JP2021181790A - Hydrogen supply system and hydrogen supply method to ship - Google Patents

Hydrogen supply system and hydrogen supply method to ship Download PDF

Info

Publication number
JP2021181790A
JP2021181790A JP2020086469A JP2020086469A JP2021181790A JP 2021181790 A JP2021181790 A JP 2021181790A JP 2020086469 A JP2020086469 A JP 2020086469A JP 2020086469 A JP2020086469 A JP 2020086469A JP 2021181790 A JP2021181790 A JP 2021181790A
Authority
JP
Japan
Prior art keywords
hydrogen supply
hydrogen
ship
fuel filling
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020086469A
Other languages
Japanese (ja)
Other versions
JP7390972B2 (en
Inventor
庄一 六川
Shoichi Mutsukawa
俊夫 高野
Toshio Takano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Container Co Ltd
Original Assignee
JFE Container Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Container Co Ltd filed Critical JFE Container Co Ltd
Priority to JP2020086469A priority Critical patent/JP7390972B2/en
Publication of JP2021181790A publication Critical patent/JP2021181790A/en
Application granted granted Critical
Publication of JP7390972B2 publication Critical patent/JP7390972B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

To provide a hydrogen supply system capable of smoothly supplying a hydrogen gas to a ship, and a hydrogen supply method to the ship.SOLUTION: A hydrogen supply system includes three or more hydrogen supply units respectively having: a dolly connected to land transportation means; a load carrying platform loaded on the dolly; and a plurality of fuel filling containers to be filled with hydrogen, and repeating a first process for filling the fuel filling containers with a hydrogen gas by hydrogen supply equipment; a second process for moving to a mooring place where a ship using hydrogen as a fuel of a driving source is moored, by the land transportation means after the first process; a third process for loading on the ship by traction, and unloading from the ship by traction after supplying the hydrogen of the fuel filling containers to the driving source after the second process; and a fourth process for moving to the hydrogen supply equipment by the land transportation means after the third process. At least three hydrogen supply units execute the different processes among the first to fourth processes at the same time.SELECTED DRAWING: Figure 2

Description

本開示は、駆動源の燃料に水素が用いられた船舶に対して水素を輸送して供給する水素供給システム、および、駆動源の燃料に水素が用いられた船舶への水素供給方法に関するものである。 The present disclosure relates to a hydrogen supply system that transports and supplies hydrogen to a ship that uses hydrogen as a fuel for a drive source, and a method for supplying hydrogen to a ship that uses hydrogen as a fuel for a drive source. be.

従来、船舶においては駆動源の燃料として重油が広く用いられている(例えば、特許文献1参照)。特許文献1のように、燃料に重油が用いられている船舶はCOを多く排出するため、そのことが地球温暖化につながってしまう。そこで、環境保全の観点から、COの排出量を低減するため、駆動源の燃料に水素が用いられた船舶がある。この船舶には、主に水素ガスが充填された燃料充填容器によって水素が供給される。また、燃料充填容器への水素ガスの充填は、水素ステーションなどの水素充填施設で行われる。 Conventionally, heavy oil has been widely used as a fuel for a drive source in a ship (see, for example, Patent Document 1). As in Patent Document 1, ships that use heavy oil as fuel emit a large amount of CO 2 , which leads to global warming. Therefore, from the viewpoint of environmental protection, there are ships that use hydrogen as the fuel for the drive source in order to reduce CO 2 emissions. Hydrogen is supplied to this vessel mainly by a fuel filling container filled with hydrogen gas. Further, the filling of the fuel filling container with hydrogen gas is performed at a hydrogen filling facility such as a hydrogen station.

特開2004−011479号公報Japanese Unexamined Patent Publication No. 2004-101479

しかしながら、燃料充填容器への水素ガスの充填が行われる水素ステーションなどの水素供給設備の数は全国的に少なく、船舶が停泊する港などの停泊場所の位置によっては、停泊場所と水素供給設備との距離が遠く、燃料充填容器の輸送に時間がかかる。そのため、船舶に燃料充填容器を積み込むまでの待ち時間がかかり、船舶への水素ガスの供給に時間がかかるという課題があった。 However, the number of hydrogen supply facilities such as hydrogen stations where hydrogen gas is filled into fuel filling containers is small nationwide, and depending on the location of the berth such as the port where ships are berthed, there are berths and hydrogen supply facilities. The distance is long and it takes time to transport the fuel filling container. Therefore, there is a problem that it takes a long time to load the fuel filling container on the ship and it takes time to supply hydrogen gas to the ship.

本開示は、以上のような課題を解決するためになされたもので、船舶への水素ガスの供給を円滑に行うことができる水素供給システムおよび船舶への水素供給方法を提供することを目的としている。 The present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide a hydrogen supply system capable of smoothly supplying hydrogen gas to a ship and a hydrogen supply method to the ship. There is.

本開示に係る水素供給システムは、陸上輸送手段に連結される台車と、前記台車に積まれる荷台と、前記荷台に積まれ、水素が充填される複数の燃料充填容器と、を有し、水素供給設備で前記燃料充填容器に水素ガスの充填が行われる第一工程と、前記第一工程の後、駆動源の燃料に水素が用いられた船舶が停泊する停泊場所に前記陸上輸送手段によって移動する第二工程と、前記第二工程の後、前記船舶に牽引により積み込まれ、前記駆動源に前記燃料充填容器の水素を供給した後、前記船舶から牽引により積み降ろされる第三工程と、前記第三工程の後、前記水素供給設備に前記陸上輸送手段によって移動する第四工程と、を繰り返す水素供給ユニットを3台以上備え、少なくとも3台の前記水素供給ユニットは、同時刻において前記第一工程〜前記第四工程のうちそれぞれ異なる工程を行うものである。 The hydrogen supply system according to the present disclosure includes a trolley connected to a land transportation means, a loading platform loaded on the trolley, and a plurality of fuel filling containers loaded on the loading platform and filled with hydrogen, and hydrogen. The first step in which the fuel filling container is filled with hydrogen gas in the supply facility, and after the first step, the ship is moved to the berth place where the ship using hydrogen as the fuel of the drive source is berthed by the land transportation means. A third step of loading and unloading the ship by traction after the second step, supplying hydrogen of the fuel filling container to the drive source, and then loading and unloading from the ship by traction. After the third step, the hydrogen supply facility is provided with three or more hydrogen supply units that repeat the fourth step of moving by the land transportation means, and at least three of the hydrogen supply units are the first at the same time. Steps-The fourth step is different from each other.

