JP2021197324A - Luminaire - Google Patents

Luminaire Download PDF

Info

Publication number
JP2021197324A
JP2021197324A JP2020104952A JP2020104952A JP2021197324A JP 2021197324 A JP2021197324 A JP 2021197324A JP 2020104952 A JP2020104952 A JP 2020104952A JP 2020104952 A JP2020104952 A JP 2020104952A JP 2021197324 A JP2021197324 A JP 2021197324A
Authority
JP
Japan
Prior art keywords
toroidal
light source
axis
lens
toroidal lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020104952A
Other languages
Japanese (ja)
Other versions
JP7495702B2 (en
Inventor
芳人 鈴木
Yoshito Suzuki
徹 川上
Toru Kawakami
克典 江原
Katsunori Ebara
むつみ 篠井
Mutsumi Shinoi
晴喜 木下
Haruki Kinoshita
和博 奥
Kazuhiro Oku
修 広田
Osamu Hirota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yudensha Inc
Tohoku University NUC
Original Assignee
Yudensha Inc
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yudensha Inc, Tohoku University NUC filed Critical Yudensha Inc
Priority to JP2020104952A priority Critical patent/JP7495702B2/en
Publication of JP2021197324A publication Critical patent/JP2021197324A/en
Application granted granted Critical
Publication of JP7495702B2 publication Critical patent/JP7495702B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Planar Illumination Modules (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)

Abstract

To provide a luminaire that improves light utilization efficiency more and minimizes electric power that a light source uses for lower power consumption, and is advantageously applied to a backlight device for a liquid crystal display or an illumination type signboard, etc.SOLUTION: A luminaire consists of a surface light source 1, first, second toroidal lenses 2, 3, a reflection mirror 8, and a reflection prism sheet 9. The surface light source is arranged nearby one (Fyz) of two front-side focuses of a composite lens system 5 of the first, second toroidal lenses which is closer to the first toroidal lens 2 and before the other one (Fxz) which is farther. The distance between the second toroidal lens and the reflection mirror is substantially equal to a focal length f2 of the reflection mirror, which is inclined to a z axis. Emitted luminous flux from the composite lens system is reflected by the reflection mirror, and further the reflection prism sheet changes the optical path.SELECTED DRAWING: Figure 1

Description

本発明は、液晶ディスプレイ用のバックライト装置、あるいは照明型看板等に有利に適用される照明装置に関する。 The present invention relates to a lighting device that is advantageously applied to a backlight device for a liquid crystal display, a lighting type signboard, or the like.

液晶ディスプレイは、テレビだけでなく、車載用の各種モニターや医療用モニターなど多くの応用分野へ拡大している。また、液晶ディスプレイは、液晶パネルの4K、8Kという高解像度化の進展に伴い、高解像の画素を利用した裸眼立体ディスプレイへの応用も進むものと考えられる。 Liquid crystal displays are expanding not only to televisions but also to many application fields such as in-vehicle monitors and medical monitors. Further, it is considered that the liquid crystal display will be applied to a naked-eye stereoscopic display using high-resolution pixels as the resolution of the liquid crystal panel increases to 4K and 8K.

液晶ディスプレイに用いられる既存のバックライト装置は、どこから見ても均一な表示面となることに主眼を置いて開発されてきた。一方、観察者の居る所だけに画像光を出射して、それ以外に出射される無駄な画像光を減らして、省電力化を図るという考えが浸透してきたため、表示面からランバーシアンで画像光を出射するのを止めて、拡散フィルムと反射プリズムシートを活用して、表示面から水平方向近傍に出射される画像光をなるべく減らすような既存のバックライト装置が増えてきた。ただし、車載用のモニターでは、運転者だけが表示面を見られれば良いので、画像光は運転者の眼の近傍のみに出射されればよいことになり、既存のバックライト装置ではまだ無駄な画像光を無くせない。無駄な画像光を無くせるバックライト装置を既存のもので実現するためには、拡がり過ぎた画像光を、ブラックマスクやルーバーで吸収し、狭めた画像光だけを出射するようにしなければならない。したがって、既存のバックライト装置では、吸収される無駄な画像光を無くせないので、省電力化は難しい。 Existing backlight devices used in liquid crystal displays have been developed with a focus on providing a uniform display surface from any angle. On the other hand, since the idea of emitting image light only to the place where the observer is present and reducing the useless image light emitted to other areas to save power has become widespread, the image light is emitted from the display surface with a lumbar cyan. There are an increasing number of existing backlight devices that stop emitting light and utilize a diffuser film and a reflective prism sheet to reduce the amount of image light emitted from the display surface in the vicinity of the horizontal direction as much as possible. However, with an in-vehicle monitor, only the driver needs to see the display surface, so the image light only needs to be emitted near the driver's eyes, which is still useless with the existing backlight device. Image light cannot be eliminated. In order to realize a backlight device that can eliminate useless image light with an existing one, it is necessary to absorb the overspread image light with a black mask or a louver and emit only the narrowed image light. Therefore, it is difficult to save power because the existing backlight device cannot eliminate the absorbed useless image light.

そこで、本発明者らは、液晶ディスプレイ応用分野における液晶ディスプレイの表示面から出射される画像光の主光線方向の違いに関し体系的に検討した結果、図11に示すように既存のバックライト装置(図11(a))とは異なり、同じ明るさの光を同じ方向に揃えて出射できるいわゆる平行光バックライト装置(図11(b)〜(d))が必要になることを明らかにした。この平行光バックライト装置が実現できれば、無駄な画像光を減らし、光利用効率を向上させることが可能となり、光源の使用電力を必要最小限にして、低消費電力化を図ることができ、裸眼立体ディスプレイへの展開も容易に図れることを見出した。その後、検討を重ねた結果、平行光バックライト装置に相当するものとして、特許文献1に記載のバックライト装置(以下、「特許文献1の装置」ともいう。)を発明した。 Therefore, as a result of systematically examining the difference in the main ray direction of the image light emitted from the display surface of the liquid crystal display in the field of liquid crystal display application, the present inventors systematically examined the existing backlight device (as shown in FIG. 11). It has been clarified that, unlike FIG. 11 (a)), a so-called parallel light backlight device (FIGS. 11 (b) to (d)) capable of emitting light having the same brightness in the same direction is required. If this parallel light backlight device can be realized, it will be possible to reduce unnecessary image light and improve light utilization efficiency, minimize the power consumption of the light source, and reduce power consumption. We have found that it can be easily developed into a stereoscopic display. After that, as a result of repeated studies, the backlight device described in Patent Document 1 (hereinafter, also referred to as "device of Patent Document 1") was invented as an equivalent to the parallel light backlight device.

特許文献1の装置は、発光ダイオードからなる発光源と、前記発光源から出射された光を整形して光束として出射させる光整形手段とを有する2次元光源と、焦点距離f1の第1集光光学系および前記焦点距離f1より大きい焦点距離f2の第2集光光学系とから形成される両側テレセントリック光学系と、さらに、光路変更手段と、を備え、前記光整形手段の前記発光源から出射された光が入射する側の端部における前記光束の光軸に対して直角な断面の面積が、前記光整形手段の前記光束が出射する側の端部における前記光束の光軸に対して直角な断面の面積より小さく、前記第1集光光学系が前記第2集光光学系に対して前記2次元光源の側に設けられたレンズ系であり、前記第2集光光学系は、反射ミラー系から構成され、前記第2集光光学系から出射する光束の出射方向が、前記第1集光光学系を通過した光束の光軸に対して傾斜し、さらに、前記光路変更手段は、前記第2集光光学系から出射した光束の光路を変更する反射プリズムシート(反射型プリズムシートともいう)からなる、ことを特徴としている。 The apparatus of Patent Document 1 has a two-dimensional light source having a light emitting source composed of a light emitting diode, a light shaping means for shaping the light emitted from the light emitting source and emitting it as a light beam, and a first condensing light having a focal distance f1. It comprises a bilateral telecentric optical system formed of an optical system and a second condensing optical system having a focal distance f2 larger than the focal distance f1, and further, an optical path changing means, and emits light from the light emitting source of the optical shaping means. The area of the cross section perpendicular to the optical axis of the light beam at the end on the side where the light is incident is perpendicular to the optical axis of the light beam at the end on the side where the light beam is emitted from the optical shaping means. The first condensing optical system is a lens system provided on the side of the two-dimensional light source with respect to the second condensing optical system, which is smaller than the area of the cross section, and the second condensing optical system is a reflection. It is composed of a mirror system, and the emission direction of the light beam emitted from the second condensing optical system is inclined with respect to the optical axis of the light beam passing through the first condensing optical system, and the optical path changing means further comprises. It is characterized in that it is composed of a reflective prism sheet (also referred to as a reflective prism sheet) that changes the optical path of the light beam emitted from the second condensing optical system.

前記光整形手段は、入射側端面から入射した光をロッド内部で全反射させて出射側端面から出射させる光整形ロッドからなる。 The optical shaping means includes a light shaping rod that totally reflects the light incident from the incident side end surface inside the rod and emits the light from the exit side end surface.

なお、特許文献1の装置は、前記第1集光光学系(レンズ系)の光軸方向をz軸方向とし、前記反射プリズムシートの厚み方向をz軸に直角のy軸方向とし、z軸方向とy軸方向とに直角の方向をx軸方向としている。 In the apparatus of Patent Document 1, the optical axis direction of the first condensing optical system (lens system) is the z-axis direction, and the thickness direction of the reflective prism sheet is the y-axis direction perpendicular to the z-axis. The direction perpendicular to the direction and the y-axis direction is defined as the x-axis direction.

特許第5830828号公報Japanese Patent No. 5830828

特許文献1の装置によれば、光利用効率を向上させることにより、発光源とするLEDの使用電力を必要最小限にして、低消費電力化を図ることができる。しかし、特許文献1の装置では、光整形ロッドの入射面でロッドに取り込めない光が発生しており、光利用効率を下げている。 According to the apparatus of Patent Document 1, by improving the light utilization efficiency, the power consumption of the LED as a light emitting source can be minimized to reduce the power consumption. However, in the apparatus of Patent Document 1, light that cannot be taken into the rod is generated at the incident surface of the optical shaping rod, which lowers the light utilization efficiency.

さらに、特許文献1の装置は、焦点距離f1のレンズ系を物体側、焦点距離f2(f2>f1)の反射ミラー系を像側とする両側テレセントリック光学系を形成する構成としたことから、例えば100インチを超えるような大画面に適用するためにレンズ系と反射ミラー系の相互間隔を拡げた場合、画面全体を均一に照明するには、反射ミラー系のy方向寸法を大きくする必要があり、必然的に、バックライト装置の厚み方向サイズを大きくしなければならず、そのため、大画面への適用を図る際に、装置の薄型化が困難であることが分かった。 Further, the apparatus of Patent Document 1 has a configuration in which a lens system having a focal length f1 is on the object side and a reflection mirror system having a focal length f2 (f2> f1) is on the image side to form a bilateral telecentric optical system, for example. When the mutual distance between the lens system and the reflection mirror system is widened for application to a large screen exceeding 100 inches, it is necessary to increase the y-direction dimension of the reflection mirror system in order to uniformly illuminate the entire screen. Inevitably, it was found that the size of the backlight device in the thickness direction had to be increased, and therefore it was difficult to reduce the thickness of the device when applying it to a large screen.

また、特許文献1の装置は、照明型看板、ポスターや絵画用照明、および面均一輝度の一般の照明などに応用することも可能であるが、照明対象面が大面積である場合、大面積の照明対象面への応用を図る際に、上記と同様の理由で、装置の薄型化が困難である。 Further, the device of Patent Document 1 can be applied to lighting type signboards, lighting for posters and paintings, general lighting with uniform surface brightness, etc., but when the surface to be illuminated has a large area, the area is large. For the same reason as described above, it is difficult to reduce the thickness of the device when applying the above to the illuminated surface.

本発明は、上述の事情に鑑みてなされたものであって、その目的は、前記整形ロッドの代わりにトロイダルレンズからなる合成レンズ系を用いることで、光利用効率をさらに向上させることを課題とし、光源の使用電力を必要最小限にして、低消費電力化を図ることができ、かつ、大画面の液晶ディスプレイ、または、観察対象面が大である照明型看板、ポスターや絵画用照明、および面均一輝度の一般の照明への適用を図る際に、装置の薄型化が容易に達成できる、照明装置を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to further improve the light utilization efficiency by using a synthetic lens system composed of a toroidal lens instead of the shaping rod. , The power consumption of the light source can be minimized to reduce the power consumption, and a large-screen liquid crystal display, or a lighting type signboard with a large observation target surface, lighting for posters and paintings, and It is an object of the present invention to provide a lighting device capable of easily achieving a thinning of the device when applying the uniform surface brightness to general lighting.

上述した課題を解決し、上記目的を達成するために、本発明に係る照明装置は、以下の要旨構成を有する。
[1] 面光源、合成レンズ系、反射ミラーおよび反射プリズムシートからなる照明装置において、
前記合成レンズ系は、それぞれ直交するx軸、y軸およびz軸の3次元で構成され、
z軸上に前記合成レンズ系の光軸を有し、
前記面光源から出射した光束を凹面形状の入射面から取り込んでx方向の曲率半径がy方向の曲率半径より大きいトロイダル面形状の出射面から出射する第1のトロイダルレンズと、
前記第1のトロイダルレンズから出射した光束を入射面から取り込んでx方向の曲率半径がy方向の曲率半径より大きいトロイダル面形状の出射面から出射する第2のトロイダルレンズと、を具備し、
前記第1のトロイダルレンズに近い側から順に、y−z平面内の前側焦点Fyzおよびx−z平面内の前側焦点Fxzを有し、前側焦点Fxzと前記第1のトロイダルレンズの入射面との間で、かつ前記前側焦点Fyzの近傍を前記面光源の位置とし、
前記面光源と前記合成レンズ系とからなる照明光学系は、前記合成レンズ系の出射側のx−y平面に矩形状の照明エリアを有し、
さらに、
前記反射ミラーは、焦点距離f2を有し、前記第2のトロイダルレンズとの距離をほぼf2として、前記第2のトロイダルレンズから出射した光束をz軸と傾斜した方向へ反射させる手段を有し、
前記反射プリズムシートは、前記反射ミラーから反射した光束の光路を変更する手段を有する
ことを特徴とする照明装置。
[2] [1]において、前記面光源の出射面と前記第1のトロイダルレンズの入射面とのx−y平面への正射影を、x方向、y方向がそれぞれ長辺方向、短辺方向になる矩形状としたことを特徴とする照明装置。
[3] [1]または[2]において、前記照明光学系を複数具備したことを特徴とする照明装置。
[4] [1]〜[3]のいずれか一つにおいて、前記照明装置を液晶用バックライト装置としたことを特徴とする照明装置。
In order to solve the above-mentioned problems and achieve the above-mentioned object, the lighting apparatus according to the present invention has the following gist structure.
[1] In a lighting device including a surface light source, a synthetic lens system, a reflection mirror, and a reflection prism sheet.
The synthetic lens system is composed of three dimensions of x-axis, y-axis, and z-axis that are orthogonal to each other.
The optical axis of the synthetic lens system is provided on the z-axis.
A first toroidal lens that captures the luminous flux emitted from the surface light source from the concave incident surface and emits it from the toroidal surface-shaped exit surface whose radius of curvature in the x direction is larger than the radius of curvature in the y direction.
It comprises a second toroidal lens that takes in the light flux emitted from the first toroidal lens from the incident surface and emits it from an emitting surface having a toroidal surface shape in which the radius of curvature in the x direction is larger than the radius of curvature in the y direction.
It has a front focal point Fyz in the yz plane and a front focal point Fxz in the x-z plane in order from the side closer to the first toroidal lens, and the front focal point Fxz and the incident surface of the first toroidal lens. The position of the surface light source is set between and near the front focal point Fyz.
The illumination optical system including the surface light source and the synthetic lens system has a rectangular illumination area on the xy plane on the emission side of the synthetic lens system.
Moreover,
The reflection mirror has a focal length f 2 , and a means for reflecting a light flux emitted from the second toroidal lens in a direction inclined with the z-axis, with the distance from the second toroidal lens being approximately f 2. Have and
The reflecting prism sheet is a lighting device having a means for changing an optical path of a light flux reflected from the reflecting mirror.
[2] In [1], the normal projection of the emission surface of the surface light source and the incident surface of the first toroidal lens on the xy plane is projected in the x-direction and the y-direction in the long-side direction and the short-side direction, respectively. A lighting device characterized by having a rectangular shape.
[3] The lighting device according to [1] or [2], characterized in that a plurality of the illumination optical systems are provided.
[4] In any one of [1] to [3], the lighting device is characterized in that the lighting device is a liquid crystal backlight device.

本発明によれば、トロイダルレンズの活用により光利用効率をさらに向上させ、光源の使用電力を必要最小限にして、低消費電力化を図ることができ、かつ、大画面の液晶ディスプレイ、または、観察対象面が大である照明型看板、ポスターや絵画用照明、および面均一輝度の一般の照明への適用を図る際に、装置の薄型化が容易に達成できるという優れた効果を奏する。 According to the present invention, the light utilization efficiency can be further improved by utilizing the toroidal lens, the power consumption of the light source can be minimized, the power consumption can be reduced, and a large-screen liquid crystal display or a large screen liquid crystal display or. It has an excellent effect that the device can be easily made thinner when it is applied to a lighting type signboard having a large observation target surface, lighting for posters and paintings, and general lighting having uniform surface brightness.

本発明の実施形態の一例を示す模式図である。It is a schematic diagram which shows an example of embodiment of this invention. 矩形状の照明エリアを示す模式図である。It is a schematic diagram which shows the rectangular lighting area. 照明光学系を複数具備した実施形態の一例を示す模式図である。It is a schematic diagram which shows an example of the Embodiment which provided a plurality of illumination optical systems. 実施例1の光学シミュレーションによる光線追跡図である。It is a ray tracing diagram by the optical simulation of Example 1. FIG. 実施例1の光学シミュレーションによる反射ミラー直前の照明エリア(照明距離=273mm)の2次元強度図である。It is a 2D intensity diagram of the illumination area (illumination distance = 273mm) immediately before the reflection mirror by the optical simulation of Example 1. FIG. 実施例1の光学シミュレーションによる反射プリズムシートからの2次反射光束の2次元強度図である。It is a two-dimensional intensity figure of the secondary reflection light flux from the reflection prism sheet by the optical simulation of Example 1. FIG. 実施例2の光学シミュレーションによる照明エリア(照明距離=1m)に照射される光の2次元強度図である。It is a two-dimensional intensity diagram of the light irradiated to the illumination area (illumination distance = 1 m) by the optical simulation of Example 2. FIG. 実施例2の光学シミュレーションによる照明エリア(照明距離=10m)に照射される光の2次元強度図である。It is a two-dimensional intensity diagram of the light irradiated to the illumination area (illumination distance = 10m) by the optical simulation of Example 2. FIG. 実施例2の光学シミュレーションによる照明エリア(照明距離=100m)に照射される光の2次元強度図である。It is a two-dimensional intensity diagram of the light irradiated to the illumination area (illumination distance = 100m) by the optical simulation of Example 2. FIG. 実施例2の光学シミュレーションによる照明エリア(照明距離=1m)に照射される光の2次元強度図である。It is a two-dimensional intensity diagram of the light irradiated to the illumination area (illumination distance = 1 m) by the optical simulation of Example 2. FIG. 平行光バックライト装置(b)〜(d)と既存のバックライト装置(a)を出射される画像光の主光線方向の違いを説明するための模式図である。It is a schematic diagram for demonstrating the difference in the main ray direction of the image light emitted from the parallel light backlight apparatus (b)-(d), and the existing backlight apparatus (a).

以下、本発明の実施形態について図面を参照しつつ説明する。なお、以下の実施形態により本発明が限定されるものではない。また、各図面において、同一または対応する要素には適宜同一の符号を付し、重複した説明を適宜省略する。さらに、図面は模式的なものであり、各要素の寸法の関係などは、現実のものとは異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments. Further, in each drawing, the same or corresponding elements are appropriately designated by the same reference numerals, and duplicate description will be omitted as appropriate. Furthermore, it should be noted that the drawings are schematic and the dimensional relationships of each element may differ from the actual ones. Even between the drawings, there may be parts where the relationship and ratio of the dimensions are different from each other.

図1は、本発明の実施形態の一例を模式的に示しており、(a)はy−z断面図、(b)はx−z断面図である。 1A and 1B schematically show an example of an embodiment of the present invention, where FIG. 1A is a cross-sectional view taken along the line yz and FIG. 1B is a cross-sectional view taken along the line xz.

図1の照明装置は、面光源1、合成レンズ系5、反射ミラー8および反射プリズムシート9からなる。 The lighting device of FIG. 1 includes a surface light source 1, a synthetic lens system 5, a reflection mirror 8, and a reflection prism sheet 9.

面光源1は、点光源や線光源と比べて後述の照明エリアを形成しやすいため採用され、例えばLEDチップからなる。 The surface light source 1 is adopted because it is easier to form an illumination area described later than a point light source or a line light source, and is made of, for example, an LED chip.

合成レンズ系5は、それぞれ直交するx軸、y軸およびz軸の3次元で構成され、z軸上に合成レンズ系2の光軸を有する。 The synthetic lens system 5 is composed of three dimensions of an x-axis, a y-axis, and a z-axis that are orthogonal to each other, and has an optical axis of the synthetic lens system 2 on the z-axis.

上記に加え、合成レンズ系5は、面光源1から出射した光束を凹面形状の入射面から取り込んでトロイダル面形状の出射面から出射する第1のトロイダルレンズ2および該第1のトロイダルレンズ2から出射する光束を入射面から取り込んでトロイダル面形状の出射面から出射する第2のトロイダルレンズ3を具備する。 In addition to the above, the synthetic lens system 5 takes in the luminous flux emitted from the surface light source 1 from the concave incident surface and emits it from the toroidal surface-shaped exit surface from the first toroidal lens 2 and the first toroidal lens 2. The second toroidal lens 3 is provided with a second toroidal lens 3 that captures the emitted light flux from the incident surface and emits it from the toroidal surface-shaped emission surface.

第1のトロイダルレンズ2と、第2のトロイダルレンズ3とは、それぞれのトロイダル面の曲率半径を、「x方向の曲率半径>y方向の曲率半径」とした。 The radius of curvature of the toroidal surface of each of the first toroidal lens 2 and the second toroidal lens 3 was set to "radius of curvature in the x direction> radius of curvature in the y direction".

そのため、合成レンズ系5のy−z平面内の前側焦点Fyzは、x−z平面内の前側焦点Fxzと比べて第1のトロイダルレンズ2に近い位置にある。そこで本発明では、前側焦点Fxzと第1のトロイダルレンズ2との間でかつ前側焦点Fyzの近傍を前記面光源1の位置としている。 Therefore, the front focal Fyz in the yz plane of the synthetic lens system 5 is located closer to the first toroidal lens 2 than the front focal Fxz in the xz plane. Therefore, in the present invention, the position of the surface light source 1 is set between the front focal point Fxz and the first toroidal lens 2 and in the vicinity of the front focal point Fyz.

なお、図1において、合成レンズ系5は、y−z平面内、x−z平面内にそれぞれ前側主点Myz、Mxzを有し、かつ前側主点Myzから前側焦点Fyzまでの距離であるy−z平面内の焦点距離fyzおよび前側主点Mxzから前側焦点Fxzまでの距離であるx−z平面内の焦点距離fxzを有する。 In FIG. 1, the synthetic lens system 5 has front principal points Myz and Mxz in the yz plane and the xz plane, respectively, and is the distance from the front principal point Myz to the front focal point Fyz. It has a focal point fyz in the −z plane and a focal point fxz in the x—z plane, which is the distance from the anterior principal point Mxz to the anterior focal point Fxz.

ここで、前側焦点Fyzの近傍とは、前側焦点Fyzを中心とする、半径がfyzの20%の円内でかつz軸上の領域を意味する。 Here, the vicinity of the front focal point Fyz means a region centered on the front focal point Fyz, within a circle having a radius of 20% of fyz, and on the z-axis.

また、第1のトロイダルレンズ2の入射面の凹面形状は、円筒内周面形状(図1参照)とすることで、面光源1から出射された光束の取り込み率を約96%とすることができ、さらに、メニスカスレンズ面形状(図示せず)とすることで、面光源1から出射された光束の取り込み率をほとんど100%とすることができる。 Further, the concave shape of the incident surface of the first toroidal lens 2 is a cylindrical inner peripheral surface shape (see FIG. 1), so that the intake rate of the light flux emitted from the surface light source 1 can be set to about 96%. Further, by making the meniscus lens surface shape (not shown), the intake rate of the light flux emitted from the surface light source 1 can be almost 100%.

なお、第2のトロイダルレンズ3の入射面の形状は、平面形状(図1参照)でもよく、凹面形状(図示せず)でもよい。 The shape of the incident surface of the second toroidal lens 3 may be a planar shape (see FIG. 1) or a concave shape (not shown).

上述のように、前側焦点Fyzが前側焦点Fxzと比べて第1のトロイダルレンズ2に近い位置になる合成レンズ5とし、前側焦点Fxzと第1のトロイダルレンズ2の間でかつ前側焦点Fyzの近傍を面光源1の位置としたことで、面光源1と合成レンズ系5との一式(以下、照明光学系7ともいう)においては、出射側の光束の拡がりがy−z平面内では小さくなって平行光束に近づいた光束が得られ、一方、x−z平面内ではy−z平面内の光束よりも拡がりの大きい光束が得られる。したがって、図2に示すように、照明光学系7は合成レンズ系5の出射側のx−y平面に、x方向を長辺方向とし、y方向を短辺方向とする矩形状の照明エリアを有する。ここで、照明エリアとは、看者の肉眼で背景と識別できる領域のことである。この領域は、照度の違いで決定される。 As described above, the composite lens 5 has a front focal length Fyz closer to the first toroidal lens 2 than the anterior focal length Fxz, and is between the anterior focal length Fxz and the first toroidal lens 2 and in the vicinity of the anterior focal length Fyz. In the set of the surface light source 1 and the synthetic lens system 5 (hereinafter, also referred to as the illumination optical system 7), the spread of the luminous flux on the emission side becomes small in the yz plane. On the other hand, a luminous flux approaching the parallel luminous flux is obtained, while a luminous flux having a larger spread than the luminous flux in the yz plane is obtained in the x-z plane. Therefore, as shown in FIG. 2, the illumination optical system 7 has a rectangular illumination area having the x direction as the long side direction and the y direction as the short side direction on the xy plane on the emission side of the synthetic lens system 5. Have. Here, the illumination area is an area that can be distinguished from the background by the naked eye of the viewer. This region is determined by the difference in illuminance.

図2には、図形の矩形状率の定義を示した。すなわち、
図形の矩形状率=(図形の面積/図形に外接する矩形の面積)×100(%)
とした。この定義において、「外接する矩形」とは、外接する矩形のうち最小の矩形を意味する。そして、図形が照明エリアであるときの矩形状率(すなわち照明エリアの矩形状率)が、図形が楕円であるときのそれ(すなわち楕円の矩形状率=78%)よりも大である場合、その照明エリアを「矩形状の照明エリア」という。
FIG. 2 shows the definition of the rectangular shape ratio of the figure. That is,
Rectangle ratio of figure = (area of figure / area of rectangle circumscribing figure) x 100 (%)
And said. In this definition, "circumscribed rectangle" means the smallest rectangle among the circumscribed rectangles. Then, when the rectangular shape ratio when the figure is the illuminated area (that is, the rectangular shape ratio of the illuminated area) is larger than that when the figure is an elliptical shape (that is, the rectangular shape ratio of the elliptical shape = 78%). The lighting area is called a "rectangular lighting area".

この矩形状の照明エリア内では、照度のばらつきが、中央値±40%以内と、均一な明るさが得られる。しかし、面光源1が前側焦点Fyzの近傍を外れると、矩形状の照明エリアを得ることが困難になる。 Within this rectangular illumination area, the variation in illuminance is within ± 40% of the median, and uniform brightness can be obtained. However, when the surface light source 1 deviates from the vicinity of the front focal point Fyz, it becomes difficult to obtain a rectangular illumination area.

前記矩形状の照明エリアの長辺と短辺の比は、合成レンズ系5のトロイダル面のy方向とx方向の曲率半径の比によって設定できる。なお、面光源1を起点とした出射側のz方向距離を、照明距離ともいう。 The ratio of the long side to the short side of the rectangular illumination area can be set by the ratio of the radius of curvature in the y direction and the x direction of the toroidal surface of the synthetic lens system 5. The distance in the z direction on the emission side starting from the surface light source 1 is also referred to as an illumination distance.

さらに、反射ミラー8は、焦点距離f2を有し、第2のトロイダルレンズ3との距離をほぼf2として、第2のトロイダルレンズ3から出射した光束(以下、1次光束ともいう。)をz軸と傾斜した方向へ反射させる手段として反射基板8B上に形成した凹面形状の反射面8Aを有する。ここで、ほぼf2とは、f2±20%以内であることを意味する。 Further, the reflection mirror 8 has a focal length f 2 , and the distance from the second toroidal lens 3 is approximately f 2 , and the luminous flux emitted from the second toroidal lens 3 (hereinafter, also referred to as a primary luminous flux). Has a concave reflecting surface 8A formed on the reflecting substrate 8B as a means for reflecting the lens in a direction inclined with the z-axis. Here, approximately f 2 means that it is within f 2 ± 20%.

焦点距離f2を有する凹面形状の反射面8A(以下、単に、反射面8Aともいう。)と第2のトロイダルレンズ3との距離をほぼf2とすることにより、反射面8Aの光軸がz軸上にある場合、1次光束は以下のように振る舞う。 By setting the distance between the concave reflecting surface 8A having the focal length f 2 (hereinafter, also simply referred to as the reflecting surface 8A) and the second toroidal lens 3 to be approximately f 2 , the optical axis of the reflecting surface 8A can be set. When on the z-axis, the primary light flux behaves as follows.

すなわち、1次光束はx−z平面内では反射面8Aの焦点付近から出射し拡散して反射面8Aに入射するから、反射面8Aからの反射光束は平行光束に近くなり、一方、1次光束はy−z平面内では、x−z平面内よりも、より平行光束に近い状態で反射面8Aに入射するから、反射面8Aからの反射光束(以下、1次反射光束ともいう。)は反射面8Aの焦点付近に集光する。 That is, in the x-z plane, the primary luminous flux is emitted from the vicinity of the focal point of the reflecting surface 8A, diffuses and is incident on the reflecting surface 8A. Since the luminous flux is incident on the reflecting surface 8A in the yz plane in a state closer to the parallel light flux than in the xz plane, the reflected light flux from the reflecting surface 8A (hereinafter, also referred to as a primary reflected light flux). Condenses near the focal point of the reflective surface 8A.

そこで、反射面8Aの光軸をz軸から傾斜(図1ではy−z平面内で時計回りに角度θだけ回転)させることで、1次反射光束の主光線がz軸と角度2θだけ傾斜する方向に傾斜し、反射プリズムシート9に入射することができる。 Therefore, by tilting the optical axis of the reflecting surface 8A from the z-axis (rotating clockwise by an angle θ in the yz plane in FIG. 1), the main ray of the primary reflected light beam is tilted by an angle 2θ with the z-axis. It can be inclined in the direction of the light and incident on the reflective prism sheet 9.

また、反射プリズムシート9は、1次反射光束の光路を変更する手段として、シート基板9B上に形成した複数のプリズム状の突条9Aを有する。プリズム状の突条9Aの側面は1次反射光束を反射し、2次反射光束とするよう構成されている。シート基板9Bを、x−z平面と平行に設置し(図1参照)、反射プリズム状の突状9Aの高さ、頂角、配列間隔を反射面8Aの角度θに応じた適宜の値に設定することにより、2次反射光束の光路をz方向の下向きの光路とすることができる。 Further, the reflective prism sheet 9 has a plurality of prism-shaped ridges 9A formed on the sheet substrate 9B as a means for changing the optical path of the primary reflected light flux. The side surface of the prism-shaped ridge 9A is configured to reflect the primary reflected light flux to form a secondary reflected light flux. The sheet substrate 9B is installed parallel to the x-z plane (see FIG. 1), and the height, apex angle, and arrangement spacing of the reflective prism-shaped protrusion 9A are set to appropriate values according to the angle θ of the reflective surface 8A. By setting, the optical path of the secondary reflected light beam can be set as a downward optical path in the z direction.

したがって、図1の実施形態では、照明光学系7から出射した光束(1次光束)が矩形状の照明エリアを形成して、反射ミラー8の反射面8Aと重なり合うようにし、1次光束を反射面8Aで反射させて斜め(左上)方向に向かう1次反射光束として反射プリズムシート9に入射し、反射させてy方向下向きの2次反射光束として照明対象面(図示せず)に入射させることができる。このとき、1次光束から1次反射光束への転換時、および1次反射光束から2次反射光束への転換時の光の損失はそれぞれ約5%程度以下に抑えることができる。そのため、照明対象面が矩形状とされる通常の場合において、広範囲のサイズおよび縦横比に対応して、光利用効率を高め、かつ照明対象面の輝度均一性を高めることができる。 Therefore, in the embodiment of FIG. 1, the light beam (primary light beam) emitted from the illumination optical system 7 forms a rectangular illumination area so as to overlap with the reflection surface 8A of the reflection mirror 8 to reflect the primary light beam. Reflected on the surface 8A and incident on the reflecting prism sheet 9 as a primary reflected light beam toward an oblique (upper left) direction, and reflected and incident on an illuminated surface (not shown) as a secondary reflected light beam downward in the y direction. Can be done. At this time, the loss of light at the time of conversion from the primary luminous flux to the primary reflected light flux and at the time of conversion from the primary reflected light flux to the secondary reflected light flux can be suppressed to about 5% or less, respectively. Therefore, in a normal case where the illuminated object surface has a rectangular shape, it is possible to improve the light utilization efficiency and the brightness uniformity of the illuminated object surface corresponding to a wide range of sizes and aspect ratios.

また、上述の実施形態において、前述の照明エリアの矩形状率(図2参照)をより高める観点から、面光源1の出射面と第1のトロイダルレンズ2の入射面とのx−y平面への正射影を、x方向、y方向がそれぞれ長辺方向、短辺方向になる矩形状とすることが好ましく、図1の例ではそのようにした。 Further, in the above-described embodiment, from the viewpoint of further increasing the rectangular shape ratio (see FIG. 2) of the above-mentioned illumination area, to the xy plane between the exit surface of the surface light source 1 and the incident surface of the first toroidal lens 2. It is preferable that the normal projection of the above is a rectangular shape in which the x-direction and the y-direction are the long-side direction and the short-side direction, respectively, and this is the case in the example of FIG.

また、上述の実施形態において、面光源1と合成レンズ系5とからなる照明光学系7を複数具備した実施形態として、明るさを増大させることもできる。これの一例を図3に示す。図3は、照明光学系7をx方向に3つ具備した例である。なお、図3では、反射ミラーと反射プリズムシートは図示せずとした。 Further, in the above-described embodiment, the brightness can be increased as an embodiment including a plurality of illumination optical systems 7 including a surface light source 1 and a synthetic lens system 5. An example of this is shown in FIG. FIG. 3 is an example in which three illumination optical systems 7 are provided in the x direction. In FIG. 3, the reflection mirror and the reflection prism sheet are not shown.

上述の実施形態に係る照明装置によれば、トロイダルレンズの活用により光利用効率をさらに向上させ、光源の使用電力を必要最小限にして、低消費電力化を図ることができ、かつ、大画面の液晶ディスプレイ、または、観察対象面が大である照明型看板、ポスターや絵画用照明、および面均一輝度の一般の照明への適用を図る際に、装置の薄型化が容易に達成できる。 According to the lighting device according to the above-described embodiment, the light utilization efficiency can be further improved by utilizing the toroidal lens, the power consumption of the light source can be minimized, the power consumption can be reduced, and the large screen can be used. The thinness of the device can be easily achieved when the device is applied to a liquid crystal display, a lighting type signboard having a large observation target surface, lighting for posters and paintings, and general lighting having uniform surface brightness.

また、上述の実施形態に係る照明装置を液晶用バックライト装置とすることで、特許文献1の装置と比べて、薄型でかつ光利用効率および輝度均一性の高い液晶用バックライト装置を得ることができる。例えば100インチサイズの液晶用バックライト装置を本発明の照明装置で構成した場合、特許文献1の装置と比べて装置の厚みを約40%削減できる。 Further, by using the lighting device according to the above-described embodiment as a liquid crystal backlight device, it is possible to obtain a liquid crystal backlight device that is thinner and has higher light utilization efficiency and brightness uniformity than the device of Patent Document 1. Can be done. For example, when a 100-inch size liquid crystal backlight device is configured with the lighting device of the present invention, the thickness of the device can be reduced by about 40% as compared with the device of Patent Document 1.

以下、実施例を挙げて本発明の実施形態をより詳しく説明する。
[実施例1] 実施例1として、図1の実施形態において、照明装置の諸元を以下のとおりとした。
(イ)面光源1は、LEDチップからなるものとし、出射面を横4mm×縦1mmの矩形平面とした。なお、ここで、横はx方向、縦はy方向を意味する(以下同じ)。
(ロ)第1のトロイダルレンズ2は、材質をガラス(S−LAH53)とし、レンズのx−y平面図形を横8mm×縦3.2mmの矩形とし、光軸上のレンズ厚みを2.3mmとし、入射面の曲率半径を横10mm×縦無限大とし、出射面の曲率半径を横5.5mm×縦2mmとした。
(ハ)第2のトロイダルレンズ3は、材質をガラス(SK5)とし、レンズのx−y平面図形を横54mm×縦24mmの矩形とし、光軸上のレンズ厚みを15mmとし、入射面の曲率半径を横無限大×縦無限大、出射面の曲率半径を横42mm×縦21mmとした。
(ニ)第1,第2のトロイダルレンズ2,3の間隔は光軸上で17.3mmとした。
(ホ)合成レンズ系5の前側焦点Fyz,Fxzの位置は、近軸理論では第1のトロイダルレンズ2の入射面から前側に、Fyzが0.656mm、Fxzが7.368mm離間した位置となるので、面光源1の出射面の位置を0.4mmとした。
(へ)反射ミラー8は、反射面8Aの焦点距離f2を238mmとし、第2トロイダルレンズ3との間隔をf2(=238mm)とし、x方向サイズを230mm、y方向サイズを30mm(ただし、傾斜前で傾斜の角度θが0°のとき)とし、傾斜の角度θを約3°とした。
Hereinafter, embodiments of the present invention will be described in more detail with reference to examples.
[Example 1] As the first embodiment, the specifications of the lighting device in the embodiment of FIG. 1 are as follows.
(A) The surface light source 1 is made of an LED chip, and the emission surface is a rectangular plane having a width of 4 mm and a length of 1 mm. Here, the horizontal means the x direction and the vertical means the y direction (the same applies hereinafter).
(B) The first toroidal lens 2 is made of glass (S-LAH53), the xy plane figure of the lens is a rectangle of 8 mm in width × 3.2 mm in length, and the lens thickness on the optical axis is 2.3 mm. The radius of curvature of the incident surface was 10 mm in width × infinity in length, and the radius of curvature of the exit surface was 5.5 mm in width × 2 mm in length.
(C) The second toroidal lens 3 is made of glass (SK5), the xy plane figure of the lens is a rectangle of width 54 mm × length 24 mm, the lens thickness on the optical axis is 15 mm, and the curvature of the incident surface. The radius was set to infinity in width × infinity in length, and the radius of curvature of the exit surface was set to 42 mm in width × 21 mm in length.
(D) The distance between the first and second toroidal lenses 2 and 3 was set to 17.3 mm on the optical axis.
(E) The positions of the front focal points Fyz and Fxz of the synthetic lens system 5 are positions such that Fyz is 0.656 mm and Fxz is 7.368 mm on the front side from the incident surface of the first toroidal lens 2 in paraxial theory. Therefore, the position of the exit surface of the surface light source 1 is set to 0.4 mm.
(F) In the reflection mirror 8, the focal length f 2 of the reflection surface 8A is 238 mm, the distance from the second toroidal lens 3 is f 2 (= 238 mm), the x-direction size is 230 mm, and the y-direction size is 30 mm (however). , When the tilt angle θ was 0 ° before tilting), and the tilt angle θ was set to about 3 °.

このとき、面光源1から反射面8A位置まで照明距離は、約273mmである。
(ト)反射プリズムシート9は、シート基板9Bのプリズム状の突条9A側の面がx−z平面と平行で、z軸の上方に9.5mm離間して第2トロイダルレンズ3と反射ミラー8との間を覆うように配置し、斜め右下方からの1次反射光束が反射してz軸方向の下向きの光路を進む2次反射光束となるように、プリズム状の突条9Aの高さ、頂角および配列間隔を設計した。
At this time, the illumination distance from the surface light source 1 to the position of the reflecting surface 8A is about 273 mm.
(G) In the reflective prism sheet 9, the surface of the sheet substrate 9B on the prism-shaped ridge 9A side is parallel to the x-z plane, and is 9.5 mm above the z-axis with the second toroidal lens 3 and the reflective mirror. The height of the prism-shaped ridge 9A is arranged so as to cover the space between the lens 8 and the prism-shaped ridge 9A so that the primary reflected light beam from diagonally lower right is reflected and becomes the secondary reflected light beam traveling in the downward optical path in the z-axis direction. Now, the apex angle and the arrangement spacing are designed.

実施例1の照明装置について、光学シミュレーションを行なった。図4は、実施例1の光学シミュレーションによる光線追跡図、図5は反射ミラー直前の照明エリア(照明距離=273mm)の2次元強度図、図6は、2次反射光束の2次元強度図である。なお、図6の2次反射光束の2次元強度は、反射プリズムシート9のシート基板面から14.5mm直下のものである。 An optical simulation was performed on the lighting device of Example 1. FIG. 4 is a light ray tracking diagram by optical simulation of Example 1, FIG. 5 is a two-dimensional intensity diagram of an illumination area (illumination distance = 273 mm) immediately before a reflection mirror, and FIG. 6 is a two-dimensional intensity diagram of a secondary reflected light flux. be. The two-dimensional intensity of the secondary reflected light beam in FIG. 6 is 14.5 mm directly below the sheet substrate surface of the reflecting prism sheet 9.

図4、図5の光学シミュレーションの光線出力データによると、反射ミラー直前の照明エリアの光利用効率は約96%であった。 According to the ray output data of the optical simulations of FIGS. 4 and 5, the light utilization efficiency of the illumination area immediately before the reflection mirror was about 96%.

図5では、反射ミラー直前の照明エリアは矩形状(長辺約200mm×短辺約24mm、矩形状率約99%)であり、照度のばらつきは、光学シミュレーションにおけるインコヒーレント放射照度によれば、約0.01〜約0.02W/cm2(約0.015W/cm2±33%)となり、±40%以内を実現しており、均一な明るさであった。なお、黒背景中の光点のインコヒーレント放射照度が5×10-8W/cm2程度以上であれば、その光点は視認できる。 In FIG. 5, the illumination area immediately before the reflection mirror has a rectangular shape (long side about 200 mm × short side about 24 mm, rectangular shape ratio about 99%), and the variation in illuminance is according to the incoherent irradiance in the optical simulation. It was about 0.01 to about 0.02 W / cm 2 (about 0.015 W / cm 2 ± 33%), which was within ± 40%, and the brightness was uniform. If the incoherent irradiance of the light spot in the black background is about 5 × 10 -8 W / cm 2 or more, the light spot can be visually recognized.

なお、図5、図6および後述の図7〜図10において、「照度」とは、インコヒーレント放射照度(光エネルギー分布のこと)を指す。 In FIGS. 5, 6 and 7 to 10 described later, the “illuminance” refers to incoherent irradiance (light energy distribution).

また、図6では、2次反射光束の照明エリアは矩形状(長辺約238mm×短辺約200mm、矩形状率約96%)であり、照度が、約1.0×10-3〜約1.8×10-3W/cm2(約1.4×10-3W/cm2±29%)になる、均一な明るさであった。
[実施例2] 実施例2として、照明光学系7のみの照明エリアの形状と明るさの、照明距離に対する依存性を調べるために、図1の実施形態において、照明光学系7の諸元を実施例1と同じとし、照明距離が1m、10m、100mの場合について照明エリアの形状および明るさを光学シミュレーションにより求めた。その結果を図7〜図9にそれぞれ示す。
Further, in FIG. 6, the illumination area of the secondary reflected light beam is rectangular (long side about 238 mm × short side about 200 mm, rectangular shape ratio about 96%), and the illuminance is about 1.0 × 10 -3 to about. The brightness was uniform at 1.8 × 10 -3 W / cm 2 (about 1.4 × 10 -3 W / cm 2 ± 29%).
[Example 2] As the second embodiment, in order to investigate the dependence of the shape and brightness of the illumination area of the illumination optical system 7 only on the illumination distance, the specifications of the illumination optical system 7 are used in the embodiment of FIG. The same as in Example 1, the shape and brightness of the illumination area were obtained by optical simulation when the illumination distances were 1 m, 10 m, and 100 m. The results are shown in FIGS. 7 to 9, respectively.

図7(照明距離=1m)では、照明エリアは矩形状(長辺約890mm×短辺約140mm、矩形状率約98%)であり、照度が、約4.0×10-4〜約8.2×10-4W/cm2(約6.1×10-4W/cm2±34%)になる、均一な明るさであった。 In FIG. 7 (illumination distance = 1 m), the illumination area has a rectangular shape (long side of about 890 mm × short side of about 140 mm, rectangular shape ratio of about 98%), and the illuminance is about 4.0 × 10 -4 to about 8. The brightness was uniform to be .2 × 10 -4 W / cm 2 (about 6.1 × 10 -4 W / cm 2 ± 34%).

図8(照明距離=10m)では、照明エリアは矩形状(長辺約6.0m×短辺約1.3m、矩形状率約96%)であり、照度が、約4.4×10-6〜約9.8×10-6W/cm2(約7.1×10-6W/cm2±38%)になる、均一な明るさであった。 In FIG. 8 (illumination distance = 10 m), the illumination area has a rectangular shape (long side about 6.0 m × short side about 1.3 m, rectangular shape ratio about 96%), and the illuminance is about 4.4 × 10 −. The brightness was uniform, ranging from 6 to about 9.8 × 10 -6 W / cm 2 (about 7.1 × 10 -6 W / cm 2 ± 38%).

図9(照明距離=100m)では、照明エリアは矩形状(長辺約88m×短辺約12m、矩形状率約93%)であり、照度が、約6.5×10-8〜約9.9×10-8W/cm2(約8.2×10-8W/cm2±21%)になる、均一な明るさであった。 In FIG. 9 (illumination distance = 100 m), the illumination area has a rectangular shape (long side about 88 m × short side about 12 m, rectangular shape ratio about 93%), and the illuminance is about 6.5 × 10 -8 to about 9. The brightness was uniform at 0.9 × 10 -8 W / cm 2 (about 8.2 × 10 -8 W / cm 2 ± 21%).

このように、照明光学系7は、照明距離が大きくなっても均一な明るさの矩形状の照明エリアを現出させる。よって、照明光学系7は、自動車や電車等の乗り物の前照灯に適用することで、夜間で前方の障害物がより早くかつより確実に発見されることにつながり、運転の安全性向上に寄与しうる。
[実施例3] 実施例3として、実施例1において、照明距離を1mに変更し、反射ミラー8について、反射面8Aの焦点距離f2を965mm、第2トロイダルレンズ3との間隔をf2(=965mm)、x方向サイズを890mm、y方向サイズを150mm(ただし、傾斜前で傾斜の角度θが0°のとき)、傾斜の角度θを約4°と、それぞれ変更した。また、反射プリズムシート9について、z軸からの上方の離間距離を75mmに変更した。
As described above, the illumination optical system 7 makes a rectangular illumination area having uniform brightness appear even if the illumination distance is increased. Therefore, by applying the illumination optical system 7 to the headlights of vehicles such as automobiles and trains, obstacles in front can be found faster and more reliably at night, which improves driving safety. Can contribute.
[Example 3] Example 3, in Example 1, change the lighting distance 1 m, the reflection mirror 8, the focal length f 2 of the reflecting surface 8A 965 mm, the distance between the second toroidal lens 3 f 2 (= 965 mm), the x-direction size was changed to 890 mm, the y-direction size was changed to 150 mm (however, when the tilt angle θ was 0 ° before tilting), and the tilt angle θ was changed to about 4 °. Further, regarding the reflective prism sheet 9, the distance above the z-axis was changed to 75 mm.

実施例3の照明装置について、光学シミュレーションにより、z軸の直下75mmの位置での2次反射光束の照明エリアの形状および明るさを調べた結果、形状は矩形状(長辺約965mm×短辺約890mm、矩形状率約96%)、明るさは反射ミラー8直前のそれ(図7)の約10分の1のレベルで均一な明るさであった(ただし、図示せず)。
[実施例4] 実施例4として、図3の実施形態(照明光学系7を3つ用いる形態)において、照明光学系7の諸元を実施例1と同じとし、照明距離を1mとした場合の照明エリアの形状および明るさを光学シミュレーションにより求めた。その結果を図10に示す。なお、この光学シミュレーションでは、反射ミラー8および反射プリズムシート9は無視した。
As a result of investigating the shape and brightness of the illumination area of the secondary reflected light flux at the position 75 mm directly below the z-axis by the optical simulation of the lighting device of the third embodiment, the shape is rectangular (long side about 965 mm × short side). (Approximately 890 mm, rectangularity ratio of approximately 96%), the brightness was uniform at a level of about 1/10 of that immediately before the reflection mirror 8 (FIG. 7) (however, not shown).
[Example 4] As a fourth embodiment, in the embodiment of FIG. 3 (a mode in which three illumination optical systems 7 are used), the specifications of the illumination optical system 7 are the same as those of the first embodiment, and the illumination distance is 1 m. The shape and brightness of the lighting area of the above were obtained by optical simulation. The results are shown in FIG. In this optical simulation, the reflection mirror 8 and the reflection prism sheet 9 were ignored.

図10(照明距離=1m)では、照明エリアは矩形状(長辺約890mm×短辺約180mm、矩形状率約94%)であり、照度が、約1.1×10-3〜約2.5×10-3W/cm2(約1.8×10-3W/cm2±39%)になる、均一な明るさであった。 In FIG. 10 (illumination distance = 1 m), the illumination area has a rectangular shape (long side about 890 mm × short side about 180 mm, rectangular shape ratio about 94%), and the illuminance is about 1.1 × 10 -3 to about 2. The brightness was uniform at .5 × 10 -3 W / cm 2 (about 1.8 × 10 -3 W / cm 2 ± 39%).

すなわち、照明光学系7を3つ用いた場合(図10)は、1つ用いた場合(図7)と比べ、照明距離1mでの照明エリアの明るさが約3倍になる。
[実施例5] 実施例5として、実施例4において、反射ミラー8について、反射面8Aの焦点距離f2を965mm、第2トロイダルレンズ3との間隔をf2(=965mm)、x方向サイズを890mm、y方向サイズを190mm(ただし、傾斜前で傾斜の角度θが0°のとき)、傾斜の角度θを約5°とした。また、反射プリズムシート9について、z軸からの上方の離間距離を95mmとした。
That is, when three illumination optical systems 7 are used (FIG. 10), the brightness of the illumination area at an illumination distance of 1 m is about three times as high as that when one is used (FIG. 7).
[Example 5] As the fifth embodiment, in the fourth embodiment, the focal length f 2 of the reflecting surface 8A is 965 mm, the distance from the second toroidal lens 3 is f 2 (= 965 mm), and the size in the x direction. 890 mm, the y-direction size was 190 mm (however, when the tilt angle θ was 0 ° before tilting), and the tilt angle θ was about 5 °. Further, the distance above the reflective prism sheet 9 from the z-axis was set to 95 mm.

実施例5の照明装置について、光学シミュレーションにより、z軸の直下95mmの位置での2次反射光束の照明エリアの形状および明るさを調べた結果、形状は矩形状(長辺約965mm×短辺約890mm、矩形状率約96%)、明るさは反射ミラー8直前のそれ(図10)の約10分の1のレベルで均一な明るさであった(ただし、図示せず)。 As a result of investigating the shape and brightness of the illumination area of the secondary reflected light flux at the position 95 mm directly below the z-axis by the optical simulation of the lighting apparatus of Example 5, the shape is rectangular (long side about 965 mm × short side). (Approximately 890 mm, rectangularity ratio of approximately 96%), the brightness was uniform at a level of about 1/10 of that immediately before the reflection mirror 8 (FIG. 10) (however, not shown).

1 面光源
2 第1のトロイダルレンズ
3 第2のトロイダルレンズ
5 合成レンズ系
7 照明光学系
8 反射ミラー
8A 凹面形状の反射面
8B 反射基板
9 反射プリズムシート
9A 反射プリズム状の突条
9B シート基板
1 Surface light source 2 First toroidal lens 3 Second toroidal lens 5 Synthetic lens system 7 Illumination optical system 8 Reflective mirror 8A Concave reflective surface 8B Reflective substrate 9 Reflective prism sheet 9A Reflective prism-shaped ridge 9B Sheet substrate

Claims (4)

面光源、合成レンズ系、反射ミラーおよび反射プリズムシートからなる照明装置において、
前記合成レンズ系は、それぞれ直交するx軸、y軸およびz軸の3次元で構成され、
z軸上に前記合成レンズ系の光軸を有し、
前記面光源から出射した光束を凹面形状の入射面から取り込んでx方向の曲率半径がy方向の曲率半径より大きいトロイダル面形状の出射面から出射する第1のトロイダルレンズと、
前記第1のトロイダルレンズから出射した光束を入射面から取り込んでx方向の曲率半径がy方向の曲率半径より大きいトロイダル面形状の出射面から出射する第2のトロイダルレンズと、を具備し、
前記第1のトロイダルレンズに近い側から順に、y−z平面内の前側焦点Fyzおよびx−z平面内の前側焦点Fxzを有し、前側焦点Fxzと前記第1のトロイダルレンズの入射面との間で、かつ前記前側焦点Fyzの近傍を前記面光源の位置とし、
前記面光源と前記合成レンズ系とからなる照明光学系は、前記合成レンズ系の出射側のx−y平面に矩形状の照明エリアを有し、
さらに、
前記反射ミラーは、焦点距離f2を有し、前記第2のトロイダルレンズとの距離をほぼf2として、前記第2のトロイダルレンズから出射した光束をz軸と傾斜した方向へ反射させる手段を有し、
前記反射プリズムシートは、前記反射ミラーから反射した光束の光路を変更する手段を有する
ことを特徴とする照明装置。
In a lighting device consisting of a surface light source, a synthetic lens system, a reflection mirror, and a reflection prism sheet.
The synthetic lens system is composed of three dimensions of x-axis, y-axis, and z-axis that are orthogonal to each other.
The optical axis of the synthetic lens system is provided on the z-axis.
A first toroidal lens that captures the luminous flux emitted from the surface light source from the concave incident surface and emits it from the toroidal surface-shaped exit surface whose radius of curvature in the x direction is larger than the radius of curvature in the y direction.
A second toroidal lens that takes in the luminous flux emitted from the first toroidal lens from the incident surface and emits it from an emitting surface having a toroidal surface shape in which the radius of curvature in the x direction is larger than the radius of curvature in the y direction is provided.
It has a front focal point Fyz in the yz plane and a front focal point Fxz in the x-z plane in order from the side closer to the first toroidal lens, and the front focal point Fxz and the incident surface of the first toroidal lens. The position of the surface light source is set between and near the front focal point Fyz.
The illumination optical system including the surface light source and the synthetic lens system has a rectangular illumination area on the xy plane on the emission side of the synthetic lens system.
Moreover,
The reflection mirror has a focal length f 2 , and a means for reflecting a light flux emitted from the second toroidal lens in a direction inclined with the z-axis, with the distance from the second toroidal lens being approximately f 2. Have and
The reflecting prism sheet is a lighting device having a means for changing an optical path of a light flux reflected from the reflecting mirror.
前記面光源の出射面と前記第1のトロイダルレンズの入射面とのx−y平面への正射影を、x方向、y方向がそれぞれ長辺方向、短辺方向になる矩形状としたことを特徴とする請求項1に記載の照明装置。 The normal projection of the emission surface of the surface light source and the incident surface of the first toroidal lens on the xy plane is formed into a rectangular shape in which the x direction and the y direction are the long side direction and the short side direction, respectively. The lighting device according to claim 1. 前記照明光学系を複数具備したことを特徴とする請求項1または2に記載の照明装置。 The lighting device according to claim 1 or 2, wherein a plurality of the illumination optical systems are provided. 前記照明装置を液晶用バックライト装置としたことを特徴とする請求項1〜3のいずれか一項に記載の照明装置。
The lighting device according to any one of claims 1 to 3, wherein the lighting device is a backlight device for a liquid crystal display.
JP2020104952A 2020-06-18 2020-06-18 Lighting equipment Active JP7495702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020104952A JP7495702B2 (en) 2020-06-18 2020-06-18 Lighting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020104952A JP7495702B2 (en) 2020-06-18 2020-06-18 Lighting equipment

Publications (2)

Publication Number Publication Date
JP2021197324A true JP2021197324A (en) 2021-12-27
JP7495702B2 JP7495702B2 (en) 2024-06-05

Family

ID=79195933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020104952A Active JP7495702B2 (en) 2020-06-18 2020-06-18 Lighting equipment

Country Status (1)

Country Link
JP (1) JP7495702B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001034982A (en) 1999-07-27 2001-02-09 Ricoh Co Ltd Information recording/reproducing device
JP5830828B2 (en) 2014-04-02 2015-12-09 ケイテック株式会社 Backlight device and liquid crystal display
CN107949742B (en) 2015-09-16 2019-12-20 内景有限公司 Artificial skylight and method
US10309601B2 (en) 2015-11-27 2019-06-04 Mitsubishi Electric Corporation Light source device, lighting apparatus, and vehicle lamp device
JP2019102372A (en) 2017-12-07 2019-06-24 国立大学法人東北大学 Luminaire, backlight device and front light device

Also Published As

Publication number Publication date
JP7495702B2 (en) 2024-06-05

Similar Documents

Publication Publication Date Title
JP5287828B2 (en) Head-up display device
US10705333B2 (en) Projection optical system and head-up display apparatus using the same
JP6579126B2 (en) Head-up display device and image projection unit
US20170115553A1 (en) Scanning projector transmissive screen, and scanning projector system
JP6663890B2 (en) Backlight unit and head-up display device
CN104049370A (en) Image Display Apparatus
JP6663891B2 (en) Backlight unit and head-up display device
US11561396B2 (en) Head-up display device and transportation device
JP2014202835A (en) Illumination device and image display device
CN108885345A (en) head-up display device
JP2006285097A (en) Light convergent sheet, surface light source device and transmission type display device
CN103995420B (en) Photoimaging systems and there is the projection imaging system of this photoimaging systems
JP2016180922A (en) Head-up display device
KR102453742B1 (en) planar lighting device
JP2001013878A (en) Display device
WO2022249800A1 (en) Spatial floating image display device and light source device
JP2021197324A (en) Luminaire
Ley et al. Imaging and non-imaging illumination of DLP for high resolution headlamps
CN112034620A (en) Target reflection type diffusion sheet head-up display device
Held et al. Micro pixel LEDs: Design challenge and implementation for high-resolution headlamps
JP2005018070A (en) Screen for video display having vertical and horizontal optical viewing angles and projection tv provided with the same
JP2022135253A (en) Space floating video display device
CN116583427A (en) Space suspension image display device and light source device
JP6984619B2 (en) Virtual image display device
US6873470B2 (en) Arrangement for the visualization of information in a motor vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240516

R150 Certificate of patent or registration of utility model

Ref document number: 7495702

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531