JP2021183947A - Defect inspection device and defect inspection method - Google Patents
Defect inspection device and defect inspection method Download PDFInfo
- Publication number
- JP2021183947A JP2021183947A JP2020089663A JP2020089663A JP2021183947A JP 2021183947 A JP2021183947 A JP 2021183947A JP 2020089663 A JP2020089663 A JP 2020089663A JP 2020089663 A JP2020089663 A JP 2020089663A JP 2021183947 A JP2021183947 A JP 2021183947A
- Authority
- JP
- Japan
- Prior art keywords
- light
- defect
- receiving amount
- inspected
- light receiving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007547 defect Effects 0.000 title claims abstract description 221
- 238000007689 inspection Methods 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims description 15
- 238000001514 detection method Methods 0.000 claims abstract description 43
- 238000005286 illumination Methods 0.000 claims description 231
- 230000002950 deficient Effects 0.000 abstract description 11
- 239000003086 colorant Substances 0.000 abstract description 6
- 230000001678 irradiating effect Effects 0.000 abstract description 4
- 239000002994 raw material Substances 0.000 abstract 1
- 229910000906 Bronze Inorganic materials 0.000 description 24
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 24
- 239000010974 bronze Substances 0.000 description 24
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 24
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 23
- 230000014509 gene expression Effects 0.000 description 19
- 238000010586 diagram Methods 0.000 description 18
- 229910052742 iron Inorganic materials 0.000 description 12
- 229910052802 copper Inorganic materials 0.000 description 11
- 239000010949 copper Substances 0.000 description 11
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 10
- 230000003287 optical effect Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 230000032258 transport Effects 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 238000003384 imaging method Methods 0.000 description 6
- 229910052698 phosphorus Inorganic materials 0.000 description 6
- 239000011574 phosphorus Substances 0.000 description 6
- 239000010935 stainless steel Substances 0.000 description 6
- 229910001220 stainless steel Inorganic materials 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000012935 Averaging Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910001335 Galvanized steel Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 239000008397 galvanized steel Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
本発明は、有色欠陥の色及び被検査物の色などの素材状態を検査画面上で人が判別できる様に、被検査物を検査する欠陥検査装置及び欠陥検査方法に関する。 The present invention relates to a defect inspection device and a defect inspection method for inspecting an inspected object so that a person can discriminate the material state such as the color of a colored defect and the color of the inspected object on an inspection screen.
ライン型カラーセンサを使用した検査装置によって、被検査物を検査する技術は周知されている。例えば、下記特許文献1には、被検査物に照射する光が正反射するように設けられた光源(以下「正反射照明」とも称される)と、検査対象に照射する光が散乱反射するように設けられた光源(以下、「散乱反射照明」とも称される)とを用いた光学系にて、基板上のインク印刷と金属領域を区別して検査する技術が開示されている。
The technique of inspecting an inspected object by an inspection device using a line type color sensor is well known. For example, in
ここで、特許文献1の様に正反射照明と散乱反射照明を用いた光学系にて、ライン型カラーセンサを使用して基板上のインク印刷と金属領域を区別し、被検査物を検査することは可能である。しかしながら、検出した欠陥の色及び被検査物の色などの素材状態を画面上で判別する技術は確立されていない。
例えば、有色欠陥が検出された際に正反射照明の出力が強い場合は、欠陥が暗欠陥(黒色)として画面表示されてしまい、カラー検査を行っても画面上で欠陥の色の判別が困難となる。
また、有色欠陥が検出された際に散乱反射照明の出力が強い場合は、欠陥が明欠陥(白色)として画面表示されてしまい、同様に画面上で欠陥の色の判別が困難となる。そのため、検出した欠陥の色を人が画面上で判別するためには正反射照明と散乱反射照明の出力比率を適正に制御する必要がある。
Here, in an optical system using specular reflection illumination and scattered reflection illumination as in
For example, if the output of specular illumination is strong when a colored defect is detected, the defect will be displayed on the screen as a dark defect (black), and it is difficult to determine the color of the defect on the screen even if a color inspection is performed. It becomes.
Further, if the output of the scattered reflection illumination is strong when a colored defect is detected, the defect is displayed on the screen as a bright defect (white), and it is also difficult to determine the color of the defect on the screen. Therefore, in order for a person to discriminate the color of the detected defect on the screen, it is necessary to appropriately control the output ratio of the specular illumination and the diffuse reflection illumination.
本発明は、このような事情に鑑みてなされたもので、その目的は、画面に表示された被検査物における有色欠陥の色及び被検査物の色などの素材状態を人が判別することが可能な欠陥検査装置及び欠陥検査方法を提供することにある。 The present invention has been made in view of such circumstances, and an object thereof is to allow a person to discriminate a material state such as a color of a colored defect in an inspected object displayed on a screen and a color of the inspected object. It is an object of the present invention to provide a possible defect inspection apparatus and defect inspection method.
上述した課題を解決するために、本発明の欠陥検査装置は、被検査物に対して第1の光を照射角度θで照射する第1の照明と、前記第1の光が照射された位置に対して第2の光を前記照射角度θとは異なる照射角度αで照射する第2の照明と、前記被検査物に照射された前記第1の光が正反射して生じる前記第1の光の反射光、及び前記被検査物に照射された前記第2の光が散乱反射して生じる前記第2の光の反射光を受光するライン型カラーセンサと、前記ライン型カラーセンサにおける前記第1の光の反射光の受光量A及び前記第2の光の反射光の受光量Bに基づき前記被検査物の光沢度x(x=A÷B)を算出し、前記被検査物の光沢度xに対するRGB3原色の欠陥の色を判別可能な受光量比yの上限値y1及び下限値y2を算出し、y1>y>y2の範囲内の受光量比yに基づき前記ライン型カラーセンサにおける前記第1の光の反射光の受光量a及び前記第2の光の反射光の受光量bを算出し、前記受光量aと前記受光量bとの和が前記ライン型カラーセンサにおける合計受光量となるように、前記第1の照明または前記第2の照明の少なくともいずれか一方の調光を行う欠陥検出部と、を有する。 In order to solve the above-mentioned problems, the defect inspection apparatus of the present invention has a first illumination that irradiates the object to be inspected with the first light at an irradiation angle θ, and a position where the first light is irradiated. On the other hand, the second illumination that irradiates the second light at an irradiation angle α different from the irradiation angle θ, and the first light that is generated by positive reflection of the first light irradiated to the object to be inspected. A line-type color sensor that receives the reflected light of light and the reflected light of the second light generated by scattering and reflecting the second light irradiated to the object to be inspected, and the first in the line-type color sensor. The glossiness x (x = A ÷ B) of the inspected object is calculated based on the received amount A of the reflected light of 1 and the received amount B of the reflected light of the second light, and the gloss of the inspected object is calculated. The upper limit value y 1 and the lower limit value y 2 of the light receiving amount ratio y capable of discriminating the color of the defect of the RGB3 primary color with respect to the degree x are calculated, and the line is based on the light receiving amount ratio y within the range of y 1 >y> y 2. The light receiving amount a of the reflected light of the first light and the light receiving amount b of the reflected light of the second light in the type color sensor are calculated, and the sum of the light receiving amount a and the light receiving amount b is the line type color. It has a defect detection unit that adjusts the dimming of at least one of the first illumination and the second illumination so as to obtain the total amount of light received by the sensor.
また、本発明は、上記欠陥検査装置において、前記照射角度θは、前記被検査物に対して照射される前記第1の光と、前記第1の光が前記被検査物に対して照射された位置における法線とがなす角度であり、前記照射角度αは、前記被検査物に対して照射される前記第2の光と、前記法線とがなす角度であり、前記ライン型カラーセンサが受光する前記第1の光の反射光の受光角θは、前記第1の光の反射光と前記法線とがなす角度であり、前記法線を基準として、前記受光角θが−θ度、前記照射角度θが+θ度である場合に、前記第2の照明は、前記照射角度αが−90度<α<−θ度の範囲内の角度、−θ度<α<+θ度の範囲内の角度、または+θ度<α<+90度の範囲内の角度となるように設けられる。 Further, according to the present invention, in the defect inspection device, the irradiation angle θ is such that the first light irradiated to the inspected object and the first light are applied to the inspected object. The irradiation angle α is an angle formed by the normal line at a vertical position, and the irradiation angle α is an angle formed by the second light irradiated to the object to be inspected and the normal line, and is the line type color sensor. The light receiving angle θ of the reflected light of the first light received by is an angle formed by the reflected light of the first light and the normal line, and the light receiving angle θ is −θ with reference to the normal line. When the irradiation angle θ is + θ degree, the second illumination has an angle within the range of −90 degree <α <−θ degree, −θ degree <α <+ θ degree. It is provided so that the angle is within the range, or the angle is within the range of + θ degree <α <+ 90 degrees.