また、本開示に係る船舶への水素供給方法は、陸上輸送手段に連結される台車と、前記台車に積まれる荷台と、前記荷台に積まれ、水素が充填される複数の燃料充填容器と、を有した水素供給ユニットを3台以上備え、各前記水素供給ユニットが、水素供給設備で前記燃料充填容器に水素ガスの充填が行われる第一工程と、前記第一工程の後、駆動源の燃料に水素が用いられた船舶が停泊する停泊場所に前記陸上輸送手段によって移動する第二工程と、前記第二工程の後、前記船舶に牽引により積み込まれ、前記駆動源に前記燃料充填容器の水素を供給した後、前記船舶から牽引により積み降ろされる第三工程と、前記第三工程の後、前記水素供給設備に前記陸上輸送手段によって移動する第四工程と、を繰り返すようにし、少なくとも3台の前記水素供給ユニットが、同時刻において前記第一工程〜前記第四工程のうちそれぞれ異なる工程を行うようにする方法である。 Further, the method for supplying hydrogen to a ship according to the present disclosure includes a trolley connected to a land transportation means, a loading platform loaded on the trolley, a plurality of fuel filling containers loaded on the loading platform and filled with hydrogen, and hydrogen. Each of the hydrogen supply units is provided with three or more hydrogen supply units having hydrogen gas, and each of the hydrogen supply units is used as a drive source after the first step in which the fuel filling container is filled with hydrogen gas in the hydrogen supply facility and after the first step. The second step of moving the ship using hydrogen as fuel to the berth place by the land transportation means, and after the second step, the ship is towed and loaded into the ship, and the fuel filling container is used as the drive source. After supplying hydrogen, the third step of loading and unloading from the ship by traction, and after the third step, the fourth step of moving to the hydrogen supply facility by the land transportation means are repeated, and at least 3 This is a method in which the hydrogen supply unit of the table performs different steps from the first step to the fourth step at the same time.

本開示に係る水素供給システムおよび船舶への水素供給方法によれば、第一工程と、第二工程と、第三工程と、第四工程と、を繰り返す水素供給ユニットを3台以上備え、少なくとも3台の水素供給ユニットは、同時刻において第一工程〜第四工程のうちそれぞれ異なる工程を行う。そのため、船舶に燃料充填容器を積み込むまでの待ち時間を短縮でき、船舶への水素ガスの供給を円滑に行うことができる。 According to the hydrogen supply system and the hydrogen supply method for ships according to the present disclosure, three or more hydrogen supply units that repeat the first step, the second step, the third step, and the fourth step are provided, and at least. The three hydrogen supply units perform different steps from the first step to the fourth step at the same time. Therefore, the waiting time until the fuel filling container is loaded on the ship can be shortened, and the hydrogen gas can be smoothly supplied to the ship.

実施の形態に係る水素供給システムに用いられる水素供給ユニットを模式的に示す斜視図である。It is a perspective view which shows typically the hydrogen supply unit used in the hydrogen supply system which concerns on embodiment. 実施の形態に係る水素供給システムを示す模式図である。It is a schematic diagram which shows the hydrogen supply system which concerns on embodiment. 実施の形態に係る水素供給システムに用いられる水素供給ユニットの船舶を模式的に示す平面図である。It is a top view which shows typically the ship of the hydrogen supply unit used in the hydrogen supply system which concerns on embodiment. 実施の形態に係る水素供給システムに用いられる水素供給ユニットの船舶への水素供給方法を説明する図である。It is a figure explaining the hydrogen supply method to the ship of the hydrogen supply unit used in the hydrogen supply system which concerns on embodiment.

以下、本開示の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本開示が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. The present disclosure is not limited to the embodiments described below. Further, in the drawings below, the relationship between the sizes of the constituent members may differ from the actual one.

実施の形態.
図1は、実施の形態に係る水素供給システムに用いられる水素供給ユニット100を模式的に示す斜視図である。
Embodiment.
FIG. 1 is a perspective view schematically showing a hydrogen supply unit 100 used in the hydrogen supply system according to the embodiment.

実施の形態に係る水素供給ユニット100は、台車10と、台車10に積まれる荷台20と、荷台20に積まれる複数の燃料充填容器30と、を備えている。水素供給ユニット100は、トラックあるいはトレーラーなどの陸上輸送手段300(後述する図2参照)を用いて輸送される。 The hydrogen supply unit 100 according to the embodiment includes a trolley 10, a loading platform 20 loaded on the trolley 10, and a plurality of fuel filling containers 30 loaded on the loading platform 20. The hydrogen supply unit 100 is transported by using a land transportation means 300 (see FIG. 2 described later) such as a truck or a trailer.

台車10は、本体部11と連結部12と車輪13とを備えている。本体部11は平板形状を有し、上面に荷台20が積まれるものである。連結部12は本体部11の前側に設けられ、陸上輸送手段300に取り付けられるものである。車輪13は本体部11の下面に設けられ、陸上輸送手段300によって連結部12が引っ張られると回転して台車10を動かすものである。また、本体部11および連結部12は、強度を持たせるため金属製である。 The carriage 10 includes a main body portion 11, a connecting portion 12, and wheels 13. The main body 11 has a flat plate shape, and the loading platform 20 is stacked on the upper surface. The connecting portion 12 is provided on the front side of the main body portion 11 and is attached to the land transportation means 300. The wheels 13 are provided on the lower surface of the main body portion 11 and rotate when the connecting portion 12 is pulled by the land transportation means 300 to move the carriage 10. Further, the main body portion 11 and the connecting portion 12 are made of metal in order to have strength.

荷台20は、内部に複数の段が縦方向に形成された直方体形状を有しており、各段に複数の燃料充填容器30が横向きで積まれるものである。また、荷台20は、強度を持たせるため金属製である。また、荷台20は、台車10に例えば緊締装置(図示せず)でしっかりと固定されている。なお、荷台20の形状は直方体形状に限定されず、複数の燃料充填容器30を積める構造であれば他の形状でもよい。また、荷台20は、各段に複数の燃料充填容器30が横向きで積まれる構造に限定されず、内部に複数の段が横方向に形成され、各段に複数の燃料充填容器30が縦向きで積まれる構造でもよい。 The loading platform 20 has a rectangular parallelepiped shape in which a plurality of stages are formed in the vertical direction, and a plurality of fuel filling containers 30 are stacked in each stage in a horizontal direction. Further, the loading platform 20 is made of metal in order to have strength. Further, the loading platform 20 is firmly fixed to the carriage 10 by, for example, a tightening device (not shown). The shape of the loading platform 20 is not limited to the rectangular parallelepiped shape, and may be any other shape as long as it has a structure in which a plurality of fuel filling containers 30 can be stacked. Further, the loading platform 20 is not limited to a structure in which a plurality of fuel filling containers 30 are stacked horizontally in each stage, and a plurality of stages are formed in the horizontal direction inside, and a plurality of fuel filling containers 30 are vertically oriented in each stage. It may be a structure that can be stacked with.

