JP2021190613A - Vertical thermoelectric power generation element and electronic device including the same - Google Patents

Vertical thermoelectric power generation element and electronic device including the same Download PDF

Info

Publication number
JP2021190613A
JP2021190613A JP2020096025A JP2020096025A JP2021190613A JP 2021190613 A JP2021190613 A JP 2021190613A JP 2020096025 A JP2020096025 A JP 2020096025A JP 2020096025 A JP2020096025 A JP 2020096025A JP 2021190613 A JP2021190613 A JP 2021190613A
Authority
JP
Japan
Prior art keywords
magnetic material
conductive pattern
magnetization
longitudinal
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020096025A
Other languages
Japanese (ja)
Inventor
健一 内田
Kenichi Uchida
建 王
Ken O
有紀子 高橋
Yukiko Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2020096025A priority Critical patent/JP2021190613A/en
Publication of JP2021190613A publication Critical patent/JP2021190613A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Hall/Mr Elements (AREA)

Abstract

To provide a vertical thermoelectric power generation element that freely controls thermoelectromotive force output by simply irradiating a magnetic material with light.SOLUTION: A vertical thermoelectric power generation element includes a magnetic material 20 showing all-light magnetization reversal and anomalous Nernst effect, and light irradiation means 35 that can control the magnetization direction of the magnetic material 20, and forms a temperature gradient in the magnetic material 20 by a temperature gradient forming portion 30, and the temperature gradient forming direction of the magnetic material 20 is a direction orthogonal to the magnetization direction of the magnetic material 20, and a longitudinal conductive pattern of the magnetic material 20 is formed in a direction orthogonal to the temperature gradient forming direction of the magnetic material 20 and the magnetization direction of the magnetic material 20. Due to control of the magnetization distribution of the magnetic material 20 with the light irradiation means 35, the thermoelectromotive force output generated by the anomalous Nernst effect can be controlled and increased.SELECTED DRAWING: Figure 1

Description

本発明は垂直型熱電発電素子及びこれを用いた電子機器に関し、特に材料に光を照射することで熱から電気エネルギーを直接回収する垂直型熱電発電素子及びこれを用いた電子機器に関する。 The present invention relates to a vertical thermoelectric power generation element and an electronic device using the same, and more particularly to a vertical thermoelectric power generation element that directly recovers electric energy from heat by irradiating a material with light and an electronic device using the same.

熱から電気エネルギーを直接回収する発電方法として熱発電と呼ばれるものがある。これは自動車等の内燃機関、工場や製鉄所、パソコンやサーバー機などで発生する身近な廃熱を利用する方法や、温泉熱、太陽熱、地中熱などの自然界の熱を利用する方法が知られている。主に熱を電気に変える熱電変換素子は、「温度差を有する材料の両端に起電力が生じる」というゼーベック効果を主な駆動原理としている。この原理を利用した発電装置は温度差が大きいほど発電量は大きくなる。また、小型化が可能なうえ、可動部分もなく発電装置の長寿命化が期待できる。 There is a power generation method called thermoelectric generation that directly recovers electric energy from heat. This is known as a method of using familiar waste heat generated by internal combustion engines such as automobiles, factories and steelworks, personal computers and server machines, and a method of using natural heat such as hot spring heat, solar heat, and geothermal heat. Has been done. The main driving principle of the thermoelectric conversion element that mainly converts heat into electricity is the Seebeck effect that "electromotive force is generated at both ends of a material having a temperature difference". A power generation device using this principle generates a large amount of power as the temperature difference increases. In addition, it can be miniaturized, and there are no moving parts, so it can be expected that the life of the power generation device will be extended.

しかし、現在使われている非磁性体の金属や半導体におけるゼーベック効果を利用した発電素子は温度差の方向と起電力を取り出す方向が同じであるため立体的な構造を作ることが余儀なくされ、製造工程が複雑になり大型化や高集積化に伴う製造コストに問題を抱えている。 However, the power generation elements that utilize the Seebeck effect in non-magnetic metals and semiconductors that are currently used are forced to create a three-dimensional structure because the direction of the temperature difference and the direction of extracting the electromotive force are the same. The process becomes complicated, and there is a problem in manufacturing cost due to the increase in size and high integration.

そこで、物質の磁性を利用した発電原理による熱電変換素子が、例えば非特許文献1、2で提案されている。
物質の磁性を用いた発電原理は、材料に与えた温度勾配とその磁化の外積方向に熱起電力が現れる異常ネルンスト効果を利用したもので、強磁性体材料や、強磁性体と常磁性体の多層構造、反強磁性体マンガン合金(MnSn)などが用いられる。磁性体を使用した場合の熱電素子によれば、温度差と磁化と起電力が互いにすべて垂直方向を取るため、熱起電力を発生させる素子構造自体の単純化が可能である。
Therefore, for example, Non-Patent Documents 1 and 2 have proposed thermoelectric conversion elements based on the principle of power generation using the magnetism of a substance.
The power generation principle using the magnetism of a material utilizes the anomalous Nernst effect in which a thermomotive force appears in the outer product direction of the temperature gradient applied to the material and its magnetization. Ferromagnetic materials, ferromagnets and paramagnetic materials Multilayer structure, antiferromagnetic manganese alloy (Mn 3 Sn) and the like are used. According to the thermoelectric element when a magnetic material is used, the temperature difference, the magnetization, and the electromotive force all take vertical directions, so that the element structure itself that generates the thermoelectric force can be simplified.

しかしながら、特許文献1、2で提案された素子では、大きさまたは符号の異なる異常ネルンスト係数もしくは異なる保磁力を持つ磁性材料を接合させて組み合わせて使用するため、素子を隙間なくチップ内に並べるといった微細加工が必要なこと、複数の素子作製プロセスが必要なことから製造コストを下げにくいといった問題がある。また、異なる物質の接合に基づく複雑な構造では、素子の大面積化が困難になり、耐久性も低下する恐れがある。 However, in the elements proposed in Patent Documents 1 and 2, since magnetic materials having different sizes or codes of anomalous Nerunst coefficients or different coercive forces are bonded and used in combination, the elements are arranged in a chip without gaps. There is a problem that it is difficult to reduce the manufacturing cost because microfabrication is required and a plurality of element manufacturing processes are required. Further, in a complicated structure based on the joining of different substances, it becomes difficult to increase the area of the element, and the durability may be lowered.

“Large anomalous Nernst effect at room temperature in a chiral antiferromagnet”, Muhammad Ikhlas et. al., Nature Physics (2017), DOI番号: 10.1038/NPHYS4181“Large anomalous Nernst effect at room temperature in a chiral antiferromagnet”, Muhammad Ikhlas et. Al., Nature Physics (2017), DOI number: 10.1038 / NPHYS4181 “Iron-based Binary Ferromagnets for Transverse Thermoelectric Conversion”, Akito Sakai et. al., Nature(2020年4月27日オンライン版), DOI:10.1038/s41586-020-2230-z“Iron-based Binary Ferromagnets for Transverse Thermoelectric Conversion”, Akito Sakai et. Al., Nature (online version, April 27, 2020), DOI: 10.1038 / s41586-020-2230-z

本発明の目的は、従来のゼーベック効果に基づく熱電発電とは全く異なる原理で、光照射によって磁性材料の磁化方向を制御することで、自在に熱起電力出力を制御できる垂直型熱電発電素子及びこれを用いた電子機器を提供することを目的とする。 An object of the present invention is a vertical thermoelectric power generation element capable of freely controlling the thermoelectromotive force output by controlling the magnetization direction of the magnetic material by light irradiation based on a principle completely different from the conventional thermoelectric power generation based on the Seebeck effect. It is an object of the present invention to provide an electronic device using this.

本発明者は、上記課題を解決するために鋭意研究を進めた結果、異常ネルンスト効果を用いることで、磁化による熱起電力出力制御が可能になり、電圧方向の反転などが行えることと、および異常ネルンスト効果と、全光型磁化反転技術を組み合わせることで、本発明を完成させた。なお、全光型磁化反転技術には、強磁性体やフェリ磁性体に光を照射することで磁化反転を誘起する現象で、光磁気記録の原理である照射する光の円偏光のヘリシティ(右回り/左回り円偏光)に依存して磁化の向きを自在に制御する類型と、磁場等で規定した初期磁化方向に対して、パルスレーザー光を照射すると磁化が反転するもので、円偏光に依存しない類型とがある。 As a result of diligent research to solve the above problems, the present inventor can control the thermoelectromotive force output by magnetization by using the anomalous Nernst effect, and can reverse the voltage direction. The present invention was completed by combining the anomalous Nernst effect and the all-light magnetization reversal technique. The all-optical magnetization reversal technology is a phenomenon that induces magnetization reversal by irradiating a ferromagnetic material or ferrimagnetic material with light, and is the principle of photomagnetic recording. A type that freely controls the direction of magnetization depending on (rotational / counterclockwise circular polarization), and the magnetization is reversed when pulsed laser light is applied to the initial magnetization direction specified by a magnetic field, etc., resulting in circular polarization. There are types that do not depend on it.

〔1〕本発明の垂直型熱電発電素子は、例えば図1に示すように、全光型磁化反転と異常ネルンスト効果を示す磁性体20と、磁性体20の磁化方向を制御できる光照射手段35を備え、温度勾配形成部30によって磁性体20に温度勾配を形成すると共に、磁性体20の温度勾配形成方向が磁性体20の磁化方向と直交する方向であり、磁性体20の温度勾配形成方向と磁性体20の磁化方向とに直交する方向に磁性体20の長手方向導電パターンが形成されており、光照射手段35で磁性体20の磁化分布を制御することによって、異常ネルンスト効果によって生成された熱起電力出力を制御できることを特徴とする。 [1] The vertical thermoelectric power generation element of the present invention has, for example, as shown in FIG. 1, a magnetic body 20 exhibiting total optical magnetization reversal and an abnormal Nernst effect, and a light irradiation means 35 capable of controlling the magnetization direction of the magnetic body 20. A temperature gradient is formed in the magnetic body 20 by the temperature gradient forming portion 30, and the temperature gradient forming direction of the magnetic body 20 is orthogonal to the magnetization direction of the magnetic body 20. A longitudinal conductive pattern of the magnetic body 20 is formed in a direction orthogonal to the magnetization direction of the magnetic body 20 and is generated by the anomalous Nernst effect by controlling the magnetization distribution of the magnetic body 20 by the light irradiation means 35. It is characterized by being able to control the thermomotive power output.

〔2〕好ましくは、磁性体20は、強磁性体、フェリ磁性体、反強磁性体、または少なくとも強磁性体、フェリ磁性体、反強磁性体の1種類を含む積層構造から成るとよい。
〔3〕好ましくは、前記強磁性体は、Pt/Coの多層膜を有し、当該多層膜の全体として強磁性体として振る舞うとよい。
[2] Preferably, the magnetic material 20 has a laminated structure including a ferromagnetic material, a ferrimagnetic material, an antiferromagnetic material, or at least one of a ferromagnetic material, a ferrimagnetic material, and an antiferromagnetic material.
[3] It is preferable that the ferromagnet has a Pt / Co multilayer film and behaves as a ferromagnet as a whole of the multilayer film.

〔4〕本発明の垂直型熱電発電素子において、好ましくは、光照射手段35は、偏光を制御できる偏光照射手段であり、前記偏光照射手段で磁性体20に円偏光を照射したとき、磁性体20の円偏光の照射された領域で、異常ネルンスト効果によって生成された熱起電力出力を制御できるとよい。
〔5〕本発明の垂直型熱電発電素子において、好ましくは、光照射手段35は、磁性体20の初期磁化方向に対して、磁性体20の磁化方向を反転させるパルスレーザー光を照射するものであるとよい。
[4] In the vertical thermoelectric power generation element of the present invention, preferably, the light irradiating means 35 is a polarized light irradiating means capable of controlling polarization, and when the magnetic body 20 is irradiated with circularly polarized light by the polarized light irradiating means, the magnetic body It would be nice to be able to control the thermoelectromotive force output generated by the anomalous Nernst effect in the 20 circularly polarized areas irradiated.
[5] In the vertical thermoelectric power generation element of the present invention, preferably, the light irradiation means 35 irradiates a pulse laser beam that reverses the magnetization direction of the magnetic body 20 with respect to the initial magnetization direction of the magnetic body 20. It would be nice to have it.

〔6〕本発明の垂直型熱電発電素子において、好ましくは、例えば図1に示すように、磁性体10はミアンダ形状のサーモバイル構造を有するものであって、磁性体20の温度勾配形成方向は、前記ミアンダ形状の巨視的な結線方向(x方向)と一致し、磁性体20の長手方向導電パターンは、前記ミアンダ形状の振れ幅方向と一致する長手方向(y方向)を有し、磁性体20の磁化方向は、磁性体20の長手方向導電パターンの厚み方向(z方向)と一致するとよい。
〔7〕本発明の垂直型熱電発電素子〔6〕において、好ましくは、磁性体10の長手方向導電パターンは、長手方向導電パターンの厚み方向上向きに磁化された上向き磁化部21と、長手方向導電パターンの厚み方向下向きに磁化された下向き磁化部22と、上向き磁化部21の長手方向導電パターンにおける当該長手方向の一端を折返して、隣接する下向き磁化部22の長手方向導電パターンにおける当該長手方向の一端に接続する第1の屈曲部23と、下向き磁化部22の長手方向導電パターンにおける当該長手方向の他端を折返して、隣接する上向き磁化部21の長手方向導電パターンにおける当該長手方向の他端に接続する第2の屈曲部24と、温度勾配形成方向の最も低温側に位置する前記長手方向導電パターンが接続される第1の電極部25と、温度勾配形成方向の最も高温側に位置する前記長手方向導電パターンが接続される第2の電極部26と、を有するとよい。
[6] In the vertical thermoelectric power generation element of the present invention, preferably, as shown in FIG. 1, for example, the magnetic body 10 has a meander-shaped sir-mobile structure, and the temperature gradient forming direction of the magnetic body 20 is , The longitudinal conductive pattern of the magnetic body 20 has a longitudinal direction (y direction) that coincides with the runout width direction of the meander shape, which coincides with the macroscopic connection direction (x direction) of the meander shape, and is a magnetic material. The magnetization direction of 20 may coincide with the thickness direction (z direction) of the longitudinal conductive pattern of the magnetic material 20.
[7] In the vertical thermoelectric power generation element [6] of the present invention, preferably, the longitudinal conductive pattern of the magnetic body 10 includes an upward magnetized portion 21 magnetized upward in the thickness direction of the longitudinal conductive pattern and longitudinal conductivity. The downward magnetized portion 22 magnetized downward in the thickness direction of the pattern and one end in the longitudinal direction in the longitudinal conductive pattern of the upward magnetized portion 21 are folded back to form the longitudinal conductive pattern of the adjacent downward magnetized portion 22. The first bending portion 23 connected to one end and the other end in the longitudinal direction of the downward magnetization portion 22 are folded back, and the other end in the longitudinal direction in the longitudinal conduction pattern of the adjacent upward magnetization portion 21 is folded back. A second bent portion 24 connected to the first electrode portion 25 to which the longitudinal conduction pattern located on the lowest temperature side in the temperature gradient forming direction is connected, and a first electrode portion 25 located on the hottest side in the temperature gradient forming direction. It is preferable to have a second electrode portion 26 to which the longitudinal conductive pattern is connected.

〔8〕本発明の垂直型熱電発電素子において、好ましくは、例えば図6に示すように、磁性体80はミアンダ形状のサーモバイル構造を有するものであって、磁性体80の温度勾配形成方向は、磁性体80の長手方向導電パターンの厚み方向(z方向)と一致し、磁性体80の長手方向導電パターンは、前記ミアンダ形状の振れ幅方向と一致する長手方向(y方向)を有し、磁性体80の磁化方向は、前記ミアンダ形状の巨視的な結線方向(x方向)と一致するとよい。
〔9〕本発明の垂直型熱電発電素子〔8〕において、好ましくは、磁性体80の長手方向導電パターンは、幅方向正側磁化部81と幅方向反側磁化部82が交互に配置されたものであって、幅方向正側磁化部81は、一方に位置する長手方向導電パターンの幅方向の正側に磁化されたものであり、幅方向反側磁化部82は、前記一方に位置する前記長手方向導電パターンと対となる位置に配置された他方の長手方向導電パターンの幅方向の反側に磁化されたものであり、幅方向反側磁化部82幅方向正側磁化部81の長手方向導電パターンにおける当該長手方向の一端を折返して、隣接する幅方向正側磁化部81の長手方向導電パターンにおける当該長手方向の一端に接続する第1の屈曲部83と、幅方向正側磁化部81の長手方向導電パターンにおける当該長手方向の他端を折返して、隣接する幅方向反側磁化部82の長手方向導電パターンにおける当該長手方向の他端に接続する第2の屈曲部84と、前記巨視的な結線方向の最も矢尻側に位置する前記長手方向導電パターンが接続される第1の電極部85と、前記巨視的な結線方向の最も矢筈側に位置する前記長手方向導電パターンが接続される第2の電極部86と、を有するとよい。
〔10〕〔1〕乃至〔9〕のいずれか1に記載の垂直型熱電発電素子を用いた電子機器。
[8] In the vertical thermoelectric power generation element of the present invention, preferably, as shown in FIG. 6, for example, the magnetic body 80 has a meander-shaped sir-mobile structure, and the temperature gradient forming direction of the magnetic body 80 is , The longitudinal conductive pattern of the magnetic body 80 has a longitudinal direction (y direction) that coincides with the thickness direction (z direction) of the longitudinal conductive pattern of the magnetic body 80, and coincides with the deflection width direction of the meander shape. The magnetizing direction of the magnetic material 80 may be coincident with the macroscopic connection direction (x direction) of the meander shape.
[9] In the vertical thermoelectric power generation element [8] of the present invention, preferably, in the longitudinal conduction pattern of the magnetic body 80, the width direction positive magnetization portion 81 and the width direction opposite side magnetization portion 82 are alternately arranged. The width direction positive magnetization portion 81 is magnetized on the width direction positive side of the longitudinal conduction pattern located on one side, and the width direction opposite side magnetization portion 82 is located on the one side. It is magnetized on the opposite side in the width direction of the other longitudinal conduction pattern arranged at a position paired with the longitudinal conduction pattern, and is the longitudinal length of the width direction opposite side magnetization portion 82 and the width direction positive side magnetization portion 81. A first bent portion 83 connected to one end in the longitudinal direction in the longitudinal conductive pattern of an adjacent positive magnetization portion 81 in the width direction by folding back one end in the longitudinal direction in the directional conduction pattern, and a positive magnetization portion in the width direction. A second bent portion 84 that folds back the other end of the longitudinal conduction pattern of 81 and connects to the other end of the longitudinal conduction pattern of the adjacent widthwise opposite magnetization portion 82, and the above. The first electrode portion 85 to which the longitudinal conduction pattern located on the most arrowhead side in the macroscopic connection direction is connected and the longitudinal conduction pattern located on the most arrowhead side in the macroscopic connection direction are connected. It is preferable to have a second electrode portion 86 and the like.
[10] An electronic device using the vertical thermoelectric power generation element according to any one of [1] to [9].

本発明の垂直型熱電発電素子によれば、磁性体において発現する熱電効果である「異常ネルンスト効果」と「全光型磁化反転技術」を組み合わせることで、磁性体材料に光を照射することで磁化方向を制御して、サーモパイル構造を適切に構成して、熱起電力を昇圧できる。また、本発明の垂直型熱電発電素子は単一の強磁性材料で構成されており、製造プロセスが比較的単純で済み、低コストでの製造が可能で量産化・大面積化・高密度化に適する。
本発明の垂直型熱電発電素子を用いた電子機器によれば、光照射で磁化分布を変えることによって、熱電変換特性の再構成や局所的に磁化分布を変えることによる熱電発電の出力制御が行える。
According to the vertical thermoelectric power generation element of the present invention, by irradiating the magnetic material with light by combining the "abnormal Nernst effect", which is the thermoelectric effect exhibited in the magnetic material, and the "all-light type magnetization reversal technology". By controlling the magnetization direction, the thermopile structure can be appropriately configured to boost the thermoelectromotive force. In addition, the vertical thermoelectric power generation element of the present invention is composed of a single ferromagnetic material, the manufacturing process is relatively simple, it can be manufactured at low cost, and mass production, large area, and high density are possible. Suitable for.
According to the electronic device using the vertical thermoelectric power generation element of the present invention, the output of thermoelectric power generation can be controlled by reconstructing the thermoelectric conversion characteristics and locally changing the magnetization distribution by changing the magnetization distribution by light irradiation. ..

本発明の一実施形態を示す簡略化されたサーモパイル形状の熱電発電(TEG)デバイスの概念的構成を示す斜視図である。FIG. 3 is a perspective view showing a conceptual configuration of a simplified thermopile-shaped thermoelectric power generation (TEG) device showing an embodiment of the present invention. 本発明の一実施形態を示すCo/Pt多層膜における磁化カーブと光誘起磁化反転特性、およびCo/Pt多層膜のみから構成されるサーモパイルベース熱電発電(TEG)デバイスにおける磁化分布の磁気光学設計図である。Magneto-optic design diagram of magnetization curve and photoinduced magnetization reversal characteristic in Co / Pt multilayer film showing one embodiment of the present invention, and magnetization distribution in thermopile-based thermoelectric power generation (TEG) device composed of only Co / Pt multilayer film. Is. 本発明の一実施形態を示す、Co/Pt多層膜サーモパイルベースTEGデバイスを一様に磁化させた際に測定された熱起電力の温度差(ΔT)依存性の説明図である。It is explanatory drawing of the temperature difference (ΔT) dependence of the thermoelectromotive force measured when the Co / Pt multilayer film thermopile-based TEG device is uniformly magnetized which shows one Embodiment of this invention. 本発明の一実施形態を示す、Co/Pt多層膜サーモパイルベースTEGデバイスにおいて異常ネルンスト信号が昇圧されるように光で磁化分布をデザインした場合における熱起電力のΔT依存性の説明図である。It is explanatory drawing of the ΔT dependence of thermoelectromotive force in the case of designing the magnetization distribution with light so that the anomalous Nernst signal is boosted in the Co / Pt multilayer film thermopile-based TEG device showing one embodiment of the present invention. 従来の異常ネルンスト効果に基づく熱電変換装置を説明する概念的構成を示す斜視図で、(A)は比較例1、(B)は比較例2を示している。It is a perspective view which shows the conceptual structure explaining the thermoelectric conversion apparatus based on the conventional anomalous Nernst effect, (A) shows comparative example 1, (B) shows comparative example 2. 本発明の他の実施形態を示す簡略化されたサーモパイル形状の熱電発電(TEG)デバイスの概念的構成を示す斜視図である。FIG. 6 is a perspective view showing a conceptual configuration of a simplified thermopile-shaped thermoelectric generation (TEG) device showing another embodiment of the present invention.

以下、本明細書で用いる技術用語の定義を記載する。
(1)全光型磁化反転技術(All optical switching of magnetization)
強磁性体やフェリ磁性体に光を照射することで磁化反転を誘起する現象で、光磁気記録の原理である。照射する光の円偏光のヘリシティ(右回り/左回り円偏光)に依存して磁化の向きを自在に制御可能である。AOSは全光型反転(All optical switching)の略語である。例えば、Fe1−XTbフェリ磁性合金薄膜(ferrimagnet alloy thin film)であって、AOSに最適化された組成・構造のものが用いられる。円偏光を照射した箇所のみ局所的に磁化反転し、直線偏光の場合は多磁区を形成する。なお、反強磁性体についても、AOSを発生するものが知られており、例えばTmFeOがある。IrMn/[Co/Pt](Nは積層数)のような構造において、反強磁性体IrMnによる交換バイアス効果を利用してAOSの磁化反転特性を制御することもできる。
The definitions of technical terms used in the present specification are described below.
(1) All optical switching of magnetization
It is a phenomenon that induces magnetization reversal by irradiating a ferromagnet or ferrimagnetic material with light, which is the principle of photomagnetic recording. The direction of magnetization can be freely controlled depending on the helicity of the circularly polarized light (clockwise / counterclockwise circularly polarized light) of the irradiated light. AOS is an abbreviation for All optical switching. For example, a Fe 1-X Tb X ferrimagnet alloy thin film having a composition and structure optimized for AOS is used. Magnetization is locally inverted only at the portion irradiated with circularly polarized light, and in the case of linearly polarized light, a multimagnetic domain is formed. As for the antiferromagnetic material, one that generates AOS is known, and there is, for example, TmFeO 3 . In a structure such as IrMn / [Co / Pt] N (N is the number of layers), the magnetization reversal characteristic of AOS can be controlled by utilizing the exchange bias effect of the antiferromagnetic material IrMn.

(2)ネルンスト効果(Nernst effect)と異常ネルンスト効果(anomalous Nernst effect)
ネルンスト効果とは、導体や磁性体に互いに垂直な方向の磁場(磁化)と温度差を与えることで、磁場(磁化)と温度勾配の両者に垂直な方向に起電力が生じる現象をいう。自発的に磁化や仮想磁場を持つ特殊な磁性体ではゼロ磁場でもネルンスト効果が発生し、これを異常ネルンスト効果と呼ぶ。異常ネルンスト効果があれば、ゼーベック効果と同様に温度差のみで起電力が発生する。
(2) Nernst effect and anomalous Nernst effect
The Nernst effect is a phenomenon in which an electromotive force is generated in a direction perpendicular to both the magnetic field (magnetization) and the temperature gradient by giving a magnetic field (magnetization) and a temperature difference in a direction perpendicular to each other to a conductor or a magnetic material. In a special magnetic material that spontaneously has magnetization or a virtual magnetic field, the Nernst effect occurs even at zero magnetic field, and this is called the anomalous Nernst effect. If there is an abnormal Nernst effect, electromotive force is generated only by the temperature difference as in the Seebeck effect.

(3)サーモバイル(thermopile)は、熱電堆とも呼ばれ、熱エネルギーを電気エネルギーに変換する電気部品である。ゼーベック効果に対するサーモパイルは複数の熱電対(thermocouple)を直列に、又は複数の熱電対からなる直列回路を並列に接続したものである。熱電対は、2種類の導電体線の先端同士を接触させて回路を作り、接合点に発生する熱起電力を生じさせるものであり、例えば温度計に使用される。ゼーベック効果の場合、異なる2種の金属や半導体を接合すると、それぞれの熱電能の違いから、2つの接合点の間の異なる温度に応じた起電力が発生することを応用するものである。
(4)ゼーベック効果(Seebeck effect)は、金属や半導体の温度差が電圧に直接変換される現象で、熱電効果の一種である。
(3) Thermopile, also called a thermopile, is an electrical component that converts thermal energy into electrical energy. The thermopile for the Seebeck effect is a series of thermocouples connected in series or a series circuit consisting of a plurality of thermocouples connected in parallel. A thermocouple makes a circuit by bringing the tips of two types of conductor wires into contact with each other to generate a thermoelectromotive force generated at a junction, and is used, for example, in a thermometer. In the case of the Seebeck effect, when two different kinds of metals and semiconductors are joined, an electromotive force corresponding to a different temperature is generated between the two joining points due to the difference in the thermoelectric power of each.
(4) The Seebeck effect is a phenomenon in which the temperature difference between a metal or a semiconductor is directly converted into a voltage, and is a kind of thermoelectric effect.

図1は、本発明の一実施形態を示す簡略化されたサーモパイル形状の熱電発電(TEG)デバイスの概念的構成を示す斜視図である。
サーモパイル状の接点は、単一の磁性体で構成された帯状又は線状の薄膜体よりなる金属導体線の接続点で、磁化方向の向きは、全光学ヘリシティ依存スイッチング(AO−HDS)によって隣接するストリップである磁性体20の長手方向導電パターン間で交互に切り替えられる。
FIG. 1 is a perspective view showing a conceptual configuration of a simplified thermopile-shaped thermoelectric power generation (TEG) device showing an embodiment of the present invention.
Thermopile-shaped contacts are connecting points of metal conductor wires made of strip-shaped or linear thin-film bodies composed of a single magnetic material, and the orientation of the magnetization direction is adjacent by total optical helicity-dependent switching (AO-HDS). The strips are alternately switched between the longitudinal conductive patterns of the magnetic material 20.

図において、本発明の垂直型熱電発電素子は、基板10、磁性体20よりなると共に、磁性体20とは別に温度勾配形成部30及び光照射手段35を備える。
基板10は、表面に磁性体20が形成されるもので、例えばガラス基板や、シリコン基板、酸化マグネシウム基板、サファイア基板のような薄膜作製に用いられる典型的な絶縁体材料に加えて、セラミックス基板や樹脂製基板でもよい。
In the figure, the vertical thermoelectric power generation element of the present invention is composed of a substrate 10 and a magnetic body 20, and includes a temperature gradient forming unit 30 and a light irradiation means 35 separately from the magnetic body 20.
The substrate 10 has a magnetic material 20 formed on its surface, and is a ceramic substrate in addition to a typical insulator material used for producing a thin film such as a glass substrate, a silicon substrate, a magnesium oxide substrate, and a sapphire substrate. Or a resin substrate may be used.

磁性体20は全光型磁化反転と異常ネルンスト効果を示すものあればよく、例えば、GdFe1−X−YCo(0.20≦X≦0.28、0.03≦Y≦0.10)、TbCo1−X(0.08≦X≦0.34)、TbFe1−X(0.19≦X≦0.34)、TbFe1−X−YCo(0.20≦X≦0.40、0.08≦Y≦0.30)、FePt等を用いることができる。
磁性体20は、ミアンダ形状に配置されているもので、上向き磁化部21、下向き磁化部22、第1の屈曲部23、第2の屈曲部24、第1の電極部25、第2の電極部26で構成されている。ミアンダ形状なので、磁性体20の巨視的な温度勾配方向は磁性体20の巨視的な結線方向と大略一致し(図1のx方向)、磁性体20の振れ幅方向は磁性体20の微視的な長手方向導電パターンの熱起電力方向若しくは電場方向と大略一致(図1のy方向)する。磁性体20の厚み方向(図1のz方向)は、ミアンダ形状の巨視的な方向と、細部の微視的な方向とで一致する。ここで、磁性体20の巨視的な結線方向は、磁性体20が第1の電極部25と第2の電極部26の間で結線される方向を、基板10全体の形状、特に矩形形状の基板10の縁方向を基準に定めたものをいう。
The magnetic material 20 may be any as long as it exhibits total light type magnetization reversal and anomalous Nerunst effect. For example, Gd X Fe 1-XY Co Y (0.20 ≦ X ≦ 0.28, 0.03 ≦ Y ≦ 0) .10), Tb X Co 1-X (0.08 ≤ X ≤ 0.34), Tb X Fe 1-X (0.19 ≤ X ≤ 0.34), Tb X Fe 1-XY Co Y (0.20 ≦ X ≦ 0.40, 0.08 ≦ Y ≦ 0.30), FePt and the like can be used.
The magnetic body 20 is arranged in a meander shape, and has an upward magnetization portion 21, a downward magnetization portion 22, a first bending portion 23, a second bending portion 24, a first electrode portion 25, and a second electrode. It is composed of a part 26. Since it has a meander shape, the macroscopic temperature gradient direction of the magnetic body 20 roughly coincides with the macroscopic connection direction of the magnetic body 20 (x direction in FIG. 1), and the swing width direction of the magnetic body 20 is a microscopic view of the magnetic body 20. It roughly coincides with the thermoelectromotive force direction or the electric field direction of the longitudinal conductive pattern (y direction in FIG. 1). The thickness direction of the magnetic body 20 (z direction in FIG. 1) coincides with the macroscopic direction of the meander shape and the microscopic direction of the details. Here, the macroscopic connection direction of the magnetic body 20 is the direction in which the magnetic body 20 is connected between the first electrode portion 25 and the second electrode portion 26, and has a shape of the entire substrate 10, particularly a rectangular shape. It refers to the one defined based on the edge direction of the substrate 10.

上向き磁化部21は、磁性体20の長手方向導電パターンであって、紙面上向き(z軸方向矢尻側)に磁化された磁性体よりなる。下向き磁化部22は、磁性体20の長手方向導電パターンであって、紙面下向き(z軸方向矢筈側)に磁化された磁性体よりなる。上向き磁化部21と下向き磁化部22は、交互に平行な状態で基板10上に配置されており、第1の屈曲部23と第2の屈曲部24によって、ミアンダ形状に配置されている。第1の屈曲部23は、上向き磁化部21の長手方向導電パターンにおけるy軸の一端を折返して、隣接する下向き磁化部22の長手方向導電パターンにおけるy軸の一端に接続する導電パターンである。第2の屈曲部24は、下向き磁化部22の長手方向導電パターンにおけるy軸の他端を折返して、隣接する上向き磁化部21の長手方向導電パターンにおけるy軸の他端に接続する導電パターンである。 The upward magnetizing portion 21 is a longitudinal conductive pattern of the magnetic material 20, and is made of a magnetic material magnetized upward on the paper surface (the arrowhead side in the z-axis direction). The downwardly magnetized portion 22 is a longitudinal conductive pattern of the magnetic material 20, and is made of a magnetic material magnetized downward on the paper surface (on the side of the arrow in the z-axis direction). The upward magnetizing portion 21 and the downward magnetizing portion 22 are arranged on the substrate 10 in a state of being alternately parallel to each other, and are arranged in a meander shape by the first bending portion 23 and the second bending portion 24. The first bent portion 23 is a conductive pattern in which one end of the y-axis in the longitudinal conductive pattern of the upward magnetized portion 21 is folded back and connected to one end of the y-axis in the longitudinal conductive pattern of the adjacent downward magnetized portion 22. The second bent portion 24 is a conductive pattern in which the other end of the y-axis in the longitudinal conductive pattern of the downward magnetizing portion 22 is folded back and connected to the other end of the y-axis in the longitudinal conductive pattern of the adjacent upward magnetizing portion 21. be.

第1の電極部25は、最も低温側の部位に位置する上向き磁化部21が接続されるもので、ここでは上向き磁化部21の最近接部位が接続されており、マイナス電極板となっている。第2の電極部26は、最も高温側の部位に位置する上向き磁化部21が接続されるもので、ここでは上向き磁化部21の最近接部位が接続されており、プラス電極板となっている。
なお、第1の電極部25と第2の電極部26に接続される長手方向導電パターンは、温度勾配形成部30により形成される基板10の最も低温側34と最も高温側32に位置するものが接続されるものであり、上向き磁化部21となるか下向き磁化部22となるかは、基板10の幅と磁性体20の長手方向導電パターンのミアンダ形状の折り返し数によって定まる。
さらに、第1の電極部25と第2の電極部26は、マイナスの極性かプラスの極性となるかは、磁性体20の長手方向導電パターンの磁化方向によって定まるものである。従って、図1に示すような上向き磁化部21と下向き磁化部22の配置であれば、第1の電極部25がマイナス電極板となり、第2の電極部26がプラス電極板となるが、上向き磁化部21と下向き磁化部22の配置が図1に示すものと逆であれば、第1の電極部25がプラス電極板となり、第2の電極部26がマイナス電極板となる。また、逆符号の異常ネルンスト係数を有する磁性体を用いた場合は、逆符号の起電力が発生する。
The first electrode portion 25 is connected to the upward magnetizing portion 21 located at the lowest temperature side portion, and here, the closest portion of the upward magnetizing portion 21 is connected to form a negative electrode plate. .. The second electrode portion 26 is connected to the upward magnetizing portion 21 located at the portion on the hottest side, and here, the closest portion of the upward magnetizing portion 21 is connected to form a positive electrode plate. ..
The longitudinal conductive pattern connected to the first electrode portion 25 and the second electrode portion 26 is located on the coldest side 34 and the hottest side 32 of the substrate 10 formed by the temperature gradient forming portion 30. Is connected, and whether it becomes the upward magnetization portion 21 or the downward magnetization portion 22 is determined by the width of the substrate 10 and the number of folds of the meander shape of the longitudinal conductive pattern of the magnetic body 20.
Further, whether the first electrode portion 25 and the second electrode portion 26 have a negative polarity or a positive polarity is determined by the magnetization direction of the longitudinal conductive pattern of the magnetic body 20. Therefore, if the upward magnetizing portion 21 and the downward magnetizing portion 22 are arranged as shown in FIG. 1, the first electrode portion 25 becomes a negative electrode plate and the second electrode portion 26 becomes a positive electrode plate, but upward. If the arrangement of the magnetizing portion 21 and the downward magnetizing portion 22 is opposite to that shown in FIG. 1, the first electrode portion 25 becomes a positive electrode plate and the second electrode portion 26 becomes a negative electrode plate. Further, when a magnetic material having an anomalous Nernst coefficient with a reverse sign is used, an electromotive force with a reverse sign is generated.

磁性体20の長手方向導電パターンの微視的な形状は、例えば大略直方体状であって、幅方向をx軸、長手方向をy軸、厚み方向をz軸とする。磁性体20の磁化Mの方向は、例えば磁性体20の厚み方向zとする。温度勾配がx方向に付いている場合は、磁性体20における電流の方向は磁性体20の長手方向yとなる。
熱電変換電力の表示部28は、第2の電極部26から第1の電極部25に流れる熱電エネルギーを模式的に表示するもので、特に図5に示す比較例1、2との対比に用いている。
The microscopic shape of the longitudinal conductive pattern of the magnetic body 20 is, for example, a substantially rectangular parallelepiped shape, with the width direction being the x-axis, the longitudinal direction being the y-axis, and the thickness direction being the z-axis. The direction of the magnetization M of the magnetic body 20 is, for example, the thickness direction z of the magnetic body 20. When the temperature gradient is in the x direction, the direction of the current in the magnetic body 20 is the longitudinal direction y of the magnetic body 20.
The thermoelectric conversion power display unit 28 schematically displays the thermoelectric energy flowing from the second electrode unit 26 to the first electrode unit 25, and is particularly used for comparison with Comparative Examples 1 and 2 shown in FIG. ing.

温度勾配形成部30は、磁性体20に温度勾配を形成可能に設けられるもので、例えば電熱器のような熱源装置や自動車等の内燃機関、工場や製鉄所、パソコンやサーバー機などで発生する廃熱源が用いられる。磁性体20における温度勾配∇T又は/及び熱流Jqの方向は、例えば磁性体20の微視的な幅方向xとする。ここでは、基板10における磁性体20のパターンの幅方向xの端面において、一方側が高温側32となり、他方側が低温側34となる。
光照射手段35は、偏光を制御できるもので、例えばレーザ発振器と偏光板が用いられる。光照射手段35が照射する円偏光の方向は、例えば磁性体20の厚み方向zの成分を含むものとし、磁性体20の表面に照射される。右の円偏光(σ)が長手方向導電パターンに照明されることで、上向き磁化部21を形成する。左の円偏光(σ)が長手方向導電パターンに照明されることで、下向き磁化部22を形成する。
The temperature gradient forming unit 30 is provided so that a temperature gradient can be formed on the magnetic material 20, and is generated in, for example, a heat source device such as an electric heater, an internal combustion engine such as an automobile, a factory, a steel mill, a personal computer, a server machine, or the like. A waste heat source is used. The direction of the temperature gradient ∇T or / and the heat flow Jq in the magnetic material 20 is, for example, the microscopic width direction x of the magnetic material 20. Here, on the end surface of the pattern of the magnetic body 20 on the substrate 10 in the width direction x, one side is the high temperature side 32 and the other side is the low temperature side 34.
The light irradiation means 35 can control the polarization, and for example, a laser oscillator and a polarizing plate are used. The direction of circularly polarized light irradiated by the light irradiating means 35 is assumed to include, for example, a component in the thickness direction z of the magnetic body 20, and the surface of the magnetic body 20 is irradiated. The right circularly polarized light (σ + ) is illuminated by the longitudinal conductive pattern to form the upwardly magnetized portion 21. The left circularly polarized light (σ ) is illuminated by the longitudinal conductive pattern to form the downwardly magnetized portion 22.

このように構成された装置においては、図1に示すように、光照射手段35で磁性体20に円偏光を照射したとき、ミアンダ形状の振れ幅方向に応じて、磁性体20の円偏光の照射された領域である長手方向導電パターン毎に、上向き磁化部21と下向き磁化部22とを定める。上向き磁化部21と下向き磁化部22を交互に配置することによって、異常ネルンスト効果によって生成された熱起電力を昇圧できる。
即ち、異常ネルンスト効果によって、磁性体20の磁化Mと温度勾配∇T又は/及び熱流Jqの外積方向に、電流Jc(異常ネルンスト効果による電場EANE)が生成される。なお、磁性体が磁化していれば、外部磁場は不要である。
In the apparatus configured as described above, as shown in FIG. 1, when the magnetic body 20 is irradiated with circularly polarized light by the light irradiating means 35, the circularly polarized light of the magnetic body 20 is subjected to the direction of the deflection width of the meander shape. An upward magnetizing portion 21 and a downward magnetizing portion 22 are defined for each longitudinal conductive pattern that is an irradiated region. By alternately arranging the upward magnetizing portion 21 and the downward magnetizing portion 22, the thermoelectromotive force generated by the anomalous Nernst effect can be boosted.
That is, the abnormality by Nernst effect, the cross product direction of magnetization M and a temperature gradient ∇T or / and heat flow Jq of the magnetic body 20, (an electric field E ANE by abnormal Nernst effect) current Jc is generated. If the magnetic material is magnetized, no external magnetic field is required.

図2は本発明の一実施形態を示すCo/Pt多層膜サーモパイルベースの熱電発電(TEG)デバイスにおける磁気構成の磁気光学設計図で、(A)は[Co/Pt]多層膜の層構成図、(B)は[Co/Pt]サンプルの磁化M曲線(磁化の磁場H依存性)、(C)は室温でホールクロス形状での[Co/Pt]サンプルのホール抵抗R、(D)は[Co/Pt]多層膜サーモパイルベースの熱電発電(TEG)デバイスの概略図、(E)〜(H)は図2(D)に示す磁性体パターン部の要部拡大部で、右(σ)および左(σ)の円偏光で照明された[Co/Pt]サンプルの磁気光学カー効果顕微鏡画像である。明るいコントラストは、薄膜面に垂直な上方向に沿った磁化Mの領域を表し、暗いコントラストは、薄膜面に垂直な下方向に沿った磁化Mの領域を表している。 FIG. 2 is a magneto-optical design diagram of a magnetic configuration in a Co / Pt multilayer film thermopile-based thermoelectric power generation (TEG) device showing an embodiment of the present invention, and FIG. 2A is a layer configuration of [Co / Pt] 4 multilayer film. In the figure, (B) is the magnetization M curve of [Co / Pt] 4 samples (magnetic field H dependence of magnetization), and (C) is the Hall resistance RH of 4 samples of [Co / Pt] in a hole cross shape at room temperature. (D) is a schematic diagram of a [Co / Pt] 4- multilayer membrane thermopile-based thermoelectric power generation (TEG) device, and (E) to (H) are enlarged portions of the magnetic material pattern portion shown in FIG. 2 (D). , Right (σ + ) and left (σ ) magneto-optical Kerr effect microscopic images of 4 samples of [Co / Pt] illuminated with circular polarization. The bright contrast represents the region of magnetization M along the upward direction perpendicular to the thin film surface, and the dark contrast represents the region of magnetization M along the downward direction perpendicular to the thin film surface.

ここでは、本実施形態の磁性体パターン部60として、図2(A)に示すように、サファイア基板61の上に、下地層62としてタンタル(Ta)5.0nmおよびプラチナ(Pt)4.3nm、Co/Pt多層膜63としてコバルト(Co)0.3nmとプラチナ(Pt)0.7nmを交互に4ペア積層した8層膜、上部酸化防止層64としてプラチナ(Pt)3.0nmを積層したものである。この強磁性Co/Pt多層膜63は、垂直磁気異方性を示すと共に、AOSを示すことは既知である。 Here, as the magnetic pattern portion 60 of the present embodiment, as shown in FIG. 2A, tantalum (Ta) 5.0 nm and platinum (Pt) 4.3 nm are used as the base layer 62 on the sapphire substrate 61. , Co / Pt multilayer film 63 is an 8-layer film in which cobalt (Co) 0.3 nm and platinum (Pt) 0.7 nm are alternately laminated in 4 pairs, and platinum (Pt) 3.0 nm is laminated as an upper antioxidant layer 64. It is a thing. It is known that this ferromagnetic Co / Pt multilayer film 63 exhibits vertical magnetic anisotropy and also exhibits AOS.

強磁性Co/Pt多層膜の磁化カーブは、図2(B)に示すように、薄膜面に垂直な方向に磁界を与えた場合には、保磁力2.5kOe(≒200[kA/m])、飽和磁化1.5x10[emu・cm−3]を有する大略矩形の磁気ヒステリシス曲線となっている。他方、薄膜面内方向に磁界を与えた場合には、磁気ヒステリシスは小さく、磁界の強さHとして±1kOeの範囲内では磁化Mとして±0.15x10[emu・cm−3]まで急峻な変化をし、磁界の強さHとして中央部±1kOeの範囲外である±12kOeまでの領域では、その両端で磁化Mとして±0.6x10[emu・cm−3]程度とする緩慢な傾きを有する直線状の変化をする。 As shown in FIG. 2B, the magnetization curve of the ferromagnetic Co / Pt multilayer film has a coercive force of 2.5 kOe (≈200 [kA / m]) when a magnetic field is applied in the direction perpendicular to the thin film surface. ), It is a magnetic hysteresis curve of a substantially rectangular shape having a saturation magnetization of 1.5 × 10 3 [emu · cm -3]. On the other hand, when a magnetic field is applied in the in-plane direction of the thin film, the magnetic hysteresis is small, and the magnetization M is steep to ± 0.15 x 10 3 [emu · cm -3] within the range of ± 1 kOe as the magnetic field strength H. In the region up to ± 12 kOe, which is outside the range of ± 1 kOe in the central part, the magnetic field strength H changes, and the magnetization M is about ± 0.6 x 10 3 [emu · cm -3 ] at both ends. Makes a linear change with.

図2(C)に示すように、磁界の強さHを−15kOe(≒−1.2x10[kA/m])から+15kOe(≒+1.2x10[kA/m])まで往復走査したところ、ホール抵抗Rとして±0.28[Ω]の大略矩形の曲線領域を有する磁気ヒステリシス曲線が得られた。図2(C)に示す異常ホール効果の測定により、AOSの効率を評価した。無磁場下で円偏光を照射することにより、90%以上の磁化が反転したことが確認された。
図2(C)右下に示す基板斜視図のように、磁性体パターンが配置された基板において、サーモパイルは、単一の強磁性体材料のみで構成され、磁化方向の向きは、AOSによって隣接するストリップ間で交互に切り替えられる。
As shown in FIG. 2C, the magnetic field strength H was reciprocally scanned from −15 kOe (≈ −1.2 × 10 3 [kA / m]) to + 15 kOe (≈ + 1.2 × 10 3 [kA / m]). , A magnetic hysteresis curve having a substantially rectangular curve region of ± 0.28 [Ω] as the Hall resistance RH was obtained. The efficiency of AOS was evaluated by measuring the abnormal Hall effect shown in FIG. 2 (C). It was confirmed that the magnetization of 90% or more was reversed by irradiating the circularly polarized light under no magnetic field.
As shown in the perspective view of the substrate shown in the lower right of FIG. 2C, in the substrate on which the magnetic material pattern is arranged, the thermopile is composed of only a single ferromagnetic material, and the directions of the magnetization directions are adjacent by the AOS. Alternately switch between strips.

[Co/Pt]多層膜サーモパイルベースの熱電発電(TEG)デバイスは、図2(D)に示す平面図のような、磁性体パターン部の配置となっている。なお、図2(D)に示す磁性体パターン部の各部の符号は、図1に示すサーモパイル形状の熱電発電(TEG)デバイスの対応する構成要素と同一符号を用いている。磁性体パターン部2E、2F、2G、2Hは図2(E)〜(H)に示す拡大図の概括的な位置を示している。 [Co / Pt] The four- layer film thermopile-based thermoelectric power generation (TEG) device has a magnetic material pattern portion arranged as shown in the plan view shown in FIG. 2 (D). The reference numerals of the respective parts of the magnetic pattern portion shown in FIG. 2 (D) are the same as the corresponding components of the thermopile-shaped thermoelectric power generation (TEG) device shown in FIG. 1. The magnetic pattern portions 2E, 2F, 2G, and 2H show the general positions of the enlarged views shown in FIGS. 2 (E) to 2H.

図2(E)〜(H)は、図2(D)に示す磁性体パターン部の要部拡大部で、右(σ)および左(σ)の円偏光で照明された[Co/Pt]サンプルの磁気光学カー効果顕微鏡画像である。図2(E)は、図2(D)に示す磁性体パターン部2Eの拡大図で、第1の屈曲部23近傍の上向き磁化部21と下向き磁化部22との接続部を示している。図2(F)は、図2(D)に示す磁性体パターン部2Fの拡大図で、下向き磁化部22を示している。図2(G)は、図2(D)に示す磁性体パターン部2Gの拡大図で、第1の屈曲部23近傍の上向き磁化部21と下向き磁化部22との接続部を示している。図2(H)は、図2(D)に示す磁性体パターン部2Hの拡大図で、上向き磁化部21を示している。 FIGS. 2 (E) to 2 (H) are enlarged portions of the main part of the magnetic material pattern portion shown in FIG. 2 (D), and are illuminated with circular polarization of right (σ + ) and left (σ −) [Co /. Pt] It is a magneto-optical Kerr effect microscope image of 4 samples. FIG. 2E is an enlarged view of the magnetic material pattern portion 2E shown in FIG. 2D, showing a connection portion between the upward magnetization portion 21 and the downward magnetization portion 22 in the vicinity of the first bending portion 23. FIG. 2F is an enlarged view of the magnetic material pattern portion 2F shown in FIG. 2D, showing the downward magnetization portion 22. 2 (G) is an enlarged view of the magnetic material pattern portion 2G shown in FIG. 2 (D), and shows a connection portion between the upward magnetizing portion 21 and the downward magnetizing portion 22 in the vicinity of the first bending portion 23. FIG. 2H is an enlarged view of the magnetic material pattern portion 2H shown in FIG. 2D, showing the upward magnetization portion 21.

図3は本発明の一実施形態を示す、Co/Pt多層膜サーモパイルベースTEGデバイスを一様に磁化させた際に測定された熱起電力の温度差(ΔT)依存性の説明図である。図3(A)は上向きの磁化方向、図3(B)は下向きの磁化方向での、異常ネルンスト効果の模式的説明図である。なお、図3(A)、(B)において図示する構成要素の符号に関しては、後で説明する図5(B)に準拠している。即ち、磁性体50は、順方向導電パターン51、逆方向導電パターン52、第1の屈曲部53、第2の屈曲部54、第1の電極部55、第2の電極部56で構成されていると共に、熱電変換電力の表示部としての電圧計59を有している。このように構成された装置においては、隣接する順方向導電パターン51と逆方向導電パターン52よりなるストリップ間で熱起電力が打ち消しあうため、大きな異常ネルンスト効果による熱起電力は得られない。図3(A)(B)においてはストリップが奇数本あるため、正味1本分の熱起電力のみが得られ、その符号は磁化反転により反転する。
図3(C)は異なる磁化方向に対する熱起電力のΔT依存性であり、磁化方向に依存する異常ネルンスト効果成分と、磁化方向に依存しないゼーベック効果に由来するバックグラウンド成分が重畳した結果である。図3(D)は、図3(C)における磁化方向に依存する成分(異常ネルンスト効果)と依存しない成分(ゼーベック効果)を分離した結果である。
FIG. 3 is an explanatory diagram of the temperature difference (ΔT) dependence of thermoelectromotive force measured when a Co / Pt multilayer thermopile-based TEG device is uniformly magnetized, showing an embodiment of the present invention. FIG. 3A is a schematic explanatory diagram of the anomalous Nernst effect in the upward magnetization direction and FIG. 3B is the downward magnetization direction. The reference numerals of the components shown in FIGS. 3 (A) and 3 (B) are based on FIG. 5 (B) described later. That is, the magnetic body 50 is composed of a forward conductive pattern 51, a reverse conductive pattern 52, a first bent portion 53, a second bent portion 54, a first electrode portion 55, and a second electrode portion 56. At the same time, it has a voltmeter 59 as a display unit for thermoelectric conversion power. In the apparatus configured in this way, the thermoelectromotive forces cancel each other out between the strips composed of the adjacent forward conductive patterns 51 and the reverse conductive patterns 52, so that the thermoelectromotive force due to the large anomalous Nernst effect cannot be obtained. In FIGS. 3A and 3B, since there are an odd number of strips, only one net thermoelectromotive force is obtained, and the sign is inverted by magnetization reversal.
FIG. 3C shows the ΔT dependence of the thermoelectromotive force for different magnetization directions, which is the result of superimposition of the anomalous Nernst effect component that depends on the magnetization direction and the background component derived from the Seebeck effect that does not depend on the magnetization direction. .. FIG. 3D is the result of separating the component depending on the magnetization direction (abnormal Nernst effect) and the component not dependent on the magnetization direction (Seebeck effect) in FIG. 3C.

図3(C)に示すように、上向きの磁化方向(図3(A))では、温度勾配形成部30により形成される基板10の低温側34と高温側32の温度差ΔTが9Kの場合、正味熱起電力は21μVとなる。他方、下向きの磁化方向(図3(B))では、温度勾配形成部30により形成される基板10の低温側34と高温側32の温度差ΔTが9Kの場合、正味熱起電力は27μVとなる。熱起電力の大きさは、いずれの磁化方向においてもΔTに比例する。
図3(D)に示すように、計算されたゼーベックオフセット電圧は、温度勾配形成部30により形成される基板10の低温側34と高温側32の温度差ΔTが9Kの場合、24μVである。従って、ゼーベック係数は、2.70μV/Kとなる。温度勾配に垂直な異常ネルンスト効果(ANE)の寄与は、温度勾配形成部30により形成される基板10の低温側34と高温側32の温度差ΔTが9Kの場合、−3μVである。従って、異常ネルンスト効果による単位温度差当たりの熱起電力は、−0.35μV/Kとなる。
As shown in FIG. 3C, in the upward magnetization direction (FIG. 3A), when the temperature difference ΔT between the low temperature side 34 and the high temperature side 32 of the substrate 10 formed by the temperature gradient forming portion 30 is 9K. , The net thermoelectromotive force is 21 μV. On the other hand, in the downward magnetization direction (FIG. 3B), when the temperature difference ΔT between the low temperature side 34 and the high temperature side 32 of the substrate 10 formed by the temperature gradient forming portion 30 is 9K, the net thermoelectromotive force is 27 μV. Become. The magnitude of the thermoelectromotive force is proportional to ΔT in any magnetization direction.
As shown in FIG. 3D, the calculated Seebeck offset voltage is 24 μV when the temperature difference ΔT between the low temperature side 34 and the high temperature side 32 of the substrate 10 formed by the temperature gradient forming portion 30 is 9K. Therefore, the Seebeck coefficient is 2.70 μV / K. The contribution of the anomalous Nernst effect (ANE) perpendicular to the temperature gradient is -3 μV when the temperature difference ΔT between the low temperature side 34 and the high temperature side 32 of the substrate 10 formed by the temperature gradient forming portion 30 is 9K. Therefore, the thermoelectromotive force per unit temperature difference due to the abnormal Nernst effect is −0.35 μV / K.

図4は本発明の一実施形態を示す、異なる磁化構成で設計されたCo/Pt多層膜サーモパイルベースTEGデバイスで測定された熱起電力のΔT依存性の説明図である。図4(A)、(B)は光(σ)および左(σ)の円偏光でAOSを介して設計された交互の磁化方向を持つCo/Pt多層膜サーモパイルを示している。ここで、図4(A)は図2(D)に示す磁性体パターン部の上向き磁化部21と下向き磁化部22と同一の配列、図4(B)は図2(D)に示す磁性体パターン部の上向き磁化部21と下向き磁化部22とは逆の配列を示している。図4(C)は異なる磁化構成での対応する正味熱起電力、図4(D)は異なる磁化構成で計算された異常ネルンスト効果(ANE)に由来する熱起電力成分を示している。 FIG. 4 is an explanatory diagram of the ΔT dependence of thermoelectromotive force measured by a Co / Pt multilayer thermopile-based TEG device designed with different magnetization configurations, showing one embodiment of the present invention. FIGS. 4 (A) and 4 (B) show Co / Pt multilayer thermopile with alternating magnetization directions designed via AOS with light (σ + ) and left (σ −) circularly polarized light. Here, FIG. 4A shows the same arrangement as the upward magnetization part 21 and the downward magnetization part 22 of the magnetic material pattern portion shown in FIG. 2D, and FIG. 4B shows the magnetic material shown in FIG. 2D. The arrangement of the upward magnetization part 21 and the downward magnetization part 22 of the pattern portion is shown to be opposite. FIG. 4C shows the corresponding net thermoelectromotive forces with different magnetization configurations, and FIG. 4D shows the thermoelectromotive force components derived from the anomalous Nernst effect (ANE) calculated with different magnetization configurations.

図4(A)は、図3(A)に示す上向きの磁化方向の長手方向導電パターンに対して、一つおきに左の円偏光(σ)を照射して、下向きの磁化方向の長手方向導電パターンを形成したものである。図4(B)は、図3(B)に示す下向きの磁化方向の長手方向導電パターンに対して、一つおきに右の円偏光(σ)を照射して、上向きの磁化方向の長手方向導電パターンを形成したものである。 In FIG. 4 (A), the longitudinally conductive pattern in the upward magnetization direction shown in FIG. 3 (A) is irradiated with the left circularly polarized light (σ −) every other time, and the longitudinal direction in the downward magnetization direction is shown in FIG. A directional conductive pattern is formed. FIG. 4 (B) irradiates every other right circularly polarized light (σ + ) with respect to the longitudinal conductive pattern in the downward magnetization direction shown in FIG. 3 (B), and the longitudinal direction in the upward magnetization direction is shown in FIG. A directional conductive pattern is formed.

図4(C)に示すように、右の円偏光(σ)を照射した場合(図4(B))では、温度勾配形成部30により形成される基板10の低温側34と高温側32の温度差ΔTが9Kの場合、正味熱起電力は52μVとなる。他方、左の円偏光(σ)を照射した場合(図4(A))では、温度勾配形成部30により形成される基板10の低温側34と高温側32の温度差ΔTが9Kの場合、正味熱起電力は−5μVとなる。熱起電力の大きさは、いずれの場合においてもΔTに比例する。 As shown in FIG. 4C, when the right circularly polarized light (σ + ) is irradiated (FIG. 4B), the low temperature side 34 and the high temperature side 32 of the substrate 10 formed by the temperature gradient forming portion 30 are formed. When the temperature difference ΔT is 9K, the net thermoelectromotive force is 52 μV. On the other hand, in the case of irradiation with the circular polarization (σ − ) on the left (FIG. 4A), the temperature difference ΔT between the low temperature side 34 and the high temperature side 32 of the substrate 10 formed by the temperature gradient forming portion 30 is 9K. , The net thermoelectromotive force is -5 μV. The magnitude of the thermoelectromotive force is proportional to ΔT in all cases.

図4(D)に示すように、異常ネルンスト効果による単位温度差当たりの熱起電力は、右の円偏光(σ)を照射した場合と左の円偏光(σ)を照射した場合のそれぞれに対して、3.18μV/Kと−3.31μV/Kとなる。これらの値の絶対値の差は実験誤差の範疇であり、符号反転は異常ネルンスト効果による熱起電力が磁化反転により反転することを反映している。この結果は、図3(D)に示す均一な磁化を持つCo/Pt多層サーモパイルと比較して、約9.5倍の増強比を示している。図4で用いたCo/Pt多層膜サーモパイルベースTEGデバイスは計13本の長手方向導電パターンから形成されているため、理想的には13倍の増強比が得られるはずであるが、実験的に見積もられた増強比は理想値より低くなっている。これはAOSの効率が100%ではないことなどが要因であり、素子作製条件の最適化によって13倍までは増強可能である。長手方向導電パターンの本数を増やせば、それに応じて理想増強比をさらに上げることができる。
即ち、ミアンダ形状に配置された長手方向導電パターンに対して、右の円偏光(σ)又は/及び左の円偏光(σ)を長手方向導電パターンに照明することで、上向き磁化部21と下向き磁化部22を交互に配列することで、温度勾配形成部30により形成される基板10の低温側34と高温側32の温度差ΔTによって、大きな異常ネルンスト効果による熱起電力が得られる。
As shown in FIG. 4 (D), the thermoelectromotive force per unit temperature difference due to the anomalous Nernst effect is when irradiated with circularly polarized light (σ + ) on the right and when irradiated with circularly polarized light (σ ) on the left. For each, it is 3.18 μV / K and -3.31 μV / K. The difference between the absolute values of these values is a category of experimental error, and the sign inversion reflects that the thermoelectromotive force due to the anomalous Nernst effect is inverted due to the magnetization reversal. This result shows an enhancement ratio of about 9.5 times as compared with the Co / Pt multilayer thermopile having uniform magnetization shown in FIG. 3 (D). Since the Co / Pt multilayer thermopile-based TEG device used in FIG. 4 is formed from a total of 13 longitudinal conductive patterns, an enhancement ratio of 13 times should be ideally obtained, but experimentally. The estimated enhancement ratio is lower than the ideal value. This is due to factors such as the efficiency of AOS not being 100%, and can be increased up to 13 times by optimizing the device manufacturing conditions. If the number of longitudinal conductive patterns is increased, the ideal enhancement ratio can be further increased accordingly.
That is, the upward magnetizing portion 21 is formed by illuminating the longitudinally conductive pattern arranged in the meander shape with the right circularly polarized light (σ + ) or / and the left circularly polarized light (σ −). By alternately arranging the downward magnetizing portions 22 and the downward magnetizing portions 22, the thermoelectromotive force due to the large anomalous Nernst effect can be obtained by the temperature difference ΔT between the low temperature side 34 and the high temperature side 32 of the substrate 10 formed by the temperature gradient forming portion 30.

図5は従来の異常ネルンスト効果による熱電変換装置を説明する図で、(A)は比較例1、(B)は比較例2を示している。なお、図5(A)、(B)において、図1と同一作用をするものには同一符号を付して説明を省略する。
図5(A)に示す比較例1では、サーモパイルは、異常ネルンスト係数が異なる2つの磁性体FM1、FM2で構成される。2つの強磁性体は同一方向に磁化している(+z方向または−z方向に沿ったM)。即ち、磁性体40は、第1の磁性材料部41、第2の磁性材料部42、第1の屈曲部43、第2の屈曲部44、第1の電極部45、第2の電極部46で構成されている。
第1の磁性材料部41は、磁性体40の長手方向導電パターンであって、紙面上向き(z軸方向矢尻側)に磁化された磁性体材料FM1よりなる。第2の磁性材料部42は、磁性体40の長手方向導電パターンであって、紙面上向きに磁化された磁性体材料FM2よりなる。第1の磁性材料部41と第2の磁性材料部42は、交互に平行な状態で基板10上のy軸に沿って配置されており、第1の屈曲部43と第2の屈曲部44によって、ミアンダ形状に配置されている。
5A and 5B are views for explaining a conventional thermoelectric conversion device based on the abnormal Nernst effect, where FIG. 5A shows Comparative Example 1 and FIG. 5B shows Comparative Example 2. In FIGS. 5A and 5B, those having the same action as those in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted.
In Comparative Example 1 shown in FIG. 5A, the thermopile is composed of two magnetic materials FM1 and FM2 having different anomalous Nerunst coefficients. The two ferromagnets are magnetized in the same direction (M along the + z or -z direction). That is, the magnetic material 40 includes a first magnetic material portion 41, a second magnetic material portion 42, a first bent portion 43, a second bent portion 44, a first electrode portion 45, and a second electrode portion 46. It is composed of.
The first magnetic material portion 41 is a longitudinal conductive pattern of the magnetic material 40, and is made of a magnetic material material FM1 magnetized upward on the paper surface (the arrowhead side in the z-axis direction). The second magnetic material portion 42 is a longitudinal conductive pattern of the magnetic material 40, and is made of the magnetic material material FM2 magnetized upward on the paper surface. The first magnetic material portion 41 and the second magnetic material portion 42 are arranged along the y-axis on the substrate 10 in an alternately parallel state, and the first bent portion 43 and the second bent portion 44 are arranged. Is arranged in a mianda shape.

第1の屈曲部43は、第1の磁性材料部41の長手方向導電パターンにおけるy軸の一端を折返して、隣接する第2の磁性材料部42の長手方向導電パターンにおけるy軸の一端に接続する導電パターンである。第2の屈曲部44は、第2の磁性材料部42の長手方向導電パターンにおけるy軸の他端を折返して、隣接する第1の磁性材料部41の長手方向導電パターンにおけるy軸の他端に接続する導電パターンである。第1の電極部45と第2の電極部46は、図1に示す第1の電極部25と第2の電極部26と同様である。
比較例1によれば、第1の磁性材料部41と第2の磁性材料部42は、交互に平行な状態で基板10上に配置されており、磁性体材料FM1、FM2の異常ネルンスト係数が異なれば一様磁化でサーモパイルとして機能するが、異なる磁性体材料FM1、FM2で製造されており、製造工程が複雑になる。
The first bent portion 43 is connected to one end of the y-axis in the longitudinal conductive pattern of the adjacent second magnetic material portion 42 by folding back one end of the y-axis in the longitudinal conductive pattern of the first magnetic material portion 41. It is a conductive pattern. The second bent portion 44 folds back the other end of the y-axis in the longitudinal conductive pattern of the second magnetic material portion 42, and the other end of the y-axis in the longitudinal conductive pattern of the adjacent first magnetic material portion 41. It is a conductive pattern connected to. The first electrode portion 45 and the second electrode portion 46 are the same as the first electrode portion 25 and the second electrode portion 26 shown in FIG.
According to Comparative Example 1, the first magnetic material portion 41 and the second magnetic material portion 42 are arranged on the substrate 10 in a state of being alternately parallel to each other, and the abnormal magnetization coefficients of the magnetic material materials FM1 and FM2 are increased. If they are different, they function as thermopile with uniform magnetization, but they are manufactured with different magnetic materials FM1 and FM2, which complicates the manufacturing process.

図5(B)に示す比較例2では、サーモパイルは、磁化方向(図に示す+z方向)が同じである1つの強磁性体のみで構成される。即ち、磁性体50は、順方向導電パターン51、逆方向導電パターン52、第1の屈曲部53、第2の屈曲部54、第1の電極部55、第2の電極部56で構成されている。順方向導電パターン51は、磁性体50の長手方向導電パターンであって、紙面上向き(+z方向)に磁化された磁性体よりなる。逆方向導電パターン52は、磁性体50の長手方向導電パターンであって、紙面上向きに磁化された磁性体よりなる。順方向導電パターン51と逆方向導電パターン52は、交互に平行な状態で基板10上のy軸に沿って配置されており、第1の屈曲部53と第2の屈曲部54によって、ミアンダ形状に配置されている。 In Comparative Example 2 shown in FIG. 5 (B), the thermopile is composed of only one ferromagnet having the same magnetization direction (+ z direction shown in the figure). That is, the magnetic body 50 is composed of a forward conductive pattern 51, a reverse conductive pattern 52, a first bent portion 53, a second bent portion 54, a first electrode portion 55, and a second electrode portion 56. There is. The forward conductive pattern 51 is a longitudinal conductive pattern of the magnetic material 50, and is made of a magnetic material magnetized upward (+ z direction) on the paper surface. The reverse conductive pattern 52 is a longitudinal conductive pattern of the magnetic material 50, and is made of a magnetic material magnetized upward on the paper surface. The forward conductive pattern 51 and the reverse conductive pattern 52 are arranged along the y-axis on the substrate 10 in a state of being alternately parallel to each other, and are formed in a meander shape by the first bent portion 53 and the second bent portion 54. Is located in.

第1の屈曲部53は、順方向導電パターン51におけるy軸の一端を折返して、隣接する逆方向導電パターン52におけるy軸の一端に接続する導電パターンである。第2の屈曲部54は、逆方向導電パターン52におけるy軸の他端を折返して、隣接する順方向導電パターン51におけるy軸の他端に接続する導電パターンである。第1の電極部55と第2の電極部56は、図1に示す第1の電極部25と第2の電極部26と同様である。
比較例2の長手方向導電パターンの配置は、図3(A)、(B)の配置と同様である。比較例2の場合は、磁化方向が同じである1つの強磁性体のみで構成されるため、異常ネルンスト効果により得られる熱起電力が順方向導電パターン51と逆方向導電パターン52とで打ち消しあうため、サーモパイルとして機能しない。
The first bent portion 53 is a conductive pattern in which one end of the y-axis in the forward conductive pattern 51 is folded back and connected to one end of the y-axis in the adjacent reverse conductive pattern 52. The second bent portion 54 is a conductive pattern in which the other end of the y-axis in the reverse conductive pattern 52 is folded back and connected to the other end of the y-axis in the adjacent forward conductive pattern 51. The first electrode portion 55 and the second electrode portion 56 are the same as the first electrode portion 25 and the second electrode portion 26 shown in FIG.
The arrangement of the longitudinal conductive pattern of Comparative Example 2 is the same as the arrangement of FIGS. 3A and 3B. In the case of Comparative Example 2, since it is composed of only one ferromagnetic material having the same magnetization direction, the thermoelectromotive force obtained by the anomalous Nernst effect cancels each other out by the forward conductive pattern 51 and the reverse conductive pattern 52. Therefore, it does not function as a thermopile.

図6は、本発明の他の実施形態を示す簡略化されたサーモパイル形状の熱電発電(TEG)デバイスの概念的構成を示す斜視図である。本発明の他の実施例として、原理的には磁性体20の長手方向導電パターンがy方向に形成されている場合に、温度勾配がz方向、磁化がx方向でもy方向に異常ネルンスト効果による熱起電力が生じるため、熱電変換素子として機能する。 FIG. 6 is a perspective view showing a conceptual configuration of a simplified thermopile-shaped thermoelectric power generation (TEG) device showing another embodiment of the present invention. As another embodiment of the present invention, in principle, when the longitudinal conductive pattern of the magnetic material 20 is formed in the y direction, the temperature gradient is in the z direction, and the magnetization is in the x direction due to the abnormal Nernst effect in the y direction. Since thermoelectromotive force is generated, it functions as a thermoelectric conversion element.

図において、本発明の垂直型熱電発電素子は、基板10、磁性体80よりなると共に、磁性体80とは別に温度勾配形成部70及び光照射手段37を備える。
基板10は、表面に磁性体80が形成されるもので、例えばガラス基板や、シリコン基板、酸化マグネシウム基板、サファイア基板のような薄膜作製に用いられる典型的な絶縁体材料に加えて、セラミックス基板や樹脂製基板でもよい。
In the figure, the vertical thermoelectric power generation element of the present invention is composed of a substrate 10 and a magnetic body 80, and includes a temperature gradient forming portion 70 and a light irradiation means 37 separately from the magnetic body 80.
The substrate 10 has a magnetic material 80 formed on its surface, and is a ceramic substrate in addition to a typical insulator material used for producing a thin film such as a glass substrate, a silicon substrate, a magnesium oxide substrate, and a sapphire substrate. Or a resin substrate may be used.

磁性体80は全光型磁化反転と異常ネルンスト効果を示すものあればよく、例えば、GdFe1−X−YCo(0.20≦X≦0.28、0.03≦Y≦0.10)、TbCo1−X(0.08≦X≦0.34)、TbFe1−X(0.19≦X≦0.34)、TbFe1−X−YCo(0.20≦X≦0.40、0.08≦Y≦0.30)、FePt等を用いることができる。
磁性体80は、ミアンダ形状に配置されているもので、幅方向正側磁化部としての右向き磁化部81、幅方向反側磁化部としての左向き磁化部82、第1の屈曲部83、第2の屈曲部84、第1の電極部85、第2の電極部86で構成されている。ミアンダ形状なので、磁性体80の巨視的な温度勾配方向は磁性体80の厚みと大略一致し(図6のz方向)、磁性体80の振れ幅方向は磁性体80の微視的な長手方向導電パターンの熱起電力方向もしくは電場方向と大略一致(図6のy方向)する。磁性体80の巨視的な結線方向(図6のx方向)は、磁性体80の磁化方向Mであり、右向き磁化部81と左向き磁化部82とがある。ここで、磁性体80の巨視的な結線方向は、磁性体80が第1の電極部85と第2の電極部86の間で結線される方向を、基板10全体の形状、特に矩形形状の基板10の縁方向を基準に定めたものをいう。
The magnetic material 80 may be any as long as it exhibits total light type magnetization reversal and anomalous Nerunst effect, for example, Gd X Fe 1-XY Co Y (0.20 ≦ X ≦ 0.28, 0.03 ≦ Y ≦ 0). .10), Tb X Co 1-X (0.08 ≤ X ≤ 0.34), Tb X Fe 1-X (0.19 ≤ X ≤ 0.34), Tb X Fe 1-XY Co Y (0.20 ≦ X ≦ 0.40, 0.08 ≦ Y ≦ 0.30), FePt and the like can be used.
The magnetic body 80 is arranged in a meander shape, and has a right-facing magnetizing portion 81 as a positive-side magnetizing portion in the width direction, a left-facing magnetizing portion 82 as a magnetizing portion on the opposite side in the width direction, a first bending portion 83, and a second bending portion. It is composed of a bent portion 84, a first electrode portion 85, and a second electrode portion 86. Since it has a meander shape, the macroscopic temperature gradient direction of the magnetic body 80 roughly matches the thickness of the magnetic body 80 (z direction in FIG. 6), and the swing width direction of the magnetic body 80 is the microscopic longitudinal direction of the magnetic body 80. It roughly coincides with the thermoelectromotive force direction or the electric field direction of the conductive pattern (y direction in FIG. 6). The macroscopic connection direction of the magnetic body 80 (x direction in FIG. 6) is the magnetization direction M of the magnetic body 80, and there are a right-facing magnetization portion 81 and a left-facing magnetization portion 82. Here, the macroscopic connection direction of the magnetic body 80 is the direction in which the magnetic body 80 is connected between the first electrode portion 85 and the second electrode portion 86, which is the shape of the entire substrate 10, particularly the rectangular shape. It refers to the one defined based on the edge direction of the substrate 10.

右向き磁化部81は、磁性体80の長手方向導電パターンであって、紙面右向き(+x方向)に磁化された磁性体よりなる。左向き磁化部82は、磁性体80の長手方向導電パターンであって、紙面左向き(−x方向)に磁化された磁性体よりなる。右向き磁化部81と左向き磁化部82は、交互に平行な状態で基板10上に配置されており、第1の屈曲部83と第2の屈曲部84によって、ミアンダ形状に配置されている。第1の屈曲部83は、左向き磁化部82の長手方向導電パターンにおけるy軸の一端を折返して、隣接する右向き磁化部81の長手方向導電パターンにおけるy軸の一端に接続する導電パターンである。第2の屈曲部84は、右向き磁化部81の長手方向導電パターンにおけるy軸の他端を折返して、隣接する左向き磁化部82の長手方向導電パターンにおけるy軸の他端に接続する導電パターンである。 The right-facing magnetizing portion 81 is a longitudinal conductive pattern of the magnetic body 80, and is made of a magnetic material magnetized in the right-facing direction (+ x direction) of the paper surface. The left-facing magnetizing portion 82 is a longitudinal conductive pattern of the magnetic material 80, and is made of a magnetic material magnetized in the left-facing direction (−x direction) of the paper surface. The right-facing magnetization portion 81 and the left-facing magnetization portion 82 are arranged on the substrate 10 in a state of being alternately parallel to each other, and are arranged in a meander shape by the first bending portion 83 and the second bending portion 84. The first bent portion 83 is a conductive pattern in which one end of the y-axis in the longitudinal conductive pattern of the left-facing magnetizing portion 82 is folded back and connected to one end of the y-axis in the longitudinal conductive pattern of the adjacent right-facing magnetizing portion 81. The second bent portion 84 is a conductive pattern in which the other end of the y-axis in the longitudinal conductive pattern of the right-facing magnetizing portion 81 is folded back and connected to the other end of the y-axis in the longitudinal conductive pattern of the adjacent left-facing magnetizing portion 82. be.

第1の電極部85は、紙面の最も右側の部位に位置する左向き磁化部82が接続されるもので、ここでは左向き磁化部82の最近接部位が接続されており、マイナス電極板となっている。第2の電極部86は、紙面の最も左側の部位に位置する左向き磁化部82が接続されるもので、ここでは左向き磁化部82の最近接部位が接続されており、プラス電極板となっている。
なお、第1の電極部85と第2の電極部86に接続される長手方向導電パターンは、温度勾配形成部70により形成される基板10の最も低温側74と最も高温側72に位置するものが接続されるものであり、右向き磁化部81となるか左向き磁化部82となるかは、基板10の幅と磁性体80の長手方向導電パターンのミアンダ形状の折り返し数によって定まる。また、温度勾配∇Tは高温側に向かう方に向くベクトルなので、図中の∇Tにマイナス符号を付してある。
さらに、第1の電極部85と第2の電極部86は、マイナスの極性かプラスの極性となるかは、磁性体80の長手方向導電パターンの磁化方向によって定まるものである。従って、図6に示すような右向き磁化部81と左向き磁化部82の配置であれば、第1の電極部85がマイナス電極板となり、第2の電極部86がプラス電極板となるが、右向き磁化部81と左向き磁化部82の配置が図6に示すものと逆であれば、第1の電極部85がプラス電極板となり、第2の電極部86がマイナス電極板となる。また、巨視的な結線方向の矢尻側は、プラス電極板からマイナス電極板に電流が流れる方向をいう。巨視的な結線方向の矢筈側は、矢尻側と逆になる。逆符号の異常ネルンスト係数を有する磁性体を用いた場合は、逆符号の起電力が発生する。
The first electrode portion 85 is connected to the left-facing magnetization portion 82 located on the rightmost portion of the paper surface, and here, the closest portion of the left-facing magnetization portion 82 is connected to form a negative electrode plate. There is. The second electrode portion 86 is connected to the left-facing magnetization portion 82 located on the leftmost portion of the paper surface, and here, the closest portion of the left-facing magnetization portion 82 is connected to form a positive electrode plate. There is.
The longitudinal conductive pattern connected to the first electrode portion 85 and the second electrode portion 86 is located on the coldest side 74 and the hottest side 72 of the substrate 10 formed by the temperature gradient forming portion 70. Is connected, and whether it becomes the right-facing magnetization portion 81 or the left-facing magnetization portion 82 is determined by the width of the substrate 10 and the number of folds of the meander shape of the longitudinal conductive pattern of the magnetic body 80. Further, since the temperature gradient ∇T is a vector toward the high temperature side, ∇T in the figure is marked with a minus sign.
Further, whether the first electrode portion 85 and the second electrode portion 86 have a negative polarity or a positive polarity is determined by the magnetization direction of the longitudinal conductive pattern of the magnetic body 80. Therefore, in the arrangement of the right-facing magnetizing portion 81 and the left-facing magnetization portion 82 as shown in FIG. 6, the first electrode portion 85 becomes a negative electrode plate and the second electrode portion 86 becomes a positive electrode plate, but the right-facing electrode portion 86 is directed to the right. If the arrangement of the magnetizing portion 81 and the left-facing magnetizing portion 82 is opposite to that shown in FIG. 6, the first electrode portion 85 becomes a positive electrode plate and the second electrode portion 86 becomes a negative electrode plate. The arrowhead side in the macroscopic connection direction is the direction in which current flows from the positive electrode plate to the negative electrode plate. The side of the arrowhead in the macroscopic connection direction is opposite to the side of the arrowhead. When a magnetic material having an anomalous Nerunst coefficient with a reverse sign is used, an electromotive force with a reverse sign is generated.

磁性体80の長手方向導電パターンの微視的な形状は、例えば大略直方体状であって、幅方向をx軸、長手方向をy軸、厚み方向をz軸とする。磁性体80の磁化Mの方向は、例えば磁性体80の幅方向xとする。温度勾配がz方向に付いている場合は、磁性体80における電流の方向は磁性体80の長手方向yとなる。
熱電変換電力の表示部88は、第2の電極部86から第1の電極部85に流れる熱電エネルギーを模式的に表示するものである。
The microscopic shape of the longitudinal conductive pattern of the magnetic body 80 is, for example, a substantially rectangular parallelepiped shape, with the width direction being the x-axis, the longitudinal direction being the y-axis, and the thickness direction being the z-axis. The direction of the magnetization M of the magnetic body 80 is, for example, the width direction x of the magnetic body 80. When the temperature gradient is in the z direction, the direction of the current in the magnetic body 80 is the longitudinal direction y of the magnetic body 80.
The thermoelectric conversion power display unit 88 schematically displays the thermoelectric energy flowing from the second electrode unit 86 to the first electrode unit 85.

温度勾配形成部70は、磁性体80に温度勾配を形成可能に設けられるもので、例えば電熱器のような熱源装置や自動車等の内燃機関、工場や製鉄所、パソコンやサーバー機などで発生する廃熱源が用いられる。磁性体80における温度勾配∇T又は/及び熱流Jqの方向は、例えば磁性体80の厚み方向zとする。ここでは、基板10における磁性体80のパターンの厚み方向zの表面において、裏面側が高温側72となり、表面側が低温側74となる。
光照射手段37は、偏光を制御できるもので、例えばレーザ発振器と偏光板が用いられる。光照射手段37が照射する円偏光の方向は、例えば磁性体80の幅方向xの成分を含むものとし、磁性体80の表面に照射される。右の円偏光(σ)が長手方向導電パターンに照明されることで、左向き磁化部82を形成する。左の円偏光(σ)が長手方向導電パターンに照明されることで、右向き磁化部81を形成する。
The temperature gradient forming unit 70 is provided so that a temperature gradient can be formed on the magnetic material 80, and is generated in, for example, a heat source device such as an electric heater, an internal combustion engine such as an automobile, a factory, a steel mill, a personal computer, a server machine, or the like. A waste heat source is used. The direction of the temperature gradient ∇T or / and the heat flow Jq in the magnetic material 80 is, for example, the thickness direction z of the magnetic material 80. Here, on the front surface of the pattern of the magnetic body 80 on the substrate 10 in the thickness direction z, the back surface side is the high temperature side 72 and the front surface side is the low temperature side 74.
The light irradiation means 37 can control the polarization, and for example, a laser oscillator and a polarizing plate are used. The direction of circularly polarized light irradiated by the light irradiating means 37 is assumed to include, for example, a component in the width direction x of the magnetic body 80, and the surface of the magnetic body 80 is irradiated. The right circularly polarized light (σ + ) is illuminated by the longitudinal conductive pattern to form the left-facing magnetization portion 82. The left circularly polarized light (σ ) is illuminated by the longitudinal conductive pattern to form the rightward magnetization portion 81.

このように構成された装置においては、図6に示すように、光照射手段37で磁性体80に円偏光を照射したとき、ミアンダ形状の振れ幅方向に応じて、磁性体80の円偏光の照射された領域である長手方向導電パターン毎に、右向き磁化部81と左向き磁化部82とを定める。右向き磁化部81と左向き磁化部82を交互に配置することによって、異常ネルンスト効果によって生成された熱起電力を昇圧できる。
即ち、異常ネルンスト効果によって、磁性体80の磁化Mと温度勾配∇T又は/及び熱流Jqの外積方向に、電流Jc(異常ネルンスト効果による電場EANE)が生成される。なお、強磁性体が磁化していれば、外部磁場は不要である。
In the apparatus configured as described above, as shown in FIG. 6, when the magnetic body 80 is irradiated with circularly polarized light by the light irradiating means 37, the circularly polarized light of the magnetic body 80 is subjected to the direction of the deflection width of the meander shape. A right-facing magnetizing portion 81 and a left-facing magnetizing portion 82 are defined for each longitudinal conductive pattern that is an irradiated region. By alternately arranging the right-facing magnetization section 81 and the left-facing magnetization section 82, the thermoelectromotive force generated by the anomalous Nernst effect can be boosted.
That is, the abnormality by Nernst effect, the cross product direction of magnetization M and a temperature gradient ∇T or / and heat flow Jq magnetic body 80, (an electric field E ANE by abnormal Nernst effect) current Jc is generated. If the ferromagnet is magnetized, no external magnetic field is required.

なお、本発明の実施例として、図1や図6に示す実施形態を示したが、本発明はこれに限定されるものではなく、種々の実施態様が、当業者に自明な範囲で考えられる。例えば、図1に示す実施例では磁性体の温度勾配形成方向(x方向)が磁性体の磁化方向(z方向)と直交する方向であり、磁性体の温度勾配形成方向と、磁性体の磁化方向とに直交する方向(y方向)に磁性体の長手方向導電パターンが形成されている配置を示したが、本発明はこれに限定されるものではなく、薄膜面内方向に向いている磁化を全光型磁化反転技術で反転させることも可能である。
また、本発明の垂直型熱電発電素子を用いた電子機器としては、情報携帯端末、情報処理用コンピュータ、集積回路を搭載した音響電子機器や映像電子機器、セットトップボックス等、各種の電子機器が対象となる。
Although the embodiments shown in FIGS. 1 and 6 are shown as examples of the present invention, the present invention is not limited thereto, and various embodiments can be considered within a range obvious to those skilled in the art. .. For example, in the embodiment shown in FIG. 1, the temperature gradient forming direction (x direction) of the magnetic material is orthogonal to the magnetization direction (z direction) of the magnetic material, and the temperature gradient forming direction of the magnetic material and the magnetization of the magnetic material. Although the arrangement in which the longitudinal conductive pattern of the magnetic material is formed in the direction orthogonal to the direction (y direction) is shown, the present invention is not limited to this, and the magnetization is directed toward the in-plane direction of the thin film. Can also be reversed by the all-light magnetization reversal technique.
Further, as electronic devices using the vertical thermoelectric power generation element of the present invention, various electronic devices such as information portable terminals, information processing computers, acoustic electronic devices and video electronic devices equipped with integrated circuits, set-top boxes, etc. are included. Be the target.

以上詳細に説明したように、本発明の垂直型熱電発電素子によれば、光照射で磁化分布を変えることによって、従来素子と比較して、単一材料から構成される簡便なサーモパイル構造において異常ネルンスト効果による大きな熱起電力を得ることが可能となり、熱電発電素子や熱センサーとして利用が期待される。
また、本発明の垂直型熱電発電素子を用いた電子機器によれば、ムーアの法則の下、微細化が継続的に進行している電子デバイスに対して、熱電発電素子による給電が可能になり、電力事情が万全でない環境での使用にも適する。
As described in detail above, according to the vertical thermoelectric power generation element of the present invention, by changing the magnetization distribution by light irradiation, an abnormality is found in a simple thermopile structure composed of a single material as compared with the conventional element. It is possible to obtain a large thermoelectromotive force due to the Nernst effect, and it is expected to be used as a thermoelectric power generation element or a heat sensor.
Further, according to the electronic device using the vertical thermoelectric power generation element of the present invention, it becomes possible to supply electric power by the thermoelectric power generation element to the electronic device whose miniaturization is continuously progressing under Moore's law. Also suitable for use in environments where the power situation is not perfect.

10 基板
20、40、50、80 磁性体
21 上向き磁化部(磁化方向がz軸の矢尻側)
22 下向き磁化部(磁化方向がz軸の矢筈側)
23、43、53、83 第1の屈曲部
24、44、54、84 第2の屈曲部
25、45、55、85 第1の電極部(マイナス電極板)
26、46、56、86 第2の電極部(プラス電極板)
28、48、58、88 熱電変換電力の表示部
30、70 温度勾配形成部
32、72 高温側
34、74 低温側
35、37 光照射手段
41 第1の磁性材料部
42 第2の磁性材料部
51 順方向導電パターン
52 逆方向導電パターン
60 磁性体パターン部
61 サファイア基板
62 下地層
63 Co/Pt多層膜(AOSあり)
64 上部酸化防止層
81 幅方向正側磁化部(右向き磁化部)
82 幅方向反側磁化部(左向き磁化部)
σ、σ 光照射手段
x 磁性体の長手方向導電パターンの幅方向(ミアンダ形状の巨視的な結線方向)
y 磁性体の長手方向導電パターンの形成方向(ミアンダ形状の振れ幅方向)
z 磁性体の長手方向導電パターンの厚み方向

10 Substrate 20, 40, 50, 80 Magnetic material 21 Upward magnetization part (magnetization direction is on the arrowhead side of the z-axis)
22 Downward magnetization part (magnetization direction should be on the z-axis side)
23, 43, 53, 83 First bent portion 24, 44, 54, 84 Second bent portion 25, 45, 55, 85 First electrode portion (minus electrode plate)
26, 46, 56, 86 Second electrode part (plus electrode plate)
28, 48, 58, 88 Thermoelectric conversion power display unit 30, 70 Temperature gradient forming unit 32, 72 High temperature side 34, 74 Low temperature side 35, 37 Light irradiation means 41 First magnetic material unit 42 Second magnetic material unit 51 Forward conductive pattern 52 Reverse conductive pattern 60 Magnetic material pattern 61 Sapphire substrate 62 Underlayer 63 Co / Pt multilayer film (with AOS)
64 Upper antioxidant layer 81 Width positive magnetization part (rightward magnetization part)
82 Width direction opposite side magnetization part (leftward magnetization part)
σ + , σ Light irradiation means x Longitudinal direction of magnetic material Width direction of conductive pattern (macroscopic connection direction of Munder shape)
y Longitudinal direction of magnetic material Forming direction of conductive pattern (direction of runout width of meander shape)
z Longitudinal direction of magnetic material Thickness direction of conductive pattern

Claims (10)

全光型磁化反転と異常ネルンスト効果を示す磁性体と、
前記磁性体の磁化方向を制御できる光照射手段を備え、
温度勾配形成部によって前記磁性体に温度勾配を形成すると共に、前記磁性体の温度勾配形成方向が前記磁性体の磁化方向と直交する方向であり、
前記磁性体の温度勾配形成方向と、前記磁性体の磁化方向とに直交する方向に前記磁性体の長手方向導電パターンが形成されており、
前記光照射手段で前記磁性体の磁化分布を制御することにより、異常ネルンスト効果によって生成された熱起電力出力を制御・増強できることを特徴とする垂直型熱電発電素子。
A magnetic material that exhibits all-light magnetization reversal and anomalous Nernst effect,
A light irradiation means capable of controlling the magnetization direction of the magnetic material is provided.
A temperature gradient is formed in the magnetic material by the temperature gradient forming portion, and the temperature gradient forming direction of the magnetic material is a direction orthogonal to the magnetization direction of the magnetic material.
A longitudinal conductive pattern of the magnetic material is formed in a direction orthogonal to the temperature gradient forming direction of the magnetic material and the magnetization direction of the magnetic material.
A vertical thermoelectric power generation element characterized in that the thermoelectromotive force output generated by the anomalous Nernst effect can be controlled and enhanced by controlling the magnetization distribution of the magnetic material by the light irradiation means.
前記磁性体は、強磁性体、フェリ磁性体、反強磁性体、または少なくとも強磁性体、フェリ磁性体、反強磁性体の1種類を含む積層構造から成ることを特徴とする請求項1に記載の垂直型熱電発電素子。 The first aspect of the present invention is characterized in that the magnetic material comprises a laminated structure including a ferromagnetic material, a ferrimagnetic material, an antiferromagnetic material, or at least one of a ferromagnetic material, a ferrimagnetic material, and an antiferromagnetic material. The vertical thermoelectric power generation element described. 前記強磁性体は、Pt/Coの多層膜を有し、当該多層膜の全体として強磁性体として振る舞うことを特徴とする請求項2記載の垂直型熱電発電素子。 The vertical thermoelectric power generation element according to claim 2, wherein the ferromagnet has a Pt / Co multilayer film and behaves as a ferromagnet as a whole of the multilayer film. 前記光照射手段は、偏光を制御できる偏光照射手段であり、
前記偏光照射手段で前記磁性体に円偏光を照射したとき、前記磁性体の円偏光の照射された領域で、異常ネルンスト効果によって生成された熱起電力出力を制御できることを特徴とする請求項1乃至3に記載の垂直型熱電発電素子。
The light irradiating means is a polarized light irradiating means capable of controlling polarization.
The first aspect of the present invention is that when the magnetic material is irradiated with circularly polarized light by the polarized light irradiation means, the thermoelectromotive force output generated by the anomalous Nernst effect can be controlled in the area irradiated with the circularly polarized light of the magnetic material. 3. The vertical thermoelectric power generation element according to 3.
前記光照射手段は、前記磁性体の初期磁化方向に対して、前記磁性体の磁化方向を反転させるパルスレーザー光を照射することを特徴とする請求項1乃至3に記載の垂直型熱電発電素子。 The vertical thermoelectric power generation element according to claim 1 to 3, wherein the light irradiation means irradiates a pulsed laser beam that reverses the magnetization direction of the magnetic material with respect to the initial magnetization direction of the magnetic material. .. 前記磁性体はミアンダ形状のサーモバイル構造を有するものであって、
前記磁性体の温度勾配形成方向は、前記ミアンダ形状の巨視的な結線方向と一致し、
前記磁性体の長手方向導電パターンは、前記ミアンダ形状の振れ幅方向と一致する長手方向を有し、
前記磁性体の磁化方向は、前記磁性体の長手方向導電パターンの厚み方向と一致することを特徴とする請求項1乃至5のいずれか1項に記載の垂直型熱電発電素子。
The magnetic material has a meander-shaped sir-mobile structure and has a sir-mobile structure.
The temperature gradient forming direction of the magnetic material coincides with the macroscopic connection direction of the Minder shape.
The longitudinal conductive pattern of the magnetic material has a longitudinal direction that coincides with the deflection width direction of the meander shape.
The vertical thermoelectric power generation element according to any one of claims 1 to 5, wherein the magnetization direction of the magnetic material coincides with the thickness direction of the longitudinal conductive pattern of the magnetic material.
前記磁性体の長手方向導電パターンは、
前記長手方向導電パターンの厚み方向上向きに磁化された上向き磁化部と、
前記長手方向導電パターンの厚み方向下向きに磁化された下向き磁化部と、
前記上向き磁化部の長手方向導電パターンにおける当該長手方向の一端を折返して、隣接する下向き磁化部の長手方向導電パターンにおける当該長手方向の一端に接続する第1の屈曲部と、
前記下向き磁化部の長手方向導電パターンにおける当該長手方向の他端を折返して、隣接する上向き磁化部の長手方向導電パターンにおける当該長手方向の他端に接続する第2の屈曲部と、
温度勾配形成方向の最も低温側に位置する前記長手方向導電パターンが接続される第1の電極部と、
温度勾配形成方向の最も高温側に位置する前記長手方向導電パターンが接続される第2の電極部と、
を有することを特徴とする請求項6に記載の垂直型熱電発電素子。
The longitudinal conductive pattern of the magnetic material is
The upwardly magnetized portion of the longitudinal conductive pattern magnetized upward in the thickness direction,
The downwardly magnetized portion of the longitudinal conductive pattern magnetized downward in the thickness direction, and the downwardly magnetized portion.
A first bent portion in which one end in the longitudinal direction of the longitudinally conductive pattern of the upwardly magnetized portion is folded back and connected to the one end in the longitudinal direction in the longitudinally conductive pattern of the adjacent downwardly magnetized portion.
A second bent portion in which the other end in the longitudinal direction of the longitudinally conductive pattern of the downwardly magnetized portion is folded back and connected to the other end in the longitudinal direction in the longitudinally conductive pattern of the adjacent upwardly magnetized portion.
The first electrode portion to which the longitudinal conductive pattern located on the lowest temperature side in the temperature gradient forming direction is connected, and
A second electrode portion to which the longitudinal conductive pattern located on the highest temperature side in the temperature gradient forming direction is connected, and
The vertical thermoelectric power generation element according to claim 6, wherein the device has.
前記磁性体はミアンダ形状のサーモバイル構造を有するものであって、
前記磁性体の温度勾配形成方向は、前記磁性体の長手方向導電パターンの厚み方向と一致し、
前記磁性体の長手方向導電パターンは、前記ミアンダ形状の振れ幅方向と一致する長手方向を有し、
前記磁性体の磁化方向は、前記ミアンダ形状の巨視的な結線方向と一致することを特徴とする請求項1乃至5のいずれか1項に記載の垂直型熱電発電素子。
The magnetic material has a meander-shaped sir-mobile structure and has a sir-mobile structure.
The temperature gradient forming direction of the magnetic material coincides with the thickness direction of the longitudinal conductive pattern of the magnetic material.
The longitudinal conductive pattern of the magnetic material has a longitudinal direction that coincides with the deflection width direction of the meander shape.
The vertical thermoelectric power generation element according to any one of claims 1 to 5, wherein the magnetization direction of the magnetic material coincides with the macroscopic connection direction of the myander shape.
前記磁性体の長手方向導電パターンは、幅方向正側磁化部と幅方向反側磁化部が交互に配置されたものであって、
前記幅方向正側磁化部は、一方に位置する長手方向導電パターンの幅方向の正側に磁化されたものであり、
前記幅方向反側磁化部は、前記一方に位置する前記長手方向導電パターンと対となる位置に配置された他方の長手方向導電パターンの幅方向の反側に磁化されたものであり、
前記幅方向反側磁化部の長手方向導電パターンにおける当該長手方向の一端を折返して、隣接する幅方向正側磁化部の長手方向導電パターンにおける当該長手方向の一端に接続する第1の屈曲部と、
前記幅方向正側磁化部の長手方向導電パターンにおける当該長手方向の他端を折返して、隣接する幅方向反側磁化部の長手方向導電パターンにおける当該長手方向の他端に接続する第2の屈曲部と、
前記巨視的な結線方向の最も矢尻側に位置する前記長手方向導電パターンが接続される第1の電極部と、
前記巨視的な結線方向の最も矢筈側に位置する前記長手方向導電パターンが接続され第2の電極部と、
を有することを特徴とする請求項8に記載の垂直型熱電発電素子。
The longitudinal conductive pattern of the magnetic material is such that the positive magnetization portion in the width direction and the magnetization portion on the opposite side in the width direction are alternately arranged.
The widthwise positive magnetization portion is magnetized on the widthwise positive side of the longitudinal conductive pattern located on one side.
The widthwise opposite side magnetized portion is magnetized on the opposite side in the width direction of the other longitudinal conductive pattern arranged at a position paired with the longitudinal conductive pattern located on one side.
With a first bent portion connected to the one end in the longitudinal direction in the longitudinal conductive pattern of the adjacent positive magnetization portion in the width direction by folding back one end in the longitudinal direction in the longitudinal conductive pattern of the opposite magnetized portion in the width direction. ,
A second bend that folds back the other end of the longitudinal direction in the longitudinal conductive pattern of the positive width magnetization portion and connects to the other end of the longitudinal direction in the longitudinal conductive pattern of the adjacent opposite width magnetized portion. Department and
The first electrode portion to which the longitudinal conductive pattern located on the most arrowhead side in the macroscopic connection direction is connected, and
The longitudinal conductive pattern located on the most arrowhead side in the macroscopic connection direction is connected to the second electrode portion and
The vertical thermoelectric power generation element according to claim 8, wherein the device has.
請求項1乃至9のいずれか1項に記載の垂直型熱電発電素子を用いた電子機器。
An electronic device using the vertical thermoelectric power generation element according to any one of claims 1 to 9.
JP2020096025A 2020-06-02 2020-06-02 Vertical thermoelectric power generation element and electronic device including the same Pending JP2021190613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020096025A JP2021190613A (en) 2020-06-02 2020-06-02 Vertical thermoelectric power generation element and electronic device including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020096025A JP2021190613A (en) 2020-06-02 2020-06-02 Vertical thermoelectric power generation element and electronic device including the same

Publications (1)

Publication Number Publication Date
JP2021190613A true JP2021190613A (en) 2021-12-13

Family

ID=78847425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020096025A Pending JP2021190613A (en) 2020-06-02 2020-06-02 Vertical thermoelectric power generation element and electronic device including the same

Country Status (1)

Country Link
JP (1) JP2021190613A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022114221A1 (en) 2020-11-30 2022-06-02 Psジャパン株式会社 Styrene-based resin composition, and formed body thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022114221A1 (en) 2020-11-30 2022-06-02 Psジャパン株式会社 Styrene-based resin composition, and formed body thereof

Similar Documents

Publication Publication Date Title
EP2256463B1 (en) Angle sensor, angle sensor manufacturing method, and angle detection device using the angle sensor
JP5267967B2 (en) Spin current heat conversion element and thermoelectric conversion element
JP6079995B2 (en) Thermoelectric power generation device
RU2599948C2 (en) Self-referenced magnetic random access memory element comprising synthetic storage layer
JP2002522792A (en) Magnetic field sensor with giant magnetoresistive material or spin tunnel junction and sensitivity perpendicular to the layer
KR20070030741A (en) Current injection magnetic domain moving element
TW200426843A (en) Ferromagnetic resonance switching for magnetic random access memory
JP2008134181A (en) Magnetic detector and its manufacturing method
JP6462191B1 (en) Data writing method, inspection method, spin element manufacturing method, and magnetoresistive element
JPH11505931A (en) Magnetization device for magnetoresistive thin film sensor element with bias layer
Back et al. Special issue on spin caloritronics
JP2021190613A (en) Vertical thermoelectric power generation element and electronic device including the same
JP4666775B2 (en) Magnetic thin film memory device, magnetic thin film memory, and information recording method
KR101829452B1 (en) Magnetic Memory Device
WO2013153949A1 (en) Magnetic field measurement device and magnetic field measurement method
JP6565689B2 (en) Thermoelectric conversion element, thermoelectric conversion element module, and method of manufacturing thermoelectric conversion element
Lopez-Polin et al. High-power-density energy-harvesting devices based on the anomalous Nernst effect of Co/Pt magnetic multilayers
US6339543B1 (en) Writing method for a magnetic immovable memory and a magnetic immovable memory
JP2008071720A (en) Battery, battery system, and microwave transmitter
Martens et al. Pumping laser excited spins through MgO barriers
JP2007047115A (en) Magnetic sensor
JP2014053546A (en) Voltage drive spintronics three-terminal element
JPH11101861A (en) Magneto-resistance effect type sensor
Kim et al. Amplification of spin thermoelectric signals in multilayer spin thermopiles
JPWO2018146713A1 (en) Thermoelectric conversion element and method of manufacturing the same