上述した課題を解決するために、本発明の欠陥検査方法は、第1の照明が、被検査物に対して第1の光を照射角度θで照射することと、第2の照明が、前記第1の光が照射された位置に対して第2の光を前記照射角度θとは異なる照射角度αで照射することと、ライン型カラーセンサが、前記被検査物に照射された前記第1の光が正反射して生じる前記第1の光の反射光、及び前記被検査物に照射された前記第2の光が散乱反射して生じる前記第2の光の反射光を受光することと、欠陥検出部が、前記ライン型カラーセンサにおける前記第1の光の反射光の受光量A及び前記第2の光の反射光の受光量Bに基づき前記被検査物の光沢度x(x=A÷B)を算出し、前記被検査物の光沢度xに対するRGB3原色の欠陥の色を判別可能な受光量比yの上限値y1及び下限値y2を算出し、y1>y>y2の範囲内の受光量比yに基づき前記ライン型カラーセンサにおける前記第1の光の反射光の受光量a及び前記第2の光の反射光の受光量bを算出し、前記受光量aと前記受光量bとの和が前記ライン型カラーセンサにおける合計受光量となるように、前記第1の照明または前記第2の照明の少なくともいずれか一方の調光を行うことと、を含む。 In order to solve the above-mentioned problems, in the defect inspection method of the present invention, the first illumination irradiates the object to be inspected with the first light at the irradiation angle θ, and the second illumination is described above. The second light is irradiated to the position where the first light is irradiated at an irradiation angle α different from the irradiation angle θ, and the line type color sensor irradiates the object to be inspected with the first light. To receive the reflected light of the first light generated by the normal reflection of the light and the reflected light of the second light generated by the scattered reflection of the second light irradiated to the object to be inspected. The defect detecting unit determines the glossiness x (x =) of the object to be inspected based on the received amount A of the reflected light of the first light and the received amount B of the reflected light of the second light in the line type color sensor. A ÷ B) is calculated, and the upper limit value y 1 and the lower limit value y 2 of the light receiving amount ratio y that can discriminate the color of the defect of the RGB3 primary color with respect to the glossiness x of the inspected object are calculated, and y 1 >y>. Based on the light receiving amount ratio y within the range of y 2 , the light receiving amount a of the reflected light of the first light and the light receiving amount b of the reflected light of the second light in the line type color sensor are calculated, and the light receiving amount b. It includes dimming at least one of the first illumination and the second illumination so that the sum of a and the light receiving amount b is the total light receiving amount in the line type color sensor. ..
本発明によれば、画面に表示された被検査物における有色欠陥の色及び被検査物の色などの素材状態を人が判別することができる。 According to the present invention, a person can discriminate the material state such as the color of a colored defect in the inspected object displayed on the screen and the color of the inspected object.
以下、図面を参照して、本発明の一実施形態による欠陥検査装置について説明する。
図1は、欠陥検査装置の構成を示す概略構成図である。図1に示すように、欠陥検査装置1は、撮像部2、欠陥検出部11、ロータリエンコーダ12、操作部13を有する。
Hereinafter, a defect inspection apparatus according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing a configuration of a defect inspection device. As shown in FIG. 1, the
欠陥検査装置1は、被検査物14の検査を行う装置である。
被検査物14は、例えば、連続シート状のものである。連続シート状の被検査物14の一例として、金属、フィルムなどの製品が挙げられる。被検査物14は、後述する搬送方向において長尺状のものである。被検査物14の短軸方向が幅方向に対応し、長軸(長尺)方向が搬送方向(走行方向とも称される)に対応する。
The
The object to be inspected 14 is, for example, a continuous sheet. As an example of the object to be inspected 14 in the form of a continuous sheet, products such as metal and film can be mentioned. The object to be inspected 14 has a long shape in the transport direction described later. The short axis direction of the object to be inspected 14 corresponds to the width direction, and the long axis (long) direction corresponds to the transport direction (also referred to as a traveling direction).
撮像部2は、被検査物14を対象として照明する照明装置と、その反射光を受光するライン型センサとを含んで構成される。本実施形態の照明装置には、正反射用の照明(以下、「正反射照明」と称される)と散乱反射用の照明(以下、「散乱反射照明」とも称される)が含まれる。正反射照明(第1の照明)は、被検査物14に照射した光が正反射するように設けられる。散乱反射照明(第2の照明)は、被検査物14に対して照射した光が散乱反射するように設けられる。各照明装置の形状は、例えば、ライン型である。撮像部2の撮像範囲の長手方向は、被検査物14の走行方向に対して直交する方向となるように設けられる。
照明装置は、例えば、蛍光灯、石英ロッド照明、LED照明などが使用される。ライン型センサは、例えば素子数2048〜8192素子のものが用いられる。この素子数は、被検査物14の幅、走行速度、分解能、設置スペースなどに応じて、適切な素子数、速度(例えば、データレート、スキャンレート等)のものが所定の台数分使用される。また、ライン型センサは、照明装置から照射された光が被検査物14で反射された反射光を受光する。ライン型センサにおける反射光の受光は、被検査物14が搬送方向に搬送された状態において行なわれる。ライン型センサは、被検査物14の表面の色調の濃淡に応じた電気信号(欠陥データ)を欠陥検出部11に出力する。言い換えると、ライン型センサは、被検査物14の走行方向に対して直交する方向におけるライン(以下、検査ライン)単位で、被検査物14の表面の光強度分布に応じた電気信号を出力する。ライン型センサとしては、例えば、CMOS(相補型MOS)カメラ、CCD(Charge−Coupled Device)カメラが挙げられる。
また、ライン型カラーセンサにはスリーライン方式、プリズム分光方式、ベイヤー方式があり、赤色、緑色、青色のセンサが内蔵されている。
The
As the lighting device, for example, a fluorescent lamp, quartz rod lighting, LED lighting and the like are used. As the line type sensor, for example, a sensor having 2048 to 8192 elements is used. As the number of elements, an appropriate number of elements and speed (for example, data rate, scan rate, etc.) are used for a predetermined number of elements according to the width, traveling speed, resolution, installation space, etc. of the
In addition, the line type color sensor includes a three-line method, a prism spectroscopy method, and a Bayer method, and has built-in red, green, and blue sensors.
欠陥検出部11は、撮像部2のライン型センサと接続される画像処理用コンピュータ及び画像ボードから構成される。欠陥検出部11は、ライン型センサから得られる画像データに基づいて、被検査物14の欠陥に関して検出を行なう。この欠陥検出部11は、例えば、2値化部、ランレングス符号化部、及び連結性処理部を含んで構成されている。欠陥検出部11は、撮像部2のライン型センサから入力された欠陥データを予め決められた閾値に基づいて2値化を行い、欠陥データの圧縮後、連結性処理を行い、欠陥の特徴量(欠陥の形状の特徴を表す情報。例えば欠陥の周囲長、面積、幅、長さ、縦横比、面積率)を測定する。
欠陥検出部11は、欠陥検出以外に正反射照明からの受光量と散乱反射照明からの受光量とに基づき、被検査物14の表面(光の照射面)の光沢度を算出する。また、欠陥検出部11は、検査開始時にライン型センサにおける受光量(カメラ受光量)に基づき、各照明の調光(自動調光)を行う。
この欠陥検出部11として、株式会社メック製の画像処理装置LSC−600を使用することができる。
The defect detection unit 11 is composed of an image processing computer and an image board connected to the line type sensor of the
In addition to defect detection, the defect detection unit 11 calculates the glossiness of the surface (light irradiation surface) of the
As the defect detection unit 11, an image processing device LSC-600 manufactured by MEC Co., Ltd. can be used.
ロータリエンコーダ12は、自身が有する測定部の車輪を、主に搬送ロールに接触させて、搬送ロールの回転数に基づいて検査長を測定する。この搬送ロールは、被検査物14を搬送方向に搬送する。ここで、検査長は、被検査物14のY軸方向において検査開始位置からの距離を表す。
The
操作部13は、検査条件の設定、検査中の画面表示、過去の検査結果の確認等を行うためのものである。また、検査中の画面表示として、欠陥詳細データ、リストやマップ、欠陥画像などを表示する。
The
<実施例>
図2は、本発明の撮像部2の光学構成図である。撮像部2は、正反射照明22、散乱反射照明23、及びライン型カラーセンサ21からなる。
正反射照明22は、被検査物14に対して、光(第1の光)を照射角度θで照射する。照射角度θは、正反射照明22が被検査物14に対して照射する光と、当該光が被検査物14に対して照射された位置における法線24とがなす角度である。
散乱反射照明23は、被検査物14に対して、光(第2の光)を照射角度αで照射する。散乱反射照明23は、正反射照明22が光を照射した位置に対して、光を照射する。照射角度αは、散乱反射照明23が被検査物14に対して照射する光と、当該光が法線24とがなす角度である。なお、照射角度αは、照射角度θとは異なる角度である。
ライン型カラーセンサ21は、正反射照明22によって照射される光が被検査物14で正反射して生じる反射光と、散乱反射照明23によって照射される光が被検査物14で散乱反射して生じる反射光を受光する。ライン型カラーセンサ21は、正反射照明22によって照射される光の反射光を受光角θで受光する。受光角θは、正反射照明22が照射する光の反射光と法線24とがなす角度である。
法線24は、照射角度θ、照射角度α、及び受光角θが0度となる基準である。本実施例では、正反射照明22が照射する光の照射角度θ及びライン型カラーセンサ21が受光する反射光の受光角θは15度であり、散乱反射照明23が照射する光の照射角度αは0度であるものとする。
<Example>
FIG. 2 is an optical configuration diagram of the
The
The diffuse
In the line type color sensor 21, the reflected light generated by the normal reflection of the light emitted by the
The
本実施例では正反射照明22及びライン型カラーセンサ21の照射角度θを15度としたが、これに制限されない。角度が小さいほど搬送時の被検査物14の上下動による光軸ズレが少ないため、実用上は15度を採用している。
また、散乱反射照明23の照射角度を0度としたが、ライン型カラーセンサ21に正反射光が入光しない角度であればよい。例えば、図2の法線24を照射角度θ、照射角度α、及び受光角θが0度となる基準として、ライン型カラーセンサ21の受光角が−θ度、正反射照明22が照射する光の照射角度が+θ度であるとする。この場合、散乱反射照明23は、照射角度αが−90度<α<−θ度(図2のα1)の範囲内の角度、−θ度<α<+θ度(図2のα2)の範囲内の角度、または+θ度<α<+90度(図2のα3)の範囲内の角度となるように設けられる。このとき、ライン型カラーセンサ21の撮像位置は固定である。
In this embodiment, the irradiation angle θ of the
Further, although the irradiation angle of the diffuse
ここで、図3〜図5を参照して、本実施例における使用機器、検査条件、及び被検査物の具体例について説明する。
図3は、使用機器の具体例を示す表である。図3に示す表では、欠陥検査装置1の構成、各構成として使用される機器の名称、各機器の型式が示されている。
欠陥検出部11として、株式会社メック製の画像処理装置(LSC−600)が用いられる。ライン型カラーセンサ21として、株式会社メック製のライン型センサカメラ(2048万画素、80MHz)と、レンズ(ライン型センサ用50mmレンズ F2.8)が用いられる。正反射照明22として、株式会社メック製のライン用LED照明(MLD−WA−W)が用いられる。散乱反射照明23として、株式会社メック製のライン用LED照明(MLDHB−W1)が用いられる。なお、散乱反射光学系の明るさは、正反射光学系に比べて暗い。そのため、本実施例の散乱反射照明23として、正反射照明22よりも明るい照明を用いる。例えば、図3に示すように、散乱反射照明23(MLDHB−W1)の光量(明るさ)は、正反射照明22(MLD−WA−W)の光量の45倍である。
なお、欠陥検査装置1の構成、各構成として使用される機器の名称、各機器の型式は、かかる例に限定されない。
Here, with reference to FIGS. 3 to 5, specific examples of the equipment used, the inspection conditions, and the object to be inspected in this embodiment will be described.
FIG. 3 is a table showing specific examples of the equipment used. In the table shown in FIG. 3, the configuration of the
An image processing apparatus (LSC-600) manufactured by MEC Co., Ltd. is used as the defect detection unit 11. As the line type color sensor 21, a line type sensor camera (2048,000 pixels, 80 MHz) manufactured by MEC Co., Ltd. and a lens (50 mm lens for line type sensor F2.8) are used. As the
The configuration of the
図4は、検査条件の具体例を示す表である。図4には、検査条件を設定する機器、条件の名称、条件の内容が示されている。
欠陥検査装置1に関する検査条件として、光学系、カメラ角度、正反射照明角度、散乱反射照明角度、カメラ分解能、カメラ距離、正反射照明距離、散乱反射照明距離がある。光学系の条件は、正反射と散乱反射を併用することである。カメラ角度の条件は、カメラの角度を15度とすることである。正反射照明角度の条件は、正反射照明22の角度を15度とすることである。散乱反射照明角度の条件は、散乱反射照明23の角度を0度とすることである。カメラ分解能の条件は、幅方向を100μm/pixel、流れ方向を100μm/scanとすることである。カメラ距離の条件は、検査対象までの距離を498mmとすることである。正反射照明距離の条件は、検査対象までの距離を200mmとすることである。散乱反射照明距離の条件は、検査対象までの距離を270mmとすることである。
巻き替え機に関する検査条件として、搬送速度がある。搬送速度の条件は、5m/minとすることである。
なお、検査条件設定する機器、条件の名称、条件の内容は、かかる例に限定されない。
FIG. 4 is a table showing specific examples of inspection conditions. FIG. 4 shows a device for setting inspection conditions, a name of the condition, and a content of the condition.
The inspection conditions for the
As an inspection condition for the rewinding machine, there is a transport speed. The condition of the transport speed is 5 m / min.
The equipment for setting inspection conditions, the name of the condition, and the content of the condition are not limited to these examples.
図5は、被検査物14の具体例を示す表である。図5には、被検査物14のNo、被検査物14、備考が示されている。
図5に示すように、本実施例では、No.1〜No.6の6つの被検査物14を対象に検査を行う。No.1の被検査物14は、鉄板である。No.2の被検査物14は、亜鉛引き鉄板(亜鉛メッキ鋼板)である。No.3の被検査物14は、燐青銅板(JIS C5191)である。No.4の被検査物14は、アルミ板(アルミ合金1000系)である。No.5の被検査物14は、銅板(銅合金 C1000系)である。No.6の被検査物14は、ステンレス板(オーステナイト304系)である。
本実施例では、被検査物14として金属製品を用いて欠陥検査を実施したが、被検査物14には金属製品以外が用いられてもよい。
FIG. 5 is a table showing a specific example of the object to be inspected 14. FIG. 5 shows No. of the inspected
As shown in FIG. 5, in this embodiment, No. 1-No. The inspection is performed on the six inspected
In this embodiment, the defect inspection is performed using a metal product as the inspected
正反射照明22及び散乱反射照明23から照射された光は、被検査物14で反射される。被検査物14で反射された反射光は、ライン型カラーセンサ21にて受光される。欠陥検出部11は、当該ライン型カラーセンサ21の受光量Lvに基づき、正反射照明22及び散乱反射照明23の照射量を調整(調光)する。なお、以下では、調光前の正反射照明22から照射された光の反射光の受光量は「受光量A」、調光前の散乱反射照明23から照射された光の反射光の受光量は「受光量B」と示される。また、調光後の正反射照明22から照射された光の反射光の受光量は「受光量a」、調光後の散乱反射照明23から照射された光の反射光の受光量は「受光量b」と示される。
The light emitted from the
欠陥検出部11は、ライン型カラーセンサ21における受光量A及び受光量Bに基づき被検査物14の光沢度xを算出する。欠陥検出部11は、被検査物14の光沢度xに対するRGB3原色の欠陥の色を判別可能な受光量比yの上限値y1及び下限値y2を算出する。欠陥検出部11は、y1>y>y2の範囲内の受光量比yに基づき、ライン型カラーセンサ21における受光量a及び受光量bを算出する。欠陥検出部11は、受光量aと受光量bとの和がライン型カラーセンサにおける合計受光量となるように、正反射照明22または散乱反射照明23の少なくともいずれか一方の調光を行う。調光時、正反射照明22の照射量が既に受光量aとなる照射量となっている場合、欠陥検出部11は、正反射照明22の調光を行わなくてもよい。また、調光時、散乱反射照明23の照射量が既に受光量bとなる照射量となっている場合、欠陥検出部11は、散乱反射照明23の調光を行わなくてもよい。調光時、正反射照明22と散乱反射照明23の両方の調光が必要な場合、欠陥検出部11は、正反射照明22と散乱反射照明23の両方の調光を行う。
The defect detection unit 11 calculates the glossiness x of the object to be inspected 14 based on the light receiving amount A and the light receiving amount B in the line type color sensor 21. Defect detecting section 11 calculates the upper limit value y 1 and the lower limit value y 2 glossiness distinguishable received light amount ratio color defects RGB3 primary for x y of the
ここで、図6を参照して、正反射照明22からの受光量aと散乱反射照明23からの受光量bとの受光量比の関係について説明する。図6は、正反射照明22及び散乱反射照明23からの受光量と受光量比の関係を説明する表である。
Here, with reference to FIG. 6, the relationship between the light receiving amount a from the
本実施例では、正反射照明22からの受光量aと散乱反射照明23からの受光量bとの比率(受光量a:受光量b)を10:0から0:10まで変化させて有色欠陥3の検出を行った。
ライン型カラーセンサ21の出力は、0Lv〜256Lv(階調)である。本実施例では、正反射照明22からの受光量a及び散乱反射照明23からの受光量bの合計受光量z(z=a+b)が、256Lvの中心である128Lvとなるようにする。これは、被検査物14の色などの素材状態を人が判別し易いようにするためである。
In this embodiment, the ratio of the light receiving amount a from the
The output of the line type color sensor 21 is 0 Lv to 256 Lv (gradation). In this embodiment, the total light-receiving amount z (z = a + b) of the light-receiving amount a from the
図6に示すように、受光量比が10:0である場合、受光量aは128Lv、受光量bは0Lvである。受光量比が9:1である場合、受光量aは115Lv、受光量bは13Lvである。受光量比が8:2である場合、受光量aは102Lv、受光量bは26Lvである。受光量比が7:3である場合、受光量aは90Lv、受光量bは38Lvである。受光量比が6:4である場合、受光量aは77Lv、受光量bは51Lvである。受光量比が5:5である場合、受光量aは64Lv、受光量bは64Lvである。受光量比が4:6である場合、受光量aは51Lv、受光量bは77Lvである。受光量比が3:7である場合、受光量aは38Lv、受光量bは90Lvである。受光量比が2:8である場合、受光量aは26Lv、受光量bは102Lvである。受光量比が1:9である場合、受光量aは13Lv、受光量bは115Lvである。受光量比が0:10である場合、受光量aは0Lv、受光量bは128Lvである。 As shown in FIG. 6, when the light receiving amount ratio is 10: 0, the light receiving amount a is 128 Lv and the light receiving amount b is 0 Lv. When the light receiving amount ratio is 9: 1, the light receiving amount a is 115 Lv and the light receiving amount b is 13 Lv. When the light receiving amount ratio is 8: 2, the light receiving amount a is 102 Lv and the light receiving amount b is 26 Lv. When the light receiving amount ratio is 7: 3, the light receiving amount a is 90 Lv and the light receiving amount b is 38 Lv. When the light receiving amount ratio is 6: 4, the light receiving amount a is 77 Lv and the light receiving amount b is 51 Lv. When the light receiving amount ratio is 5: 5, the light receiving amount a is 64 Lv and the light receiving amount b is 64 Lv. When the light receiving amount ratio is 4: 6, the light receiving amount a is 51 Lv and the light receiving amount b is 77 Lv. When the light receiving amount ratio is 3: 7, the light receiving amount a is 38 Lv and the light receiving amount b is 90 Lv. When the light receiving amount ratio is 2: 8, the light receiving amount a is 26 Lv and the light receiving amount b is 102 Lv. When the light receiving amount ratio is 1: 9, the light receiving amount a is 13 Lv and the light receiving amount b is 115 Lv. When the light receiving amount ratio is 0:10, the light receiving amount a is 0 Lv and the light receiving amount b is 128 Lv.
図7は、被検査物14の光沢度を説明する表である。図7には、被検査物14のNo、被検査物14、正反射照明22からの受光量A、散乱反射照明23からの受光量B、光沢度x(x=A÷B)が示されている。
FIG. 7 is a table for explaining the glossiness of the object to be inspected 14. FIG. 7 shows No. of the
本発明での光沢度xは、撮像部2のライン型カラーセンサ21における正反射照明22からの受光量Aと散乱反射照明23からの受光量Bとの比を示す値である。欠陥検出部11は、受光量Aを受光量Bで除算(x=A÷B)すること光沢度xを算出する。光沢度xは、値が大きい被検査物14ほど、光沢がある被検査物14であることを示す。
なお、正反射照明22からの受光量Aの測定時、散乱反射照明23は消灯された状態である。また、散乱反射照明23からの受光量Bの測定時、正反射照明22は消灯された状態である。また、各受光量の測定時の正反射照明22と散乱反射照明23の出力は、一定である。また、ライン型カラーセンサ21の走査周期も一定である。
The glossiness x in the present invention is a value indicating the ratio of the light receiving amount A from the
When the light receiving amount A from the
図7に示すように、No.1の鉄板は、正反射照明22からの受光量Aは44.5Lv、散乱反射照明23からの受光量Bは91.0Lv、光沢度xは0.5である。No.2の亜鉛引き鉄板は、正反射照明22からの受光量Aは98.0Lv、散乱反射照明23からの受光量Bは115.0Lv、光沢度xは0.9である。No.3の燐青銅板は、正反射照明22からの受光量Aは134.0Lv、散乱反射照明23からの受光量Bは23.4Lv、光沢度xは5.7である。No.4のアルミ板は、正反射照明22からの受光量Aは189.0Lv、散乱反射照明23からの受光量Bは18.5Lv、光沢度xは10.2である。No.5の銅板は、正反射照明22からの受光量Aは140.0Lv、散乱反射照明23からの受光量Bは12.3Lv、光沢度xは11.4である。No.6のステンレス板は、正反射照明22からの受光量Aは136.0Lv、散乱反射照明23からの受光量Bは5.8Lv、光沢度xは23.6である。
As shown in FIG. 7, No. In the
図8は、被検査物14における有色欠陥を示す図である。実施例では各被検査物14に対し、赤色欠陥31、緑色欠陥32、青色欠陥33のRGB3原色の有色欠陥3を付着させた。
撮像部2で検出した各色の有色欠陥3の中心部の光量Lvを記録した。
FIG. 8 is a diagram showing colored defects in the inspected
The amount of light Lv at the center of the
検出した各色の有色欠陥3は、検査画面上で確認すると、有色欠陥3の中心部の光量Lvが20/256Lvから240/256Lvの間で色の判別が可能である。そのため、各被検査物14に対する正反射照明22と散乱反射照明23の比率を10:0から0:10まで変化させて有色欠陥3を検出し、20/256Lvから240/256Lvとなる有効範囲を確認した。
実施例では8bitのカメラを使用したが、10bitや12bitのカメラでもよい。カメラ出力の7.8%〜93.8%が色の判別が可能な範囲である。例えば、10bitカメラでは80/1024Lvから960/1024Lv、12bitカメラでは320/4096Lvから3840/4096Lvの範囲となる。
When the detected
In the embodiment, an 8-bit camera is used, but a 10-bit or 12-bit camera may be used. 7.8% to 93.8% of the camera output is in the range where color can be discriminated. For example, it ranges from 80/1024 Lv to 960/1024 Lv for a 10-bit camera and 320/4096 Lv to 3840/4096 Lv for a 12-bit camera.
また、赤色欠陥31、緑色欠陥32、青色欠陥33の有色欠陥3を検出した結果、正反射照明22と散乱反射照明23の比率を変動させて検出させても、有色欠陥3の中心部の光量Lvは、赤色欠陥31>緑色欠陥32>青色欠陥33の関係となった。そのため、20/256Lvの判定は青色欠陥33、240/256Lvの判定は赤色欠陥31にて行った。このとき、判定は近似式から算出した。近似式のyは欠陥光量Lvであり、xは散乱反射用の照明部の比率である。これにより、正反射照明22と散乱反射照明23からの受光量の受光量比の有効範囲内では赤色、緑色、青色の各色欠陥が判別可能である。
Further, as a result of detecting the
図9Aは、被検査物14が鉄板(光沢度:0.5)である場合の正反射照明22及び散乱反射照明23からの受光量の受光量比と欠陥光量Lvの関係を示す図である。
この鉄板(光沢度:0.5)では受光量比に関係なく有色欠陥3の中心部の光量が20Lv〜240Lvの範囲に全ての欠陥が入っていることが確認できた。受光量比の有効範囲は、10:0〜0:10となる。
FIG. 9A is a diagram showing the relationship between the light receiving amount ratio of the light receiving amount from the
It was confirmed that in this iron plate (glossiness: 0.5), all the defects were contained in the range of 20 Lv to 240 Lv of the light amount in the central part of the
図9Bは、被検査物14が亜鉛引き鉄板(光沢度:0.9)である場合の正反射照明22及び散乱反射照明23からの受光量の受光量比と欠陥光量Lvの関係を示す図である。また、赤色欠陥31の近似式はy=7.222x+17.289、青色欠陥33の近似式はy=4.6236x+14.809である。
この亜鉛引き鉄板(光沢度:0.9)では受光量比が8.875:1.125の時に青色欠陥33が20Lv以上となる。また、受光量比が0:10でも240Lv以下となる。受光量比の有効範囲は、8.875:1.125〜0:10となる。
FIG. 9B is a diagram showing the relationship between the light receiving amount ratio of the light receiving amount from the
In this zinc-drawn iron plate (glossiness: 0.9), when the light receiving amount ratio is 8.875: 1.125, the blue defect 33 becomes 20 Lv or more. Further, even if the light receiving amount ratio is 0:10, it is 240 Lv or less. The effective range of the light receiving amount ratio is 8.875: 1.125 to 0:10.
図9Cは、被検査物14が燐青銅板(光沢度:5.7)である場合の正反射照明22及び散乱反射照明23からの受光量の受光量比と欠陥光量Lvの関係を示す図である。また、赤色欠陥31の近似式はy=−2.537x2+49.919x+9.1701、青色欠陥33の近似式はy=−1.6204x2+39.845x+2.6514である。
この燐青銅板(光沢度:5.7)では受光量比が9.576:0.424の時に青色欠陥33が20Lv以上となる。また、受光量比が2.575:7.425の時に赤色欠陥31が240Lv以下となる。受光量比の有効範囲は、9.576:0.424〜2.575:7.425となる。
FIG. 9C is a diagram showing the relationship between the light receiving amount ratio of the light receiving amount from the
In this phosphor bronze plate (glossiness: 5.7), when the light receiving amount ratio is 9.576: 0.424, the blue defect 33 becomes 20 Lv or more. Further, when the light receiving amount ratio is 2.575: 7.425, the red defect 31 becomes 240 Lv or less. The effective range of the light receiving amount ratio is 9.576: 0.424 to 2.575: 7.425.
図9Dは、被検査物14がアルミ板(光沢度:10.2)である場合の正反射照明22及び散乱反射照明23からの受光量の受光量比と欠陥光量Lvの関係を示す図である。また、赤色欠陥31の近似式はy=−4.7357x2+69.288x+18.311、青色欠陥33の近似式はy=−3.1384x2+55.997x+1.7292である。
このアルミ板(光沢度:10.2)では受光量比が9.667:0.333の時に青色欠陥33が20Lv以上となる。また、受光量比が5.275:4.725の時に赤色欠陥31が240Lv以下となる。受光量比の有効範囲は、9.667:0.333〜5.275:4.725となる。
FIG. 9D is a diagram showing the relationship between the light receiving amount ratio of the light receiving amount from the
In this aluminum plate (glossiness: 10.2), when the light receiving amount ratio is 9.667: 0.333, the blue defect 33 becomes 20 Lv or more. Further, when the light receiving amount ratio is 5.275: 4.725, the red defect 31 becomes 240 Lv or less. The effective range of the light receiving amount ratio is 9.667: 0.333 to 5.275: 4.725.
図9Eは、被検査物14が銅板(光沢度:11.4)である場合の正反射照明22及び散乱反射照明23からの受光量の受光量比と欠陥光量Lvの関係を示す図である。また、赤色欠陥31の近似式はy=−4.3927x2+66.093x+19.57、青色欠陥33の近似式はy=−3.0006x2+54.538x+4.3454である。
この銅板(光沢度:11.4)では受光量比が9.707:0.293の時に青色欠陥33が20Lv以上となる。また、受光量比が5.013:4.987の時に赤色欠陥31が240Lv以下となる。受光量比の有効範囲は、9.707:0.293〜5.013:4.987となる。
FIG. 9E is a diagram showing the relationship between the light receiving amount ratio of the light receiving amount from the
In this copper plate (glossiness: 11.4), when the light receiving amount ratio is 9.707: 0.293, the blue defect 33 becomes 20 Lv or more. Further, when the light receiving amount ratio is 5.013: 4.987, the red defect 31 becomes 240 Lv or less. The effective range of the light receiving amount ratio is 9.707: 0.293 to 5.013: 4.987.
図9Fは、被検査物14がステンレス板(光沢度:23.6)である場合の正反射照明22及び散乱反射照明23からの受光量の受光量比と欠陥光量Lvの関係を示す図である。また、赤色欠陥31の近似式はy=0.0313x5−1.049x4+13.464x3−81.864x2+232.52x+12.91、青色欠陥33の近似式はy=−0.0288x5+0.6131x4−3.052x3−12.642x2+131.34x+8.4542である。
このステンレス板(光沢度:23.6)では受光量比が9.911:0.089の時に青色欠陥33が20Lv以上となる。また、受光量比が8.071:1.929の時に赤色欠陥31が240Lv以下となる。受光量比の有効範囲は、9.911:0.089〜8.071:1.929となる。
FIG. 9F is a diagram showing the relationship between the light receiving amount ratio of the light receiving amount from the
In this stainless steel plate (glossiness: 23.6), when the light receiving amount ratio is 9.911: 0.089, the blue defect 33 becomes 20 Lv or more. Further, when the light receiving amount ratio is 8.071: 1.929, the red defect 31 becomes 240 Lv or less. The effective range of the light receiving amount ratio is 9.911: 0.089 to 8.071: 1.929.
図10は、光沢度と有効な正反射照明22及び散乱反射照明23からの受光量の受光量比の関係を示す図である。y1=10.638e−0.072xが欠陥光量240Lv以下となる上限値の近似式であり、y2=0.9898e−0.105xが欠陥光量20Lv以上となる下限値の近似式である。図10に示す被検査物14の名称が付されたプロットは、図9A〜図9Bを参照して説明した各被検査物14における受光量比の有効範囲における上限値と下限値を示している。上限値の近似式及び下限値の近似式は、当該プロットに基づき求められた式である。
上記より、欠陥検出部11は、y1>y>y2の範囲内の受光量比yであり、かつ正反射照明22及び散乱反射照明23が両方点灯している範囲で正反射照明22及び散乱反射照明23の出力の調整を行う。これにより、欠陥検出部11は、人が画面上でRGB3原色の欠陥の色を判別可能に、有色欠陥3を検出することができる。実用上は算出を容易とするために、y1=10.638e−0.072xとy2=0.9898e−0.105xの中心位置で受光量比を設定する。
例えば、欠陥検出部11は、検査開始時に測定した正反射照明22からの受光量A及び散乱反射照明23からの受光量Bから、被検査物14の光沢度x(x=A÷B)を算出する。欠陥検出部11は、算出した光沢度xに基づき、上限値y1(y1=10.638e−0.072x)と下限値y2(y2=0.9898e−0.105x)とを算出する。欠陥検出部11は、散乱反射照明23からの受光量の比をy=(y1+y2)/2で算出し、正反射照明22からの受光量の比をγ=10−yで算出することで、適正な受光量比を決定することができる。
FIG. 10 is a diagram showing the relationship between the glossiness and the light receiving amount ratio of the light receiving amount from the
From the above, the defect detection unit 11 has a
For example, the defect detection unit 11 determines the glossiness x (x = A ÷ B) of the inspected
ただし、照明の種類が変わると正反射照明22及び散乱反射照明23からの受光量の受光量比が変わってしまうため算出する光沢度の数値も変動してしまう。そのため、正反射照明22及び散乱反射照明23の選定後に光沢度の数値を取得する必要がある。例えば、正反射照明22及び散乱反射照明23を選定したとき、被検査物14のNo.3:燐青銅板(JIS C5191)の光沢度を測定する。
However, if the type of illumination changes, the ratio of the amount of light received from the
ここで、図11を参照して、No.3:燐青銅板(JIS C5191)の光沢度が「1.00」である場合の他の被検査物14の光沢度について説明する。図11は、No.3:燐青銅板(JIS C5191)の光沢度が「1.00」である場合の他の被検査物14の光沢度を示す表である。図11には、被検査物14のNo、被検査物14、実施例での光沢度、燐青銅板の光沢度が「1.00」である場合の光沢度が示されている。
Here, with reference to FIG. 11, No. 3: The glossiness of another inspected
図11に示すように、No.1の鉄板の実施例での光沢度は0.5、燐青銅板の光沢度が「1.00」である場合の光沢度は0.09である。No.2の亜鉛引き鉄板の実施例での光沢度は0.9、燐青銅板の光沢度が「1.00」である場合の光沢度は0.15である。No.3の燐青銅板の実施例での光沢度は5.7、燐青銅板の光沢度が「1.00」である場合の光沢度は1.00である。No.4のアルミ板の実施例での光沢度は10.2、燐青銅板の光沢度が「1.00」である場合の光沢度は1.79である。No.5の銅板の実施例での光沢度は11.4、燐青銅板の光沢度が「1.00」である場合の光沢度は1.99である。No.6のステンレス板の実施例での光沢度は23.6、燐青銅板の光沢度が「1.00」である場合の光沢度は4.14である。
As shown in FIG. 11, No. The glossiness of the iron plate of No. 1 is 0.5, and the glossiness of the phosphor bronze plate is 0.09 when the glossiness is "1.00". No. The glossiness of the zinc-coated iron plate of No. 2 is 0.9, and the glossiness of the phosphor bronze plate is 0.15 when the glossiness is "1.00". No. The glossiness of the
図12は、No.3:燐青銅板(JIS C5191)の光沢度が「1.00」である場合の光沢度と有効な正反射照明22及び散乱反射照明23からの受光量の受光量比の関係を示す図である。No.3:燐青銅板(JIS C5191)の光沢度が「1.00」のときは、y=10.638e−0.412xが欠陥光量240Lv以下となる近似式であり、y=0.9898e−0.602xが欠陥光量20Lv以上となる近似式である。
FIG. 12 shows No. 3: The figure showing the relationship between the glossiness when the glossiness of the phosphorus bronze plate (JIS C5911) is "1.00" and the light receiving amount ratio of the light receiving amount from the effective
上記からy1=10.638e−δxとy2=0.9898e−φxの式から受光量比を決定できる。このときのδとφは、基準とする被検査物14に依存する。例えば、No.3:燐青銅板(JIS C5191)を基準とした場合はδ=0.4105x−0.996、φ=0.6021x−1.001となる。
From the above, the light receiving amount ratio can be determined from the equations of y 1 = 10.638e −δx and y 2 = 0.9898e −φx. At this time, δ and φ depend on the
ここで、図13を参照して、No.3:燐青銅板(JIS C5191)光沢度の数値変動によるδ値とφ値について説明する。図13は、No.3:燐青銅板(JIS C5191)の光沢度の数値変動に応じたδ値とφ値を示す表である。図13には、光沢度、δ値、φ値が示されている。 Here, with reference to FIG. 13, No. 3: Phosphor bronze plate (JIS C5911) The δ value and φ value due to the numerical fluctuation of the glossiness will be described. FIG. 13 shows No. 3: It is a table which shows the δ value and φ value according to the numerical fluctuation of the glossiness of a phosphor bronze plate (JIS C5191). FIG. 13 shows the glossiness, the δ value, and the φ value.
図13に示すように、光沢度が1である場合のδ値は0.412、φ値は0.602である。光沢度が2である場合のδ値は0.206、φ値は0.301ある。光沢度が3である場合のδ値は0.137、φ値は0.201である。光沢度が4である場合のδ値は0.103、φ値は0.150である。光沢度が5である場合のδ値は0.082、φ値は0.120である。光沢度が6である場合のδ値は0.069、φ値は0.100である。光沢度が7である場合のδ値は0.059、φ値は0.086である。光沢度が8である場合のδ値は0.052、φ値は0.075である。光沢度が9である場合のδ値は0.046、φ値は0.067である。光沢度が10である場合のδ値は0.041、φ値は0.060である。 As shown in FIG. 13, when the glossiness is 1, the δ value is 0.412 and the φ value is 0.602. When the glossiness is 2, the δ value is 0.206 and the φ value is 0.301. When the glossiness is 3, the δ value is 0.137 and the φ value is 0.201. When the glossiness is 4, the δ value is 0.103 and the φ value is 0.150. When the glossiness is 5, the δ value is 0.082 and the φ value is 0.120. When the glossiness is 6, the δ value is 0.069 and the φ value is 0.100. When the glossiness is 7, the δ value is 0.059 and the φ value is 0.086. When the glossiness is 8, the δ value is 0.052 and the φ value is 0.075. When the glossiness is 9, the δ value is 0.046 and the φ value is 0.067. When the glossiness is 10, the δ value is 0.041 and the φ value is 0.060.