燃料充填容器30は、燃料ガスを充填するものであり、燃料ガスには水素ガスが用いられている。水素ガスは、燃料充填容器30内で圧縮されて貯蔵される。燃料充填容器30は、円筒形状の円筒部30aとドーム形状のドーム部30bとを有し、たとえば、アルミニウム合金またはプラスチックなどで構成されている。また、燃料充填容器30のドーム部30bには、燃料ガスを供給または充填するための配管が接続される燃料ガス供給バルブ31が設けられている。 The fuel filling container 30 is for filling the fuel gas, and hydrogen gas is used as the fuel gas. The hydrogen gas is compressed and stored in the fuel filling container 30. The fuel filling container 30 has a cylindrical portion 30a having a cylindrical shape and a dome portion 30b having a dome shape, and is made of, for example, an aluminum alloy or plastic. Further, the dome portion 30b of the fuel filling container 30 is provided with a fuel gas supply valve 31 to which a pipe for supplying or filling the fuel gas is connected.

また、燃料充填容器30は、少なくとも円筒部30aの外周にCFRP(炭素繊維強化樹脂)が巻き付けられている。CFRP(炭素繊維強化樹脂)は、燃料充填容器30の所要の耐圧性である機械的強度を向上させるために設けられている。燃料充填容器30を上記の構成とすることで、所要の強度を確保しつつ、従来の燃料ガスを充填する鋼製容器などよりも軽量化することができる。また、燃料充填容器30は、荷台20に例えばベルト(図示せず)でしっかりと固定されている。 Further, in the fuel filling container 30, CFRP (carbon fiber reinforced resin) is wound around at least the outer periphery of the cylindrical portion 30a. CFRP (carbon fiber reinforced resin) is provided to improve the mechanical strength, which is the required pressure resistance of the fuel filling container 30. By having the fuel filling container 30 having the above configuration, it is possible to reduce the weight of the fuel filling container 30 as compared with a conventional steel container filled with fuel gas while ensuring the required strength. Further, the fuel filling container 30 is firmly fixed to the loading platform 20 by, for example, a belt (not shown).

水素供給ユニット100は、公道を走る車両の一種であるため、道路運送車両法の規定により、車両を右側または左側に傾けていった場合に転倒しない最大の角度である最大安定傾斜角(転倒角度とも言う)が左右とも35度以上である必要がある。そこで、各燃料充填容器30は、水素供給ユニット100の最大安定傾斜角が左右とも35度以上となるように積まれている。例えば、各燃料充填容器30は、荷台20の各段において、縦横等間隔で同一方向に向けられて積まれている。各燃料充填容器30をこのように積むことで、道路運送車両法の規定を満たすことができる。 Since the hydrogen supply unit 100 is a type of vehicle traveling on public roads, the maximum stable tilt angle (tilt angle) is the maximum angle at which the vehicle does not tip over when the vehicle is tilted to the right or left according to the provisions of the Road Transport Vehicle Law. Also called) must be 35 degrees or more on both sides. Therefore, each fuel filling container 30 is stacked so that the maximum stable inclination angle of the hydrogen supply unit 100 is 35 degrees or more on both the left and right sides. For example, each fuel filling container 30 is stacked in each stage of the loading platform 20 so as to be oriented in the same direction at equal intervals in the vertical and horizontal directions. By stacking the fuel filling containers 30 in this way, the provisions of the Road Transport Vehicle Law can be satisfied.

図2は、実施の形態に係る水素供給システムを示す模式図である。なお、図2では、水素供給ユニット100を輸送する陸上輸送手段300としてトラックを示しているが、それに限定されない。 FIG. 2 is a schematic diagram showing a hydrogen supply system according to an embodiment. Note that FIG. 2 shows a truck as a land transportation means 300 for transporting the hydrogen supply unit 100, but the present invention is not limited thereto.

図2に示すように、実施の形態に係る水素供給システムでは、3台以上の水素供給ユニット100を備えている。各水素供給ユニット100は、第一工程、第二工程、第三工程、第四工程を順番に繰り返す。 As shown in FIG. 2, the hydrogen supply system according to the embodiment includes three or more hydrogen supply units 100. Each hydrogen supply unit 100 repeats the first step, the second step, the third step, and the fourth step in order.

第一工程は、最初に、または後述する第四工程の後、水素ステーションなどの水素供給設備200で水素供給ユニット100に水素ガスの充填が行われる工程である。 The first step is a step in which the hydrogen supply unit 100 is filled with hydrogen gas in a hydrogen supply facility 200 such as a hydrogen station, first or after the fourth step described later.

第二工程は、第一工程の後、水素供給ユニット100が陸上輸送手段300によって、水素供給設備200から駆動源の燃料に水素が用いられた船舶400が停泊する港などの停泊場所500に移動する工程である。 In the second step, after the first step, the hydrogen supply unit 100 is moved from the hydrogen supply facility 200 to a berth place 500 such as a port where a ship 400 using hydrogen as a driving source fuel is berthed by a land transportation means 300. It is a process to do.

第三工程は、第二工程の後、水素供給ユニット100が、船舶400に牽引により積み込まれ、駆動源に水素を供給した後、船舶400から牽引により積み降ろされる工程である。なお、第三工程の積み込み時において、水素供給ユニット100は、第二工程で用いられる陸上輸送手段300によって牽引されてもよいし、それとは別の車両などの牽引手段によって牽引されてもよい。また、第三工程の積み下ろし時において、水素供給ユニット100は、第四工程で用いられる陸上輸送手段300によって牽引されてもよいし、それとは別の車両などの牽引手段によって牽引されてもよい。 The third step is a step in which the hydrogen supply unit 100 is towed onto the ship 400 after the second step, hydrogen is supplied to the drive source, and then the hydrogen supply unit 100 is towed and unloaded from the ship 400. At the time of loading in the third step, the hydrogen supply unit 100 may be towed by the land transportation means 300 used in the second step, or may be towed by a towing means such as another vehicle. Further, at the time of loading and unloading in the third step, the hydrogen supply unit 100 may be towed by the land transportation means 300 used in the fourth step, or may be towed by a towing means such as another vehicle.

第四工程は、第三工程の後、水素供給ユニット100が陸上輸送手段300によって、停泊場所500から水素供給設備200に移動する工程である。 The fourth step is a step in which the hydrogen supply unit 100 is moved from the berth place 500 to the hydrogen supply facility 200 by the land transportation means 300 after the third step.

そして、少なくとも3台の水素供給ユニット100は、同時刻においてそれぞれ異なる工程を行う。 Then, at least three hydrogen supply units 100 perform different steps at the same time.

なお、3台の水素供給ユニット100を、それぞれ第一の水素供給ユニット100a、第二の水素供給ユニット100b、第三の水素供給ユニット100cと称する場合、例えば、第一の水素供給ユニット100aが、第一工程を行っているとき、第二の水素供給ユニット100bは、第三工程を行っており、第三の水素供給ユニット100cは、第二工程または第四工程を行っている。 When the three hydrogen supply units 100 are referred to as a first hydrogen supply unit 100a, a second hydrogen supply unit 100b, and a third hydrogen supply unit 100c, for example, the first hydrogen supply unit 100a When the first step is performed, the second hydrogen supply unit 100b is performing the third step, and the third hydrogen supply unit 100c is performing the second step or the fourth step.

そして、船舶400に積まれた第二の水素供給ユニット100bは、駆動源に水素を供給して燃料充填容器30内が空になった後、船舶400が停泊場所500に停まったタイミングで船舶400から積み下ろされる。また、陸上輸送手段300によって水素供給設備200から運ばれてきた、燃料充填容器30内に水素が充填されている第三の水素供給ユニット100cは、船舶400に積み込まれる。また、第一の水素供給ユニット100aは、水素供給設備200で水素ガスの充填が行われる。 Then, the second hydrogen supply unit 100b loaded on the ship 400 supplies hydrogen to the drive source to empty the fuel filling container 30, and then the ship 400 stops at the berth place 500. Unloaded from 400. Further, the third hydrogen supply unit 100c, which is carried from the hydrogen supply facility 200 by the land transportation means 300 and is filled with hydrogen in the fuel filling container 30, is loaded on the ship 400. Further, the first hydrogen supply unit 100a is filled with hydrogen gas in the hydrogen supply facility 200.

ここで、従来、船舶400から燃料充填容器30を積み下ろす際、および、船舶400に燃料充填容器30を積み込む際には、船舶400または停泊場所500に設置されたクレーンなどの装置を用いて燃料充填容器30を持ち上げる必要があった。そのため、設備コストおよび手間がかかっていた。 Here, conventionally, when loading and unloading the fuel filling container 30 from the ship 400 and when loading the fuel filling container 30 into the ship 400, fuel is used by using a device such as a crane installed in the ship 400 or the berthing place 500. It was necessary to lift the filling container 30. Therefore, equipment cost and labor are required.

しかし、実施の形態に係る水素供給ユニット100は、複数の燃料充填容器30が積まれた荷台20と台車10とが一体となった構成である。また、燃料充填容器30に貯蔵される燃料は水素であり従来の水素以外の燃料よりも軽く、燃料充填容器30自体も従来の燃料ガスを充填する鋼製容器などよりも軽い。 However, the hydrogen supply unit 100 according to the embodiment has a configuration in which a loading platform 20 on which a plurality of fuel filling containers 30 are loaded and a carriage 10 are integrated. Further, the fuel stored in the fuel filling container 30 is hydrogen, which is lighter than the conventional fuel other than hydrogen, and the fuel filling container 30 itself is also lighter than the conventional steel container filled with fuel gas.

そのため、従来に比べて水素供給ユニット100を軽量化することができる。その結果、水素供給ユニット100を牽引して、船舶400からの燃料充填容器30の積み下ろし、および、船舶400への燃料充填容器30の積み込みを容易に行うことができるため、クレーンなどの装置が不要となる。そのため、設備コストを削減でき、手間も省くことができる。 Therefore, the weight of the hydrogen supply unit 100 can be reduced as compared with the conventional case. As a result, the hydrogen supply unit 100 can be towed to easily load and unload the fuel filling container 30 from the ship 400 and load the fuel filling container 30 into the ship 400, so that no device such as a crane is required. Will be. Therefore, the equipment cost can be reduced and the labor can be saved.

さらに、実施の形態では、水素供給ユニット100を軽量化することができるため、重心の位置が下がる。そのため、水素供給ユニット100の最大安定傾斜角を大きくすることができ、道路運送車両法の規定による制約を受けづらくなるので、燃料充填容器30の搭載量を増やすことができる。さらに、実施の形態では、水素供給ユニット100を軽量化することができるため、船舶400に積まれている時の復元力、つまり波で傾いても元の位置に戻る力への悪影響を少なくすることができる。 Further, in the embodiment, the weight of the hydrogen supply unit 100 can be reduced, so that the position of the center of gravity is lowered. Therefore, the maximum stable inclination angle of the hydrogen supply unit 100 can be increased, and the restrictions imposed by the provisions of the Road Transport Vehicle Law are less likely to be imposed, so that the loading capacity of the fuel filling container 30 can be increased. Further, in the embodiment, the weight of the hydrogen supply unit 100 can be reduced, so that the restoring force when the hydrogen supply unit 100 is loaded on the ship 400, that is, the force of returning to the original position even if tilted by a wave is reduced. be able to.

また、船舶400から積み下ろされた第二の水素供給ユニット100bは、陸上輸送手段300によって水素供給設備200に運ばれ、水素供給設備200で水素ガスの充填が行われる。また、船舶400に積み込まれた第三の水素供給ユニット100cは、船舶400の駆動源に水素を供給する。また、水素供給設備200で水素ガスの充填が行われた第一の水素供給ユニット100aは、船舶400が停泊する停泊場所500に運ばれる。 Further, the second hydrogen supply unit 100b loaded and unloaded from the ship 400 is carried to the hydrogen supply facility 200 by the land transportation means 300, and the hydrogen gas is filled in the hydrogen supply facility 200. Further, the third hydrogen supply unit 100c loaded on the ship 400 supplies hydrogen to the drive source of the ship 400. Further, the first hydrogen supply unit 100a filled with hydrogen gas in the hydrogen supply facility 200 is carried to the berth place 500 where the ship 400 is berthed.

ここで、従来、燃料充填容器30への水素の供給が行われる水素ステーションなどの水素供給設備200の数は全国的に少なく、船舶400が停泊する停泊場所500の位置によっては、停泊場所500と水素供給設備200との距離が遠く、燃料充填容器30の輸送に時間がかかる。そのため、船舶400に燃料充填容器30を積み込むまでの待ち時間がかかり、船舶400への水素ガスの供給に時間がかかっていた。 Here, conventionally, the number of hydrogen supply facilities 200 such as hydrogen stations that supply hydrogen to the fuel filling container 30 is small nationwide, and depending on the position of the berth place 500 where the ship 400 berths, the berth place 500 may be used. The distance from the hydrogen supply facility 200 is long, and it takes time to transport the fuel filling container 30. Therefore, it takes a long time to load the fuel filling container 30 into the ship 400, and it takes time to supply hydrogen gas to the ship 400.

しかし、実施の形態に係る水素供給システムでは、3台以上の水素供給ユニット100を備えており、そのうち少なくとも3台の水素供給ユニット100は、同時刻においてそれぞれ異なる工程を行う。そのため、船舶400に燃料充填容器30を積み込むまでの待ち時間を短縮でき、船舶400への水素ガスの供給にかかる時間を短縮することができる。 However, the hydrogen supply system according to the embodiment includes three or more hydrogen supply units 100, of which at least three hydrogen supply units 100 perform different steps at the same time. Therefore, the waiting time until the fuel filling container 30 is loaded on the ship 400 can be shortened, and the time required for supplying the hydrogen gas to the ship 400 can be shortened.

また、船舶400が停泊する停泊場所500に水素ステーションなどの水素供給設備200を新たに設置する必要がなく、既存の水素供給設備を使用することができるため、設備コストを抑制することができる。また、船舶400の数が増えても水素供給ユニット100の数を増やせばよいため、拡張性が高い。 Further, since it is not necessary to newly install a hydrogen supply facility 200 such as a hydrogen station at the berth place 500 where the ship 400 berths, the existing hydrogen supply facility can be used, so that the equipment cost can be suppressed. Further, even if the number of ships 400 increases, the number of hydrogen supply units 100 may be increased, so that the expandability is high.

図3は、実施の形態に係る水素供給システムに用いられる水素供給ユニット100の船舶400を模式的に示す平面図である。 FIG. 3 is a plan view schematically showing the ship 400 of the hydrogen supply unit 100 used in the hydrogen supply system according to the embodiment.

図3に示すように、水素供給ユニット100は、船舶400の後部に形成された積載スペース410に積載される。この積載スペース410は、駆動源および座席などの船舶400の既存の設備と競合しない位置に形成されている。 As shown in FIG. 3, the hydrogen supply unit 100 is loaded in the loading space 410 formed at the rear of the ship 400. The loading space 410 is formed in a position that does not compete with the existing equipment of the ship 400 such as a drive source and a seat.

このように、水素供給ユニット100の積載スペース410を船舶400の後部に形成することで、船舶400から燃料充填容器30の積み下ろし、および、船舶400への燃料充填容器30の積み込みを行いやすくすることができる。また、積載スペース410は、駆動源および座席などの船舶400の既存の設備と競合しない位置に形成されているため、積載スペース410を形成するために既存の設備を移動させるおよび撤去する必要がなく、既存のスペースを有効利用することができる。 By forming the loading space 410 of the hydrogen supply unit 100 at the rear of the ship 400 in this way, it is possible to easily load and unload the fuel filling container 30 from the ship 400 and load the fuel filling container 30 into the ship 400. Can be done. Further, since the loading space 410 is formed at a position that does not compete with the existing equipment of the ship 400 such as the drive source and the seat, it is not necessary to move and remove the existing equipment in order to form the loading space 410. , The existing space can be used effectively.

図4は、実施の形態に係る水素供給システムに用いられる水素供給ユニット100の船舶400への水素供給方法を説明する図である。 FIG. 4 is a diagram illustrating a method of supplying hydrogen to the ship 400 of the hydrogen supply unit 100 used in the hydrogen supply system according to the embodiment.

まず、各燃料充填容器30の燃料ガス供給バルブ31に、集合配管421の一方(以下、分岐側と称する)の端部422を接続する。そして、集合配管421のもう一方(以下、集合側と称する)の端部423を船舶400に設けられている接続配管424の燃料側配管425に接続する。この接続配管424の駆動側配管426には、延長ホース432を介して船舶400の駆動源が接続されている。 First, the end portion 422 of one of the collecting pipes 421 (hereinafter referred to as a branch side) is connected to the fuel gas supply valve 31 of each fuel filling container 30. Then, the other end 423 of the collecting pipe 421 (hereinafter referred to as the collecting side) is connected to the fuel side pipe 425 of the connecting pipe 424 provided in the ship 400. The drive source of the ship 400 is connected to the drive-side pipe 426 of the connection pipe 424 via an extension hose 432.

なお、接続配管424の燃料側配管425は複数設けられており、燃料側配管425のそれぞれに集合配管421の集合側の端部423が接続される。つまり、接続配管424には、複数の集合配管421が接続される。 A plurality of fuel-side pipes 425 of the connection pipe 424 are provided, and an end portion 423 of the collective pipe 421 on the collective side is connected to each of the fuel-side pipes 425. That is, a plurality of collective pipes 421 are connected to the connection pipe 424.

接続配管424の駆動側配管426には、開閉により配管内の水素ガスの流れを許容または遮断する第一開閉弁428が設けられている。さらに、接続配管424の駆動側配管426の第一開閉弁428よりも駆動源側には、燃料充填容器30内の高圧の水素ガスを減圧させる減圧弁427が設けられている。 The drive-side pipe 426 of the connection pipe 424 is provided with a first on-off valve 428 that allows or shuts off the flow of hydrogen gas in the pipe by opening and closing. Further, a pressure reducing valve 427 for reducing the pressure of high-pressure hydrogen gas in the fuel filling container 30 is provided on the drive source side of the drive side pipe 426 of the connection pipe 424 with respect to the first on-off valve 428.

接続配管424の燃料側配管425には、開閉により配管内の水素ガスの流れを許容または遮断する第二開閉弁429がそれぞれ設けられている。また、接続配管424の燃料側配管425には、配管内の水素ガスの圧力を検知する圧力計430がそれぞれ設けられている。また、接続配管424には、異常時に開放して水素ガスを外部に放出するための安全弁431が設けられている。 The fuel side pipe 425 of the connection pipe 424 is provided with a second on-off valve 429 that allows or shuts off the flow of hydrogen gas in the pipe by opening and closing. Further, the fuel side pipe 425 of the connection pipe 424 is provided with a pressure gauge 430 for detecting the pressure of hydrogen gas in the pipe. Further, the connection pipe 424 is provided with a safety valve 431 for opening the connection pipe 424 and releasing hydrogen gas to the outside in the event of an abnormality.

そして、第一開閉弁428および第二開閉弁429を開状態にして、減圧弁427を開状態にすることで、燃料充填容器30内の高圧の水素ガスが減圧弁427で減圧されて、船舶400の駆動源に供給される。なお、減圧弁427は、圧力計430が検知する圧力に基づいて所定の開度に制御される。そうすることで、所定の圧力の水素ガスを船舶400の駆動源に供給することができる。 Then, by opening the first on-off valve 428 and the second on-off valve 429 and opening the pressure reducing valve 427, the high-pressure hydrogen gas in the fuel filling container 30 is decompressed by the pressure reducing valve 427, and the ship is shipped. It is supplied to 400 drive sources. The pressure reducing valve 427 is controlled to a predetermined opening degree based on the pressure detected by the pressure gauge 430. By doing so, hydrogen gas having a predetermined pressure can be supplied to the drive source of the ship 400.

以上、実施の形態に係る水素供給システムは、陸上輸送手段300に連結される台車10と、台車10に積まれる荷台20と、荷台20に積まれ、水素が充填される複数の燃料充填容器30と、を有し、水素供給設備200で燃料充填容器30に水素ガスの充填が行われる第一工程と、第一工程の後、駆動源の燃料に水素が用いられた船舶400が停泊する停泊場所500に陸上輸送手段300によって移動する第二工程と、第二工程の後、船舶400に牽引により積み込まれ、駆動源に燃料充填容器30の水素を供給した後、船舶400から牽引により積み降ろされる第三工程と、第三工程の後、水素供給設備200に陸上輸送手段300によって移動する第四工程と、を繰り返す水素供給ユニット100を3台以上備え、少なくとも3台の水素供給ユニット100は、同時刻においてそれぞれ異なる工程を行うものである。 As described above, the hydrogen supply system according to the embodiment includes a trolley 10 connected to the land transportation means 300, a loading platform 20 loaded on the trolley 10, and a plurality of fuel filling containers 30 loaded on the loading platform 20 and filled with hydrogen. The first step in which the fuel filling container 30 is filled with hydrogen gas in the hydrogen supply facility 200, and after the first step, the ship 400 in which hydrogen is used as the fuel for the drive source is anchored. The second step of moving to the place 500 by the land transportation means 300, and after the second step, the hydrogen of the fuel filling container 30 is supplied to the drive source by being loaded on the ship 400 by traction, and then the unloading is carried out from the ship 400 by traction. The hydrogen supply unit 100 is provided with three or more hydrogen supply units 100 that repeat the third step and the fourth step of moving to the hydrogen supply facility 200 by the land transportation means 300 after the third step, and at least three hydrogen supply units 100 are provided. , Different processes are performed at the same time.

また、実施の形態に係る船舶400への水素供給方法は、陸上輸送手段300に連結される台車10と、台車10に積まれる荷台20と、荷台20に積まれ、水素が充填される複数の燃料充填容器30と、を有した水素供給ユニット100を3台以上備え、各水素供給ユニット100が、水素供給設備200で燃料充填容器30に水素ガスの充填が行われる第一工程と、第一工程の後、駆動源の燃料に水素が用いられた船舶400が停泊する停泊場所500に陸上輸送手段300によって移動する第二工程と、第二工程の後、船舶400に牽引により積み込まれ、駆動源に燃料充填容器30の水素を供給した後、船舶400から牽引により積み降ろされる第三工程と、第三工程の後、水素供給設備200に陸上輸送手段300によって移動する第四工程と、を繰り返すようにし、少なくとも3台の水素供給ユニット100が、同時刻において第一工程〜第四工程のうちそれぞれ異なる工程を行うようにする方法である。 Further, the hydrogen supply method to the ship 400 according to the embodiment includes a trolley 10 connected to the land transportation means 300, a loading platform 20 loaded on the trolley 10, and a plurality of loading platforms 20 loaded with hydrogen. A first step in which three or more hydrogen supply units 100 having a fuel filling container 30 and three or more hydrogen supply units 100 are provided, and each hydrogen supply unit 100 fills the fuel filling container 30 with hydrogen gas in the hydrogen supply facility 200, and the first step. After the process, the second step is to move the ship 400 using hydrogen as the fuel of the drive source to the berth place 500 where the ship 400 is anchored by the land transportation means 300, and after the second step, the ship 400 is loaded and driven by traction. After supplying the hydrogen of the fuel filling container 30 to the source, the third step of loading and unloading from the ship 400 by traction, and after the third step, the fourth step of moving to the hydrogen supply facility 200 by the land transportation means 300. It is a method of repeating the process so that at least three hydrogen supply units 100 perform different steps from the first step to the fourth step at the same time.

実施の形態に係る水素供給システムおよび船舶400への水素供給方法によれば、第一工程と、第二工程と、第三工程と、第四工程と、を繰り返す水素供給ユニット100を3台以上備え、少なくとも3台の水素供給ユニット100は、同時刻においてそれぞれ異なる工程を行う。そのため、船舶400に燃料充填容器30を積み込むまでの待ち時間を短縮でき、船舶400への水素ガスの供給を円滑に行うことができる。 According to the hydrogen supply system and the hydrogen supply method to the ship 400 according to the embodiment, there are three or more hydrogen supply units 100 that repeat the first step, the second step, the third step, and the fourth step. At least three hydrogen supply units 100 perform different steps at the same time. Therefore, the waiting time until the fuel filling container 30 is loaded on the ship 400 can be shortened, and the hydrogen gas can be smoothly supplied to the ship 400.

また、実施の形態に係る水素供給システムによれば、水素供給ユニット100は、複数の燃料充填容器30が積まれた荷台20と台車10とが一体となった構成である。さらに、燃料充填容器30に貯蔵される燃料は水素であり従来の水素以外の燃料よりも軽く、燃料充填容器30自体も従来の燃料ガスを充填する鋼製容器などよりも軽い。 Further, according to the hydrogen supply system according to the embodiment, the hydrogen supply unit 100 has a configuration in which a loading platform 20 on which a plurality of fuel filling containers 30 are loaded and a carriage 10 are integrated. Further, the fuel stored in the fuel filling container 30 is hydrogen, which is lighter than the conventional fuel other than hydrogen, and the fuel filling container 30 itself is also lighter than the conventional steel container filled with the fuel gas.

そのため、従来に比べて水素供給ユニット100を軽量化することができる。その結果、水素供給ユニット100を牽引して、船舶400からの燃料充填容器30の積み下ろし、および、船舶400への燃料充填容器30の積み込みを容易に行うことができるため、クレーンなどの装置が不要となる。そのため、設備コストを削減でき、手間も省くことができる。 Therefore, the weight of the hydrogen supply unit 100 can be reduced as compared with the conventional case. As a result, the hydrogen supply unit 100 can be towed to easily load and unload the fuel filling container 30 from the ship 400 and load the fuel filling container 30 into the ship 400, so that no device such as a crane is required. Will be. Therefore, the equipment cost can be reduced and the labor can be saved.

また、実施の形態に係る水素供給システムにおいて、燃料充填容器30は、円筒形状の円筒部30aを有し、アルミニウム合金またはプラスチックで構成されており、少なくとも円筒部30aの外周にCFRPが巻き付けられている。 Further, in the hydrogen supply system according to the embodiment, the fuel filling container 30 has a cylindrical portion 30a and is made of an aluminum alloy or plastic, and CFRP is wound around at least the outer periphery of the cylindrical portion 30a. There is.

実施の形態に係る水素供給システムによれば、燃料充填容器30は、円筒形状の円筒部30aを有し、アルミニウム合金またはプラスチックで構成されており、少なくとも円筒部30aの外周にCFRPが巻き付けられている。そのため、燃料充填容器30を、所要の強度を確保しつつ、従来の燃料ガスを充填する鋼製容器などよりも軽量化することができる。そして、水素供給ユニット100を軽量化することができるため、重心の位置が下がり、最大安定傾斜角を大きくすることができる。そのため、道路運送車両法の規定による制約を受けづらくなるので、燃料充填容器30の搭載量を増やすことができる。また、水素供給ユニット100を軽量化することができるため、船舶400に積まれている時の復元力への悪影響を少なくすることができる。 According to the hydrogen supply system according to the embodiment, the fuel filling container 30 has a cylindrical portion 30a and is made of an aluminum alloy or plastic, and CFRP is wound around at least the outer periphery of the cylindrical portion 30a. There is. Therefore, the fuel filling container 30 can be made lighter than a conventional steel container filled with fuel gas while ensuring the required strength. Since the hydrogen supply unit 100 can be made lighter, the position of the center of gravity can be lowered and the maximum stable inclination angle can be increased. Therefore, it is difficult to be restricted by the provisions of the Road Transport Vehicle Law, and the amount of the fuel filling container 30 to be loaded can be increased. Further, since the hydrogen supply unit 100 can be reduced in weight, it is possible to reduce the adverse effect on the restoring force when the hydrogen supply unit 100 is loaded on the ship 400.

また、実施の形態に係る水素供給システムにおいて、各燃料充填容器30は、最大安定傾斜角が左右とも35度以上となるように荷台20に積まれている。 Further, in the hydrogen supply system according to the embodiment, each fuel filling container 30 is loaded on the loading platform 20 so that the maximum stable inclination angle is 35 degrees or more on both the left and right sides.

実施の形態に係る水素供給システムによれば、各燃料充填容器30は、最大安定傾斜角が左右とも35度以上となるように荷台20に積まれている。そのため、道路運送車両法の規定を満たすことができる。 According to the hydrogen supply system according to the embodiment, each fuel filling container 30 is loaded on the loading platform 20 so that the maximum stable inclination angle is 35 degrees or more on both the left and right sides. Therefore, the provisions of the Road Transport Vehicle Law can be satisfied.

また、実施の形態に係る水素供給システムにおいて、船舶400は、後部に水素供給ユニット100が積み込まれる積載スペース410が形成されている。 Further, in the hydrogen supply system according to the embodiment, the ship 400 is formed with a loading space 410 in which the hydrogen supply unit 100 is loaded at the rear.

実施の形態に係る水素供給システムによれば、船舶400は、後部に水素供給ユニット100が積み込まれる積載スペース410が形成されている。そのため、船舶400から燃料充填容器30の積み下ろし、および、船舶400への燃料充填容器30の積み込みを行いやすくすることができる。 According to the hydrogen supply system according to the embodiment, the ship 400 is formed with a loading space 410 in which the hydrogen supply unit 100 is loaded at the rear portion. Therefore, it is possible to facilitate loading and unloading of the fuel filling container 30 from the ship 400 and loading and unloading of the fuel filling container 30 into the ship 400.

10 台車、11 本体部、12 連結部、13 車輪、20 荷台、30 燃料充填容器、30a 円筒部、30b ドーム部、31 燃料ガス供給バルブ、100 水素供給ユニット、100a 第一の水素供給ユニット、100b 第二の水素供給ユニット、100c 第三の水素供給ユニット、200 水素供給設備、300 陸上輸送手段、400 船舶、410 積載スペース、421 集合配管、422 端部、423 端部、424 接続配管、425 燃料側配管、426 駆動側配管、427 減圧弁、428 第一開閉弁、429 第二開閉弁、430 圧力計、431 安全弁、432 延長ホース、500 停泊場所。 10 trolley, 11 main body, 12 connecting part, 13 wheels, 20 loading platform, 30 fuel filling container, 30a cylindrical part, 30b dome part, 31 fuel gas supply valve, 100 hydrogen supply unit, 100a first hydrogen supply unit, 100b 2nd hydrogen supply unit, 100c 3rd hydrogen supply unit, 200 hydrogen supply equipment, 300 land transportation means, 400 ships, 410 loading space, 421 assembly pipes, 422 ends, 423 ends, 424 connection pipes, 425 fuels Side piping, 426 Drive side piping, 427 pressure reducing valve, 428 first on-off valve, 429 second on-off valve, 430 pressure gauge, 431 safety valve, 432 extension hose, 500 berth.

Claims (5)

陸上輸送手段に連結される台車と、前記台車に積まれる荷台と、前記荷台に積まれ、水素が充填される複数の燃料充填容器と、を有し、
水素供給設備で前記燃料充填容器に水素ガスの充填が行われる第一工程と、前記第一工程の後、駆動源の燃料に水素が用いられた船舶が停泊する停泊場所に前記陸上輸送手段によって移動する第二工程と、前記第二工程の後、前記船舶に牽引により積み込まれ、前記駆動源に前記燃料充填容器の水素を供給した後、前記船舶から牽引により積み降ろされる第三工程と、前記第三工程の後、前記水素供給設備に前記陸上輸送手段によって移動する第四工程と、を繰り返す水素供給ユニットを3台以上備え、
少なくとも3台の前記水素供給ユニットは、
同時刻において前記第一工程〜前記第四工程のうちそれぞれ異なる工程を行う
水素供給システム。
It has a trolley connected to a land transportation means, a loading platform loaded on the trolley, and a plurality of fuel filling containers loaded on the loading platform and filled with hydrogen.
The first step in which the fuel filling container is filled with hydrogen gas in the hydrogen supply facility, and after the first step, the land transportation means at the berth place where the ship using hydrogen as the fuel of the driving source berths. A second step of moving, a third step of being loaded onto the ship by traction after the second step, supplying hydrogen of the fuel filling container to the drive source, and then loading and unloading from the ship by traction. After the third step, the hydrogen supply facility is provided with three or more hydrogen supply units that repeat the fourth step of moving by the land transportation means.
At least three of the hydrogen supply units
A hydrogen supply system that performs different steps from the first step to the fourth step at the same time.
前記燃料充填容器は、円筒形状の円筒部を有し、アルミニウム合金またはプラスチックで構成されており、少なくとも前記円筒部の外周にCFRPが巻き付けられている
請求項1に記載の水素供給システム。
The hydrogen supply system according to claim 1, wherein the fuel filling container has a cylindrical portion having a cylindrical shape, is made of an aluminum alloy or plastic, and CFRP is wound around at least the outer periphery of the cylindrical portion.
各前記燃料充填容器は、最大安定傾斜角が左右とも35度以上となるように前記荷台に積まれている
請求項1または2に記載の水素供給システム。
The hydrogen supply system according to claim 1 or 2, wherein each fuel filling container is loaded on the loading platform so that the maximum stable inclination angle is 35 degrees or more on both the left and right sides.
前記船舶は、後部に前記水素供給ユニットが積み込まれる積載スペースが形成されている
請求項1〜3のいずれか一項に記載の水素供給システム。
The hydrogen supply system according to any one of claims 1 to 3, wherein the ship has a loading space formed in the rear part for loading the hydrogen supply unit.
陸上輸送手段に連結される台車と、前記台車に積まれる荷台と、前記荷台に積まれ、水素が充填される複数の燃料充填容器と、を有した水素供給ユニットを3台以上備え、
各前記水素供給ユニットが、
水素供給設備で前記燃料充填容器に水素ガスの充填が行われる第一工程と、前記第一工程の後、駆動源の燃料に水素が用いられた船舶が停泊する停泊場所に前記陸上輸送手段によって移動する第二工程と、前記第二工程の後、前記船舶に牽引により積み込まれ、前記駆動源に前記燃料充填容器の水素を供給した後、前記船舶から牽引により積み降ろされる第三工程と、前記第三工程の後、前記水素供給設備に前記陸上輸送手段によって移動する第四工程と、を繰り返すようにし、
少なくとも3台の前記水素供給ユニットが、
同時刻において前記第一工程〜前記第四工程のうちそれぞれ異なる工程を行うようにする
船舶への水素供給方法。
It is equipped with three or more hydrogen supply units having a trolley connected to a land transportation means, a loading platform loaded on the trolley, and a plurality of fuel filling containers loaded on the loading platform and filled with hydrogen.
Each of the hydrogen supply units
The first step in which the fuel filling container is filled with hydrogen gas in the hydrogen supply facility, and after the first step, the land transportation means at the berth place where the ship using hydrogen as the fuel of the drive source berths. A second step of moving, a third step of being loaded onto the ship by traction after the second step, supplying hydrogen of the fuel filling container to the drive source, and then loading and unloading from the ship by traction. After the third step, the fourth step of moving to the hydrogen supply facility by the land transportation means is repeated.
At least three of the hydrogen supply units
A method for supplying hydrogen to a ship so that different steps from the first step to the fourth step are performed at the same time.
JP2020086469A 2020-05-18 2020-05-18 Hydrogen supply system and hydrogen supply method to ships Active JP7390972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020086469A JP7390972B2 (en) 2020-05-18 2020-05-18 Hydrogen supply system and hydrogen supply method to ships

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020086469A JP7390972B2 (en) 2020-05-18 2020-05-18 Hydrogen supply system and hydrogen supply method to ships

Publications (2)

Publication Number Publication Date
JP2021181790A true JP2021181790A (en) 2021-11-25
JP7390972B2 JP7390972B2 (en) 2023-12-04

Family

ID=78606201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020086469A Active JP7390972B2 (en) 2020-05-18 2020-05-18 Hydrogen supply system and hydrogen supply method to ships

Country Status (1)

Country Link
JP (1) JP7390972B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7330408B1 (en) 2023-03-24 2023-08-21 Jfeコンテイナー株式会社 Hydrogen supply system
KR102574348B1 (en) * 2022-11-10 2023-09-04 한국해양과학기술원 Uninterruptible port power supply system without installation using portable power source

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3873480B2 (en) 1998-09-26 2007-01-24 株式会社エクォス・リサーチ Hydrogen production vehicle, hydrogen supply system, and hydrogen supply method
DE102008034499A1 (en) 2008-07-24 2010-01-28 Linde Ag Storage device for compressed media and method for refueling vehicles
JP2017137926A (en) 2016-02-03 2017-08-10 ヤマト・H2Energy Japan株式会社 Mobile hydrogen station
JP6603969B2 (en) 2017-04-06 2019-11-13 三菱造船株式会社 Ship
JP7067368B2 (en) 2018-08-24 2022-05-16 住友電装株式会社 Electrical junction box

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102574348B1 (en) * 2022-11-10 2023-09-04 한국해양과학기술원 Uninterruptible port power supply system without installation using portable power source
JP7330408B1 (en) 2023-03-24 2023-08-21 Jfeコンテイナー株式会社 Hydrogen supply system

Also Published As

Publication number Publication date
JP7390972B2 (en) 2023-12-04

Similar Documents

Publication Publication Date Title
CN102101595A (en) Quay-wall system for loading and unloading containers, mobile harbor and transporting device for use therein
EP2146894B1 (en) Port storage and distribution system for international shipping containers
JP7390972B2 (en) Hydrogen supply system and hydrogen supply method to ships
US20020197135A1 (en) Container transfer terminal system and method
US20160178127A1 (en) LNG Fueling Station and LNG Fueling Method Using LNG Tank Container
US11214468B2 (en) System and method for loading and unloading shipping containers
CN110642217A (en) System and method for LNG transport and distribution
CN101898625B (en) Transportation method and transportation unit of large cargo semi-trailer
US11548596B2 (en) Apparatus and method for marine fueling from rail cars on a dock
CN102216531A (en) Method and apparatus for transporting construction equipment in an enclosed container within the hold of a vessel
CN113474247B (en) Floating low-temperature liquefied gas filling device and method for conveying low-temperature liquefied gas by using same
US8944741B2 (en) Container utility system
Dávid Automation of handling systems in the container terminals of maritime ports
CN109890693B (en) Device for gas storage and transport
KR101595414B1 (en) The loading or unloading movement system of containers
KR101623100B1 (en) Lng carrier having a loading arm
CN214296343U (en) Air separation liquefied gas mixed loading ship
CN213448313U (en) Simple multipurpose combined wharf
JP3134210B2 (en) Container delivery device and container loading method using the container delivery device
JP2022085294A (en) Ship fuel supply method, fuel supply source ship, and ship fuel supply system
JP7330408B1 (en) Hydrogen supply system
KR101516201B1 (en) Independent gas tank mounting apparatus for building ship and independent gas tank mounting method for building ship
WO2022013996A1 (en) Hydrogen supply system
CN115610593A (en) Roll-on/roll-off boarding construction method for ultra-large components
JP2838971B2 (en) Marine transportation equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231121

R150 Certificate of patent or registration of utility model

Ref document number: 7390972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150