガン ステート ユニバーシティ Thermoelectric materials based on tetrahedral copper ore structure for thermoelectric elements
CN105977372A (en) * 2016-05-13 2016-09-28 南方科技大学 K hole doped polycrystalline SnSe and preparation method thereof
RU2642890C2 (en) * 2016-05-17 2018-01-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) Method for thermoelectric material production for thermoelectric generator devices on basis of lead telluride
JP2018509775A (en) * 2014-12-29 2018-04-05 中国科学院福建物質結構研究所Fujian Institute Of Research On The Structure Of Matter,Chinese Academy Of Sciences Thermoelectric material, method for its production and use
US10658560B2 (en) 2012-07-06 2020-05-19 Board Of Trustees Of Michigan State University Thermoelectric materials based on tetrahedrite structure for thermoelectric devices
JP2021515411A (en) * 2018-03-07 2021-06-17 サザン・ユニバーシティ・オブ・サイエンス・アンド・テクノロジーSouthern University of Science and Technology n-type Mg-Sb-based room temperature thermoelectric material and its manufacturing method
CN115347109A (en) * 2022-08-18 2022-11-15 哈尔滨工业大学 Method for preparing thermoelectric refrigerating device by utilizing MgAgSb based thermoelectric material with superfine crystal and porous structure
CN116217226A (en) * 2023-02-23 2023-06-06 中国科学院上海硅酸盐研究所 BS-PT-based high-temperature piezoelectric ceramic material and preparation method thereof
WO2024216492A1 (en) * 2023-04-18 2024-10-24 中国科学院物理研究所 Mgagsb thermoelectric material, preparation method therefor, and use thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100377378C (en) * 2006-05-16 2008-03-26 华中科技大学 Method for preparing Bi-Sb-Te series thermoelectric material
CN101220513B (en) * 2007-09-28 2010-12-08 北京科技大学 Thermal treatment method for improving type N polycrystal Bi2Te3thermoelectricity capability
DE102013219541B4 (en) * 2013-09-27 2019-05-09 Evonik Degussa Gmbh Improved process for the powder metallurgical production of thermoelectric components
CN105671344B (en) * 2014-11-21 2018-09-18 武汉理工大学 One step prepares high-performance CoSb3The method of base thermoelectricity material
CN104681706B (en) * 2015-02-12 2017-11-17 浙江大学 P-type FeNbHfSb thermoelectric materials of the high figure of merit and preparation method thereof
CN105503187B (en) * 2015-12-03 2018-02-27 清华大学深圳研究生院 The preparation method of LaCuSeO thermoelectric compounds
ES2704132T3 (en) 2016-01-21 2019-03-14 Evonik Degussa Gmbh Rational procedure for the powder metallurgical production of thermoelectric components
CN106711317B (en) * 2016-11-22 2019-06-11 同济大学 A kind of sulfur family leaded object thermoelectric material and preparation method thereof
CN107768512B (en) * 2017-10-16 2019-09-13 四川大学 The method for improving SnTe thermoelectricity capability is adulterated by Zn
CN109534303B (en) * 2019-01-04 2022-03-15 电子科技大学 High-performance low-temperature thermoelectric material and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10142634A1 (en) * 2001-08-31 2003-03-20 Basf Ag Thermoelectric generator or peltier arrangement, used in vehicles, comprises a thermoelectric semiconductor material made from a p-doped or n-doped semiconductor material of a ternary compound or a mixed oxide
JP2003133597A (en) * 2001-10-30 2003-05-09 Aisin Seiki Co Ltd Thermoelectric semiconductor and manufacturing method therefor
JP4360594B2 (en) * 2002-06-06 2009-11-11 財団法人電力中央研究所 Thermoelectric material and thermoelectric element
CN1162561C (en) * 2002-12-16 2004-08-18 华中科技大学 Co-Sb series skutterudite compound thermoelectric material preparation method
CN1605417A (en) * 2004-11-05 2005-04-13 北京工业大学 Process for preparing N type Co-Sb series skutterudite compound thermoelectric materials