被検査物14の検査は、正反射照明22からの受光量a及び散乱反射照明23からの受光量bの合計受光量zに基づき実施される。受光量a、受光量b、合計受光量zは、欠陥検出部11によって算出される。欠陥検出部11は、受光量aをa=(10−y)/10×z0の式から算出する。欠陥検出部11は、受光量bをb=y/10×z0の式から算出する。欠陥検出部11は、合計受光量zをz=a+bの式から算出する。
欠陥検出部11は、算出した受光量aと受光量bとの和である合計受光量zが、ライン型カラーセンサ21における合計受光量zとなるように、正反射照明22または散乱反射照明23の少なくともいずれか一方の調光を行う。なお、受光量z0は、検査条件にて設定することができる。
The inspection of the
The defect detection unit 11 determines the
このとき、正反射照明22と散乱反射照明23の調光は、交互に行われる必要がある。各照明を調光する方法には、複数の方法がある。
(方法1)
被検査物14が配置された状態で散乱反射照明23を消灯し、正反射照明22における受光量が受光量aとなるように調光を行う。正反射照明22の調光後、正反射照明22を消灯し、散乱反射照明23における受光量が受光量bとなるように調光を行う。散乱反射照明23の調光後、正反射照明22を点灯させ検査を開始する。
(方法2)
散乱反射照明23を消灯し、正反射照明22を受光量aに調光を行う。正反射照明22の調光後、散乱反射照明23を点灯させ、受光量z0に散乱反射照明23の調光を行う。
上述の二つの調光方法において、各照明を調光する順番は、散乱反射照明23が先でも良い。
At this time, the dimming of the
(Method 1)
With the
(Method 2)
The diffuse
In the above-mentioned two dimming methods, the diffuse
次に銅板(光沢度:11.4)に付着した油欠陥(茶色)を撮像部2にて検査した。上述と同様に正反射照明22からの受光量aと散乱反射照明23からの受光量bとの受光量比を変動させて検出させた。
Next, the oil defect (brown) adhering to the copper plate (glossiness: 11.4) was inspected by the
ここで、図14を参照して、銅板(光沢度:11.4)に付着した油欠陥(茶色)の検査結果の判別結果について説明する。図14は、銅板に付着した油欠陥の受光量比ごとの検査結果を示す表である。図14には、受光量比、合計受光量、欠陥光量Lv、欠陥検出結果、欠陥色の判別結果が示されている。欠陥光量Lvは、受光量aと受光量bの受光量比に対する油欠陥(茶色)の欠陥光量Lvを示している。なお、合計受光量zは、全ての受光量において128Lvとしている。 Here, with reference to FIG. 14, the discriminant result of the inspection result of the oil defect (brown) adhering to the copper plate (glossiness: 11.4) will be described. FIG. 14 is a table showing inspection results for each light receiving amount ratio of oil defects adhering to the copper plate. FIG. 14 shows the light receiving amount ratio, the total light receiving amount, the defect light amount Lv, the defect detection result, and the defect color discrimination result. The defective light amount Lv indicates the defective light amount Lv of the oil defect (brown) with respect to the light receiving amount ratio of the light receiving amount a and the light receiving amount b. The total received light amount z is 128 Lv for all the received light amounts.
図14に示すように、受光量比が10:0である場合、欠陥光量Lvは17.3Lvであり、欠陥検出は可能であるが欠陥色の判別は不可である。受光量比が9:1である場合、欠陥光量Lvは59.6Lvであり、欠陥検出及び欠陥色の判別が可能である。受光量比が8:2である場合、欠陥光量Lvは157.0Lvであり、欠陥検出及び欠陥色の判別が可能である。受光量比が7:3である場合、欠陥光量Lvは182.5Lvであり、欠陥検出及び欠陥色の判別が可能である。受光量比が6:4である場合、欠陥光量Lvは226.7Lvであり、欠陥検出及び欠陥色の判別が可能である。受光量比が5:5である場合、欠陥光量Lvは241.7Lvであり、欠陥検出は可能であるが欠陥色の判別は不可である。受光量比が4:6である場合、欠陥光量Lvは247.2Lvであり、欠陥検出は可能であるが欠陥色の判別は不可である。受光量比が3:7である場合、欠陥光量Lvは253.0Lvであり、欠陥検出は可能であるが欠陥色の判別は不可である。受光量比が2:8である場合、欠陥光量Lvは254.5Lvであり、欠陥検出は可能であるが欠陥色の判別は不可である。受光量比が1:9である場合、欠陥光量Lvは254.9Lvであり、欠陥検出は可能であるが欠陥色の判別は不可である。受光量比が0:10である場合、欠陥光量Lvは254.7Lvであり、欠陥検出は可能であるが欠陥色の判別は不可である。 As shown in FIG. 14, when the light receiving amount ratio is 10: 0, the defect light amount Lv is 17.3 Lv, and the defect can be detected but the defect color cannot be discriminated. When the light receiving amount ratio is 9: 1, the defect light amount Lv is 59.6 Lv, and defect detection and defect color discrimination are possible. When the light receiving amount ratio is 8: 2, the defect light amount Lv is 157.0 Lv, and defect detection and defect color discrimination are possible. When the light receiving amount ratio is 7: 3, the defect light amount Lv is 182.5 Lv, and defect detection and defect color discrimination are possible. When the light receiving amount ratio is 6: 4, the defect light amount Lv is 226.7 Lv, and defect detection and defect color discrimination are possible. When the light receiving amount ratio is 5: 5, the defect light amount Lv is 241.7 Lv, and the defect can be detected but the defect color cannot be discriminated. When the light receiving amount ratio is 4: 6, the defect light amount Lv is 247.2 Lv, and the defect can be detected but the defect color cannot be discriminated. When the light receiving amount ratio is 3: 7, the defect light amount Lv is 253.0 Lv, and the defect can be detected but the defect color cannot be discriminated. When the light receiving amount ratio is 2: 8, the defect light amount Lv is 254.5 Lv, and the defect can be detected but the defect color cannot be discriminated. When the light receiving amount ratio is 1: 9, the defect light amount Lv is 254.9 Lv, and the defect can be detected but the defect color cannot be discriminated. When the light receiving amount ratio is 0:10, the defect light amount Lv is 254.7 Lv, and the defect can be detected but the defect color cannot be discriminated.
図14に示す結果より、油欠陥(茶色)の色判別は、銅板の受光量比の有効範囲(図9E参照)である9.707:0.293〜5.013:4.987内で可能であった。
受光量比の有効範囲の中心は7.36:2.64となる。今回の結果では8:2及び7:3の結果の間となるため、受光量比の有効範囲の中心にて調光することは実用上問題ないことが確認できた。
From the results shown in FIG. 14, the color discrimination of the oil defect (brown) is possible within the effective range of the light receiving amount ratio of the copper plate (see FIG. 9E) of 9.707: 0.293 to 5.013: 4.987. Met.
The center of the effective range of the light receiving amount ratio is 7.36: 2.64. Since the result of this time is between the result of 8: 2 and 7: 3, it was confirmed that there is no practical problem in dimming at the center of the effective range of the light receiving amount ratio.
図15A及び図15Bを参照して、正反射照明22と散乱反射照明23からの受光量の受光量比が10:0である場合における油欠陥の波形について説明する。図15A及び図15Bにおける縦軸はカメラ出力を示し、横軸はカメラ画素を示している。
図15Aは、正反射照明22と散乱反射照明23からの受光量の受光量比が10:0である場合におけるライン型カラーセンサ21の各色の出力を平均した波形を示す図である。この波形から欠陥の色にはコントラストがあるため検出可能であることが確認できる。しかし、欠陥光量Lvが20Lv以下である。そのため、人による画面上での欠陥色の判別は不可となる。
図15Bは、正反射照明22と散乱反射照明23からの受光量の受光量比が10:0である場合におけるライン型カラーセンサ21の各色の出力の波形を示す図である。欠陥中心付近の欠陥光量Lvの数値は、赤色出力が19Lv、緑色出力が17Lv、青色出力が16Lvであった。この各色の出力値からも、検出された欠陥の色の判別ができないことがわかる。
With reference to FIGS. 15A and 15B, the waveform of the oil defect when the light receiving amount ratio of the light receiving amount from the
FIG. 15A is a diagram showing a waveform obtained by averaging the outputs of each color of the line type color sensor 21 when the light receiving amount ratio of the light receiving amount from the
FIG. 15B is a diagram showing an output waveform of each color of the line type color sensor 21 when the light receiving amount ratio of the light receiving amount from the
図16A及び図16Bを参照して、正反射照明22と散乱反射照明23からの受光量の受光量比が8:2である場合における油欠陥の波形について説明する。図16A及び図16Bにおける縦軸はカメラ出力を示し、横軸はカメラ画素を示している。
図16Aは、正反射照明22と散乱反射照明23からの受光量の受光量比が8:2である場合におけるライン型カラーセンサ21の各色の出力を平均した波形を示す図である。この波形から欠陥の色にはコントラストがあるため検出可能であることが確認できる。また、欠陥光量Lvが20/256Lvから240/256Lvの間である。そのため、人による画面上での欠陥色の判別が可能となる。
図16Bは、正反射照明22と散乱反射照明23からの受光量の受光量比が8:2である場合におけるライン型カラーセンサ21の各色の出力の波形を示す図である。欠陥中心付近の欠陥光量Lvの数値は、赤色出力が248Lv、緑色出力が133Lv、青色出力が90Lvであった。この各色の出力値からも、検出された欠陥が茶色であることが判別可能である。
With reference to FIGS. 16A and 16B, the waveform of the oil defect when the light receiving amount ratio of the light receiving amount from the
FIG. 16A is a diagram showing a waveform obtained by averaging the outputs of each color of the line type color sensor 21 when the light receiving amount ratio of the light receiving amount from the
FIG. 16B is a diagram showing an output waveform of each color of the line type color sensor 21 when the light receiving amount ratio of the light receiving amount from the
図17A及び図17Bを参照して、正反射照明22と散乱反射照明23からの受光量の受光量比が3:7である場合における油欠陥の波形について説明する。図17A及び図17Bにおける縦軸はカメラ出力を示し、横軸はカメラ画素を示している。
図17Aは、正反射照明22と散乱反射照明23からの受光量の受光量比が3:7である場合におけるライン型カラーセンサ21の各色の出力を平均した波形を示す図である。この波形から欠陥の色にはコントラストがあるため検出可能であることが確認できる。しかし、欠陥光量Lvが240Lv以上である。そのため、人による画面上での欠陥色の判別は不可となる。
図17Bは、正反射照明22と散乱反射照明23からの受光量の受光量比が3:7である場合におけるライン型カラーセンサ21の各色の出力の波形を示す図である。欠陥中心付近の欠陥光量Lvの数値は、赤色出力が255Lv、緑色出力が255Lv、青色出力が249Lvであった。この各色の出力値からも、検出された欠陥の色の判別ができないことがわかる。
With reference to FIGS. 17A and 17B, the waveform of the oil defect when the light receiving amount ratio of the light receiving amount from the
FIG. 17A is a diagram showing a waveform obtained by averaging the outputs of each color of the line type color sensor 21 when the light receiving amount ratio of the light receiving amount from the
FIG. 17B is a diagram showing an output waveform of each color of the line type color sensor 21 when the light receiving amount ratio of the light receiving amount from the
正反射照明22と散乱反射照明23からの受光量の受光量比に関係なく、被検査物14の正常部では赤色出力が150Lv、緑色出力が125Lv、青色出力が110Lvとなり、被検査物14が濃い茶色であることが判別可能である。本発明では正反射照明22と散乱反射照明23からの受光量の受光量比を制御することで有色欠陥3を検出し、かつ有色欠陥3及び被検査物14の色の判別が可能であることがわかる。
Regardless of the ratio of the amount of light received from the
以上、本発明の実施形態について説明した。
以上説明したように、本発明の欠陥検査装置1において、正反射照明22は、被検査物14に対して、正反射する第1の光を照射角度θで照射する。散乱反射照明23は、第1の光が照射された位置に対して、散乱反射する第2の光を照射角度θとは異なる照射角度αで照射する。ライン型カラーセンサ21は、第1の光の反射光及び第2の光の反射光を受光する。
欠陥検出部11は、ライン型カラーセンサ21における第1の光の反射光の受光量A及び第2の光の反射光の受光量Bに基づき、被検査物14の光沢度x(x=A÷B)を算出する。欠陥検出部11は、算出した被検査物14の光沢度xに対するRGB3原色の欠陥の色を判別可能な受光量比yの上限値y1及び下限値y2を算出する。欠陥検出部11は、y1>y>y2の範囲内の受光量比yに基づき、ライン型カラーセンサ21における第1の光の反射光の受光量a及び第2の光の反射光の受光量bを算出する。欠陥検出部11は、算出した受光量aと受光量bとの和がライン型カラーセンサ21における合計受光量となるように、正反射照明22または散乱反射照明23の少なくともいずれか一方の調光を行う。
The embodiment of the present invention has been described above.
As described above, in the
The defect detection unit 11 has a glossiness x (x = A) of the object to be inspected 14 based on the light receiving amount A of the reflected light of the first light and the light receiving amount B of the reflected light of the second light in the line type color sensor 21. ÷ B) is calculated. Defect detecting section 11 calculates a discernible amount of received light ratio upper limit value y 1 and the lower limit value y 2 and y color defects RGB3 primary for gloss x the calculated
かかる構成により、本発明の欠陥検査装置1は、被検査物14の光沢度xに応じて、ライン型カラーセンサ21における受光量aと受光量bの合計受光量を、画面に表示された被検査物14の素材状態を人が判別可能な有効範囲で制御する。これにより、人は、画面に表示された被検査物における有色欠陥の色及び被検査物の色などの素材状態を判別することができる。
With this configuration, the
よって、本発明の欠陥検査装置1は、画面に表示された被検査物における有色欠陥の色及び被検査物の色などの素材状態を人が判別できるようにすることを可能とする。
Therefore, the
上述した実施形態における欠陥検査装置1をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。
The
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。 Although the embodiments of the present invention have been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and includes designs and the like within a range that does not deviate from the gist of the present invention.
1…欠陥検査装置
11…欠陥検出部
12…ロータリエンコーダ
13…操作部
14…被検査物
2…撮像部
21…ライン型カラーセンサ
22…正反射照明
23…散乱反射照明
24…法線
3…有色欠陥
31…赤色欠陥
32…緑色欠陥
33…青色欠陥
1 ... Defect inspection device 11 ...
Claims (3)
前記第1の光が照射された位置に対して第2の光を前記照射角度θとは異なる照射角度αで照射する第2の照明と、
前記被検査物に照射された前記第1の光が正反射して生じる前記第1の光の反射光、及び前記被検査物に照射された前記第2の光が散乱反射して生じる前記第2の光の反射光を受光するライン型カラーセンサと、
前記ライン型カラーセンサにおける前記第1の光の反射光の受光量A及び前記第2の光の反射光の受光量Bに基づき前記被検査物の光沢度x(x=A÷B)を算出し、前記被検査物の光沢度xに対するRGB3原色の欠陥の色を判別可能な受光量比yの上限値y1及び下限値y2を算出し、y1>y>y2の範囲内の受光量比yに基づき前記ライン型カラーセンサにおける前記第1の光の反射光の受光量a及び前記第2の光の反射光の受光量bを算出し、前記受光量aと前記受光量bとの和が前記ライン型カラーセンサにおける合計受光量となるように、前記第1の照明または前記第2の照明の少なくともいずれか一方の調光を行う欠陥検出部と、
を有する欠陥検査装置。 The first illumination that irradiates the object to be inspected with the first light at the irradiation angle θ, and
A second illumination that irradiates the second light at an irradiation angle α different from the irradiation angle θ with respect to the position where the first light is irradiated, and
The first reflected light generated by positive reflection of the first light irradiated on the object to be inspected and the second light generated by scattered reflection of the second light irradiated on the object to be inspected. A line-type color sensor that receives the reflected light of 2 and
The glossiness x (x = A ÷ B) of the object to be inspected is calculated based on the received amount A of the reflected light of the first light and the received amount B of the reflected light of the second light in the line type color sensor. Then, the upper limit value y 1 and the lower limit value y 2 of the light receiving amount ratio y capable of discriminating the color of the defect of the RGB3 primary color with respect to the glossiness x of the inspected object are calculated, and within the range of y 1 >y> y 2. Based on the light reception amount ratio y, the light reception amount a of the reflected light of the first light and the light reception amount b of the reflected light of the second light in the line type color sensor are calculated, and the light reception amount a and the light reception amount b. A defect detection unit that adjusts at least one of the first illumination and the second illumination so that the sum of the light is the total amount of light received in the line type color sensor.
Defect inspection equipment with.
前記照射角度αは、前記被検査物に対して照射される前記第2の光と、前記法線とがなす角度であり、
前記ライン型カラーセンサが受光する前記第1の光の反射光の受光角θは、前記第1の光の反射光と前記法線とがなす角度であり、
前記法線を基準として、前記受光角θが−θ度、前記照射角度θが+θ度である場合に、
前記第2の照明は、前記照射角度αが−90度<α<−θ度の範囲内の角度、−θ度<α<+θ度の範囲内の角度、または+θ度<α<+90度の範囲内の角度となるように設けられる、
請求項1に記載の欠陥検査装置。 The irradiation angle θ is an angle formed by the first light irradiated to the object to be inspected and the normal at the position where the first light is irradiated to the object to be inspected.
The irradiation angle α is an angle formed by the second light applied to the object to be inspected and the normal line.
The light receiving angle θ of the reflected light of the first light received by the line type color sensor is an angle formed by the reflected light of the first light and the normal line.
When the light receiving angle θ is −θ degree and the irradiation angle θ is + θ degree with respect to the normal line,
In the second illumination, the irradiation angle α is an angle within the range of −90 degrees <α <−θ degrees, an angle within the range of −θ degrees <α <+ θ degrees, or + θ degrees <α <+ 90 degrees. Provided so that the angle is within the range,
The defect inspection apparatus according to claim 1.
第2の照明が、前記第1の光が照射された位置に対して第2の光を前記照射角度θとは異なる照射角度αで照射することと、
ライン型カラーセンサが、前記被検査物に照射された前記第1の光が正反射して生じる前記第1の光の反射光、及び前記被検査物に照射された前記第2の光が散乱反射して生じる前記第2の光の反射光を受光することと、
欠陥検出部が、前記ライン型カラーセンサにおける前記第1の光の反射光の受光量A及び前記第2の光の反射光の受光量Bに基づき前記被検査物の光沢度x(x=A÷B)を算出し、前記被検査物の光沢度xに対するRGB3原色の欠陥の色を判別可能な受光量比yの上限値y1及び下限値y2を算出し、y1>y>y2の範囲内の受光量比yに基づき前記ライン型カラーセンサにおける前記第1の光の反射光の受光量a及び前記第2の光の反射光の受光量bを算出し、前記受光量aと前記受光量bとの和が前記ライン型カラーセンサにおける合計受光量となるように、前記第1の照明または前記第2の照明の少なくともいずれか一方の調光を行うことと、
を含む欠陥検査方法。 The first illumination irradiates the object to be inspected with the first light at an irradiation angle θ.
The second illumination irradiates the second light with respect to the position where the first light is irradiated at an irradiation angle α different from the irradiation angle θ.
The line-type color sensor scatters the reflected light of the first light generated by the positive reflection of the first light irradiated on the object to be inspected and the second light irradiated on the object to be inspected. Receiving the reflected light of the second light generated by reflection and
The defect detecting unit determines the glossiness x (x = A) of the object to be inspected based on the received amount A of the reflected light of the first light and the received amount B of the reflected light of the second light in the line type color sensor. ÷ B) is calculated, and the upper limit value y 1 and the lower limit value y 2 of the light receiving amount ratio y that can discriminate the color of the defect of the RGB3 primary color with respect to the glossiness x of the inspected object are calculated, and y 1 >y> y. Based on the light receiving amount ratio y within the range of 2 , the light receiving amount a of the reflected light of the first light and the light receiving amount b of the reflected light of the second light in the line type color sensor are calculated, and the light receiving amount a. Dimming of at least one of the first illumination and the second illumination is performed so that the sum of the light receiving amount b and the light receiving amount b is the total light receiving amount in the line type color sensor.
Defect inspection methods including.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020089663A JP6901806B1 (en) | 2020-05-22 | 2020-05-22 | Defect inspection equipment and defect inspection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020089663A JP6901806B1 (en) | 2020-05-22 | 2020-05-22 | Defect inspection equipment and defect inspection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6901806B1 JP6901806B1 (en) | 2021-07-14 |
JP2021183947A true JP2021183947A (en) | 2021-12-02 |
Family
ID=76753112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020089663A Active JP6901806B1 (en) | 2020-05-22 | 2020-05-22 | Defect inspection equipment and defect inspection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6901806B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7553166B1 (en) | 2024-05-01 | 2024-09-18 | 言 范 | Apparatus, method, program, and storage container for authenticating metal materials such as badges |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09105724A (en) * | 1995-08-04 | 1997-04-22 | Kobe Steel Ltd | Surface inspection device |
EP1698884A1 (en) * | 2005-03-05 | 2006-09-06 | Samsung Electronics Co, Ltd | Apparatus and method for identifying the characteristics of a print medium |
JP2007033099A (en) * | 2005-07-25 | 2007-02-08 | Fuji Xerox Co Ltd | Gloss characteristic evaluation method, gloss characteristic evaluation device, and program |
JP2007240431A (en) * | 2006-03-10 | 2007-09-20 | Omron Corp | Defect inspection device and defect inspection method |
JP2008216059A (en) * | 2007-03-05 | 2008-09-18 | Kurabo Ind Ltd | Inspection apparatus of printed board |
JP2010014530A (en) * | 2008-07-03 | 2010-01-21 | Omron Corp | Substrate visual inspection method and substrate visual inspecting device |
JP2014163694A (en) * | 2013-02-21 | 2014-09-08 | Omron Corp | Defect inspection device, and defect inspection method |
US20140333755A1 (en) * | 2011-12-12 | 2014-11-13 | Visys Nv | System and Method for Individually Inspecting Objects in a Stream of Products and a Sorting Apparatus Comprising Such System |
JP2015021766A (en) * | 2013-07-17 | 2015-02-02 | 株式会社リコー | Sensor device and image formation device |
JP2015068741A (en) * | 2013-09-30 | 2015-04-13 | 大日本印刷株式会社 | Sign panel inspection system and sign panel inspection method |
JP2017067730A (en) * | 2015-10-02 | 2017-04-06 | 大日本印刷株式会社 | Inspection system and inspection method |
JP2020034345A (en) * | 2018-08-28 | 2020-03-05 | 大日本印刷株式会社 | Inspection system and inspection method |
US20200134773A1 (en) * | 2018-10-27 | 2020-04-30 | Gilbert Pinter | Machine vision systems, illumination sources for use in machine vision systems, and components for use in the illumination sources |
-
2020
- 2020-05-22 JP JP2020089663A patent/JP6901806B1/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09105724A (en) * | 1995-08-04 | 1997-04-22 | Kobe Steel Ltd | Surface inspection device |
EP1698884A1 (en) * | 2005-03-05 | 2006-09-06 | Samsung Electronics Co, Ltd | Apparatus and method for identifying the characteristics of a print medium |
JP2007033099A (en) * | 2005-07-25 | 2007-02-08 | Fuji Xerox Co Ltd | Gloss characteristic evaluation method, gloss characteristic evaluation device, and program |
JP2007240431A (en) * | 2006-03-10 | 2007-09-20 | Omron Corp | Defect inspection device and defect inspection method |
JP2008216059A (en) * | 2007-03-05 | 2008-09-18 | Kurabo Ind Ltd | Inspection apparatus of printed board |
JP2010014530A (en) * | 2008-07-03 | 2010-01-21 | Omron Corp | Substrate visual inspection method and substrate visual inspecting device |
US20140333755A1 (en) * | 2011-12-12 | 2014-11-13 | Visys Nv | System and Method for Individually Inspecting Objects in a Stream of Products and a Sorting Apparatus Comprising Such System |
JP2014163694A (en) * | 2013-02-21 | 2014-09-08 | Omron Corp | Defect inspection device, and defect inspection method |
JP2015021766A (en) * | 2013-07-17 | 2015-02-02 | 株式会社リコー | Sensor device and image formation device |
JP2015068741A (en) * | 2013-09-30 | 2015-04-13 | 大日本印刷株式会社 | Sign panel inspection system and sign panel inspection method |
JP2017067730A (en) * | 2015-10-02 | 2017-04-06 | 大日本印刷株式会社 | Inspection system and inspection method |
JP2020034345A (en) * | 2018-08-28 | 2020-03-05 | 大日本印刷株式会社 | Inspection system and inspection method |
US20200134773A1 (en) * | 2018-10-27 | 2020-04-30 | Gilbert Pinter | Machine vision systems, illumination sources for use in machine vision systems, and components for use in the illumination sources |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7553166B1 (en) | 2024-05-01 | 2024-09-18 | 言 范 | Apparatus, method, program, and storage container for authenticating metal materials such as badges |
Also Published As
Publication number | Publication date |
---|---|
JP6901806B1 (en) | 2021-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10267747B2 (en) | Surface defect inspecting device and method for steel sheets | |
JP4060750B2 (en) | Imaging inspection system | |
US10041888B2 (en) | Surface defect inspecting device and method for hot-dip coated steel sheets | |
JP3754003B2 (en) | Defect inspection apparatus and method | |
JP6772084B2 (en) | Surface defect inspection equipment and surface defect inspection method | |
JP6901806B1 (en) | Defect inspection equipment and defect inspection method | |
TW200846649A (en) | Pattern inspection device and method used thereby | |
JP2003065966A (en) | Foreign matter inspecting method to film and apparatus therefor | |
JP5732605B2 (en) | Appearance inspection device | |
JPH05180781A (en) | Method and apparatus for surface defect inspection | |
JP3589756B2 (en) | Inspection set value input display method and device for defect inspection | |
JPH0313853A (en) | Surface flaw inspecting apparatus | |
JP2004361085A (en) | Visual examination device | |
JP2023001540A (en) | Inspection method and inspection equipment | |
JPH09113465A (en) | Detection apparatus for surface fault for galvanized steel plate | |
US7321679B2 (en) | Machine for inspecting glass bottles | |
JPH08304295A (en) | Method and apparatus for detecting surface defect | |
JP7349218B1 (en) | Egg surface inspection device | |
JPH0914942A (en) | Image pick-up device for inspection scratch on cylindrical surface | |
JP7545176B1 (en) | Defect inspection device and defect inspection method | |
JP2006266845A (en) | Image determination device and image determination method | |
JPH0682390A (en) | Method and apparatus for inspecting surface defect | |
JP3992884B2 (en) | Defect inspection equipment | |
JP7524717B2 (en) | Inspection Equipment | |
WO2024214474A1 (en) | Defect inspection device for sheet-shaped object having microporous structure and defect inspection method for sheet-shaped object having microporous structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200522 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210601 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210611 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6901806 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |