JPWO2018146713A1 - Thermoelectric conversion element and method of manufacturing the same - Google Patents

Thermoelectric conversion element and method of manufacturing the same Download PDF

Info

Publication number
JPWO2018146713A1
JPWO2018146713A1 JP2018566662A JP2018566662A JPWO2018146713A1 JP WO2018146713 A1 JPWO2018146713 A1 JP WO2018146713A1 JP 2018566662 A JP2018566662 A JP 2018566662A JP 2018566662 A JP2018566662 A JP 2018566662A JP WO2018146713 A1 JPWO2018146713 A1 JP WO2018146713A1
Authority
JP
Japan
Prior art keywords
film
thermoelectric conversion
conversion element
metal film
electromotive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018566662A
Other languages
Japanese (ja)
Inventor
明宏 桐原
明宏 桐原
石田 真彦
真彦 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPWO2018146713A1 publication Critical patent/JPWO2018146713A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/82Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of the magnetic field applied to the device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Hall/Mr Elements (AREA)

Abstract

本発明は、スピンゼーベック効果と異常ネルンスト効果を併用する熱電変換素子(21)において、安定した熱電変換動作を利便性良く実現することを目的とする。本発明の熱電変換素子は、膜厚方向(Z)の温度勾配によって第1の起電力を生じる磁性金属膜(21)と、前記磁性金属膜に積層されて前記磁性金属膜の磁化方向を膜面内の一方向(y)に固定し、膜厚方向の温度勾配によって生じる前記磁性金属膜のスピン流の注入を受けて第2の起電力を生じる反強磁性金属膜(22)と、の積層膜(23)と、前記積層膜の膜面上に前記磁化方向と異なる方向(x)に離隔して並設された一対の端子(24)と、を有する。An object of the present invention is to realize a stable thermoelectric conversion operation with good convenience in a thermoelectric conversion element (21) using both the spin Seebeck effect and the abnormal Nernst effect. A thermoelectric conversion element according to the present invention includes a magnetic metal film (21) that generates a first electromotive force due to a temperature gradient in a film thickness direction (Z); An antiferromagnetic metal film (22) fixed in one direction (y) in the plane and receiving a spin current of the magnetic metal film generated by a temperature gradient in a film thickness direction to generate a second electromotive force. It has a laminated film (23) and a pair of terminals (24) arranged on the film surface of the laminated film in a direction (x) different from the magnetization direction and separated from each other.

Description

本発明は、スピンゼーベック効果および異常ネルンスト効果に基づく熱電変換素子に関する。  The present invention relates to a thermoelectric conversion element based on a spin Seebeck effect and an abnormal Nernst effect.

持続可能な社会に向けた熱マネジメント技術の一つとして、熱電変換素子への期待が高まっている。熱は、体温、太陽熱、エンジン、工業排熱など様々な場面から回収することができる最も一般的なエネルギー源のひとつである。このことから熱電変換は、エネルギー利用の高効率化や、ユビキタス端末・センサ等への給電、あるいは熱流センシングによる熱の流れの可視化といった様々な場面において、ますます重要となることが予想される。  Expectations for thermoelectric conversion elements are increasing as one of the thermal management technologies for a sustainable society. Heat is one of the most common sources of energy that can be recovered from a variety of settings, including body temperature, solar heat, engines, and industrial waste heat. From this, it is expected that thermoelectric conversion will become increasingly important in various situations such as high efficiency of energy use, power supply to ubiquitous terminals and sensors, or visualization of heat flow by heat flow sensing.

このような中で、磁性材料に温度勾配を与えることでスピン角運動量の流れ(以降、スピン流と呼ぶ)を生成する、スピンゼーベック効果(Spin Seebeck Effect)や異常ネルンスト効果(Anomalous Nernst Effect)に基づく熱電変換素子の関連技術が、特許文献1〜3に開示されている。  Under these circumstances, a spin Seebeck effect or an anomalous Nernst effect, which generates a flow of spin angular momentum (hereinafter referred to as a spin current) by giving a temperature gradient to the magnetic material, is provided. Related arts based on thermoelectric conversion elements are disclosed in Patent Documents 1 to 3.

スピンゼーベック効果に基づく熱電変換素子は、特許文献1〜3に開示されているように、一方向に磁化している磁性絶縁体膜もしくは磁性金属膜と、導電性の非磁性金属膜の積層構造によって構成される。この素子に膜面に垂直方向の温度勾配を与えると、スピンゼーベック効果によって磁性絶縁体膜もしくは磁性金属膜にスピン流が誘起される。このスピン流が非磁性金属膜に注入されると、非磁性金属膜の逆スピンホール効果(Inverse Spin Hall Effect)によって、非磁性金属膜の膜面内方向に電流が流れて起電力が生じる。特に、磁性絶縁体膜は熱伝導率が比較的小さいため、温度勾配を大きくすることができ好適である。  As disclosed in Patent Documents 1 to 3, a thermoelectric conversion element based on the spin Seebeck effect has a laminated structure of a magnetic insulator film or a magnetic metal film magnetized in one direction and a conductive nonmagnetic metal film. It is constituted by. When a temperature gradient in a direction perpendicular to the film surface is applied to this element, a spin current is induced in the magnetic insulator film or the magnetic metal film by the spin Seebeck effect. When this spin current is injected into the non-magnetic metal film, a current flows in the in-plane direction of the non-magnetic metal film due to the inverse spin Hall effect of the non-magnetic metal film to generate an electromotive force. In particular, since the magnetic insulator film has a relatively low thermal conductivity, the temperature gradient can be increased, which is preferable.

また、異常ネルンスト効果に基づく熱電変換素子は、特許文献1に開示されているように、一方向に磁化しているNiやFeなどの磁性金属膜によって構成される。この素子に膜面に垂直方向の温度勾配を与えると、磁性金属膜の異常ネルンスト効果によって、磁性金属膜の膜面内方向に電流が流れて起電力が生じる。  Further, as disclosed in Patent Document 1, a thermoelectric conversion element based on the abnormal Nernst effect is constituted by a magnetic metal film such as Ni or Fe magnetized in one direction. When a temperature gradient is applied to the element in a direction perpendicular to the film surface, a current flows in the film metal film direction due to the abnormal Nernst effect of the magnetic metal film, and an electromotive force is generated.

スピンゼーベック効果と異常ネルンスト効果は、いずれも膜面に垂直方向の温度勾配によって膜面内方向に起電力を誘起することから、特許文献1では、これら2つの効果を併用する熱電変換素子に言及している。フェライトのような磁性絶縁体膜とNiのような磁性金属膜との積層構造に、膜面に垂直方向の温度勾配を与えると、スピンゼーベック効果と異常ネルンスト効果とが同時に発現する(非特許文献1)。このときスピンゼーベック効果の起電力と異常ネルンスト効果の起電力とが加算されることにより、より大きな起電力を得ることができる。  Since both the spin Seebeck effect and the anomalous Nernst effect induce an electromotive force in the in-plane direction of the film due to a temperature gradient in a direction perpendicular to the film surface, Patent Document 1 mentions a thermoelectric conversion element that combines these two effects. are doing. When a temperature gradient in a direction perpendicular to the film surface is given to a laminated structure of a magnetic insulator film such as ferrite and a magnetic metal film such as Ni, a spin Seebeck effect and an abnormal Nernst effect are simultaneously expressed (Non-patent Document) 1). At this time, a larger electromotive force can be obtained by adding the electromotive force of the spin Seebeck effect and the electromotive force of the abnormal Nernst effect.

また、特許文献4には、磁性金属膜の磁化を一方向に固定する関連技術として、反強磁性膜の交換結合を用いて磁化を一方向に固定する方法を用いた温度センサが開示されている。  Patent Document 4 discloses a temperature sensor using a method of fixing magnetization in one direction using exchange coupling of an antiferromagnetic film as a related technique for fixing magnetization of a magnetic metal film in one direction. I have.

特開2016−80394号公報JP-A-2006-80394 特開2014−216333号公報JP 2014-216333 A 特開2009−130070号公報JP 2009-13070 A 特開平9−113379号公報JP-A-9-113379

B.F.Miao,S.Y.Huang,D.Qu,and C.L.Chien,“Inverse Spin Hall Effect in a Ferromagnetic Metal”,Phys.Rev.Lett.111,066602,2013.B. F. Miao, S.M. Y. Huang, D .; Qu, and C.W. L. Chien, "Inverse Spin Hall Effect in a Ferromagnetic Metal", Phys. Rev. Lett. 111, 066602, 2013. T.Niizeki,T.Kikkawa,K.Uchida,M.Oka,K.Z.Suzuki,and H.Yanagihara,“Observation of longitudinal spin−Seebeck effect in cobalt−ferrite epitaxial thin films”,AIP Advances 5,053603,2015.T.A. Niizeki, T .; Kikka, K .; Uchida, M .; Oka, K .; Z. Suzuki, and H .; Yanagihara, "Observation of longitudinal spin-Seebeck effect in cobalt-ferrite epitaxial thin films", AIP Advances 5,053603, 2015.

しかしながら、特許文献1や非特許文献1に開示されているスピンゼーベック効果と異常ネルンスト効果を併用する熱電変換素子では、安定した熱電変換を行うために、磁性絶縁体膜や磁性金属膜の磁化を一方向に固定することにおいて課題を有している。  However, in a thermoelectric conversion element using both the spin Seebeck effect and the abnormal Nernst effect disclosed in Patent Document 1 and Non-Patent Document 1, in order to perform stable thermoelectric conversion, the magnetization of a magnetic insulator film or a magnetic metal film is changed. There is a problem in fixing in one direction.

磁性絶縁体膜や磁性金属膜の磁化を一方向に固定するためには、磁化を固定する方向に外部からバイアス磁場を印加すればよい。しかしながら、素子構造の単純さや使いやすさといった素子の利便性を鑑みると、外部バイアス磁界なしで磁化が固定されていることが望ましい。この場合には、磁化を一方向に固定するための大きな保磁力を有する磁性材料が必要となる。  In order to fix the magnetization of the magnetic insulator film or the magnetic metal film in one direction, a bias magnetic field may be externally applied in the direction in which the magnetization is fixed. However, in view of the convenience of the element such as simplicity of the element structure and ease of use, it is desirable that the magnetization is fixed without an external bias magnetic field. In this case, a magnetic material having a large coercive force for fixing the magnetization in one direction is required.

磁性絶縁体膜と磁性金属膜の内で、磁性絶縁体膜においては、保磁力が4kOe(エルステッド)と大きいコバルトフェライトを用いることが非特許文献2に開示されている。このコバルトフェライトを一方向に着磁することによって、安定した熱電変換を可能とする磁化の固定が可能である。一方、磁性金属膜においては、高い熱電変換性能を有しつつ磁化を一方向に固定するための大きな保磁力を有する磁性材料は知られていない。そのため、磁化を一方向に固定することができず、安定した熱電変換動作ができない。  Non-Patent Document 2 discloses that a cobalt ferrite having a large coercive force of 4 kOe (Oersted) is used for the magnetic insulator film among the magnetic insulator film and the magnetic metal film. By magnetizing this cobalt ferrite in one direction, it is possible to fix the magnetization which enables stable thermoelectric conversion. On the other hand, there is no known magnetic metal film having a high coercive force for fixing magnetization in one direction while having high thermoelectric conversion performance. Therefore, the magnetization cannot be fixed in one direction, and a stable thermoelectric conversion operation cannot be performed.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、スピンゼーベック効果と異常ネルンスト効果を併用する熱電変換素子において、安定した熱電変換動作を利便性良く実現することにある。  The present invention has been made in view of the above problems, and an object of the present invention is to realize a stable thermoelectric conversion operation with high convenience in a thermoelectric conversion element that uses both the spin Seebeck effect and the abnormal Nernst effect.

本発明の熱電変換素子は、膜厚方向の温度勾配によって第1の起電力を生じる磁性金属膜と、前記磁性金属膜に積層されて前記磁性金属膜の磁化方向を膜面内の一方向に固定し、膜厚方向の温度勾配によって生じる前記磁性金属膜のスピン流の注入を受けて第2の起電力を生じる反強磁性金属膜と、の積層膜と、前記積層膜の膜面上に前記磁化方向と異なる方向に離隔して並設された一対の端子と、を有する。  The thermoelectric conversion element according to the present invention includes a magnetic metal film that generates a first electromotive force due to a temperature gradient in a film thickness direction, and a magnetization direction of the magnetic metal film stacked on the magnetic metal film in one direction in a film plane. A stacked film of a fixed antiferromagnetic metal film receiving a spin current injection of the magnetic metal film generated by a temperature gradient in a film thickness direction to generate a second electromotive force; And a pair of terminals arranged side by side in a direction different from the magnetization direction.

本発明の熱電変換素子の製造方法は、基板上に、膜厚方向の温度勾配によって第1の起電力を生じる磁性金属膜と、膜厚方向の温度勾配によって生じる前記磁性金属膜のスピン流の注入を受けて第2の起電力を生じる反強磁性金属膜と、の積層膜を成膜し、前記積層膜の成膜時もしくは成膜後に、前記反強磁性金属膜により前記磁性金属膜の磁化方向を膜面内の一方向に固定し、一対の端子を前記積層膜の膜面上に前記磁化方向と異なる方向に離隔して並設する。  The method for manufacturing a thermoelectric conversion element according to the present invention is characterized in that a magnetic metal film that generates a first electromotive force due to a temperature gradient in a film thickness direction is formed on a substrate, Forming a laminated film of an antiferromagnetic metal film that generates a second electromotive force upon injection, and forming the laminated metal film by using the antiferromagnetic metal film during or after the formation of the laminated film. The magnetization direction is fixed in one direction in the film plane, and a pair of terminals are arranged in parallel on the film plane of the laminated film in a direction different from the magnetization direction.

本発明の熱電変換素子によれば、スピンゼーベック効果と異常ネルンスト効果を併用する熱電変換素子において、安定した熱電変換動作を利便性良く実現することができる。  ADVANTAGE OF THE INVENTION According to the thermoelectric conversion element of this invention, the stable thermoelectric conversion operation | movement can be implement | achieved with good convenience in the thermoelectric conversion element which uses a spin Seebeck effect and an abnormal Nernst effect together.

本発明の第1の実施形態の熱電変換素子の構成を示す斜視図である。It is a perspective view showing composition of a thermoelectric conversion element of a 1st embodiment of the present invention. 本発明の第2の実施形態の熱電変換素子の構成を示す斜視図である。It is a perspective view showing composition of a thermoelectric conversion element of a 2nd embodiment of the present invention. 本発明の第2の実施形態の熱電変換素子の別の構成を示す斜視図である。It is a perspective view showing another composition of the thermoelectric conversion element of a 2nd embodiment of the present invention. 本発明の第2の実施形態の熱電変換素子のさらに別の構成を示す斜視図である。It is a perspective view showing still another composition of the thermoelectric conversion element of a 2nd embodiment of the present invention. 本発明の第2の実施形態の熱電変換素子の製造方法の一部を説明するための図である。It is a figure for explaining a part of manufacturing method of a thermoelectric conversion element of a 2nd embodiment of the present invention. 本発明の第2の実施形態の熱電変換素子の実施例を示す斜視図である。It is a perspective view showing the example of the thermoelectric conversion element of a 2nd embodiment of the present invention. 本発明の第2の実施形態の熱電変換素子の実施例の熱電変換特性を示す図である。It is a figure showing the thermoelectric conversion characteristic of the example of the thermoelectric conversion element of a 2nd embodiment of the present invention. 本発明の第2の実施形態の熱電変換素子の比較例の熱電変換特性を示す図である。It is a figure showing the thermoelectric conversion characteristic of the comparative example of the thermoelectric conversion element of a 2nd embodiment of the present invention. 本発明の第3の実施形態の熱電変換素子の構成を示す斜視図である。It is a perspective view showing composition of a thermoelectric conversion element of a 3rd embodiment of the present invention. 本発明の第3の実施形態の熱電変換素子の別の構成を示す斜視図である。It is a perspective view showing another composition of the thermoelectric conversion element of a 3rd embodiment of the present invention. 本発明の第3の実施形態の熱電変換素子の実施例を示す斜視図である。It is a perspective view showing the example of the thermoelectric conversion element of a 3rd embodiment of the present invention. 本発明の第4の実施形態の熱電変換素子の構成を示す斜視図である。It is a perspective view showing composition of a thermoelectric conversion element of a 4th embodiment of the present invention. 本発明の第4の実施形態の熱電変換素子の実施例を示す斜視図である。It is a perspective view showing the example of the thermoelectric conversion element of a 4th embodiment of the present invention.

以下、図を参照しながら、本発明の実施形態を詳細に説明する。但し、以下に述べる実施形態には、本発明を実施するために技術的に好ましい限定がされているが、発明の範囲を以下に限定するものではない。
(第1の実施形態)
図1は、本発明の第1の実施形態の熱電変換素子の構成を示す斜視図である。本実施形態の熱電変換素子1は、磁性金属膜11と反強磁性金属膜12との積層膜13を有する。磁性金属膜11は、膜厚方向の温度勾配によって第1の起電力を生じる。反強磁性金属膜12は、磁性金属膜11に積層されて磁性金属膜11の磁化方向を膜面内の一方向に固定し、膜厚方向の温度勾配によって生じる磁性金属膜11のスピン流の注入を受けて第2の起電力を生じる。さらに、積層膜13の膜面上に磁性金属膜11の磁化方向と異なる方向に離隔して並設された一対の端子を有する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the embodiments described below have technically preferable limitations for carrying out the present invention, but do not limit the scope of the invention to the following.
(1st Embodiment)
FIG. 1 is a perspective view showing the configuration of the thermoelectric conversion element according to the first embodiment of the present invention. The thermoelectric conversion element 1 of the present embodiment has a laminated film 13 of a magnetic metal film 11 and an antiferromagnetic metal film 12. The magnetic metal film 11 generates a first electromotive force due to a temperature gradient in the thickness direction. The antiferromagnetic metal film 12 is stacked on the magnetic metal film 11, fixes the magnetization direction of the magnetic metal film 11 in one direction in the film plane, and suppresses the spin current of the magnetic metal film 11 generated by the temperature gradient in the film thickness direction. The injection produces a second electromotive force. Further, a pair of terminals are provided on the film surface of the stacked film 13 so as to be separated from each other in a direction different from the magnetization direction of the magnetic metal film 11.

以上の熱電変換素子1によれば、膜厚方向(図1ではz軸方向)の温度勾配によって、スピンゼーベック効果と異常ネルンスト効果とによる熱電変換で起電力(図1ではx軸正方向)を得る。このために、磁性金属膜11の磁化を、反強磁性金属膜12との交換結合によって所定の方向(図1ではy軸正方向)に固定することができる。よって、磁性金属膜11の磁化を固定するために外部から磁界を印加する必要がないため、素子構造を複雑にしたり素子を使いにくくしたりすることがなくて済む。  According to the thermoelectric conversion element 1 described above, the electromotive force (positive direction in the x-axis in FIG. 1) is generated by the thermoelectric conversion by the spin Seebeck effect and the abnormal Nernst effect due to the temperature gradient in the film thickness direction (the z-axis direction in FIG. 1). obtain. For this reason, the magnetization of the magnetic metal film 11 can be fixed in a predetermined direction (the y-axis positive direction in FIG. 1) by exchange coupling with the antiferromagnetic metal film 12. Therefore, it is not necessary to apply a magnetic field from the outside in order to fix the magnetization of the magnetic metal film 11, so that it is not necessary to complicate the element structure or to make the element difficult to use.

以上のように、本実施形態によれば、スピンゼーベック効果と異常ネルンスト効果を併用する熱電変換素子において、安定した熱電変換動作を利便性良く実現することができる。
(第2の実施形態)
図2は、本発明の第2の実施形態の熱電変換素子の構成を示す斜視図である。本実施形態の熱電変換素子2は、基板20上に成膜された磁性金属膜21と反強磁性金属膜22との積層膜23と、起電力を取り出すための1対の端子24とを有する。
As described above, according to the present embodiment, a stable thermoelectric conversion operation can be realized with good convenience in a thermoelectric conversion element using both the spin Seebeck effect and the abnormal Nernst effect.
(Second Embodiment)
FIG. 2 is a perspective view illustrating a configuration of a thermoelectric conversion element according to a second embodiment of the present invention. The thermoelectric conversion element 2 of the present embodiment has a laminated film 23 of a magnetic metal film 21 and an antiferromagnetic metal film 22 formed on a substrate 20 and a pair of terminals 24 for extracting an electromotive force. .

磁性金属膜21は、異常ネルンスト効果やスピンゼーベック効果を発現する磁性体材料であり、所定の方向(図2ではy軸正方向)に磁化が固定されている。磁性金属膜21は、膜厚方向の温度勾配によって生じる異常ネルンスト効果によりx軸方向に第1の起電力を生じる。  The magnetic metal film 21 is a magnetic material exhibiting an abnormal Nernst effect and a spin Seebeck effect, and has a fixed magnetization in a predetermined direction (positive y-axis direction in FIG. 2). The magnetic metal film 21 generates a first electromotive force in the x-axis direction due to an abnormal Nernst effect caused by a temperature gradient in the thickness direction.

反強磁性金属膜22は、磁性金属膜21に積層されて磁性金属膜21の磁化を所定の方向(y軸正方向)に固定する。反強磁性金属膜22は、膜厚方向の温度勾配によって生じる磁性金属膜21のスピンゼーベック効果によるスピン流の注入を受けて、スピン流に対する逆スピンホール効果によりx軸方向に第2の起電力を生じる。  The antiferromagnetic metal film 22 is laminated on the magnetic metal film 21 and fixes the magnetization of the magnetic metal film 21 in a predetermined direction (y-axis positive direction). The antiferromagnetic metal film 22 receives the spin current injected by the spin Seebeck effect of the magnetic metal film 21 generated by the temperature gradient in the film thickness direction, and generates a second electromotive force in the x-axis direction by the inverse spin Hall effect on the spin current. Is generated.

1対の端子24は、積層膜23の膜面上に所定の方向(y軸正方向)に垂直な方向(x軸方向)に離隔して並設されている。これにより端子24は、x軸方向に生じる第1の起電力と第2の起電力とが加算された起電力を出力することができる。1対の端子24はまた、積層膜23の膜面内に所定の方向(y軸正方向)と異なる方向に離隔して並設されていれば、前記の起電力を出力することができる。  The pair of terminals 24 are arranged side by side on the film surface of the laminated film 23 in a direction (x-axis direction) perpendicular to a predetermined direction (y-axis positive direction). Thus, the terminal 24 can output an electromotive force obtained by adding the first electromotive force and the second electromotive force generated in the x-axis direction. The pair of terminals 24 can output the above-described electromotive force if they are arranged in parallel in the film surface of the laminated film 23 in a direction different from a predetermined direction (positive y-axis direction).

なお、積層膜23において、磁性金属膜21と反強磁性金属膜22の積層の順序は逆でもよい。すなわち、端子24との接続は、磁性金属膜21の表面であっても反強磁性金属膜22の表面であってもよい。  In the laminated film 23, the order of lamination of the magnetic metal film 21 and the antiferromagnetic metal film 22 may be reversed. That is, the connection with the terminal 24 may be on the surface of the magnetic metal film 21 or on the surface of the antiferromagnetic metal film 22.

以上の熱電変換素子2の動作を以下に説明する。  The operation of the thermoelectric conversion element 2 will be described below.

熱電変換素子2の膜厚方向(z軸方向)に温度勾配を与えると、磁性金属膜21には、磁性金属膜21の異常ネルンスト効果によって磁化の方向(y軸正方向)と温度勾配の方向(z軸方向)とに垂直な方向(x軸方向)に電流が流れて起電力が生じる(第1の起電力)。  When a temperature gradient is given in the film thickness direction (z-axis direction) of the thermoelectric conversion element 2, the magnetization direction (y-axis positive direction) and the temperature gradient direction are applied to the magnetic metal film 21 due to the abnormal Nernst effect of the magnetic metal film 21. A current flows in a direction (x-axis direction) perpendicular to the (z-axis direction) to generate an electromotive force (first electromotive force).

さらに、磁性金属膜21は、温度勾配によって生じるスピンゼーベック効果により、温度勾配の方向(z軸方向)にスピン流を生じる。磁性金属膜21で生じたスピン流が反強磁性金属膜22に注入されると、反強磁性金属膜22のスピン軌道相互作用が大きいことにより、反強磁性金属膜22にはスピン流に対しての逆スピンホール効果が生じる。この逆スピンホール効果により、反強磁性金属膜22にはスピン流の方向(z軸方向)と磁化の方向(y軸正方向)とに垂直な方向(x軸方向)に電流が流れて起電力が生じる(第2の起電力)。  Further, the magnetic metal film 21 generates a spin current in the direction of the temperature gradient (z-axis direction) due to the spin Seebeck effect caused by the temperature gradient. When the spin current generated in the magnetic metal film 21 is injected into the antiferromagnetic metal film 22, the spin-orbit interaction of the antiferromagnetic metal film 22 is large, so that the antiferromagnetic metal film 22 has All reverse spin Hall effects occur. Due to the reverse spin Hall effect, a current flows in the antiferromagnetic metal film 22 in a direction (x-axis direction) perpendicular to the direction of the spin current (z-axis direction) and the direction of magnetization (positive y-axis direction). Electric power is generated (second electromotive force).

ここで、異常ネルンスト効果による第1の起電力と、スピンゼーベック効果による第2の起電力とは、磁性材料の種類によって、同じ極性になる場合もあれば、逆の極性になる場合もある。第1の起電力と第2の起電力とが同じ極性になる場合、双方の起電力が加算された起電力を得ることができる。また、第1の起電力と第2の起電力とが逆の極性になる場合、双方の起電力の差分が出力される。すなわち、第1の起電力と第2の起電力の極性を制御することによって、利用目的に応じた大きい起電力や小さい起電力を、端子24から得ることが可能である。  Here, the first electromotive force due to the abnormal Nernst effect and the second electromotive force due to the spin Seebeck effect may have the same polarity or may have the opposite polarity depending on the type of magnetic material. When the first electromotive force and the second electromotive force have the same polarity, an electromotive force obtained by adding both electromotive forces can be obtained. When the first electromotive force and the second electromotive force have opposite polarities, a difference between the two electromotive forces is output. That is, by controlling the polarities of the first electromotive force and the second electromotive force, it is possible to obtain a large electromotive force or a small electromotive force from the terminal 24 according to the purpose of use.

このとき磁性金属膜21の磁化は、反強磁性金属膜22と磁性金属膜21との界面で生じる交換結合による交換結合磁界により、所定の方向(y軸正方向)に固定されている。このため、外部磁場の揺らぎなどがある環境下であっても、磁性金属膜21の磁化の向きは安定している。これにより熱電変換素子2は、安定した熱電変換動作を行うことができる。  At this time, the magnetization of the magnetic metal film 21 is fixed in a predetermined direction (y-axis positive direction) by an exchange coupling magnetic field due to exchange coupling generated at the interface between the antiferromagnetic metal film 22 and the magnetic metal film 21. Therefore, the direction of magnetization of the magnetic metal film 21 is stable even in an environment where there is fluctuation of the external magnetic field. Thereby, the thermoelectric conversion element 2 can perform a stable thermoelectric conversion operation.

磁性金属膜21の材料としては、異常ネルンスト効果を生じる磁性材料であればよい。具体的には、例えば、FeやNiやCoなどの強磁性金属や、Fe系磁性合金やNi系磁性合金やCo系磁性合金などの磁性合金を用いることができる。  The material of the magnetic metal film 21 may be any magnetic material that produces an abnormal Nernst effect. Specifically, for example, a ferromagnetic metal such as Fe, Ni, or Co, or a magnetic alloy such as an Fe-based magnetic alloy, a Ni-based magnetic alloy, or a Co-based magnetic alloy can be used.

反強磁性金属膜22の材料としては、スピン軌道相互作用が大きいことにより逆スピンホール効果を生じることのできる磁性材料であればよい。具体的には、Mnを母材として5d遷移金属元素あるいは貴金属元素を含む反強磁性合金が望ましく、例えば、MnPt、Mn80Ir20、Mn−Rh、Mn−Pd合金などが望ましい。The material of the antiferromagnetic metal film 22 may be a magnetic material capable of generating an inverse spin Hall effect due to a large spin-orbit interaction. Specifically, the antiferromagnetic alloy preferably containing 5d transition metal element or a noble metal element as a base material for Mn, for example, Mn 3 Pt, Mn 80 Ir 20, Mn-Rh, etc. Mn-Pd alloy is preferable.

磁性金属膜21と反強磁性金属膜22の膜厚は、交換結合磁界が膜厚の増大とともに減少することから、双方とも10nm以下とすることが望ましい。また、安定した磁気特性を得るために双方とも1nm以上とすることが望ましい。  The thickness of the magnetic metal film 21 and the thickness of the antiferromagnetic metal film 22 are desirably 10 nm or less because the exchange coupling magnetic field decreases as the film thickness increases. In addition, in order to obtain stable magnetic characteristics, it is desirable that both are 1 nm or more.

端子24は、積層膜23の表面に、x軸方向に生じる起電力を出力できるように並設されている。端子24は、x軸方向に離隔して並設されることが望ましいが、これには限定されない。磁性金属膜21の磁化方向と異なる方向に離隔して並設されていれば、起電力を出力することができる。  The terminals 24 are arranged in parallel on the surface of the laminated film 23 so as to output an electromotive force generated in the x-axis direction. The terminals 24 are desirably arranged side by side in the x-axis direction, but are not limited thereto. If the magnetic metal films 21 are arranged side by side in a direction different from the magnetization direction, an electromotive force can be output.

端子24の材料としては、抵抗率の低い金属材料が望ましく、例えば、Au、Pt、Ta、Cuなどを用いることができる。また、端子24の膜厚は、起電力を取り出す際の電気的な接続を安定化するために、磁性金属膜21や反強磁性金属膜22の膜厚よりも厚いことが望ましい。より望ましくは30nm以上である。  As a material of the terminal 24, a metal material having a low resistivity is desirable, and for example, Au, Pt, Ta, Cu, or the like can be used. The thickness of the terminal 24 is desirably larger than the thickness of the magnetic metal film 21 or the antiferromagnetic metal film 22 in order to stabilize the electrical connection when extracting the electromotive force. More preferably, it is 30 nm or more.

端子24を電圧計に接続することで、起電力を測定することができる。また、端子24を蓄電池に接続することで、起電力を蓄電することができる。また、端子を電子回路中の電源回路に接続することで、起電力による電子回路の動作が可能である。  The electromotive force can be measured by connecting the terminal 24 to a voltmeter. Further, by connecting the terminal 24 to a storage battery, the electromotive force can be stored. Further, by connecting the terminal to a power supply circuit in the electronic circuit, the operation of the electronic circuit by electromotive force can be performed.

図3は、本実施形態の熱電変換素子の別の構成を示す斜視図である。図3の熱電変換素子2aが図2の熱電変換素子2と異なる点は、熱電変換素子2aでは積層膜23の表面を保護するキャップ膜25が設けられている点である。その他の構造は、図2の熱電変換素子2と同じである。  FIG. 3 is a perspective view showing another configuration of the thermoelectric conversion element of the present embodiment. The thermoelectric conversion element 2a in FIG. 3 differs from the thermoelectric conversion element 2 in FIG. 2 in that a cap film 25 for protecting the surface of the laminated film 23 is provided in the thermoelectric conversion element 2a. Other structures are the same as those of the thermoelectric conversion element 2 of FIG.

キャップ膜25は、磁性金属膜21や反強磁性金属膜22が酸化することで磁気特性が劣化するのを防ぐことができる。よって、キャップ膜25を設けることによって、熱電変換動作をさらに安定化することができる。キャップ膜25の材料としては、酸化しにくい金属であるPtやAu、また、ポリイミド樹脂やエポキシ樹脂などの有機高分子材料を用いることができるが、これらには限定されない。  The cap film 25 can prevent the magnetic characteristics from deteriorating due to the oxidation of the magnetic metal film 21 and the antiferromagnetic metal film 22. Therefore, by providing the cap film 25, the thermoelectric conversion operation can be further stabilized. Examples of the material of the cap film 25 include Pt and Au, which are hardly oxidized metals, and organic polymer materials such as polyimide resin and epoxy resin, but are not limited thereto.

図4は、本実施形態の熱電変換素子のさらに別の構成を示す斜視図である。図4の熱電変換素子2bが図3の熱電変換素子2aと異なる点は、熱電変換素子2bでは、積層膜23の表面にパッド26を設け、パッド26を介して端子24を引き出している点である。その他の構造は、図3の熱電変換素子2aと同じである。  FIG. 4 is a perspective view showing still another configuration of the thermoelectric conversion element of the present embodiment. The thermoelectric conversion element 2b in FIG. 4 differs from the thermoelectric conversion element 2a in FIG. 3 in that the thermoelectric conversion element 2b has a pad 26 provided on the surface of the laminated film 23, and a terminal 24 is drawn out through the pad 26. is there. Other structures are the same as those of the thermoelectric conversion element 2a of FIG.

パッド26は、起電力を出力できるよう、x軸方向に並設されている。パッド26は、端子24よりも広い面積を有して積層膜23に接続することができるので、起電力を安定的に端子24に供給することができる。よって、パッド26を設けることによって、熱電変換動作で生じた起電力をより安定的に出力することができる。なお、パッド26は、キャップ膜25が金属などの導電体の場合、キャップ膜25の表面に設けられてもよい。  The pads 26 are juxtaposed in the x-axis direction so as to output an electromotive force. Since the pad 26 has a larger area than the terminal 24 and can be connected to the laminated film 23, the electromotive force can be supplied to the terminal 24 stably. Therefore, by providing the pad 26, the electromotive force generated by the thermoelectric conversion operation can be output more stably. When the cap film 25 is a conductor such as a metal, the pad 26 may be provided on the surface of the cap film 25.

パッド26の材料としては、抵抗率の低い金属材料が望ましく、例えば、Au、Pt、Ta、Cuなどを用いることができる。また、パッド26の膜厚は、起電力を取り出す際の電気的な接続を安定化するために、磁性金属膜21や反強磁性金属膜22の膜厚よりも厚いことが望ましい。より望ましくは30nm以上である。  As a material of the pad 26, a metal material having a low resistivity is desirable, and for example, Au, Pt, Ta, Cu, or the like can be used. The thickness of the pad 26 is desirably larger than the thickness of the magnetic metal film 21 or the antiferromagnetic metal film 22 in order to stabilize the electrical connection when extracting the electromotive force. More preferably, it is 30 nm or more.

次に、本実施形態の熱電変換素子2の製造方法を説明する。  Next, a method for manufacturing the thermoelectric conversion element 2 of the present embodiment will be described.

まず、基板20上に、磁性金属膜21と反強磁性金属膜22の積層膜23を成膜する。成膜方法としては、スパッタ法やパルスレーザー堆積法や電子ビーム蒸着法などの物理蒸着法を用いることができる。この成膜を、図5に示すように所定の方向(y軸正方向)に外部磁界を印加した中で行うことで、磁性金属膜21と反強磁性金属膜22との界面での交換結合により、磁性金属膜21の磁化を所定の方向(y軸正方向)に固定することができる。  First, a laminated film 23 of a magnetic metal film 21 and an antiferromagnetic metal film 22 is formed on a substrate 20. As a film formation method, a physical vapor deposition method such as a sputtering method, a pulse laser deposition method, or an electron beam vapor deposition method can be used. By performing this film formation while applying an external magnetic field in a predetermined direction (positive y-axis direction) as shown in FIG. 5, exchange coupling at the interface between the magnetic metal film 21 and the antiferromagnetic metal film 22 is achieved. Thereby, the magnetization of the magnetic metal film 21 can be fixed in a predetermined direction (y-axis positive direction).

また、積層膜23の成膜の後に、所定の方向(y軸正方向)に外部磁界を印加した中で、熱処理を行うことができる。この熱処理により、磁性金属膜21と反強磁性金属膜22との交換結合の発現や強化が可能であることから、磁性金属膜21の磁化を所定の方向(y軸正方向)により強固に固定することができる。  After the formation of the laminated film 23, the heat treatment can be performed while an external magnetic field is applied in a predetermined direction (positive y-axis direction). By this heat treatment, the exchange coupling between the magnetic metal film 21 and the antiferromagnetic metal film 22 can be developed and strengthened, so that the magnetization of the magnetic metal film 21 is more firmly fixed in a predetermined direction (positive y-axis direction). can do.

なお、磁性金属膜21と反強磁性金属膜22の基板20上への成膜の順序は、磁性金属膜21が先であっても、反強磁性金属膜22が先であってもよい。  The order of forming the magnetic metal film 21 and the antiferromagnetic metal film 22 on the substrate 20 may be either the magnetic metal film 21 or the antiferromagnetic metal film 22.

キャップ膜25を形成する場合、積層膜23の成膜に引き続いて、キャップ膜25を成膜することができる。キャップ膜25を物理蒸着法で成膜する場合は、積層膜23の成膜時の真空状態を持続させて、積層膜23の表面を大気中に曝露することなくキャップ膜25を成膜することができる。  When the cap film 25 is formed, the cap film 25 can be formed subsequent to the formation of the stacked film 23. When forming the cap film 25 by the physical vapor deposition method, the vacuum state at the time of forming the stacked film 23 is maintained, and the cap film 25 is formed without exposing the surface of the stacked film 23 to the atmosphere. Can be.

次に、積層膜23の表面に、x軸方向に並設した1対の端子24を形成する。端子24は、端子24を構成する材料を所望の厚さに成膜し、所望の形状に加工する。このときの成膜方法としては、スパッタ法やパルスレーザー堆積法や電子ビーム蒸着法などの物理蒸着法を用いることができる。また、加工方法としては、フォトリソグラフィにより所望の形状のマスクを形成し、このマスクを用いたドライエッチングやウエットエッチングにより、端子24の形状に加工することができる。  Next, a pair of terminals 24 arranged side by side in the x-axis direction is formed on the surface of the laminated film 23. The terminal 24 is formed by forming a material of the terminal 24 into a desired thickness and processing the material into a desired shape. As a film formation method at this time, a physical vapor deposition method such as a sputtering method, a pulse laser deposition method, or an electron beam vapor deposition method can be used. As a processing method, a mask having a desired shape is formed by photolithography, and the terminal 24 can be processed into a shape by dry etching or wet etching using the mask.

実施例1: 図6は、本実施形態の熱電変換素子の実施例1を示す斜視図である。実施例1の熱電変換素子は、基板20として厚さ0.7mmの置換ガドリニウムガリウムガーネット基板(SGGG、組成は(GdCa)(GaMgZr)12)を、磁性金属膜21として膜厚4nmのNi膜を、反強磁性金属膜22として膜厚4nmのMn−Ir合金(組成はMn80Ir20)膜を、それぞれ用いた。さらにMn−Ir膜の表面に、キャップ膜25として膜厚1.5nmのPt膜を形成した。Example 1 FIG. 6 is a perspective view showing Example 1 of the thermoelectric conversion element of the present embodiment. In the thermoelectric conversion element of Example 1, a substituted gadolinium gallium garnet substrate (SGGG, composition of (GdCa) 3 (GaMgZr) 5 O 12 ) having a thickness of 0.7 mm was used as the substrate 20, and a 4 nm-thick film was used as the magnetic metal film 21. As the Ni film, a 4 nm-thick Mn-Ir alloy (composition: Mn 80 Ir 20 ) film was used as the antiferromagnetic metal film 22. Further, a 1.5 nm-thick Pt film was formed as a cap film 25 on the surface of the Mn-Ir film.

以上の各膜は、それぞれNi、Mn−Ir合金、Ptのターゲット材料を用いて、アルゴンガス中のマグネトロンスパッタ法により成膜した。この成膜の際には、図5に示すようにy軸正方向(所定の方向)に磁界を印加した。磁界は、ネオジウム系磁石の磁極を対向させた磁極間で発生させた一方向の磁界であり、基板の位置で約4kOeとした。  Each of the above films was formed by magnetron sputtering in argon gas using target materials of Ni, Mn-Ir alloy, and Pt. During the film formation, a magnetic field was applied in the positive y-axis direction (predetermined direction) as shown in FIG. The magnetic field was a unidirectional magnetic field generated between the magnetic poles of the neodymium-based magnet facing each other, and was about 4 kOe at the position of the substrate.

さらに、端子24として、膜厚30nmのAu膜をマグネトロンスパッタ法により成膜し、フォトリソグラフィとイオンミリングにより、x軸方向に離隔して並べた1対の端子を形成した。  Further, as the terminals 24, a 30 nm-thick Au film was formed by magnetron sputtering, and a pair of terminals spaced apart in the x-axis direction was formed by photolithography and ion milling.

また、図6の熱電変換素子の比較例として、反強磁性金属膜22であるMn−Ir膜を除いた熱電変換素子を作製した。比較例としての熱電変換素子は、Mn−Ir膜を除いている以外は、実施例1の熱電変換素子と同じとした。  Further, as a comparative example of the thermoelectric conversion element of FIG. 6, a thermoelectric conversion element excluding the Mn-Ir film as the antiferromagnetic metal film 22 was manufactured. The thermoelectric conversion element as a comparative example was the same as the thermoelectric conversion element of Example 1 except that the Mn-Ir film was omitted.

以上の実施例1の熱電変換素子と、比較例の熱電変換素子の熱電変換特性を評価し比較した。  The thermoelectric conversion characteristics of the thermoelectric conversion element of Example 1 and the thermoelectric conversion element of the comparative example were evaluated and compared.

図7Aは、実施例1の熱電変換素子の、また、図7Bは、比較例の熱電変換素子の、各々の熱電変換特性として、起電力の磁界依存性を示す図である。図7Aおよび図7Bは、基板からキャップ膜表面に向けての温度勾配ΔTを8K、0K、−8Kとした場合について、y軸方向に印加する磁界(横軸)の大きさと極性を変えながら、起電力(縦軸)を端子で測定した結果を示している。  7A is a diagram illustrating the thermoelectric conversion element of Example 1 and FIG. 7B is a diagram illustrating the magnetic field dependence of the electromotive force as the thermoelectric conversion characteristics of the thermoelectric conversion element of the comparative example. FIGS. 7A and 7B show the case where the temperature gradient ΔT from the substrate to the cap film surface is 8K, 0K, and −8K, while changing the magnitude and polarity of the magnetic field (horizontal axis) applied in the y-axis direction. The result of measuring the electromotive force (vertical axis) at the terminal is shown.

図7Aでは、磁界が0Oeのときに、温度勾配ΔTに対応した起電力が得られた。すなわち、ΔTが8Kでは正の起電力が、0Kでは0の起電力が、−8Kでは負の起電力が得られた。このことは、外部磁界のない状態でNi膜の磁化がy軸正方向に固定されていることによって、正常な熱電変換動作が行われていることを示している。  In FIG. 7A, when the magnetic field is 0 Oe, an electromotive force corresponding to the temperature gradient ΔT is obtained. That is, when ΔT was 8K, a positive electromotive force was obtained at 0K, a zero electromotive force was obtained at 0K, and a negative electromotive force was obtained at −8K. This indicates that a normal thermoelectric conversion operation is being performed because the magnetization of the Ni film is fixed in the positive y-axis direction without an external magnetic field.

また、図7Aでは、磁界を正(y軸正方向)に増大させた場合、温度勾配ΔTに対応した起電力が安定的に得られた。一方、磁界を負(y軸負方向)に増大させた場合、−200Oe前後で起電力の極性が反転した。これは、Mn−Ir膜とNi膜との交換結合によりy軸正方向に200Oe程度の交換結合磁界が発生し、この交換結合磁界により、Niの磁化がy軸正方向に固定されたことを示している。  In FIG. 7A, when the magnetic field was increased in the positive direction (positive y-axis direction), an electromotive force corresponding to the temperature gradient ΔT was stably obtained. On the other hand, when the magnetic field was increased in the negative direction (y-axis negative direction), the polarity of the electromotive force was reversed around -200 Oe. This is because the exchange coupling between the Mn-Ir film and the Ni film generated an exchange coupling magnetic field of about 200 Oe in the positive y-axis direction, and the exchange coupling magnetic field fixed the magnetization of Ni in the positive y-axis direction. Is shown.

−200Oe前後での起電力の極性の反転は、外部磁界が交換結合磁界よりも大きくなった結果、Ni膜の磁化がy軸負方向に反転したことを示している。なお、y軸負方向に反転したNi膜の磁化は、外部磁界が取り去られると、交換結合磁界によって再びy軸正方向に固定される。  The reversal of the polarity of the electromotive force at around -200 Oe indicates that the magnetization of the Ni film was reversed in the negative y-axis direction as a result of the external magnetic field being larger than the exchange coupling magnetic field. When the external magnetic field is removed, the magnetization of the Ni film inverted in the y-axis negative direction is fixed again in the y-axis positive direction by the exchange coupling magnetic field.

以上のように、実施例1の熱電変換素子では、外部磁界のない状態、もしくは−200Oe程度以下の磁界中であれば、温度勾配ΔTに対応した起電力が得られた。これは、Mn−Ir膜とNi膜との交換結合によりNi膜の磁化がy軸正方向に固定されたことによる。  As described above, in the thermoelectric conversion element of Example 1, an electromotive force corresponding to the temperature gradient ΔT was obtained in a state where there was no external magnetic field or in a magnetic field of about −200 Oe or less. This is because the magnetization of the Ni film was fixed in the positive y-axis direction by exchange coupling between the Mn-Ir film and the Ni film.

一方、図7Bでは、磁界が0Oeのときに、起電力は正から負にわたって大きく変化し、温度勾配ΔTに対応した起電力が安定的に得られなかった。このことは、外部磁界のない状態ではNi膜の磁化がy軸正方向に固定されることなく不安定となっていたために、正常な熱電変換動作が行われなかったことを示している。  On the other hand, in FIG. 7B, when the magnetic field was 0 Oe, the electromotive force changed greatly from positive to negative, and an electromotive force corresponding to the temperature gradient ΔT was not stably obtained. This indicates that normal thermoelectric conversion operation was not performed because the magnetization of the Ni film was unstable without being fixed in the positive y-axis direction in the absence of an external magnetic field.

一方、図7Bでは、磁界を正(y軸正方向)もしくは負(y軸負方向)に増大させた場合、温度勾配ΔTに対応した起電力が安定的に得られた。これは、外部磁界によって、Niの磁化がy軸正方向もしくはy軸負方向に固定されたことを示している。しかしながら、外部磁界によって固定されたNi膜の磁化は、外部磁界が取り去られると、再び不安定になる。  On the other hand, in FIG. 7B, when the magnetic field was increased in the positive (y-axis positive direction) or negative (y-axis negative direction), an electromotive force corresponding to the temperature gradient ΔT was obtained stably. This indicates that the magnetization of Ni was fixed in the positive y-axis direction or the negative y-axis direction by the external magnetic field. However, the magnetization of the Ni film fixed by the external magnetic field becomes unstable again when the external magnetic field is removed.

以上のように、実施例1の比較例の熱電変換素子では、外部磁界のない状態では安定した起電力が得られなかった。そして、安定した起電力を得るためには、外部磁界を所定の方向に印加しなければならなかった。  As described above, in the thermoelectric conversion element of the comparative example of Example 1, no stable electromotive force was obtained without an external magnetic field. In order to obtain a stable electromotive force, an external magnetic field has to be applied in a predetermined direction.

以上の本実施形態の熱電変換素子2および実施例1の熱電変換素子によれば、スピンゼーベック効果と異常ネルンスト効果とによる熱電変換で起電力を得るために、反強磁性金属膜との交換結合によって磁性金属膜の磁化を所定の方向に固定することができる。これにより、磁性金属膜の磁化を所定の方向に固定するために外部から磁界を印加する必要がなく、素子構造を複雑にしたり素子を使いにくくしたりすることがなくて済む。  According to the above-described thermoelectric conversion element 2 of the present embodiment and the thermoelectric conversion element of Example 1, in order to obtain an electromotive force by thermoelectric conversion due to the spin Seebeck effect and the abnormal Nernst effect, exchange coupling with the antiferromagnetic metal film is required. Thereby, the magnetization of the magnetic metal film can be fixed in a predetermined direction. Accordingly, there is no need to apply an external magnetic field to fix the magnetization of the magnetic metal film in a predetermined direction, and it is not necessary to complicate the element structure or to make the element difficult to use.

以上のように、本実施形態および本実施例によれば、スピンゼーベック効果と異常ネルンスト効果を併用する熱電変換素子において、安定した熱電変換動作を利便性良く実現することができる。
(第3の実施形態)
図8は、本発明の第3の実施形態の熱電変換素子の構成を示す斜視図である。本実施形態の熱電変換素子3が第2の実施形態の熱電変換素子2と異なる点は、熱電変換素子3では、基板30と、磁性金属膜31と反強磁性金属膜32の積層膜33との間に、磁性絶縁体膜35が設けられている点である。その他の構成、すなわち、基板30や、磁性金属膜31と反強磁性金属膜32との積層膜33や、1対の端子34は、熱電変換素子2と同じである。
As described above, according to the present embodiment and the present embodiment, a stable thermoelectric conversion operation can be realized with good convenience in a thermoelectric conversion element using both the spin Seebeck effect and the abnormal Nernst effect.
(Third embodiment)
FIG. 8 is a perspective view illustrating a configuration of a thermoelectric conversion element according to a third embodiment of the present invention. The difference between the thermoelectric conversion element 3 of the present embodiment and the thermoelectric conversion element 2 of the second embodiment is that, in the thermoelectric conversion element 3, the substrate 30, the laminated film 33 of the magnetic metal film 31 and the antiferromagnetic metal film 32 The point is that a magnetic insulator film 35 is provided between them. Other configurations, that is, the substrate 30, the laminated film 33 of the magnetic metal film 31 and the antiferromagnetic metal film 32, and a pair of terminals 34 are the same as those of the thermoelectric conversion element 2.

磁性絶縁体膜35は、スピンゼーベック効果を発現する磁性材料である。磁性絶縁体膜35の磁化は、磁性金属膜31の磁化と同様に、所定の方向(図8ではy軸正方向)に固定されている。磁性絶縁体膜35は、膜厚方向(z軸方向)の温度勾配によって生じるスピンゼーベック効果により、膜厚方向(z軸方向)にスピン流を生じる。  The magnetic insulator film 35 is a magnetic material that exhibits a spin Seebeck effect. The magnetization of the magnetic insulator film 35 is fixed in a predetermined direction (the positive y-axis direction in FIG. 8), similarly to the magnetization of the magnetic metal film 31. The magnetic insulator film 35 generates a spin current in the film thickness direction (z-axis direction) due to the spin Seebeck effect caused by the temperature gradient in the film thickness direction (z-axis direction).

磁性金属膜31と反強磁性金属膜32は、磁性絶縁体膜35で生じたスピン流の注入を受けて、スピン流に対する逆スピンホール効果によりx軸方向に第3の起電力を生じる。  The magnetic metal film 31 and the antiferromagnetic metal film 32 receive the spin current generated by the magnetic insulator film 35, and generate a third electromotive force in the x-axis direction by the inverse spin Hall effect on the spin current.

1対の端子34は、磁性金属膜21の異常ネルンスト効果によって生じる第1の起電力と、磁性金属膜31のスピンゼーベック効果により生じたスピン流に対して反強磁性金属膜32の逆スピンホール効果によって生じる第2の起電力と、第3の起電力とが加算された起電力を出力する。  The pair of terminals 34 are connected to the first electromotive force generated by the abnormal Nernst effect of the magnetic metal film 21 and the inverse spin hole of the antiferromagnetic metal film 32 with respect to the spin current generated by the spin Seebeck effect of the magnetic metal film 31. An electromotive force obtained by adding the second electromotive force generated by the effect and the third electromotive force is output.

磁性絶縁体膜35の材料としては、スピンゼーベック効果を発現する絶縁性の磁性材料であればよい。具体的には、例えば、イットリウム鉄ガーネット(YIG、組成はYFe12)や、ビスマス(Bi)を添加したYIG(Bi:YIG、組成はBiYFe12)や、Coフェライト(組成はCoFe)や、Ni−Znフェライト(組成は(Ni,Zn)Fe3−X))などを用いることができる。The material of the magnetic insulator film 35 may be any insulating magnetic material that exhibits a spin Seebeck effect. Specifically, for example, yttrium iron garnet (YIG, composition is Y 3 Fe 5 O 12 ), YIG to which bismuth (Bi) is added (Bi: YIG, composition is BiY 2 Fe 5 O 12 ), Co ferrite (composition CoFe 2 O 4) and, Ni-Zn ferrite (composition (Ni, Zn) X Fe 3 -X O 4) or the like can be used).

磁性絶縁体膜35の磁化は、磁性絶縁体膜35の材料の保磁力よりも大きい磁界を所定の方向に印加することによる着磁により、所定の方向に固定される。磁性絶縁体膜35の材料の保磁力が大きいことにより、磁界を取り去った後も、磁性絶縁体膜35の磁化は所定の方向を保持することができる。  The magnetization of the magnetic insulator film 35 is fixed in a predetermined direction by magnetization by applying a magnetic field larger than the coercive force of the material of the magnetic insulator film 35 in a predetermined direction. Due to the large coercive force of the material of the magnetic insulator film 35, the magnetization of the magnetic insulator film 35 can maintain a predetermined direction even after the magnetic field is removed.

磁性絶縁体膜35を設けることによる第1の効果は、磁性絶縁体膜35のスピンゼーベック効果に基づく前記の第3の起電力が、第1と第2の起電力に加算されることにより、大きな起電力が得られるようになることである。さらに、磁性絶縁体膜35の第2の効果は、磁性絶縁体膜35は酸化物などであるため熱伝導率が小さいことから、膜厚方向での温度勾配を大きくすることができ、大きな起電力が得られることである。  The first effect of providing the magnetic insulator film 35 is that the third electromotive force based on the spin Seebeck effect of the magnetic insulator film 35 is added to the first and second electromotive forces. That is, a large electromotive force can be obtained. Further, the second effect of the magnetic insulator film 35 is that since the magnetic insulator film 35 is made of an oxide or the like and has a low thermal conductivity, the temperature gradient in the film thickness direction can be increased, and a large effect can be obtained. Power is to be obtained.

なお、磁性絶縁体層35の膜厚は、熱電変換性能を大きくするためには、磁性絶縁体材料のスピン緩和長と同程度かそれ以上が望ましい。具体的には、磁性絶縁体層35の膜厚は50nm以上が望ましい。  The thickness of the magnetic insulator layer 35 is desirably equal to or longer than the spin relaxation length of the magnetic insulator material in order to increase thermoelectric conversion performance. Specifically, the thickness of the magnetic insulator layer 35 is desirably 50 nm or more.

なお、磁性絶縁体膜35に起因する第3の起電力の極性は、磁性絶縁体膜35の材料の種類や、磁性絶縁体膜35の磁化をy軸正方向に固定するかy軸負方向に固定するかによって、制御することができる。  The polarity of the third electromotive force caused by the magnetic insulator film 35 depends on the type of the material of the magnetic insulator film 35 and whether the magnetization of the magnetic insulator film 35 is fixed in the positive y-axis direction or in the negative y-axis direction. Can be controlled by fixing to

図9は、本実施形態の熱電変換素子の別の構成を示す斜視図である。図9の熱電変換素子3aが図8の熱電変換素子3と異なる点は、熱電変換素子3aでは積層膜33aの磁性金属膜31と反強磁性金属膜32の積層の順序が、熱電変換素子3の積層膜33の積層の順序と逆である点である。その他の構造は、図8の熱電変換素子3と同じである。  FIG. 9 is a perspective view showing another configuration of the thermoelectric conversion element of the present embodiment. 9 is different from the thermoelectric conversion element 3 of FIG. 8 in that the order of lamination of the magnetic metal film 31 and the antiferromagnetic metal film 32 of the laminated film 33a is different from that of the thermoelectric conversion element 3a. Is the reverse of the order of lamination of the laminated film 33. Other structures are the same as those of the thermoelectric conversion element 3 in FIG.

熱電変換素子3aにおいても、反強磁性金属膜32と磁性金属膜31との界面での交換結合により、磁性金属膜31の磁化を所定の方向(y軸正方向)に固定することができる。  Also in the thermoelectric conversion element 3a, the magnetization of the magnetic metal film 31 can be fixed in a predetermined direction (positive y-axis direction) by exchange coupling at the interface between the antiferromagnetic metal film 32 and the magnetic metal film 31.

また、反強磁性金属膜32は、磁性絶縁体膜35からのスピン流と磁性金属膜31からのスピン流とから、逆スピンホール効果によって起電力を生じることができる。さらに、反強磁性金属膜32は、磁性絶縁体膜35からのスピン流を磁性金属膜31へ効率よく伝える中間層の役割を果たす。磁性金属膜31は、磁性絶縁体膜35からのスピン流を受けて、逆スピンホール効果によって起電力を生じることができる。  The antiferromagnetic metal film 32 can generate an electromotive force from the spin current from the magnetic insulator film 35 and the spin current from the magnetic metal film 31 by the inverse spin Hall effect. Further, the antiferromagnetic metal film 32 plays a role of an intermediate layer that efficiently transmits the spin current from the magnetic insulator film 35 to the magnetic metal film 31. The magnetic metal film 31 receives the spin current from the magnetic insulator film 35 and can generate an electromotive force by the inverse spin Hall effect.

実施例2: 図10は、本実施形態の熱電変換素子の実施例2を示す斜視図である。実施例2の熱電変換素子は、基板20として厚さ0.5mmのMgAl(MAO)を、磁性絶縁体膜35として膜厚100nmのコバルトフェライト膜(組成はCoFe )を、磁性金属膜21として膜厚4nmのNi膜を、反強磁性金属膜22として膜厚4nmのMn−Ir合金(組成はMn80Ir20)膜を、それぞれ用いた。さらに、Mn−Irの表面に、キャップ膜25として膜厚1.5nmのPt膜を形成した。  Example 2: FIG. 10 is a perspective view showing Example 2 of the thermoelectric conversion element of the present embodiment. The thermoelectric conversion element of the second embodiment has a2O4(MAO) as a magnetic insulator film 35, a 100-nm-thick cobalt ferrite film (composition: CoFe2O 4) Is a 4 nm-thick Mn—Ir alloy (composition is Mn)80Ir20) Membranes were each used. Further, a 1.5 nm-thick Pt film was formed as a cap film 25 on the surface of Mn-Ir.

実施例2の熱電変換素子が実施例1の熱電変換素子と異なる点は、磁性絶縁体膜35として膜厚100nmのコバルトフェライト膜が設けられた点であり、その他の構成は実施例1の熱電変換素子と同じとした。  The thermoelectric conversion element of the second embodiment differs from the thermoelectric conversion element of the first embodiment in that a 100-nm-thick cobalt ferrite film is provided as the magnetic insulator film 35, and the other configurations are the same as those of the first embodiment. The same as the conversion element was used.

コバルトフェライト膜は、コバルト鉄合金ターゲットを用いたアルゴン-酸素混合ガス中の反応性スパッタ法により成膜した。また、Ni膜とMn80Ir20膜は、実施例1と同様に、アルゴンガス中のマグネトロンスパッタ法により成膜した。この成膜の際には、図5に示すようにy軸正方向(所定の方向)に磁界を印加した。磁界は、ネオジウム系磁石の磁極を対向させた磁極間で発生させた一方向の磁界であり、基板の位置で約4kOeとした。The cobalt ferrite film was formed by a reactive sputtering method in an argon-oxygen mixed gas using a cobalt iron alloy target. Further, the Ni film and the Mn 80 Ir 20 film were formed by a magnetron sputtering method in an argon gas in the same manner as in Example 1. During the film formation, a magnetic field was applied in the positive y-axis direction (predetermined direction) as shown in FIG. The magnetic field was a unidirectional magnetic field generated between the magnetic poles of the neodymium-based magnet facing each other, and was about 4 kOe at the position of the substrate.

成膜後、コバルトフェライト膜の保磁力(4kOe)よりも大きい磁界を所定の方向(y軸正方向)に印加することにより、コバルトフェライト膜の磁化を所定の方向に固定した。  After the film formation, the magnetization of the cobalt ferrite film was fixed in a predetermined direction by applying a magnetic field larger than the coercive force (4 kOe) of the cobalt ferrite film in a predetermined direction (y-axis positive direction).

以上の実施例2の熱電変換素子の熱電変換特性を評価した。その結果、外部磁界のない状態、もしくは−200Oe程度以下の磁界中であれば、温度勾配ΔTに対応した起電力が得られた。これは、Mn−Ir膜とNi膜との交換結合によりNi膜の磁化がy軸正方向に固定され、また、コバルトフェライト膜の磁化が保磁力によりy軸正方向に固定されたことを示している。  The thermoelectric conversion characteristics of the thermoelectric conversion element of Example 2 described above were evaluated. As a result, an electromotive force corresponding to the temperature gradient ΔT was obtained in a state without an external magnetic field or in a magnetic field of about −200 Oe or less. This indicates that the exchange coupling between the Mn-Ir film and the Ni film fixed the magnetization of the Ni film in the positive y-axis direction and the magnetization of the cobalt ferrite film was fixed in the positive y-axis direction by the coercive force. ing.

以上の本実施形態の熱電変換素子3および実施例2の熱電変換素子によれば、スピンゼーベック効果と異常ネルンスト効果とによる熱電変換で起電力を得るために、反強磁性金属膜との交換結合によって磁性金属膜の磁化を所定の方向に固定することができる。また、磁性絶縁体膜の磁化を保磁力によって所定の方向に固定することができる。これらにより、磁性金属膜や磁性絶縁体膜の磁化を所定の方向に固定するために外部から磁界を印加する必要がなく、素子構造を複雑にしたり素子を使いにくくしたりすることがなくて済む。  According to the thermoelectric conversion element 3 of the present embodiment and the thermoelectric conversion element of Example 2, the exchange coupling with the antiferromagnetic metal film is required in order to obtain the electromotive force by the thermoelectric conversion by the spin Seebeck effect and the abnormal Nernst effect. Thereby, the magnetization of the magnetic metal film can be fixed in a predetermined direction. Further, the magnetization of the magnetic insulator film can be fixed in a predetermined direction by the coercive force. Thus, there is no need to apply an external magnetic field to fix the magnetization of the magnetic metal film or the magnetic insulator film in a predetermined direction, and it is not necessary to complicate the element structure or make the element difficult to use. .

以上のように、本実施形態および本実施例によれば、スピンゼーベック効果と異常ネルンスト効果を併用する熱電変換素子において、安定した熱電変換動作を利便性良く実現することができる。
(第4の実施形態)
図11は、本発明の第4の実施形態の熱電変換素子の構成を示す斜視図である。本実施形態の熱電変換素子4が第3の実施形態の熱電変換素子3と異なる点は、熱電変換素子4では、磁性金属膜41と反強磁性金属膜42との積層膜43が複数積層されている点である。図11では、積層膜43が3つ積層されている場合を示しているが、これには限定されず、任意の数を積層することができる。
As described above, according to the present embodiment and the present embodiment, a stable thermoelectric conversion operation can be realized with good convenience in a thermoelectric conversion element using both the spin Seebeck effect and the abnormal Nernst effect.
(Fourth embodiment)
FIG. 11 is a perspective view illustrating a configuration of a thermoelectric conversion element according to a fourth embodiment of the present invention. The difference between the thermoelectric conversion element 4 of the present embodiment and the thermoelectric conversion element 3 of the third embodiment is that, in the thermoelectric conversion element 4, a plurality of stacked films 43 of a magnetic metal film 41 and an antiferromagnetic metal film 42 are stacked. That is the point. FIG. 11 shows a case where three stacked films 43 are stacked, but the present invention is not limited to this, and an arbitrary number can be stacked.

熱電変換素子4のその他の構成、すなわち、基板40や、磁性絶縁体膜45や、磁性金属膜41と反強磁性金属膜42との積層膜43や、1対の端子44は、熱電変換素子3と同じである。  The other components of the thermoelectric conversion element 4, that is, the substrate 40, the magnetic insulator film 45, the laminated film 43 of the magnetic metal film 41 and the antiferromagnetic metal film 42, and the pair of terminals 44 Same as 3.

積層膜43の積層数を増すことによって、磁性金属膜41の異常ネルンスト効果に基づく電流や、磁性金属膜41のスピンゼーベック効果に対する反強磁性金属膜42の逆スピンホール効果に基づく電流を増すことができる。これにより、熱電変換素子4としての起電力を大きくすることができる。  Increasing the number of stacked layers 43 to increase the current based on the abnormal Nernst effect of the magnetic metal film 41 and the current based on the inverse spin Hall effect of the antiferromagnetic metal film 42 with respect to the spin Seebeck effect of the magnetic metal film 41 Can be. Thereby, the electromotive force of the thermoelectric conversion element 4 can be increased.

さらに、積層膜43を構成する磁性金属膜41と反強磁性金属膜42の膜厚を薄くして、磁性金属膜41と反強磁性金属膜42の交換結合磁界を増大させることによって、磁性金属膜41の磁化の固定を強化することができる。磁性金属膜41と反強磁性金属膜42の一層あたりの厚さはいずれも10nm以下が望ましい。  Furthermore, by reducing the thickness of the magnetic metal film 41 and the antiferromagnetic metal film 42 constituting the laminated film 43 and increasing the exchange coupling magnetic field between the magnetic metal film 41 and the antiferromagnetic metal film 42, The fixing of the magnetization of the film 41 can be strengthened. The thickness of each of the magnetic metal film 41 and the antiferromagnetic metal film 42 is desirably 10 nm or less.

一方で、膜厚を薄くすることによって積層膜43ごとの抵抗値は大きくなっても、複数層を積層させることによって抵抗値を低減させることができる。出力電圧Vは膜厚や積層数にほとんど依存ないため、積層数を増やして抵抗Rを下げるほど、起電力W=V/Rを大きくすることができる。On the other hand, even if the resistance value of each stacked film 43 increases by reducing the film thickness, the resistance value can be reduced by stacking a plurality of layers. Since the output voltage V hardly depends on the film thickness or the number of layers, as the number of layers is increased and the resistance R is reduced, the electromotive force W = V 2 / R can be increased.

また、磁性金属膜41と反強磁性金属膜42の積層の順序は、図11の逆であってもよい。積層の順序が逆になることによって、磁性絶縁体膜45と磁性金属膜41の間に反強磁性金属膜42が介在する。反強磁性金属膜42は、磁性絶縁体膜45からのスピン流に対する逆スピンホール効果によって起電力を生じるとともに、スピン流を磁性金属膜41に効率よく伝える中間層の役割を果たすことができる。  Further, the order of lamination of the magnetic metal film 41 and the antiferromagnetic metal film 42 may be opposite to that of FIG. The anti-ferromagnetic metal film 42 is interposed between the magnetic insulator film 45 and the magnetic metal film 41 by reversing the stacking order. The antiferromagnetic metal film 42 can generate an electromotive force by an inverse spin Hall effect with respect to the spin current from the magnetic insulator film 45 and can also serve as an intermediate layer that efficiently transmits the spin current to the magnetic metal film 41.

実施例3: 図12は、本実施形態の熱電変換素子の実施例3を示す斜視図である。実施例3の熱電変換素子は、基板20として厚さ0.5mmのMgAl(MAO)を、磁性絶縁体膜35として膜厚100nmのコバルトフェライト膜(組成はCoFe )を、磁性金属膜21として膜厚4nmのNi膜を、反強磁性金属膜22として膜厚4nmのMn−Ir(Mn80Ir20)膜を、それぞれ用いた。さらに、Ni膜とMn−Ir膜との積層膜を3つ積層した。さらに、Mn−Ir膜の表面に、キャップ膜25として膜厚1.5nmのPt膜を形成した。  Example 3 FIG. 12 is a perspective view showing Example 3 of the thermoelectric conversion element of the present embodiment. The thermoelectric conversion element according to the third embodiment is configured such that the substrate 20 is made of MgAl having a thickness of 0.5 mm.2O4(MAO) as a magnetic insulator film 35, a 100-nm-thick cobalt ferrite film (composition: CoFe2O 4), A 4 nm-thick Ni film as the magnetic metal film 21 and a 4 nm-thick Mn-Ir (Mn) as the antiferromagnetic metal film 22.80Ir20) Membranes were each used. Further, three laminated films of a Ni film and a Mn-Ir film were laminated. Further, a 1.5 nm-thick Pt film was formed as a cap film 25 on the surface of the Mn-Ir film.

実施例3の熱電変換素子が実施例2の熱電変換素子と異なる点は、Ni膜とMn−Ir膜との積層膜を3つ積層した点であり、その他の構成は実施例1の熱電変換素子と同じとした。Ni膜とMn−Ir膜との積層膜を3つ積層する成膜には、アルゴンガス中のマグネトロンスパッタ法を用い、成膜中にy軸正方向(所定の方向)に4kOeの磁界を印加した。  The thermoelectric conversion element of the third embodiment is different from the thermoelectric conversion element of the second embodiment in that three stacked films of a Ni film and a Mn-Ir film are stacked, and the other configuration is the same as that of the first embodiment. It was the same as the element. For forming three stacked films of a Ni film and a Mn-Ir film, a magnetron sputtering method in an argon gas is used, and a magnetic field of 4 kOe is applied in the positive y-axis direction (predetermined direction) during the film formation. did.

以上の実施例3の熱電変換素子の熱電変換特性を評価した。その結果、外部磁界のない状態、もしくは−200Oe程度以下の磁界中であれば、温度勾配ΔTに対応した起電力が得られた。これは、Mn−Ir膜とNi膜との交換結合によりNi膜の磁化がy軸正方向に固定され、また、コバルトフェライト膜の磁化が保磁力によりy軸正方向に固定されたことを示している。  The thermoelectric conversion characteristics of the thermoelectric conversion element of Example 3 described above were evaluated. As a result, an electromotive force corresponding to the temperature gradient ΔT was obtained in a state without an external magnetic field or in a magnetic field of about −200 Oe or less. This indicates that the exchange coupling between the Mn-Ir film and the Ni film fixed the magnetization of the Ni film in the positive y-axis direction and the magnetization of the cobalt ferrite film was fixed in the positive y-axis direction by the coercive force. ing.

以上の本実施形態の熱電変換素子4および実施例3の熱電変換素子によれば、スピンゼーベック効果と異常ネルンスト効果とによる熱電変換で起電力を得るために、反強磁性金属膜との交換結合によって磁性金属膜の磁化を所定の方向に固定することができる。また、磁性絶縁体膜の磁化を保磁力によって所定の方向に固定することができる。これらにより、磁性金属膜や磁性絶縁体膜の磁化を所定の方向に固定するために外部から磁界を印加する必要がなく、素子構造を複雑にしたり素子を使いにくくしたりすることがなくて済む。  According to the above-described thermoelectric conversion element 4 of the present embodiment and the thermoelectric conversion element of Example 3, in order to obtain an electromotive force by thermoelectric conversion due to the spin Seebeck effect and the abnormal Nernst effect, exchange coupling with the antiferromagnetic metal film is required. Thereby, the magnetization of the magnetic metal film can be fixed in a predetermined direction. Further, the magnetization of the magnetic insulator film can be fixed in a predetermined direction by the coercive force. Thus, there is no need to apply an external magnetic field to fix the magnetization of the magnetic metal film or the magnetic insulator film in a predetermined direction, and it is not necessary to complicate the element structure or make the element difficult to use. .

以上のように、本実施形態および本実施例によれば、スピンゼーベック効果と異常ネルンスト効果を併用する熱電変換素子において、安定した熱電変換動作を利便性良く実現することができる。  As described above, according to the present embodiment and the present embodiment, a stable thermoelectric conversion operation can be realized with good convenience in a thermoelectric conversion element using both the spin Seebeck effect and the abnormal Nernst effect.

以上、実施形態及び実施例を参照して本願発明を説明したが、本願発明は上記実施形態及び実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。  As described above, the present invention has been described with reference to the exemplary embodiments and examples. However, the present invention is not limited to the exemplary embodiments and examples. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.

また、上記の実施形態の一部又は全部は、以下の付記のようにも記載され得るが、以下には限られない。
(付記1)
膜厚方向の温度勾配によって第1の起電力を生じる磁性金属膜と、
前記磁性金属膜に積層されて前記磁性金属膜の磁化方向を膜面内の一方向に固定し、膜厚方向の温度勾配によって生じる前記磁性金属膜のスピン流の注入を受けて第2の起電力を生じる反強磁性金属膜と、の積層膜と、
前記積層膜の膜面上に前記磁化方向と異なる方向に離隔して並設された一対の端子と、を有する熱電変換素子。
(付記2)
前記磁性金属膜は、異常ネルンスト効果により前記第1の起電力を生じる、付記1記載の熱電変換素子。
(付記3)
前記磁性金属膜は、スピンゼーベック効果により前記スピン流を生じる、付記1または2記載の熱電変換素子。
(付記4)
前記反強磁性金属膜は、前記スピン流に対する逆スピンホール効果により前記第2の起電力を生じる、付記1から3の内の1項記載の熱電変換素子。
(付記5)
前記端子は、前記磁化方向の垂直方向に並設されている、付記1から4の内の1項記載の熱電変換素子。
(付記6)
前記端子は、前記第1の起電力と前記第2の起電力を加算して出力する、付記1から5の内の1項記載の熱電変換素子。
(付記7)
前記積層膜に積層され、前記磁性金属膜の磁化方向に磁化し、膜厚方向の温度勾配によって生じるスピン流を前記積層膜に注入する磁性絶縁体膜を有し、前記積層膜は前記磁性絶縁体膜のスピン流により第3の起電力を生じる、付記1から6の内の1項記載の熱電変換素子。
(付記8)
前記磁性絶縁体膜は、スピンゼーベック効果により前記スピン流を生じる、付記7記載の熱電変換素子。
(付記9)
前記積層膜は、前記スピン流に対する逆スピンホール効果により前記第3の起電力を生じる、付記7または8記載の熱電変換素子。
(付記10)
前記端子は、さらに前記第3の起電力を加算して出力する、付記7から9の内の1項記載の熱電変換素子。
(付記11)
前記積層膜の前記端子が並設されている膜面を覆うキャップ膜を有する、付記1から10の内の1項記載の熱電変換素子。
(付記12)
前記磁性金属膜の膜厚と前記反強磁性金属膜の膜厚は、各々、10nm以下、1nm以上である、付記1から11の内の1項記載の熱電変換素子。
(付記13)
前記積層膜が複数積層されている、付記1から12の内の1項記載の熱電変換素子。
(付記14)
前記反強磁性金属膜は、Ir、Pt、Rh、Pdの中から選択される少なくとも一つの元素とMnとを含む、付記1から13の内の1項記載の熱電変換素子。
(付記15)
基板上に、膜厚方向の温度勾配によって第1の起電力を生じる磁性金属膜と、膜厚方向の温度勾配によって生じる前記磁性金属膜のスピン流の注入を受けて第2の起電力を生じる反強磁性金属膜と、の積層膜を成膜し、
前記積層膜の成膜時もしくは成膜後に、前記反強磁性金属膜により前記磁性金属膜の磁化方向を膜面内の一方向に固定し、
一対の端子を前記積層膜の膜面上に前記磁化方向と異なる方向に離隔して並設する、熱電変換素子の製造方法。
(付記16)
前記磁性金属膜は、異常ネルンスト効果により前記第1の起電力を生じる、付記15記載の熱電変換素子の製造方法。
(付記17)
前記磁性金属膜は、スピンゼーベック効果により前記スピン流を生じる、付記15または16記載の熱電変換素子の製造方法。
(付記18)
前記反強磁性金属膜は、前記スピン流に対する逆スピンホール効果により前記第2の起電力を生じる、付記15から17の内の1項記載の熱電変換素子の製造方法。
(付記19)
前記端子は、前記磁化方向の垂直方向に並設されている、付記15から18の内の1項記載の熱電変換素子の製造方法。
(付記20)
前記端子は、前記第1の起電力と前記第2の起電力を加算して出力する、付記15から19の内の1項記載の熱電変換素子の製造方法。
(付記21)
膜厚方向の温度勾配によって生じるスピン流を前記積層膜に注入する磁性絶縁体膜を、前記磁性絶縁体膜のスピン流により第3の起電力を生じる前記積層膜に積層し、
前記磁性絶縁体膜の磁化を前記磁性金属膜の磁化方向に着磁する、付記15から20の内の1項記載の熱電変換素子の製造方法。
(付記22)
前記磁性絶縁体膜は、スピンゼーベック効果により前記スピン流を生じる、付記21記載の熱電変換素子の製造方法。
(付記23)
前記積層膜は、前記スピン流に対する逆スピンホール効果により前記第3の起電力を生じる、付記21または22記載の熱電変換素子の製造方法。
(付記24)
前記端子は、さらに前記第3の起電力を加算して出力する、付記21から23の内の1項記載の熱電変換素子の製造方法。
(付記25)
前記積層膜の前記端子が並設されている膜面を覆うキャップ膜を成膜する、付記15から24の内の1項記載の熱電変換素子の製造方法。
(付記26)
前記磁性金属膜の膜厚と前記反強磁性金属膜の膜厚は、各々、10nm以下、1nm以上である、付記15ら25の内の1項記載の熱電変換素子の製造方法。
(付記27)
前記積層膜を複数積層する、付記15ら26の内の1項記載の熱電変換素子の製造方法。
(付記28)
前記反強磁性金属膜は、Ir、Pt、Rh、Pdの中から選択される少なくとも一つの元素とMnとを含む、付記15ら27の内の1項記載の熱電変換素子の製造方法。
In addition, some or all of the above-described embodiments may be described as in the following supplementary notes, but are not limited thereto.
(Appendix 1)
A magnetic metal film that generates a first electromotive force due to a temperature gradient in a film thickness direction;
The magnetic metal film is laminated on the magnetic metal film, and the magnetization direction of the magnetic metal film is fixed in one direction in the film plane. A laminated film of an antiferromagnetic metal film that generates electric power,
A thermoelectric conversion element comprising: a pair of terminals spaced apart in a direction different from the magnetization direction on the film surface of the laminated film.
(Appendix 2)
The thermoelectric conversion element according to claim 1, wherein the magnetic metal film generates the first electromotive force due to an abnormal Nernst effect.
(Appendix 3)
3. The thermoelectric conversion element according to claim 1, wherein the magnetic metal film generates the spin current by a spin Seebeck effect.
(Appendix 4)
4. The thermoelectric conversion element according to claim 1, wherein the antiferromagnetic metal film generates the second electromotive force by an inverse spin Hall effect on the spin current.
(Appendix 5)
5. The thermoelectric conversion element according to claim 1, wherein the terminals are juxtaposed in a direction perpendicular to the magnetization direction.
(Appendix 6)
6. The thermoelectric conversion element according to claim 1, wherein the terminal adds and outputs the first electromotive force and the second electromotive force. 7.
(Appendix 7)
A magnetic insulator film that is laminated on the laminated film, is magnetized in the magnetization direction of the magnetic metal film, and injects a spin current generated by a temperature gradient in a film thickness direction into the laminated film; 7. The thermoelectric conversion element according to claim 1, wherein a third electromotive force is generated by the spin current of the body film.
(Appendix 8)
The thermoelectric conversion element according to claim 7, wherein the magnetic insulator film generates the spin current by a spin Seebeck effect.
(Appendix 9)
9. The thermoelectric conversion element according to claim 7, wherein the laminated film generates the third electromotive force by an inverse spin Hall effect on the spin current.
(Appendix 10)
10. The thermoelectric conversion element according to any one of supplementary notes 7 to 9, wherein the terminal further adds and outputs the third electromotive force.
(Appendix 11)
11. The thermoelectric conversion element according to any one of supplementary notes 1 to 10, further comprising a cap film covering a film surface of the laminated film on which the terminals are juxtaposed.
(Appendix 12)
12. The thermoelectric conversion element according to claim 1, wherein the thickness of the magnetic metal film and the thickness of the antiferromagnetic metal film are 10 nm or less and 1 nm or more, respectively.
(Appendix 13)
13. The thermoelectric conversion element according to any one of supplementary notes 1 to 12, wherein a plurality of the laminated films are laminated.
(Appendix 14)
14. The thermoelectric conversion element according to any one of Supplementary Notes 1 to 13, wherein the antiferromagnetic metal film includes at least one element selected from Ir, Pt, Rh, and Pd and Mn.
(Appendix 15)
A magnetic metal film that generates a first electromotive force due to a temperature gradient in a thickness direction on a substrate, and a second electromotive force is generated by receiving spin current injection of the magnetic metal film that is generated by a temperature gradient in a film thickness direction. Forming a laminated film of an antiferromagnetic metal film and
During or after the formation of the laminated film, the magnetization direction of the magnetic metal film is fixed to one direction in the film plane by the antiferromagnetic metal film,
A method for manufacturing a thermoelectric conversion element, wherein a pair of terminals are juxtaposed on a film surface of the laminated film in a direction different from the magnetization direction.
(Appendix 16)
The method for manufacturing a thermoelectric conversion element according to claim 15, wherein the magnetic metal film generates the first electromotive force due to an abnormal Nernst effect.
(Appendix 17)
17. The method for manufacturing a thermoelectric conversion element according to claim 15, wherein the magnetic metal film generates the spin current by a spin Seebeck effect.
(Appendix 18)
18. The method for manufacturing a thermoelectric conversion element according to any one of appendices 15 to 17, wherein the antiferromagnetic metal film generates the second electromotive force by an inverse spin Hall effect on the spin current.
(Appendix 19)
19. The method for manufacturing a thermoelectric conversion element according to any one of appendices 15 to 18, wherein the terminals are arranged in parallel in a direction perpendicular to the magnetization direction.
(Appendix 20)
20. The method of manufacturing a thermoelectric conversion element according to any one of appendices 15 to 19, wherein the terminal adds and outputs the first electromotive force and the second electromotive force.
(Appendix 21)
Laminating a magnetic insulator film for injecting a spin current generated by a temperature gradient in a film thickness direction into the laminated film on the laminated film generating a third electromotive force by the spin current of the magnetic insulator film;
21. The method for manufacturing a thermoelectric conversion element according to any one of supplementary notes 15 to 20, wherein the magnetization of the magnetic insulator film is magnetized in the magnetization direction of the magnetic metal film.
(Appendix 22)
22. The method for manufacturing a thermoelectric conversion element according to claim 21, wherein the magnetic insulator film generates the spin current by a spin Seebeck effect.
(Appendix 23)
23. The method for manufacturing a thermoelectric conversion element according to appendix 21 or 22, wherein the laminated film generates the third electromotive force by an inverse spin Hall effect with respect to the spin current.
(Appendix 24)
24. The method of manufacturing a thermoelectric conversion element according to any one of supplementary notes 21 to 23, wherein the terminal further adds and outputs the third electromotive force.
(Appendix 25)
25. The method for manufacturing a thermoelectric conversion element according to any one of Supplementary Notes 15 to 24, wherein a cap film is formed to cover a film surface of the laminated film on which the terminals are juxtaposed.
(Appendix 26)
26. The method of manufacturing a thermoelectric conversion element according to one of supplementary notes 15 to 25, wherein a thickness of the magnetic metal film and a thickness of the antiferromagnetic metal film are 10 nm or less and 1 nm or more, respectively.
(Appendix 27)
27. The method for manufacturing a thermoelectric conversion element according to one of Supplementary Notes 15 to 26, wherein a plurality of the stacked films are stacked.
(Appendix 28)
28. The method for manufacturing a thermoelectric conversion element according to any one of Supplementary Notes 15 to 27, wherein the antiferromagnetic metal film includes Mn and at least one element selected from Ir, Pt, Rh, and Pd.

1、2、2a、2b、3、3a、4 熱電変換素子
20、30、40 基板
11、21、31、41 磁性金属膜
12、22、32、42 反強磁性金属膜
13、23、33、33a、43 積層膜
14、24、34、44 端子
25 キャップ膜
26 パッド
35、45 磁性絶縁体膜
1, 2, 2a, 2b, 3, 3a, 4 Thermoelectric conversion elements 20, 30, 40 Substrate 11, 21, 31, 41 Magnetic metal film 12, 22, 32, 42 Antiferromagnetic metal film 13, 23, 33, 33a, 43 laminated film 14, 24, 34, 44 terminal 25 cap film 26 pad 35, 45 magnetic insulator film

Claims (28)

膜厚方向の温度勾配によって第1の起電力を生じる磁性金属膜と、
前記磁性金属膜に積層されて前記磁性金属膜の磁化方向を膜面内の一方向に固定し、膜厚方向の温度勾配によって生じる前記磁性金属膜のスピン流の注入を受けて第2の起電力を生じる反強磁性金属膜と、の積層膜と、
前記積層膜の膜面上に前記磁化方向と異なる方向に離隔して並設された一対の端子と、を有する熱電変換素子。
A magnetic metal film that generates a first electromotive force due to a temperature gradient in a film thickness direction;
The magnetic metal film is laminated on the magnetic metal film, and the magnetization direction of the magnetic metal film is fixed in one direction in the film plane. A laminated film of an antiferromagnetic metal film that generates electric power,
A thermoelectric conversion element comprising: a pair of terminals spaced apart in a direction different from the magnetization direction on the film surface of the laminated film.
前記磁性金属膜は、異常ネルンスト効果により前記第1の起電力を生じる、請求項1記載の熱電変換素子。  The thermoelectric conversion element according to claim 1, wherein the magnetic metal film generates the first electromotive force due to an abnormal Nernst effect. 前記磁性金属膜は、スピンゼーベック効果により前記スピン流を生じる、請求項1または2記載の熱電変換素子。  The thermoelectric conversion element according to claim 1, wherein the magnetic metal film generates the spin current by a spin Seebeck effect. 前記反強磁性金属膜は、前記スピン流に対する逆スピンホール効果により前記第2の起電力を生じる、請求項1から3の内の1項記載の熱電変換素子。  4. The thermoelectric conversion element according to claim 1, wherein the antiferromagnetic metal film generates the second electromotive force by an inverse spin Hall effect on the spin current. 5. 前記端子は、前記磁化方向の垂直方向に並設されている、請求項1から4の内の1項記載の熱電変換素子。  The thermoelectric conversion element according to claim 1, wherein the terminals are arranged in a direction perpendicular to the magnetization direction. 前記端子は、前記第1の起電力と前記第2の起電力を加算して出力する、請求項1から5の内の1項記載の熱電変換素子。  The thermoelectric conversion element according to claim 1, wherein the terminal adds and outputs the first electromotive force and the second electromotive force. 前記積層膜に積層され、前記磁性金属膜の磁化方向に磁化し、膜厚方向の温度勾配によって生じるスピン流を前記積層膜に注入する磁性絶縁体膜を有し、前記積層膜は前記磁性絶縁体膜のスピン流により第3の起電力を生じる、請求項1から6の内の1項記載の熱電変換素子。  A magnetic insulator film that is laminated on the laminated film, is magnetized in the magnetization direction of the magnetic metal film, and injects a spin current generated by a temperature gradient in a film thickness direction into the laminated film; The thermoelectric conversion element according to claim 1, wherein a third electromotive force is generated by a spin current of the body film. 前記磁性絶縁体膜は、スピンゼーベック効果により前記スピン流を生じる、請求項7記載の熱電変換素子。  The thermoelectric conversion element according to claim 7, wherein the magnetic insulator film generates the spin current by a spin Seebeck effect. 前記積層膜は、前記スピン流に対する逆スピンホール効果により前記第3の起電力を生じる、請求項7または8記載の熱電変換素子。  9. The thermoelectric conversion element according to claim 7, wherein the laminated film generates the third electromotive force by an inverse spin Hall effect on the spin current. 10. 前記端子は、さらに前記第3の起電力を加算して出力する、請求項7から9の内の1項記載の熱電変換素子。  The thermoelectric conversion element according to any one of claims 7 to 9, wherein the terminal further adds and outputs the third electromotive force. 前記積層膜の前記端子が並設されている膜面を覆うキャップ膜を有する、請求項1から10の内の1項記載の熱電変換素子。  The thermoelectric conversion element according to any one of claims 1 to 10, further comprising a cap film that covers a film surface of the laminated film on which the terminals are juxtaposed. 前記磁性金属膜の膜厚と前記反強磁性金属膜の膜厚は、各々、10nm以下、1nm以上である、請求項1から11の内の1項記載の熱電変換素子。  The thermoelectric conversion element according to claim 1, wherein a thickness of the magnetic metal film and a thickness of the antiferromagnetic metal film are 10 nm or less and 1 nm or more, respectively. 前記積層膜が複数積層されている、請求項1から12の内の1項記載の熱電変換素子。  The thermoelectric conversion element according to claim 1, wherein a plurality of the stacked films are stacked. 前記反強磁性金属膜は、Ir、Pt、Rh、Pdの中から選択される少なくとも一つの元素とMnとを含む、請求項1から13の内の1項記載の熱電変換素子。  14. The thermoelectric conversion element according to claim 1, wherein the antiferromagnetic metal film includes at least one element selected from Ir, Pt, Rh, and Pd and Mn. 基板上に、膜厚方向の温度勾配によって第1の起電力を生じる磁性金属膜と、膜厚方向の温度勾配によって生じる前記磁性金属膜のスピン流の注入を受けて第2の起電力を生じる反強磁性金属膜と、の積層膜を成膜し、
前記積層膜の成膜時もしくは成膜後に、前記反強磁性金属膜により前記磁性金属膜の磁化方向を膜面内の一方向に固定し、
一対の端子を前記積層膜の膜面上に前記磁化方向と異なる方向に離隔して並設する、熱電変換素子の製造方法。
A magnetic metal film that generates a first electromotive force due to a temperature gradient in a thickness direction on a substrate, and a second electromotive force is generated by receiving spin current injection of the magnetic metal film that is generated by a temperature gradient in a film thickness direction. Forming a laminated film of an antiferromagnetic metal film and
During or after the formation of the laminated film, the magnetization direction of the magnetic metal film is fixed to one direction in the film plane by the antiferromagnetic metal film,
A method for manufacturing a thermoelectric conversion element, wherein a pair of terminals are juxtaposed on a film surface of the laminated film in a direction different from the magnetization direction.
前記磁性金属膜は、異常ネルンスト効果により前記第1の起電力を生じる、請求項15記載の熱電変換素子の製造方法。  The method according to claim 15, wherein the magnetic metal film generates the first electromotive force due to an abnormal Nernst effect. 前記磁性金属膜は、スピンゼーベック効果により前記スピン流を生じる、請求項15または16記載の熱電変換素子の製造方法。  17. The method for manufacturing a thermoelectric conversion element according to claim 15, wherein the magnetic metal film generates the spin current by a spin Seebeck effect. 前記反強磁性金属膜は、前記スピン流に対する逆スピンホール効果により前記第2の起電力を生じる、請求項15から17の内の1項記載の熱電変換素子の製造方法。  The method according to any one of claims 15 to 17, wherein the antiferromagnetic metal film generates the second electromotive force by an inverse spin Hall effect on the spin current. 前記端子は、前記磁化方向の垂直方向に並設されている、請求項15から18の内の1項記載の熱電変換素子の製造方法。  19. The method for manufacturing a thermoelectric conversion element according to claim 15, wherein the terminals are arranged side by side in a direction perpendicular to the magnetization direction. 前記端子は、前記第1の起電力と前記第2の起電力を加算して出力する、請求項15から19の内の1項記載の熱電変換素子の製造方法。  20. The method according to claim 15, wherein the terminal adds and outputs the first electromotive force and the second electromotive force. 膜厚方向の温度勾配によって生じるスピン流を前記積層膜に注入する磁性絶縁体膜を、前記磁性絶縁体膜のスピン流により第3の起電力を生じる前記積層膜に積層し、
前記磁性絶縁体膜の磁化を前記磁性金属膜の磁化方向に着磁する、請求項15から20の内の1項記載の熱電変換素子の製造方法。
Laminating a magnetic insulator film for injecting a spin current generated by a temperature gradient in a film thickness direction into the laminated film on the laminated film generating a third electromotive force by the spin current of the magnetic insulator film;
21. The method for manufacturing a thermoelectric conversion element according to claim 15, wherein the magnetization of the magnetic insulator film is magnetized in the magnetization direction of the magnetic metal film.
前記磁性絶縁体膜は、スピンゼーベック効果により前記スピン流を生じる、請求項21記載の熱電変換素子の製造方法。  22. The method according to claim 21, wherein the magnetic insulator film generates the spin current by a spin Seebeck effect. 前記積層膜は、前記スピン流に対する逆スピンホール効果により前記第3の起電力を生じる、請求項21または22記載の熱電変換素子の製造方法。  The method of manufacturing a thermoelectric conversion element according to claim 21 or 22, wherein the laminated film generates the third electromotive force by an inverse spin Hall effect on the spin current. 前記端子は、さらに前記第3の起電力を加算して出力する、請求項21から23の内の1項記載の熱電変換素子の製造方法。  24. The method for manufacturing a thermoelectric conversion element according to claim 21, wherein the terminal further adds and outputs the third electromotive force. 前記積層膜の前記端子が並設されている膜面を覆うキャップ膜を成膜する、請求項15から24の内の1項記載の熱電変換素子の製造方法。  25. The method for manufacturing a thermoelectric conversion element according to claim 15, wherein a cap film is formed to cover a film surface of the laminated film on which the terminals are juxtaposed. 前記磁性金属膜の膜厚と前記反強磁性金属膜の膜厚は、各々、10nm以下、1nm以上である、請求項15ら25の内の1項記載の熱電変換素子の製造方法。  26. The method according to claim 15, wherein a thickness of the magnetic metal film and a thickness of the antiferromagnetic metal film are 10 nm or less and 1 nm or more, respectively. 前記積層膜を複数積層する、請求項15ら26の内の1項記載の熱電変換素子の製造方法。  27. The method of manufacturing a thermoelectric conversion element according to claim 15, wherein a plurality of the laminated films are laminated. 前記反強磁性金属膜は、Ir、Pt、Rh、Pdの中から選択される少なくとも一つの元素とMnとを含む、請求項15ら27の内の1項記載の熱電変換素子の製造方法。  28. The method of manufacturing a thermoelectric conversion element according to claim 15, wherein the antiferromagnetic metal film includes at least one element selected from Ir, Pt, Rh, and Pd and Mn.
JP2018566662A 2017-02-07 2017-02-07 Thermoelectric conversion element and method of manufacturing the same Pending JPWO2018146713A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/004324 WO2018146713A1 (en) 2017-02-07 2017-02-07 Thermoelectric conversion element and method for manufacturing same

Publications (1)

Publication Number Publication Date
JPWO2018146713A1 true JPWO2018146713A1 (en) 2019-12-19

Family

ID=63107303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018566662A Pending JPWO2018146713A1 (en) 2017-02-07 2017-02-07 Thermoelectric conversion element and method of manufacturing the same

Country Status (2)

Country Link
JP (1) JPWO2018146713A1 (en)
WO (1) WO2018146713A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11411046B2 (en) * 2018-09-11 2022-08-09 Intel Corporation Semiconductor device heat extraction by spin thermoelectrics
US11889762B2 (en) * 2020-03-19 2024-01-30 National Institute For Materials Science Vertical thermoelectric conversion element and device with thermoelectric power generation application or heat flow sensor using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016009838A (en) * 2014-06-26 2016-01-18 日本電気株式会社 Thermoelectric conversion structure and method for manufacturing the same
JP2016080394A (en) * 2014-10-10 2016-05-16 日本電気株式会社 Spin heat flow sensor and method for manufacturing the same
WO2016136190A1 (en) * 2015-02-26 2016-09-01 日本電気株式会社 Spin current-electrical current conversion structure, thermoelectric conversion element using same, and method for manufacturing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016009838A (en) * 2014-06-26 2016-01-18 日本電気株式会社 Thermoelectric conversion structure and method for manufacturing the same
JP2016080394A (en) * 2014-10-10 2016-05-16 日本電気株式会社 Spin heat flow sensor and method for manufacturing the same
WO2016136190A1 (en) * 2015-02-26 2016-09-01 日本電気株式会社 Spin current-electrical current conversion structure, thermoelectric conversion element using same, and method for manufacturing same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KIM, DONG-JUN ET AL.: "Utilization of the Antiferromagnetic IrMn Electrode in Spin Thermoelectric Devices and Their Benefic", ADVANCED FUNCTIONAL MATERIALS, vol. 26, JPN7020001174, 2016, pages 5507 - 5514, XP072409614, ISSN: 0004378864, DOI: 10.1002/adfm.201505514 *
KIRIHARA, AKIHIRO ET AL.: "Flexible heat-flow sensing sheets based on the longitudinal spin Seebeck effect using one-dimensiona", SCIENTIFIC REPORTS, JPN7017001517, 15 March 2016 (2016-03-15), pages 6 - 23114, ISSN: 0004258583 *
KUSCHEL, TIMO ET AL.: "Static Magnetic Proximity Effect in Pt Layers on Sputter-Deposited NiFe2O4 and on Fe of Various Thic", IEEE TRANSACTIONS ON MAGNETICS, vol. 52, no. 7, JPN6017016138, July 2016 (2016-07-01), pages 4500104, ISSN: 0004258584 *
TANIGUCHI, TOMOHIRO: "Phenomenological spin transport theory driven by anomalous Nernst effect", JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, vol. 85, JPN7017001516, 17 June 2016 (2016-06-17), pages 074705, ISSN: 0004258582 *

Also Published As

Publication number Publication date
WO2018146713A1 (en) 2018-08-16

Similar Documents

Publication Publication Date Title
JP6572513B2 (en) Magnetic memory element
US7755929B2 (en) Spin-injection device and magnetic device using spin-injection device
US10574215B2 (en) Random number generator, random number generation device, neuromorphic computer, and quantum computer
RU2595588C2 (en) Magnetic recording element
TW504713B (en) Magnetic element with insulating veils and fabricating method thereof
KR102179913B1 (en) Magnetic memory device
JPWO2017090726A1 (en) Spin current magnetization reversal element, magnetoresistive effect element, and magnetic memory
JP5398921B2 (en) Spin device, operating method thereof, and manufacturing method thereof
WO2004059745A1 (en) Magnetic switching device and magnetic memory
KR20140021544A (en) Josephson magnetic switch
JP2018093059A (en) Spin current magnetization reversal element, magnetoresistive effect element, and magnetic memory
US9110124B2 (en) Magnetic sensor and magnetic detection apparatus
JP6233320B2 (en) Thermoelectric conversion element and manufacturing method thereof
EP3809413B1 (en) Method of fabricating a spin-orbit torque-based switching device
CN107004762B (en) Magnetic tunnel junction
JP4304688B2 (en) Spin filter effect element and magnetic device using the same
WO2018146713A1 (en) Thermoelectric conversion element and method for manufacturing same
TW201607089A (en) Thermoelectric transducer
US20180331273A1 (en) Electromotive film for thermoelectric conversion element, and thermoelectric conversion element
Wang et al. Spintronic devices for low energy dissipation
JP6349863B2 (en) Spin current thermoelectric conversion element, manufacturing method thereof, and thermoelectric conversion device
JP2001339110A (en) Magnetism control element, magnetic component using the same and memory device
JP2008071720A (en) Battery, battery system, and microwave transmitter
KR102060183B1 (en) Semiconductor device, semiconductor device control method and optic switch
WO2023054583A1 (en) Thermoelectric body, thermoelectric generation element, multilayer thermoelectric body, multilayer thermoelectric generation element, thermoelectric generator, and heat flow sensor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190801

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201104