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013138166A (en) * 2011-12-27 2013-07-11 Industrial Technology Research Institute Method for forming multi-element electro-thermal alloy
US10658560B2 (en) 2012-07-06 2020-05-19 Board Of Trustees Of Michigan State University Thermoelectric materials based on tetrahedrite structure for thermoelectric devices
KR101417965B1 (en) 2013-05-30 2014-07-14 한국전기연구원 GeTe thermoelectric material doped with Ag and Sb and La and manufacturing method thereby
JP2016529699A (en) * 2013-07-03 2016-09-23 ボード オブ トラスティーズ オブ ミシガン ステート ユニバーシティ Thermoelectric materials based on tetrahedral copper ore structure for thermoelectric elements
US10622534B2 (en) 2013-07-03 2020-04-14 Board Of Trustees Of Michigan State University Thermoelectric materials based on tetrahedrite structure for thermoelectric devices
US10323305B2 (en) 2014-02-18 2019-06-18 University Of Houston System Thermoelectric compositions and methods of fabricating high thermoelectric performance MgAgSb-based materials
WO2015126817A1 (en) * 2014-02-18 2015-08-27 University Of Houston System THERMOELECTRIC COMPOSITIONS AND METHODS OF FABRICATING HIGH THERMOELECTRIC PERFORMANCE MgAgSb-BASED MATERIALS
CN104124332A (en) * 2014-05-27 2014-10-29 浙江大学 P type FeNbTiSb thermoelectric material with high optimal value and preparation method thereof
JP2018509775A (en) * 2014-12-29 2018-04-05 中国科学院福建物質結構研究所Fujian Institute Of Research On The Structure Of Matter,Chinese Academy Of Sciences Thermoelectric material, method for its production and use
CN105977372B (en) * 2016-05-13 2018-12-04 深圳热电新能源科技有限公司 A kind of polycrystalline SnS e of K hole doping and preparation method thereof
CN105977372A (en) * 2016-05-13 2016-09-28 南方科技大学 K hole doped polycrystalline SnSe and preparation method thereof
RU2642890C2 (en) * 2016-05-17 2018-01-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) Method for thermoelectric material production for thermoelectric generator devices on basis of lead telluride
JP2021515411A (en) * 2018-03-07 2021-06-17 サザン・ユニバーシティ・オブ・サイエンス・アンド・テクノロジーSouthern University of Science and Technology n-type Mg-Sb-based room temperature thermoelectric material and its manufacturing method
CN115347109A (en) * 2022-08-18 2022-11-15 哈尔滨工业大学 Method for preparing thermoelectric refrigerating device by utilizing MgAgSb based thermoelectric material with superfine crystal and porous structure
CN115347109B (en) * 2022-08-18 2023-05-02 哈尔滨工业大学 Method for preparing thermoelectric refrigeration device by using MgAgSb-based thermoelectric material with superfine crystal and porous structure
CN116217226A (en) * 2023-02-23 2023-06-06 中国科学院上海硅酸盐研究所 BS-PT-based high-temperature piezoelectric ceramic material and preparation method thereof
CN116217226B (en) * 2023-02-23 2024-03-12 中国科学院上海硅酸盐研究所 BS-PT-based high-temperature piezoelectric ceramic material and preparation method thereof
WO2024216492A1 (en) * 2023-04-18 2024-10-24 中国科学院物理研究所 Mgagsb thermoelectric material, preparation method therefor, and use thereof

Also Published As

Publication number Publication date
JP4291842B2 (en) 2009-07-08
CN100391021C (en) 2008-05-28
CN1755961A (en) 2006-04-05

Similar Documents

Publication Publication Date Title
JP4291842B2 (en) Compound thermoelectric material and method for producing the same
JP5636419B2 (en) Self-organized thermoelectric material
JP4976566B2 (en) Clathrate compound, thermoelectric conversion material, and method for producing thermoelectric conversion material
CN107681043B (en) Bismuth telluride-based composite thermoelectric material of flexible thermoelectric device and preparation method thereof
Zhao et al. Synthesis and thermoelectric properties of CoSb3/WO3 thermoelectric composites
CN114249304A (en) High-performance BiTe-based composite thermoelectric material and preparation method thereof
CN102694116A (en) Method for preparing thermoelectric material with P-type nano-structure and bismuth telluride matrix
CN112951975A (en) Silicon carbide nano composite bismuth telluride-based thermoelectric material based on recycling of bismuth telluride processing waste and preparation method thereof
CN101435029A (en) Rapid preparation of high performance nanostructured filling type skutterudite thermoelectric material
CN101478026A (en) Thermoelectric compounds and preparation thereof
CN113421959A (en) N-type bismuth telluride-based room temperature thermoelectric material and preparation method thereof
JP2008192652A (en) Compound thermoelectric conversion material
JPWO2013047474A1 (en) Sintered body, sintered body for thermoelectric conversion element, thermoelectric conversion element and thermoelectric conversion module
CN100427631C (en) Nano SiC granule composite CoSb3 base thermoelectric material and its preparing process
CN108242500A (en) A kind of copper seleno nano composite thermoelectric materials and preparation method thereof
JP2010129636A (en) Thermoelectric conversion material, thermoelectric conversion module using the same, and method of manufacturing thermoelectric conversion material
WO2013047475A1 (en) Magnesium silicide, thermoelectric conversion material, sintered body, sintered body for thermoelectric conversion element, thermoelectric conversion element, and thermoelectric conversion module
JP2013161948A (en) Thermoelectric conversion element, and method for manufacturing thermoelectric conversion element
JP6082663B2 (en) Thermoelectric conversion material and method for producing the same
JP2012256759A (en) Clathrate compound and thermoelectric conversion material and production method of thermoelectric conversion material
JP2013058531A (en) Thermoelectric conversion material
JP6632218B2 (en) Clathrate compound, thermoelectric conversion material and method for producing the same
JP6082617B2 (en) Thermoelectric conversion material and method for producing the same
JP6560061B2 (en) Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion material
WO2013108661A1 (en) Thermoelectric material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080304

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090403

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4291842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees