本出願は、2018年1月10日に出願された英国特許出願GB1800408.5の優先権を主張し、この出願のすべての内容が、参照によって本明細書に組み込まれる。
本発明は、概して、搬送デバイスの制御の分野に関する。より具体的には、制約に基づいて搬送デバイスの移動を制御するための装置及び方法に関する。
ある特定の商業及び工業活動は、多数の異なる製品の保管及び取出しを可能にするシステムを必要としている。複数の製品ラインにおけるアイテムの保管及び取出しのための1つの既知のシステムは、通路に配置された棚の列に、保管容器又はコンテナを配置することを伴う。各容器又はコンテナは、1つ又は複数の製品タイプの1つ又は複数の製品を保持する。通路は、棚の列の間のアクセスを提供し、その結果、必要とされる製品は、通路を巡回する作業者又はロボットによって取り出されることができる。しかしながら、製品にアクセスするための通路空間を提供する必要性は、そのようなシステムの保管密度が比較的低いことを意味することが理解されよう。換言すれば、製品の保管のために実際に使用される空間の量は、保管システム全体として必要な空間の量と比較して比較的小さい。
例えば、オンライン食料雑貨店及びスーパーマーケットなどの複数の製品ラインを販売するオンライン小売業は、何万又は何十万もの異なる製品ラインを保管することができるシステムを必要とする。これらの小売業のサプライチェーン及び倉庫作業は、アイテムを整理し、取り出し、様々なコンテナに返却する能力に大きく依存する。
様々な倉庫及び保管設備の設計の特定の実装形態では、コンテナは、互いに積み重ねられ得、スタックは、列に配置され得る。コンテナは上からアクセスされ得、列の間の通路の必要性がなくなり、より多くのコンテナを所与の量又は領域で保管することを可能にする。
参照によって本明細書に組み込まれるWO−A2−2015/185628では、コンテナは、1つ又は複数のロボット手段又は自動化手段によってアクセスされ、当該手段は、取り扱いのためにコンテナを1つの場所から別の場所に移動させること、コンテナに対して作業を行うこと、コンテナを倉庫内の適所に返却すること等といった、様々な異なる作業のためにコンテナにアクセスするために、経路のグリッドを通ってナビゲートする。
1つ又は複数のロボット手段又はそうでなければ自動化手段の移動の協調は、多数の異なる製品の保管及び取出しのためのシステムの全体的な効率及びスケーラビリティを決定する際の重要な検討事項であり得る。
しかしながら、既存の解決法は「安全適合」ではなく、その結果、人間の安全のために移動機能に依存することはできない。人間の安全は、経路構造のグリッドの完全性によって保証されなければならない。しかしながら、経路のグリッドの荷重及び/又は疲労に基づいてロボットの移動を制限する解決法は存在しない。
課題の観点から、本発明は、過剰な荷重及び/又は疲労からのセーフティクリティカルではない損傷を防止するために、ロボット移動手段によって経路構造のグリッドに与えられる荷重を制限する、ロボット移動システムのための装置及び方法を提供することを目的とする。
一般的に、本発明は、ロボット移動を決めるときに経路のグリッドの荷重及び/又は疲労を制限するコントローラを導入する。
本発明によれば、複数の搬送デバイスの移動を制御するように構成されたコントローラが提供される。複数の搬送デバイスは、コンテナを搬送するように構成され、コンテナは設備に保管され、設備は複数のスタックにコンテナを保管するように構成される。設備は、スタックの上方にグリッド状構造を形成するようにセル内に配置された複数の経路を備え、ここにおいて、グリッド状構造は、第1の方向及び第2の方向に延在し、複数の搬送デバイスは、グリッド状構造上で動作するように構成される。コントローラは、各搬送デバイスのための、グリッド状構造上の1つの場所からグリッド状構造上の別の場所までのルートを決定するように構成されたルート決定ユニットと、各搬送デバイスが決定されたルートの一部分を横断するための許可を提供するように構成された許可ユニットとを備える。コントローラはまた、グリッド状構造に基づいて複数の制約領域を決定するように構成された制約領域決定ユニットと、各制約領域における制約限界を計算するように構成された計算ユニットとを備える。許可ユニットが、特定の制約領域における計算された制約限界に基づいて、決定されたルートの一部分を横断することの搬送デバイスに対する許可を付与又は保留するように更に構成され、ルート決定ユニットが、特定の制約領域における計算された制約限界に基づいて、特定の制約領域を横断する又は横断しない、1つの場所から別の場所までの搬送デバイスのためのルートを決定するように更に構成されている、のうちの少なくとも1つである。
本発明はまた保管システムを提供する。保管システムは、複数のグリッド空間を備えるグリッドパターンを形成する、X方向に延在する第1のセットの平行レール又はトラックと、実質的に水平な平面で第1のセットに対して横断するY方向に延在する第2のセットの平行レール又はトラックとを備える。保管システムはまた、レールの下に位置し、各スタックが単一のグリッド空間のフットプリント内に位置するように配置されたコンテナの複数のスタックを備える。更に、レール上のスタックの上方の複数の荷役デバイスと、各荷役デバイスは、X方向及びY方向に横方向に選択的に移動するように構成されている。保管システムはまた、前述のようなコントローラを備える。
本発明はまた、複数の搬送デバイスの移動を制御する方法を提供する。複数の搬送デバイスは、コンテナを搬送するように構成され、コンテナは設備に保管され、設備は複数のスタックにコンテナを保管するように構成される。設備は、スタックの上方にグリッド状構造を形成するようにセル内に配置された複数の経路を備え、ここにおいて、グリッド状構造は、第1の方向及び第2の方向に延在し、複数の搬送デバイスは、グリッド状構造上で動作するように構成される。本方法は、グリッド状構造に基づいて複数の制約領域を決定することと、各制約領域における制約限界を計算することとを行うステップを備える。本方法は更に、特定の制約領域を横断する又は横断しない、グリッド状構造上の1つの場所からグリッド状構造上の別の場所までの、各搬送デバイスのためのルートを決定することと、決定されたルートの一部分を横断することの各搬送デバイスに対する許可を付与又は保留することとを行うステップを備える。更に、ルートを決定するステップ又は許可のステップのうちの少なくとも1つは、特定の制約領域における計算された制約限界に基づく。
本発明の実施形態が、以下の付随する図面を参照して単に例としてここから説明され、同様の参照番号は、同じ又は対応する部分を指定している。
本発明の第1の実施形態によるコントローラの概略図である。
搬送デバイスと、グリッド上のターゲットまでのその決定されたルートとを示す図である。
搬送デバイスと、そのターゲットまでの決定されたルートと、搬送デバイスが移動を許されたルートの許可された部分を示す図である。
グリッド上に配置された3つの制約領域を示す図である。
グリッド上に配置された4つの重なり合う制約領域を示す図である。
搬送デバイスが横断を許された制約領域を横断するルートが決定された搬送デバイスを示す図である。
搬送デバイスが横断を許されていない制約領域を横断する許可が拒否された搬送デバイスを示す図である。
搬送デバイスが横断を許されていない制約領域の周りの決定されたルートを示す図である。
3つの搬送デバイスを備える制約領域と、制約領域内に移動する準備をしている第4の搬送デバイスとを示す図である。
第1の方向に移動及び/又は加速する3つの搬送デバイスと、第1の方向に移動及び/又は加速する準備をしている第4の搬送デバイスとを備える制約領域を示す図である。
第1の方向に加速する3つの搬送デバイスと、第1の方向に加速する準備をしている第4の搬送デバイスとを備える制約領域を示す図である。
第1の実施形態によるコントローラによって実行される方法ステップのフローチャートである。
既知の保管システムに複数の容器のスタックを収容するためのフレーム構造の概略的な斜視図である。
図13のフレームワーク構造の一部の概略的な平面図である。
容器を持ち上げている荷役ハンドラデバイスの概略的な斜視図である。
図13及び図14のフレーム構造と共に使用する容器を収容する荷役ハンドラデバイスの概略的な断面図である。
図13及び図14のフレーム構造と共に使用する容器を持ち上げる荷役ハンドラデバイス概略断面図である。
図13及び図14のフレーム構造上に設置された、図15a、図15b、及び図15cに示されるタイプの複数の荷役ハンドラデバイスを備える既知の保管システムの概略的な斜視図であり、保管システムは、複数のドロップオフ地点又は出力ポートを備える。
詳細な説明
[第1の実施形態]
図1は、本発明の第1の実施形態によるコントローラを示す。コントローラは、スタンドアロン構成要素であり得る。
コントローラは、全自動及び半自動の物品保管及び取出しシステムにおいて動作するように構成され得るが、これに限定されるわけではない。「注文履行」、「保管及び取出し」、及び/又は「注文ピッキング」システムと呼ばれるときもあり得る様々な態様は、幅広いタイプ及び形態で実施されることができる。完全自動及び/又は半自動取出しのために、保管された物品へのアクセスを提供する1つの様式は、例えば、任意の所望のタイプ(単数又は複数)であり得る物品を容器又は他のコンテナ(以下、総称してコンテナと呼ぶ)に入れることと、コンテナをラッキングに又は層状に垂直に積み重ねること及び/又はそうでなければ配列することとを備え、その結果、個々のコンテナが完全自動又は部分自動のコンテナ取出しシステムによってアクセス可能となり得る。いくつかの実施形態では、システムは、物品が処理、修理、操作、組み立て、仕分け等されるシステムなど、物品の保管及び取出し以外のシステムを含み得、物品、製品、部品、構成部品、サブコンポーネントの、設備内の移動及び/又は他の設備若しくは搬送機関への移動の両方が必要とされる。本明細書の目的のために、保管、取出し、処理、及び/又は注文の履行のための保管設備であって、そのような物品へのアクセスが完全又は半自動取出しによって提供される保管設備は、「ハイブ(hive)」と呼ばれる。「ハイブ」は、「ハイブ」を横断し、「ハイブ」内の様々な場所で作業を行うロボット要素又はデバイス(「ロボット」又は「搬送デバイス」)の移動のための潜在的な経路のグリッド状レイアウトから構成され得る(「グリッド」又は「グリッド状構造」と呼ばれる)。
本明細書は、「ハイブ」、「グリッド」、及び/又は「ロボット」を有するシステムのみに限定されず、複数のデバイスの移動及び/又は活動を広く制御及び/又は調整するシステムも企図され得る。これらのデバイスは、物品及び/又は製品などの様々なアイテム、並びに/若しくは空であり得るコンテナ及び/又はそのような物品及び/又は製品を保持するコンテナの搬送のために構成され得る。これらのデバイスは、更に、注文の履行に関与し得るが、コンテナをワークステーションに、及びワークステーションから搬送すること、対象物をソースの場所からターゲットの場所に移動させること等といった、任意の他のタイプの活動にも関与し得る。
示されるように、デバイスはロボットであり得、デバイスは、ハイブの方々を移動し、及び/又はそれらの移動に関する命令を調整/受信するために制御システムと通信するように構成され得る。いくつかの実施形態では、デバイスは、それらの間で通信し、及び/又はそれらの間で移動を調整するように構成され得る。したがって、デバイスは、様々な搬送手段、通信手段、電力供給手段、処理手段、プロセッサ手段、センサ手段、モニタリング手段、搭載型ワークステーション、電子/物理記憶手段、及び/又は持上げ/搬送手段(例えばウィンチ、アーム等)を有し得る。
デバイスは、システムから命令を受信するように構成され得るが、デバイスがシステムとの通信を失い、通信経路が悪化し、及び/又は特定の時間フレーム内にシステムからの通信を受信しない状況があり得る。いくつかの実施形態では、デバイスはまた、互いの間で通信し、及び/又は互いの存在を感知するように構成され得る。これらの通信及び/又はセンサ入力は、例えば、環境についての情報をクラウドソーシングすること、冗長な通信チャネルを提供すること、命令を検証すること等において利用され得る。注文の履行は、様々な製品が購入され、食料雑貨チェーンなどの顧客への配送のために集約される注文を集めること、様々なサブコンポーネントを用いて製品を組み立てること、製品に対して様々な作業を行うこと(構成部品を一緒にはんだ付けすることなど)、製品を仕分けること等といった様々な作業を含み得るが、これらに限定されるわけではない。注文はまた、例えば、注文がキャンセルされた場合、配送が失敗した場合等には返却され得る。いくつかのシナリオでは、注文がハイブ内での履行のプロセスにあるが、注文はキャンセルされ得、製品アイテムは返却される必要があり得る。いくつかのシナリオでは、アイテムをコンテナに再び入れる必要があり得、コンテナは、様々な場所に移動される。いくつかのシナリオでは、ワークステーションは、注文が返却又はキャンセルされたときに、製品を拒否/再加工するためのタスクを行う必要があり得る。
更に、上述のように、個々のコンテナは垂直層にあり得、「ハイブ」内のそれらの場所は、ロボット又はコンテナの位置及びコンテナの深さを表す3次元の座標を使用して示され得る(例えば(X,Y,Z)、深さWにあるコンテナ)。いくつかの実施形態では、「ハイブ」内の場所は、ロボット又はコンテナの位置及びコンテナの深さを表すために2次元で示され得る(例えば(X,Y)、深さZにあるコンテナ)。
「ハイブ」自体は、ロボット及びワークステーションの場所が、アクションに従事するためのハイブの異なる部分に関連付けられ得るという意味で、「動的」環境であり得る。例えば、ロボットは、特定の注文をフルフィルするため又は「ハイブ」に製品を保管するために、ハイブ次元の特定の場所にある特定のコンテナ(例えば(X,Y,Z)、深さWにあるコンテナ)にアクセスする必要があり得る。これは、例えばグリッドの上部に沿う様々な可能な経路に沿って、ロボットを移動させ、次いで、スタックの選択された深さにある特定のコンテナにアクセスすることを伴う。
スタックの選択された深さにある特定のコンテナのアクセスは、コンテナの移動を必要とし得、これは、そうでなければ、特定のコンテナにアクセスする能力を妨害し得る(例えば、コンテナが積み重ねられている場合、スタックのアクセス可能な端にないコンテナにアクセスできるように、いくつかのコンテナをまず移動させなければならない)。いくつかの実施形態では、ターゲットコンテナにアクセスするために取り除かなければならないすべてのコンテナの新しい位置の評価及び最適化を提供するように構成されたシステムを有することが有利であり得る。
スタックから移動されたコンテナは、元のスタック位置に戻されず、最適化された位置に置かれる。潜在的な利点の1つは、より容易にアクセス可能な場所又はそうでなければより便利な場所にコンテナが位置するように、コンテナの分配を修正する能力である。
これは、設備内のコンテナの最適な分配を維持するのに役立ち得、例えば、より需要が高いと予想されるコンテナを、移動距離を低減するために、ワークステーションの近く又はワークステーション内の場所などのより容易にアクセス可能な場所に偏らせる。
ロボットは、様々な形状、サイズ、及び構成を有し得、様々な通信手段、センサ、及びツールを有し得る。いくつかの実施形態では、各ロボットは、基地局と基地局コントローラのセットを通して確立された周波数チャネルのセットを通じて、制御システムと通信することができ得る。ロボットは、スタックからコンテナを移動及び取得するための様々なツールを利用し得、例えばコンテナを運搬するためのウィンチを含む。グリッドは、矩形グリッド要素に限定されず、湾曲したトラック、上下のトラック等から構成され得る。グリッド経路は、交差部分を有し得、1つより多くのロボットによってアクセスされ得る。
各グリッドは、物理的又は論理的に、1つ又は複数のサブグリッドにセグメント化され得る。グリッドは、1つ又は複数のワークステーションから構成され得る。ワークステーションは、手動、半自動、又は完全自動であり得、作業がハイブ内で行われる、又は、例えば、製品をハイブの内外に移動させること、製品を製造すること、製品を組み立てること、製品をそれらの構成部品に処理すること、他のステップ又は作業をサポートするためのステージングの場所を提供すること等の作業がハイブ、コンテナ、又は製品に関連して行われる場所又は領域からなり得る。
ワークステーションは、例えば、アイテムが到着キャリアから移動される場所、様々な作業(例えば、構成部品の組立て、塗装、仕分け、梱包、分解、製品の再加工、梱包の固定、キャンセルされた注文における製品の交換、返却された製品の拒否、製品の処分)が製品に対して行われ、製品が出発キャリアに移動される場所、冷却機能を有する場所、構成部品又は対象物が組み立てられる場所、製品をステージング又はプリフェッチするために使用される場所、ロボットが修理及び保守される場所、ロボットが充電される場所、コンテナに入れられる製品を作業者が「ピック」する場所、注文の履行においてコンテナから取り除かれる製品を作業者が「ピック」し、バッグがコンテナに入れられる場所等を含み得る。
アイテム/製品がハイブに返却される場合、システムは、製品を持ち帰り、製品を再加工し、及び/又は拒否された場合には製品を処分するプロセスをサポート及び/又は制御し得る。シナリオは、いくつかの実施形態では、返却されたコンテナ(配送荷物又は他の対象物でもあり得る)をワークステーションで処理して、それをシステムに戻すことを承諾できるかどうか、それが再加工/再包装の必要があるかどうか、及び/又は製品を代わりに処分すべきかどうか(例えば、生鮮食製品が期限切れになっている)を決定することを伴い得る。
ワークステーションは、注文の履行のためにアイテムをピックするなど、様々なタスクを行うために存在する1つ又は複数の作業者又はロボットを有し得る。
いくつかの実施形態では、ワークステーションは、物品、コンテナ等を、操作、塗装、締結、修理、冷凍、加熱、化学薬品への曝露、冷却、濾過、組立て、分解、仕分け、包装、スキャン、試験、搬送、保管、又は処理するためのコンベヤ、冷却装置、様々なツーリング技術、及び/又は他の技術を有するステーションでもあり得る。
ワークステーションは、設備内にそれ自身の経路を有したり、設備と経路を共有したり等であり得る。ワークステーションはまた、設備内に様々な入力及び出力経路又は他のタイプの入口/出口地点も有し得る。
いくつかの実施形態では、ワークステーションは、ワークステーションのステータス、ワークフロー、必要とされるコンテナ、問題、保持又はそうでなければ操作される製品のステータス(例えばサブコンポーネントが一緒に組み立てられる)等に関連する情報及びデータを提供するために、1つ又は複数の倉庫管理システムと通信する。
第1の実施形態の特徴を特に参照する。コントローラは、コンテナを搬送するように構成された搬送デバイスを制御するように構成される。図1を参照すると、コントローラ100は、ルート決定ユニット101、許可ユニット102、制約領域決定ユニット103、及び計算ユニット104を備える。
ルート決定ユニット101は、各搬送デバイスについての、グリッド上の1つの場所からグリッド上の別の場所までのルートを決定するように構成される。より具体的には、搬送デバイスは、起点の場所から開始し、ターゲットの場所までグリッドを横断する必要があり得る。この点に関して、ルート決定ユニット101は、他の搬送デバイスの場所、他の搬送デバイスのための決定されたルート、及び搬送デバイスの外部の他の要因、並びにバッテリ充電レベル、加速度プロファイル、減速度プロファイルなどの搬送デバイスの内部の要因などの任意の数の要因、並びにグリッドにわたる起点とターゲットとの間の最短距離に基づいて、グリッドを横断するのに必要なルートを決定し得る。
許可ユニット102は、各搬送デバイスが決定されたルートの一部分を横断するための許可を提供するように構成される。各搬送デバイスの不正確な測定値により、例えば、搬送デバイス間の異なる加速度プロファイル又は搬送デバイスの異なる速度、及び通信損失並びに搬送デバイスの故障などの他の誤差により、各搬送デバイスの正確な位置は、所与の瞬間には分からない。したがって、これらの不正確な測定値を考慮する必要がある。この理由から、搬送デバイスのための決定されたルートの一部分を許可するために許可ユニット102が使用され、その結果、搬送デバイスは、一度にルートの一部分のみを横断する。例えば、長さが10個のグリッドセルの決定されたルートの直線セクションの場合、許可ユニットは、搬送デバイスが3つのグリッドセルを横断するのに必要になる時間量に基づいて、横断のために次の3つのグリッドセルに何もないかどうかを決定することによって、搬送デバイスが一度にグリッドセルのうちの3つのみを横断することを許可し、それによって搬送デバイスが進むことを許すように構成され得る。例えば、許可は、他の搬送デバイスが同時に同じグリッドセル上で衝突すると予想されるかどうかに基づいて決定され得る。理解されるように、許可は、各グリッドセルが搬送デバイスによってうまく横断されたら、許可されたセクションの次のグリッドセルが搬送デバイスによる横断のために許可されるように行われる。別の例では、搬送デバイスによって方向変更が必要とされる場合、搬送デバイスは、搬送デバイスが方向変更を行うことが必要とされる角まで許可され得る。このようにして、決定されたルートの部分は、搬送デバイスによる横断のために部分ごとに許可される。
好ましい実施形態では、本発明者らは、搬送デバイスが決定されたルートの一部分を横断するための許可を提供するのに許可ユニット102が必要であるが、複合誤差を主に考慮するための好ましい様式を見出した。特に、グリッド上の起点からターゲットまで移動する搬送デバイスは、1つ又は複数の区間を用いてこの移動を達成する。換言すれば、決定されたルートは、1つ又は複数の区間に分割され、その各々は、各区間の開始時にその複合誤差がリセットされる。各区間は、一定の第1の方向(例えば一定のX方向)又は一定の第2の方向(例えば一定のY方向)のいずれかの横断である。コントローラ100は、第1/第2の方向の並進、車輪変更、及び内部クロックの変動、並びに搬送デバイスへの搬送デバイス命令及び搬送デバイスからのステータスメッセージの潜在的な伝送遅延に関して、搬送デバイスの母集団にわたる搬送デバイスの性能の誤りのない統計的変動を可能にするために、各区間に十分な許容差を許容するように構成される。それによって、決定されたルートは、1つの区間の終わりに遅れて到着する(誤りのない)搬送デバイスが、計画された時間に次の区間を開始することを可能にするのに十分な時間許容差を提供し、それによって、蓄積された誤差に対処する。搬送デバイスが区間の終わりに早く到着した場合、搬送デバイスは、その後の区間の公称開始時間まで単に待ってから、その区間を開始する。
制約領域決定ユニット103は、グリッドに基づく複数の制約領域を決定するように構成される。特に、制約領域決定ユニット103は、制約領域を、グリッド全体の部分として、又はグリッド全体自体として決定するように構成され得る。制約決定ユニット103は、第1の方向の所定の数のグリッドセル及び第2の方向の第2の所定の数のグリッドセル、例えば、第1の方向の10個のグリッドセル及び第2の方向の5つのグリッドセルとして領域を決定するように構成され得る。同様に、グリッドが第1の方向に20個のセル、第2の方向に20個のセルである場合、制約決定ユニット103は、第1の方向に20個のセルを、及び第2の方向に20個のセルを有し、よってグリッド全体を包含する制約領域を決定し得る。
複数の制約領域は、少なくとも1つの他の制約領域と重なるように配置され得る。更に、決定された制約領域は、過負荷の場合に構造的/疲労破壊をより受けやすいグリッドの領域を識別するためのグリッドの構造解析及び/又は疲労解析に基づき得る。同様に、制約領域は、代わりに/加えて、グリッドに関連付けられた任意のメザニン(mezzanine)又は周辺装置の構造解析及び/又は疲労解析に基づいて決定され得る。例えば、グリッドは、グリッドにサービス又はサポートを提供するいくつかの高さを有し得る。同様に、グリッドは、例えば、搬送デバイスがグリッドの外側の場所からコンテナを取り出すこと、及び/又はグリッドの外側の場所のためのコンテナを置くことを可能にする周辺装置を更に備え得る。周辺装置は、コンテナをグリッドから取り除く/グリッド上に置くように構成され得る。
それによって、制約領域を使用することによって、過剰な荷重及び/又は疲労を受けやすいグリッドのセクションが識別される。より具体的には、静的荷重、動的荷重、及び/又はせん断荷重が、制約領域の決定において各々考慮され得る。
計算ユニット104は、各制約領域における制約限界を計算するように構成される。非限定的な1つの例では、計算ユニット104は、制約限界を制約領域内の搬送デバイスの数として計算するように構成される。例えば、計算ユニット104は、特定の制約領域に現在位置する搬送デバイスの数を計算する。別の非限定的な例では、計算ユニット104は、特定の制約領域において第1又は第2の方向に移動及び/又は加速する搬送デバイスの数を計算するように構成され得る。代替的又は追加的に、計算ユニット104は、特定の制約領域において第1又は第2の方向に加速又は減速する搬送デバイスの数に基づいて、制約領域に作用する予想される力を計算するように構成され得る。
計算ユニット104によって計算された制約限界に基づいて、許可ユニット及び/又はルート決定ユニットのうちの少なくとも1つは、更なるアクションを実行するように構成される。
特に、1つの非限定的な実施形態では、許可ユニットは、特定の制約領域における計算された制約限界に基づいて、決定されたルートの一部分を横断することの、搬送デバイスに対する許可を付与又は保留するように更に構成される。より具体的には、前述のように、許可ユニットは、搬送デバイスに許可を提供するように構成される。しかしながら、特定の制約領域における制約限界に基づいて、許可ユニットは、許可を付与又は保留し得る。例えば、特定の制約領域を通るルートが決定された搬送デバイスの場合、その特定の制約領域についての制約限界が所定の閾値以上であると決定された場合、許可ユニットは、搬送デバイスが特定の制約領域を横断するための許可を保留するように構成され得る。このようにして、搬送デバイスは、制約領域の荷重及び/又は疲労に関連する制約限界が所定の閾値以上である制約領域に入ることが防止される。制約領域が所定の閾値未満であるとき、許可ユニットは、搬送デバイスが制約領域を横断するための許可を適切な時間に付与するように構成され得る。このようにして、搬送デバイスは、制約領域がその最大定格まで/それを超えて負荷されないので、制約領域を横断することができる。本発明者らは、許可は、制約領域の縁部で付与/保留される必要はないと想定する。代わりに、許可は、搬送デバイスが制約領域に到達する前に保留/付与され得る。例えば、搬送デバイスのために許可されるべき次のグリッドセルが制約領域の内側にあるが搬送デバイス自体が未だ制約領域からいくつかのグリッドセル離れている場合、許可ユニットは、制約限界が所定の閾値以上である場合に許可を保留し得る。
別の非限定的な実施形態では、ルート決定ユニット101は、特定の制約領域における計算された制約限界に基づいて、特定の制約領域を横断する又は横断しない、1つの場所から別の場所までの搬送デバイスのためのルートを決定するように更に構成される。より具体的には、前述のように、ルート決定ユニット101は、グリッド上の起点からターゲットまでのルートを決定するように構成される。しかしながら、制約限界が、例えば所定の閾値以上であるとき、ルート決定ユニットは、過剰な制約限界を有する制約領域を横断しないルートを決定するように構成され得る。これに対して、特定の制約領域についての制約限界が所定の閾値未満であるとき、ルート決定ユニット101は、特定の制約領域を横断するルートを決定するか、又は搬送デバイスが既に決定されたルートに沿って進むことを可能にするように構成され得る。このようにして、制約領域がその最大定格まで/それを超えて負荷されるので、ルートは、特定の制約領域を横断しないように決定され得る。
図2は、グリッド上の起点201に位置し、ターゲット202まで横断することになる搬送デバイスを示す。ターゲット202は、左下から右上へのハッチングで示されている。前述のように、ルート決定ユニット101は、起点201からターゲット202までのルートを決定するように構成される。図2に示されるように、ルート決定ユニット101は、ルート203を決定している。ルート203は、左上から右下へのハッチングで示されている。ルート203を決定するとき、ルート決定ユニット101は、多くの要因、例えば、起点201とターゲット202との間の最短距離、他の搬送デバイスの移動、必要とされる方向変更の回数、及び特定の制約領域に対する制約限界を考慮に入れ得る。
ルート203がルート決定ユニット101によって計画されているが、各搬送デバイスの正確な位置の不確実性、及び各搬送デバイスの加速度、減速度、並びに一定速度の変動により、各搬送デバイスが、2つの搬送デバイス間の衝突のリスクなしに、その決定されたルート203を単に辿ることはできない可能性がある。そのために、許可ユニット102は、決定されたルート203の一部分のみを許可するように構成され、それによって、(最新の搬送デバイスの場所情報に基づいて)現在動いている搬送デバイスの前方の所定の数のグリッドの四角から他の任意の搬送デバイスを取り除くことを保証する。このようにして、搬送デバイスの衝突のリスクが回避される。
許可は、典型的には、例えば、搬送デバイスが衝突リスクなしに停止するために必要とされるグリッドの最小数のセルの決定されたルート203の直線セクションに対して実行される。例えば、搬送デバイスが、完全に停止するのに2つのグリッドセルを必要とする速度で移動している場合、許可ユニット102は、必要なときに、搬送デバイスが、衝突リスクなしに一時停止することができるように、現在の搬送デバイスの前にある2つのセルを許可するように構成される。別の例では、搬送デバイスが、停止するのに2.5個のグリッドセルを必要とする速度で移動している場合、許可ユニット102は、搬送デバイスの前にある3つグリッドセルを許可して、搬送デバイスが1つのグリッドセル内に完全に含まれて停止できることを保証し、それによって、搬送デバイスが停止したら他のグリッドセルと重ならないことを保証する。
更に、図3に示されるように、搬送デバイスの前の所定の距離で搬送デバイスの方向変更が必要とされる場合、許可ユニット102は、方向変更が行われる角まで、決定されたルート203を許可するように構成される。図3に示される例では、ルート203の許可された部分204は、クロスハッチ線で示されている。
図4は、制約領域決定ユニット103によって決定された複数の制約領域の一例を示す。この例では、第1の制約領域401は、第1の方向の2つのグリッドセルと第2の方向の2つのグリッドセルから形成される。第2の制約領域402は、第1の方向の3つのグリッドセルと第2の方向の2つのグリッドセルから形成される。理解されるように、第1及び第2の制約領域は、第1の方向の任意の数のグリッドセルと第2の方向の任意の数のグリッドセルから形成され得る。この例では、第1の制約領域と第2の制約領域とは重ならない。1つの例では、グリッドの構造解析に基づいて、第1の制約領域401及び第2の制約領域402は、形状及び場所が制約領域に割り当てられるように決定され得、それにより、例えば、それらの特定の場所におけるグリッドに対するせん断力を制限する。代替的又は追加的に、制約領域は、グリッドの疲労解析に基づいて決定され得る。第3の制約領域403は、グリッド全体を覆い、それによって第1及び第2の制約領域の両方と重なるように構成される。このようにして、グリッドに作用する全体のせん断力の程度が、搬送デバイスに移動の許可が提供されないことを保証すること、又は特定の場所におけるルートを計画しないことによって、推定及び制限されることができる。
同様に、制約領域は、代わりに/加えて、グリッドに関連付けられた任意のメザニン又は周辺装置の構造解析及び/又は疲労解析に基づいて決定され得る。例えば、グリッドは、グリッドにサービス又はサポートを提供するいくつかの高さを有し得る。同様に、グリッドは、例えば、搬送デバイスがグリッドの外側の場所からコンテナを取り出すこと、及び/又はグリッドの外側の場所のためのコンテナを置くことを可能にする周辺装置を更に備え得る。周辺装置は、コンテナをグリッドから取り除く/グリッド上に置くように構成され得る。
図5は、制約領域決定ユニット103によって決定された制約領域の別の例を示す。この例では、4つの等しいサイズの制約領域が、各制約領域が少なくとも1つの他の制約領域と重なり合うところに決定される。より具体的には、第1の制約領域501は、第1の方向に3つのグリッドセル、及び第2の方向に3つのグリッドセル延在すると決定される。第2の制約領域502は、第1の制約領域501と重なっており、同様に第1の方向に延在する3つのグリッドセルと、第2の方向に延在する3つのグリッドセルとから形成される。第3の制約領域503は、第1の制約領域501及び第2の制約領域502と同じサイズであり、第1の制約領域501及び第2の制約領域502と重なり合っている。第4の制約領域504は、第1の制約領域501、第2の制約領域502、及び第3の制約領域503の各々と重なり合い、第1の方向に3つのグリッドセル、及び第2の方向に3つのグリッドセル延在する。このように、各制約領域は、少なくとも1つの他の制約領域と重なり合う。
図6は、グリッドを横断する搬送デバイスの非限定的な例を示す。特に、図6は、起点601にあり、ターゲット602まで移動しようとしている搬送デバイスを示す。前述のように、ルート決定ユニット101は、起点601からターゲット602までの搬送デバイスのためのルート603を決定する。図6に示される例では、決定されたルート603は、この例では3つの搬送デバイス605を備える制約領域を横断する。理解されるように、3つの搬送デバイスは、例としてのみ提供され、制約領域は、任意の搬送デバイスを含んでもよく、又は全く含まなくてもよい。この例では、制約領域内の搬送デバイスの数を4に制限する所定の閾値が設定されている。換言すれば、例示的な制約領域内の搬送デバイスの数の制約限界は、4を超えることができない。理解されるように、この4つの搬送デバイスという所定の閾値は単に例としてのものであり、所定の閾値は、4に限定される必要も搬送デバイスの数に限定される必要もなく、特定の方向に移動/加速する搬送デバイスの数、特定の方向に加速/減速する搬送デバイスの数、又は上記要因の任意の組合せなど、制約領域内の活動の他の程度であってもよい。
図6はまた、決定されたルート603の許可された部分604を示す。前述のように、許可ユニット102は、決定されたルート603の一部分を許可するように構成される。図6では、許可ユニット102は、搬送デバイスのための方向変更に対応する決定されたルートの角までの一部分を許可している。図6に示されるように、搬送デバイスが許可された部分604に到達すると、許可ユニット102は、決定されたルート603の次の部分についての許可を付与する。例えば、搬送デバイスの数が4を超えない場合、許可ユニット102は、決定されたルート603のうち制約領域を横断する部分を許可する。
図7は、図6に対応する例を示すが、追加の搬送デバイス606が制約領域内に存在しており、したがって、現在制約領域内にある搬送デバイスの数は4に等しい。この非限定的な例では、制約領域内の搬送デバイスの数の制約限界が、4つの搬送デバイスという所定の閾値に等しいので、許可ユニット102は、搬送デバイスが制約領域を横断するための許可を保留するように更に構成される。したがって、図7に示されるように、許可ユニットは、搬送デバイスが制約領域を横断するための許可を保留することになる。図7に示される「X」607は、許可ユニット102が搬送デバイスのための許可を保留した、決定されたルート603の部分を示す。
したがって、搬送デバイスは、制約領域に入ることが防止され、この例では、制約領域の縁部まで許可されることにもなる。しかしながら、理解されるように、許可は、搬送デバイスが制約領域に到達する前に任意の数のグリッドセル保留され得る。例えば、許可は、搬送デバイスが制約領域の縁に到達する前に保留され得る。
任意選択的に、搬送デバイスが制約領域を横断するための許可を許可ユニット102が保留するとき、いくつかのアクションが行われ得る。特に、搬送デバイスのための許可が保留されると、搬送デバイスが移動するための許可されたルートはなくなるので、1つの選択肢は、搬送デバイスが単に移動を停止するためのものになる。しかしながら、これは、方々をナビゲートされなければならない他の搬送デバイスに対してグリッド上に危険を引き起こす。更に、搬送デバイスによって行われる機能は、依然として履行される必要がある。したがって、本発明者らは、許可が保留されたときの、搬送デバイスの移動を制御するためのいくつかの有利な解決法を実現した。
例えば、ルート決定ユニット101は、搬送デバイスがグリッドを横断するためのルートを再決定するように構成され得る。新たな時間に行われるルート再決定は、制約限界が所定の閾値を下回っていることもあるので、場合によっては同じ制約領域を横断することもある、同様のルートが再決定されることをもたらし得る。代替的に、許可が保留された制約領域を回避するようにルートが再決定され得る。代替的又は追加的に、ルート決定手段101は、複数の搬送デバイスのうちの少なくとも2つの搬送デバイスのルートを再決定するように構成され得る。上記説明と同様に、複数の搬送デバイスのうちの少なくとも2つの搬送デバイスのためのルートを再決定することによって、搬送デバイスが互いに回避するルート上に指定されることができる。
代替的又は追加的に、コントローラ100は、許可が保留された搬送デバイスの制御された停止を実行するように構成され得る。この点に関して、搬送デバイスの制御された停止は、搬送デバイスが衝突リスクなしに停止することができる第1の完全なグリッドセル内で搬送デバイスを停止させること、換言すれば、搬送デバイスを1つのグリッドセル内で半分、別のグリッドセル内で半分停止させないこととして定義される。例えば、搬送デバイスが特定の速度から2つのグリッドセルで停止することができる場合、搬送デバイスの制御された停止は、搬送デバイスが、他のいずれのグリッドセル内にも飛び出ずに1つのグリッドセル内に完全に包含されるように、2つのグリッドセルで停止するように命令されることになる。これに対して、搬送デバイスが、特定の速度からの衝突リスクなしに停止するのに2.5個のグリッドセルを必要とする場合、搬送デバイスは、グリッドセルの数の端数を切り上げて、3つのグリッドセルで停止するように命令される。このようにして、搬送デバイスは、他のグリッドセル内に飛び出ることなく、完全なグリッドセル内で停止する。代替的又は追加的に、コントローラ100は、複数の搬送デバイスのうちの少なくとも2つのための制御された停止を命令するように構成され得る。このようにして、搬送デバイスが制約領域のための許可を保留されるとき、いくつかの搬送デバイスを衝突のリスクなしに停止させる。
図8は、図7に示されるアクションと組み合わされても組み合わされなくてもよい別の例を示す。特に、図8では、制約領域内の4つの搬送デバイスの制約限界が所定の閾値を超える。したがって、起点601にある搬送デバイスは、制約領域を横断することができない。図7で説明されたように、これは、搬送デバイスが制約領域に入るための許可を保留することによって達成される。しかしながら、図8では、ルート決定手段101は、制約領域を横断しない起点601からターゲット602までの搬送デバイスのためのルート608を決定するように構成される。このようにして、搬送デバイスは、制約領域を回避してルート608上にうまく方向付けられる。
本発明者らは、図7及び図8で説明されたアクションのいずれか又は両方が実施され得ることを想定する。換言すれば、特定の制約領域の制約限界が所定の閾値以上であるとき、ルート決定ユニット101は、制約領域を横断しないルート608を決定し得、代替的又は追加的に、許可ユニット102は、搬送デバイスが制約領域を横断するための許可を保留するように構成され得る。
図9〜図11は、制約限界を測定する異なる方法を示し、そのうちの少なくとも1つが、特定の制約領域について計算ユニット104によって計算される。
より具体的には、図9は、制約領域内の搬送デバイス902の数を示す制約限界に関する。例えば、図9は、3つの搬送デバイス902を備える制約領域を示す。この例では、所定の閾値は、4つの搬送デバイスとして設定されている。したがって、制約領域内の搬送デバイスの数が4に等しいと、それ以上の搬送デバイスが制約領域に入ることは許されないが、既に制約領域内にある搬送デバイスは、制約領域を出るか、又は制約領域内の他の場所に移動し得る。したがって、図9では、制約領域が既に3つの搬送デバイスを備えているので、あと1つの搬送デバイスのみが制約領域に入ることが許される。したがって、空のグリッドセル903は、搬送デバイス904によって埋められてもよく、その後は、制約領域に入ることを決定された他の任意の搬送デバイスは、それらの許可が保留され、及び/又はそれらのルートが再決定されることになる。
図10は、制約領域内で特定の方向に移動及び/又は加速する搬送デバイス1004の数として計算される別の制約限界を示す。図10及び図11において、搬送デバイスは、一定速度で移動することが単一矢印で示されており、搬送デバイスは、加速/減速することが二重矢印で示されている。更に、図10及び図11では、搬送デバイスは、第1の方向に移動及び/又は加速することが示されている。したがって、制約限界は第1の方向に関係する。しかしながら、理解されるように、制約限界及び搬送デバイスの運動は、第2の方向に等しく適用され得る。
理解のために、ページ下方への移動/加速は、負の移動/加速として定義され、ページ上方への移動/加速は、正の移動/加速として定義される。図10では、制約領域は4つの搬送デバイスを備える。最初に、搬送デバイス1004のうちの3つが第1の方向に移動及び/又は加速している。特に、左側の2つの搬送デバイスは、負に加速1005している。中央の搬送デバイスは、一定速度で正に移動している。搬送デバイス1002は静止している。この例では、制約限界は、正方向又は負方向のいずれかで、第1の方向に移動及び/又は加速する搬送デバイスの数に基づいて定義される。しかしながら、制約限界は、第2の方向に移動及び/又は加速する搬送デバイスの数として定義されることができる。
図10に基づいて、3つの搬送デバイスが第1の方向に移動及び/又は加速している。より具体的には、2つの搬送デバイスが負方向に加速し、1つの搬送デバイスが正方向に移動しており、合計3つの搬送デバイスである。この例では、所定の閾値は、第1の方向に移動する4つの搬送デバイスとして定義され得る。したがって、4つの搬送デバイスが制約領域内で移動/加速していると、更なる搬送デバイスは、それらの許可が保留され、及び/又は制約領域を回避するようにルートが決定されることになる。例えば、前は静止していた第4の搬送デバイス1002は、制約領域内で負方向に移動し始め得る(矢印1003で示す)。したがって、第1の方向に移動/加速する4つの搬送デバイスという所定の閾値に達する。したがって、第5の搬送デバイス(図示せず)は、許可が保留され、及び/又は制約領域を回避するようにルートが決定されることになる。しかしながら、制約領域内で既に移動/加速している搬送デバイスは、制約領域内で移動/加速し続け、制約領域を出ることもある。
理解されるように、前述の説明は、第1の方向に移動/加速する搬送デバイスに関するが、本発明者らは、制約限界が、代替的/追加的に、第2の方向に移動/加速する搬送デバイスの数であり得ることを想定する。
図11は、制約限界の決定の更なる非限定的な例を示す。制約限界は、加速/減速する搬送デバイスから特定の制約領域にかけられる予想される力に基づいて計算される。より具体的には、図11では、予想される力は、第1の方向に加速/減速する制約領域1101内の搬送デバイスに基づいて計算される。例えば、3つの搬送デバイス1104が、制約領域1101内で加速/減速することが示されている。第4の搬送デバイス1102は静止していることが示されている。搬送デバイス1104は、二重矢印1105によって加速/減速していることが示されている。説明を明確にするために、ページ下方への加速は負の加速として定義され、ページ上方への加速は正の加速として定義される。したがって、図11を参照すると、左側の2つの搬送デバイスは負方向に加速しており、中央の搬送デバイスは正方向に加速している。
制約領域に対する予想される力の制約限界は、搬送デバイスの全体的な加速度に基づいて計算される。特に、この簡易化された例では、搬送デバイスのうちの2つが反対方向に加速しているので、計算ユニット104は、反対方向に加速する搬送デバイスの実効加速度を相殺するように構成される。したがって、図11の簡易化された例では、制約領域にかけられる力は、1つの搬送デバイスの負の加速のみに依存し、これは、2つの他の搬送デバイスの力が相殺され得るからである。制約領域に対してかけられる力を示す所定の閾値は、2つの搬送デバイスの加速/減速として設定され得る。したがって、制約領域にかけられる力は1つの搬送デバイスのみに基づくので、別の搬送デバイスに制約領域を横断することの許可が付与され得、及び/又はルート決定ユニット101が制約領域を横断するルートを決定し得る。
更なる例では、搬送デバイス1102は、負方向1103に加速し得る。したがって、前述のように、反対方向に加速する2つの搬送デバイスからの加速の力が相殺され得るので、計算ユニット104は、制約領域1101にかけられる力が、ここでは、2つの搬送デバイスの加速に基づくと計算し得る。したがって、制約領域1101にかけられる力が2つの搬送デバイスの加速に等しいように所定の閾値が設定される場合、この更なる例は所定の閾値に等しい。したがって、この例では、第5の搬送デバイス(図示せず)は、制約領域に入る許可が保留され、及び/又は制約領域1101を横断しないようにルートが決定されることになる。しかしながら、既に制約領域内にある搬送デバイスは、加速し続けて制約領域から出ることもある。このようにして、制約領域1101にかけられる力は、構造的及び/又は疲労荷重限界を超えないように抑制される。
簡易化された例が上述されており、各搬送デバイスが、他のすべての搬送デバイスと全く同様に加速し、それによって、反対方向に加速する2つの搬送デバイスが正確に相殺されることを可能にしている。しかしながら、現実では、制約領域1101に対する全体的な力を決定し、それが所定の閾値以上であるかどうかを決定するために、いくつかの要因が考慮され得る。より具体的には、計算ユニット104によって計算される力は、各搬送デバイスの運動の方向、搬送デバイスの質量、搬送デバイスによって運搬される積載物の質量、搬送デバイスの予想される加速度プロファイル、搬送デバイスの予想される減速度プロファイル、グリッド上の複数の搬送デバイスが同時に停止するように命令される可能性、グリッド上の複数の搬送デバイスのうちのいずれか1つが任意の時間に停止するように命令される可能性のうちの少なくとも1つに基づいて計算され得る。
理解されるように、前述の説明は、第1の方向に加速/減速する搬送デバイスに関するが、本発明者らは、制約限界が、代替的/追加的に、第2の方向に加速/減速する搬送デバイスの数であり得ることを想定する。
図12は、図1に示される第1の実施形態によるコントローラ100によって実行されるプロセスを示す。特に、図12のフローチャートS1200は、決定された制約領域における計算された制約限界に基づいて少なくとも1つの搬送デバイスを制御することを示す。
ステップS1201は、グリッドに基づいて複数の制約領域を決定する。制約領域は、方法S1200が搬送デバイスの数及び/又はそれらがどのように移動するかを制御することになるグリッドの領域に関係する。このように、方法S1200は、特定の領域におけるグリッド上の構造的荷重及び/又は疲労荷重を制限することができる。例えば、制約領域の配置は、グリッド、グリッドに関連付けられたメザニン、又はグリッドに関連付けられた任意の周辺装置のうちの少なくとも1つの構造解析及び/又は疲労解析に基づいて決定され得る。解析に基づいて、グリッド全体にわたって制約領域を配置することが決定され得る。このようにして、グリッド全体の静的荷重、動的荷重、及び/又はせん断荷重が制御されることができる。他の例では、制約領域は、第1の方向にある所定の数のセル及び第2の方向にある所定の数のセルから形成され得る。更に、各制約領域は、少なくとも1つの他の制約領域と重なるように決定され得る。
ステップS1202は、決定された各制約領域における制約限界を計算する。例えば、制約限界は、制約領域内の搬送デバイスの数、制約領域内の第1/第2の方向に移動及び/又は加速する搬送デバイスの数に基づいて、又は第1/第2の方向に加速する搬送デバイスの数に起因する予想される力に基づいて計算され得る。
より詳細には、制約限界は、特定の制約領域内の搬送デバイスの絶対数であり得る。追加的又は代替的に、制約限界は、第1/第2の方向に制約領域内で移動/加速する搬送デバイスの絶対数であり得る。追加的又は代替的に、制約限界は、第1/第2の方向に加速する搬送デバイスの数によって引き起こされる制約領域に作用する予想される力であり得る。予想される力の計算に関して、ステップS1202は、予想される力を計算するために各搬送デバイスのそれぞれの加速度を考慮に入れる。例えば、2つの搬送デバイスが、同じ大きさ及び質量で反対方向に加速している場合、各搬送デバイスによってグリッドの制約領域にかけられる力は、正確に相殺され得、したがって、ステップS1202は、予想される力を計算するときにこれを考慮し得る。
更に、ステップS1202は、予想される力を計算するとき、各搬送デバイスの運動の方向、搬送デバイスの質量、搬送デバイスによって運搬される積載物の質量、搬送デバイスの予想される加速度プロファイル、搬送デバイスの予想される減速度プロファイル、グリッド上の複数の搬送デバイスが同時に停止するように命令される可能性、グリッド上の複数の搬送デバイスのうちのいずれか1つが任意の時間に停止するように命令される可能性のうちの少なくとも1つを考慮し得る。
ステップS1203において、コントローラは、特定の制約領域を横断する又は横断しないグリッド上の1つの場所からグリッド上の別の場所までの各搬送デバイスのためのルートを決定する。より具体的には、1つの場所から別の場所にグリッドを横断しようとする搬送デバイスは、その横断のためのルートが、他の搬送デバイスを回避するように決定される必要がある。したがって、ステップS1203は、例えば、搬送デバイスの現在の場所情報、及びそれらが辿ろうとするルートに基づく搬送デバイスの予測される場所についての将来の情報に基づいて、ルートを決定する。更に、他の情報、例えば、バッテリ充電レベル、サービスレベル、加速度/減速度プロファイル、最大速度、又はグリッド上の場所間の最短距離が、ルートの決定に使用され得る。ステップS1205に関して説明されるように、ルートは、特定の制約領域における計算された制約限界に基づいて決定され得る。
ステップS1204は、各搬送デバイスが決定されたルートの一部分を横断するための許可を付与又は保留する。各搬送デバイスは、ルートがステップS1203によって決定されるが、各搬送デバイスの正確な位置における小さい誤差は、ルートが横断されるにつれて複合する。例えば、各搬送デバイスの加速度プロファイル及び/又は速度が予想値と比較して異なると、各搬送デバイスの位置に誤差が生じる。したがって、各搬送デバイスの位置についての複合誤差が考慮されなければならない。ステップS1204は、各搬送デバイスが決定されたルートの一部分を横断するための許可を付与又は保留し、このようにして、ステップS1204は、各搬送デバイスが、搬送デバイス間の衝突を回避するために、別の搬送デバイスを含まないことが分かっているグリッドセル内にのみ移動することを保証する。
好ましい実施形態では、本発明者らは、搬送デバイスが決定されたルートの一部分を横断するための許可を付与/保留するのにステップS1204が必要であるが、複合誤差を主に考慮するための好ましい様式を見出した。特に、グリッド上の起点からターゲットまで移動する搬送デバイスは、1つ又は複数の区間を用いてこの移動を達成する。換言すれば、決定されたルートは、1つ又は複数の区間に分割される。各区間は、一定の第1の方向(例えば一定のX方向)又は一定の第2の方向(例えば一定のY方向)のいずれかの横断である。方法S1200は、第1/第2の方向の並進、車輪変更、及び内部クロックの変動、並びに搬送デバイスへの搬送デバイス命令及び搬送デバイスからのステータスメッセージの潜在的な伝送遅延に関して、搬送デバイスの母集団にわたる搬送デバイスの性能の誤りのない統計的変動を可能にするために、各区間に十分な許容差を許容するように構成される。それによって、決定されたルートは、1つの区間の終わりに遅れて到着する(誤りのない)搬送デバイスが、計画された時間に次の区間を開始することを可能にするのに十分な時間許容差を提供する。搬送デバイスが区間の終わりに早く到着した場合、搬送デバイスは、その後の区間の公称開始時間まで単に待ってから、その区間を開始する。
各搬送デバイスのために許可すべきグリッドセルの数は、搬送デバイスの速度並びに予想される加速度/減速度プロファイルに依存し得る。特に、許可されるグリッドセルの数は、搬送デバイスが現在の速度から停止するのに要するグリッドセルの数に依存し得る。例えば、搬送デバイスが、現在の速度に基づいて停止するのに2.5個のグリッドセルを要することが(例えばその減速プロファイルに基づいて)分かっている場合、ステップS1204は、3つのグリッドセルを許可して、搬送デバイスが、必要な場合に、3つのグリッドセルの距離で完全に停止できることを保証し得る。このようにして、搬送デバイスはまた、他の搬送デバイスに対する危険となる、他のグリッドセル内に飛び出ることなく、1つのグリッドセル内で完全に停止する。別の例では、2つのグリッドセルで搬送デバイスの方向変更動作が必要とされる場合、ステップS1204は、方向変更まで搬送デバイスを許可するように、それらの2つのグリッドセルのみを許可し得る。ステップS1205に関して説明されるように、許可は、特定の制約領域における計算された制約限界に基づいて付与又は保留され得る。
ステップ1205において、ステップS1203及び/又はステップS1204のうちの少なくとも1つは、特定の制約領域における計算された制約限界に基づいて、それらのそれぞれのアクションを実行する。より具体的には、計算された制約限界に基づいて、搬送デバイスのための許可が付与又は保留され、及び/又は、計算された制約限界に基づいて、制約領域を横断する又は横断しないルートが決定される。
許可を付与又は保留するステップに関して、計算された制約限界に基づいて、特定の制約領域内の決定されたルートの一部分を横断することの搬送デバイスに対する許可が付与又は保留される。1つの例では、特定の制約領域における制約限界が所定の閾値以上であるとき、ステップS1204は、搬送デバイスに対する許可を保留する。制約限界が所定の閾値未満であるとき、ステップS1204は、搬送デバイスに許可を付与する。このようにして、制約領域は、静的、動的、及び/又はせん断荷重に関して過負荷にならない。
更に、許可が保留されるとき、搬送デバイスを最後に許可されたグリッドセルから移動させるために、いくつかのアクションが実行され得る。特に、ステップS1203は、最後に許可されたグリッドセルからの搬送デバイスのルートを決定し得る。このように、ステップS1203は、搬送デバイスが横断を許可されなかった制約領域を回避するようにルートを決定し得る。同様に、ステップS1203は、複数の搬送デバイスのうちの少なくとも2つの搬送デバイスのためのルートを決定し得る。このようにして、衝突する恐れがある搬送デバイスのルートが、互いに回避するように決定される。代替的に、搬送デバイスの制御された停止が、例えば、搬送デバイスを最後に許可されたグリッドセルで一時停止させて、単一のグリッドセル内で完全に衝突リスクなしに搬送デバイスを一時停止するように実行され得る。同様に、複数の搬送デバイスのうちの少なくとも2つの搬送デバイスの制御された停止が、2つの搬送デバイスが互いに衝突しないことを保証するように実行され得る。
許可を付与/保留することに追加的又は代替的に、搬送デバイスのためのルートを決定するステップS1203が、特定の制約領域における制約限界が所定の閾値以上であるときに生じ得る。この場合、ステップS1203は、特定の制約領域を横断しない、1つの場所から別の場所までの搬送デバイスのためのルートを決定し得る。代替的に、制約限界が所定の閾値未満であるとき、ステップS1203は、特定の制約領域を横断するルートを決定し得るか、又は搬送デバイスが既に決定されたルートに沿って進むことを可能にし得る。このようにして、特定の制約領域を回避するようにルートが決定されることができる。
[修正例及び変形例]
本発明の範囲から逸脱することなく、上述の実施形態に対して多くの修正及び変形を行うことができる。
特に、搬送デバイスは、例えば、それらの位置、バッテリ充電レベル、サービス問題、現在の運動の方向、それらが静止しているか、一定速度で移動しているか、加速/減速しているかに関する情報を提供するためのステータス報告によってコントローラ100と通信するように構成され得る。したがって、1つの修正例では、計算ユニットは、制約領域内の搬送デバイスの数に基づいて特定の制約領域についての制約限界を計算しているとき、例えば特定の制約領域内の搬送デバイスの数を決定するために、各搬送デバイスからのステータス報告を利用し得る。このようにして、コントローラ100は、制約領域内の搬送デバイスの数を決定するために、搬送デバイスによってコントローラ100に既に送信されているメッセージを利用し得る。したがって、追加のメッセージをコントローラ100と通信する必要はない。
更なる修正例では、コントローラ100は更に、複数の搬送デバイスの移動を制御するように構成された移動制御ユニットを備え得る。この修正例では、コントローラ100は、グリッドにわたってどのルートをとるべきか、及び搬送デバイスが特定の制約領域を横断することを許可されるかどうかのより一般的な命令ではなくむしろ、各搬送デバイスがどのように移動するかを直接制御する。この修正例では、コントローラ100は、特定の方向に移動すべきかどうか、加速/減速すべきかどうか、一定速度で移動し続けるべきかどうかを各搬送デバイスに更に命令し得る。このようにして、コントローラ100は、各搬送デバイスに対して直接制御を及ぼし、これは、コントローラ100がすべての搬送デバイスの情報を有しており、したがって、別の搬送デバイスを回避するように、又はそうでなければ各搬送デバイスによる制御が達成できないように搬送デバイスをルーティングするように、搬送デバイスのモータ及び機構に直接命令を発行する必要があり得るので、有用であり得る。
別の修正例では、コントローラ100は、人間の安全に対するリスクをもたらすことになる荷重及び/又は疲労を防止するように設計及び認証され得る。安全適合機器は、機械の周囲で作業する人間が、正常動作又は障害のいずれかにより機械によって害されないことを保証する。典型的には、人間評価機器は、非安全適合機器の場合よりも更により厳密な試験を必要とする。更に、代替コンピュータアーキテクチャが典型的には用いられる。代替コンピュータアーキテクチャでは、典型的には2つの別個のプロセスが、同じタスク動作を実行する。いくつかの例では、プロセスは異なるCPU上で各々実行される。各プロセスは、同じ障害が両方のプロセスに存在しないように、異なる方法でプログラムされる。比較器が、出力を比較するプロセスの出力に設けられる。出力が一致する場合、その結果は、搬送デバイスを制御するために利用される。しかしながら、出力が一致しない場合、非限定的な1つの例では、搬送デバイスの制御された停止が自動的に命令され、障害が宣言されることになる。別の非限定的な例では、出力が一致しない場合、搬送デバイスの性能は、例えば、より低い速度で動作することによって低下し得る。搬送デバイスの性能の低下は、典型的には障害が解決されるまで維持されることになる。
オンライン食料雑貨店及びスーパーマーケットなどの複数の製品ラインを販売するオンライン小売業は、何万又は何十万もの異なる製品ラインを保管することができるシステムを必要とする。そのような場合に単一製品のスタックを使用することは、必要とされるスタックのすべてを収容するために非常に大きい床面積が必要となるので、実用的でない可能性がある。更に、生鮮食品又は注文頻度の低い物品など、いくつかのアイテムを少量だけ保管することが望ましいこともあり、単一製品のスタックを非効率的な解決法とする。
国際特許出願WO98/049075A(Autostore)は、その内容が参照によって本明細書に組み込まれており、コンテナの複数製品のスタックが、フレーム構造内に配置されているシステムを説明している。
PCT公開WO2015/185628A(Ocado)は、容器又はコンテナのスタックがフレームワーク構造内に配置されている、更なる既知の保管及び履行システムを説明する。容器又はコンテナは、フレーム構造の頂部に位置するトラック上で動作する荷役デバイスによってアクセスされる。荷役デバイスは、スタックから容器又はコンテナを持ち上げ、複数の荷役デバイスが協働して、スタックの最も低い位置に位置する容器又はコンテナにアクセスする。このタイプのシステムは、付随図面の図13〜図16に概略的に図示されている。
図13及び図14に示されるように、容器10として知られている積み重ね可能なコンテナは、互いに積み重ねられてスタック12を形成する。スタック12は、倉庫又は製造環境におけるグリッドフレームワーク構造14内に配置される。図13は、フレームワーク構造14の概略的な斜視図であり、図14は、フレームワーク構造14内に配置された容器10のスタック12を示す上面図である。各容器10は、典型的には複数の製品アイテム(図示せず)を保持し、容器10内の製品アイテムは同一であってもよいし、又は用途に応じて異なる製品タイプであってもよい。
フレームワーク構造14は、水平部材18、20を支持する複数の直立部材16を備える。平行な水平部材18の第1のセットは、平行な水平部材20の第2のセットに対して垂直に配置されて、直立部材16によって支持される複数の水平グリッド構造を形成する。部材16、18、20は、典型的には金属から製造されている。容器10はフレームワーク構造14の部材16、18、20間に積み重ねられ、その結果、フレームワーク構造14は、容器10のスタック12の水平移動を防ぎ、容器10の垂直移動をガイドする。
フレーム構造14の上平面は、スタック12の頂部にわたるグリッドパターンに配置されたレール22を含む。図15及び図16を更に参照すると、レール22は、複数のロボット荷役デバイス30を支持する。平行なレール22の第1のセット22aは、フレーム構造14の頂部にわたる第1の方向(X)の荷役デバイス30の移動をガイドし、第1のセット22aに対して垂直に配置された平行なレール22の第2のセット22bは、第1の方向に対して垂直な第2の方向(Y)の荷役デバイス30の移動をガイドする。このようにして、レール22は、水平X−Y平面の2次元で荷役デバイス30の横方向の移動を可能にし、その結果、荷役デバイス30は、スタック12のいずれかの上方の位置へと移動されることができる。
荷役デバイス30の1つの形態は、ノルウェー特許番号第317366号において更に説明されており、その内容が、参照によって本明細書に組み込まれている。図15(b)及び図15(c)は、それぞれ、容器10を収容及び持ち上げる荷役デバイス30の概略的な断面図であり、図15(a)は、容器10を持ち上げている荷役デバイス30の概略的な正面斜視図である。しかしながら、本明細書に説明されるシステムと組み合わせて使用され得る他の形態の荷役デバイスがある。例えばロボット荷役デバイスの更なる形態は、参照によって本明細書に組み込まれている、PCT特許出願公開WO2015/019055(Ocado)に説明されており、そこでは各ロボット荷役ハンドラがフレームワーク構造の1つのグリッド空間のみをカバーし、よって、荷役ハンドラのより高い密度ひいては所与のサイズのシステムのためのより高い処理量を可能にしている。
各荷役デバイス30は、スタック12の上方の、フレーム構造14のレール22上で、X及びY方向に移動するように配置された車両32を備える。車両32の前方の一対の車輪34及び車両32の後方の一対の車輪34からなる第1のセットの車輪34は、レール22の第1のセット22aの2つの隣接するレールと係合するよう配置されている。同様に、車両32の各側方部の一対の車輪36からなる第2のセットの車輪36は、レール22の第2のセット22bの2つの隣接するレールと係合するよう配置されている。車輪34、36の各セットは持ち上げられたり下げられたりすることができ、その結果、第1のセットの車輪34又は第2のセットの車輪36のいずれかが、いつでもそれぞれのセットのレール22a、22bと係合される。
第1のセットの車輪34が第1のセットのレール22aと係合され、第2のセットの車輪36がレール22から十分に持ち上げられているとき、車輪34は、荷役デバイス30をX方向に移動させるように、車両32中に収容されている駆動機構(図示せず)によって駆動されることができる。荷役デバイス30をY方向に移動させるためには、第1のセットの車輪34がレール22から十分に持ち上げられ、第2のセットの車輪36が下げられて第2のセットのレール22aと係合する。駆動機構は次いで、Y方向への移動を達成するように第2のセットの車輪36を駆動するために使用されることができる。
荷役デバイス30は、持上げデバイスを装備している。持上げデバイス40は、4本のケーブル38によって荷役デバイス32の本体から吊り下げられたグリッパプレート39を備える。ケーブル38は、車両32内に収容された巻き取り機構(図示せず)に接続される。ケーブル38は、荷役デバイス32に巻き付いたり解かれたりすることができ、その結果、グリッパプレート39の車両32に対する位置をZ方向に調整することができる。
グリッパプレート39は、容器10の頂部と係合するように適応される。例えば、グリッパプレート39は、容器10の上面を形成するリムの対応する穴(図示せず)と嵌合するピン(図示せず)と、容器10を把持するためにリムと係合可能な摺動クリップ(図示せず)とを含み得る。クリップは、グリッパプレート39内に収容された好適な駆動機構によって容器10と係合するように駆動され、当該駆動機構は、ケーブル38自体又は別個の制御ケーブル(図示せず)を介して搬送される信号によって電力供給及び制御される。
スタック12の頂部から容器10を取り出すために、荷役デバイス30は、必要に応じて、グリッパプレート39がスタック12の上方に配置されるようにX及びY方向に移動される。次いでグリッパプレート39は、図15(c)に示されるように、Z方向に垂直に下げられて、スタック12の頂部の容器10と係合する。グリッパプレート39は、容器10を把持し、次いで、容器10が取り付けられたままケーブル38で上方に引っ張られる。その垂直移動の上部で、容器10は、車体32内に収容され、レール22の高さより上に保持される。このようにして、荷役デバイス30は、容器10を運搬してX−Y平面の異なる位置に移動されることができ、容器10を別の場所に搬送する。ケーブル38は、荷役デバイス30が床面高さを含むスタック12の任意の高さから容器を取り出して置くことを可能にするのに十分な長さである。車両32は、容器10の重量と釣り合い、持ち上げプロセス中に安定を保つのに十分な重さである。車両32の重量は、車輪34、36のための駆動機構に電力供給するために使用されるバッテリの一部に含まれ得る。
図16に示されるように、複数の同一の荷役デバイス30が設けられ、その結果、各荷役デバイス30が、同時に動作してシステムの処理量を増加させることができる。図16に例示されるシステムは、ポート24として知られる2つの特定の場所を含み、そこで容器10はシステム内外に移送されることができる。追加のコンベヤシステム(図示せず)が各ポート24に関連付けられており、その結果、荷役デバイス30によってポート24に搬送された容器10は、コンベヤシステムによって別の場所、例えばピッキングステーション(図示せず)に移送されることができる。同様に、容器10は、コンベヤシステムによって、外部の場所からポート24、例えば容器補充ステーション(図示せず)に移動され、荷役デバイス30によってスタック12に搬送されてシステム内の在庫を補充することができる。
各荷役デバイス30は、一度に1つの容器10を持ち上げて移動させることができる。スタック12の頂部に位置していない容器10(「ターゲット容器」)を取り出す必要がある場合、ターゲット容器10へのアクセスを可能にするために、上にある容器10(「非ターゲット容器」)をまず移動させなければならない。これは、以下「採掘(digging)」と呼ばれる作業で達成される。
図16を参照すると、採掘作業中、荷役デバイス30のうちの1つは、ターゲット容器10bを含むスタック12から各非ターゲット容器10aを順次持ち上げ、それを別のスタック12内の空き位置に置く。次いで、ターゲット容器10bは、荷役デバイス30によってアクセスされ、更なる搬送のためにポート24に移動されることができる。
荷役デバイス30の各々は、第1の実施形態によるコントローラとして想定され得る中央コンピュータの制御下にある。システム内の個々の容器10が各々追跡され、その結果、適切な容器10を、必要に応じて、取り出し、搬送し、交換することができる。例えば、採掘作業中に、非ターゲット容器10aの各々の場所がログ記録され、その結果、非ターゲット容器10aは追跡されることができる。
図13〜図16を参照して説明されたシステムは、多くの利点を有し、広範囲の保管及び取出し作業に好適である。特に、それは、製品の非常に高密度な保管を可能にし、ピッキングが必要なときにすべての容器10への経済的なアクセスを合理的に可能にしながら、容器10に広範囲の異なるアイテムを保管する非常に経済的な方法を提供する。
しかしながら、そのようなシステムにはいくつかの欠点があり、それらはすべて、ターゲット容器10bがスタック12の頂部にないときに実行されなければならない上述の採掘作業に起因する。
本発明の実施形態の先述の説明は、例示及び説明の目的で提示されている。網羅的であることも、開示された厳密な形態に本発明を限定することも意図されていない。本発明の趣旨及び範囲から逸脱することなく修正及び変形を行うことができる。