JP2021181706A - Liquefaction countermeasure construction method and liquefaction countermeasure structure - Google Patents

Liquefaction countermeasure construction method and liquefaction countermeasure structure Download PDF

Info

Publication number
JP2021181706A
JP2021181706A JP2020087463A JP2020087463A JP2021181706A JP 2021181706 A JP2021181706 A JP 2021181706A JP 2020087463 A JP2020087463 A JP 2020087463A JP 2020087463 A JP2020087463 A JP 2020087463A JP 2021181706 A JP2021181706 A JP 2021181706A
Authority
JP
Japan
Prior art keywords
buried pipe
pipe
injection
deformed portion
thrust force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020087463A
Other languages
Japanese (ja)
Other versions
JP7394344B2 (en
Inventor
充 有吉
Mitsuru Ariyoshi
明良 泉
Akiyoshi Izumi
栄征 毛利
Shigeyuki Mori
俊典 河端
Toshinori Kawabata
豊 澤田
Yutaka Sawada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe University NUC
National Agriculture and Food Research Organization
Ibaraki University NUC
Original Assignee
Kobe University NUC
National Agriculture and Food Research Organization
Ibaraki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe University NUC, National Agriculture and Food Research Organization, Ibaraki University NUC filed Critical Kobe University NUC
Priority to JP2020087463A priority Critical patent/JP7394344B2/en
Publication of JP2021181706A publication Critical patent/JP2021181706A/en
Application granted granted Critical
Publication of JP7394344B2 publication Critical patent/JP7394344B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Foundations (AREA)

Abstract

To provide an underground pipe protected against liquefaction.SOLUTION: A liquefaction countermeasure method for an underground pipe 10 having a straight pipe part 11 and a deformation part 12 to which a thrust force generated due to the difference of a flow of water flowing therein from that of the straight pipe part 11 is applied includes the injection step of injecting an injection material which causes reduction of flowability into a foundation material 15 introduced around the deformation part 12 laid in a groove formed by drilling the foundation.SELECTED DRAWING: Figure 1

Description

本発明は、液状化対策工法及び液状化対策構造に関する。 The present invention relates to a liquefaction countermeasure construction method and a liquefaction countermeasure structure.

地震により埋設管の周囲の地盤材料が液状化することによって、地中に埋設された埋設管が移動することや、当該移動により生じる埋設管の接続部の離脱を防ぐ技術として、特許文献1〜5に記載された技術が知られている。特許文献1及び2では、埋設管の接続部の離脱を防ぐために、離脱しやすい部分を予め補強した埋設管を用いることが記載されている。特許文献3〜5には、地盤の液状化に伴い埋設管が浮上又は沈下することを防ぐために、埋設管の周囲に補強材料を注入する技術が記載されている。 Patent Documents 1 to 1 as a technique for preventing the buried pipe buried in the ground from moving due to the liquefaction of the ground material around the buried pipe due to the earthquake and the disconnection of the connection portion of the buried pipe caused by the movement. The technique described in 5 is known. Patent Documents 1 and 2 describe that in order to prevent the connection portion of the buried pipe from coming off, a buried pipe whose part that is easily detached is reinforced in advance is used. Patent Documents 3 to 5 describe techniques for injecting a reinforcing material around the buried pipe in order to prevent the buried pipe from rising or sinking due to liquefaction of the ground.

特開2002−276853号公報Japanese Unexamined Patent Publication No. 2002-276853 特開2005−163897号公報Japanese Unexamined Patent Publication No. 2005-163897 特開2016−17341号公報Japanese Unexamined Patent Publication No. 2016-17341 特開平7−286356号公報Japanese Unexamined Patent Publication No. 7-286356 特開2013−164103号公報Japanese Unexamined Patent Publication No. 2013-164103

農業用パイプラインのように内部に水が流れる管において、屈曲した部分のように水の流れが変化する箇所には、水の流れの変化により生じるスラスト力が作用する。管が略水平方向に延伸して埋設されている場合には、スラスト力は略水平方向に生じるものであり、管を浮上又は沈下させる力とは異なっている。地中に埋設された埋設管では、土圧や土と管との摩擦力が反力となるため、スラスト力が作用しても埋設管の変形部は移動しないようになっている。 In a pipe through which water flows, such as an agricultural pipeline, a thrust force generated by the change in water flow acts on a part where the water flow changes, such as a bent part. When the pipe is stretched and buried in a substantially horizontal direction, the thrust force is generated in the substantially horizontal direction, which is different from the force for ascending or sinking the pipe. In a buried pipe buried in the ground, earth pressure and frictional force between the soil and the pipe become reaction forces, so that the deformed part of the buried pipe does not move even if a thrust force acts.

しかしながら、地震により埋設管の周囲が液状化すると、土圧や土と管との摩擦力が減少してスラスト力に抵抗できなくなり、変形部が移動しやすくなってしまう。変形部が移動してしまうと、埋設管の接続部の離脱や管の破損に繋がる。地中における埋設管の接続部の離脱や管の破損は、農業用水の供給に支障を来たすだけでなく、漏水に伴う地盤流亡や交通障害等の二次被害に繋がる場合もある。そのため、土圧の減少に伴う埋設管の移動及び接続部の離脱を防ぐ技術が求められている。 However, when the circumference of the buried pipe is liquefied due to an earthquake, the earth pressure and the frictional force between the soil and the pipe are reduced, and it becomes impossible to resist the thrust force, and the deformed portion becomes easy to move. If the deformed part moves, it will lead to disconnection of the connection part of the buried pipe and damage to the pipe. Detachment of the connection part of the buried pipe or damage to the pipe in the ground not only hinders the supply of agricultural water, but may also lead to secondary damage such as ground runoff and traffic obstruction due to water leakage. Therefore, there is a demand for a technique for preventing the movement of the buried pipe and the disconnection of the connection portion due to the decrease in earth pressure.

特許文献1及び2に記載された技術は、離脱しやすい変形部を補強した上で管を埋設する技術であるため、地中に既に埋設されている既設管に適用することはできない。また、特許文献3〜5に記載された技術は、地盤の液状化に伴う埋設管の浮上又は沈下を防止する技術であり、略水平方向に作用するようなスラスト力の影響を防ぐことはできない。 Since the techniques described in Patent Documents 1 and 2 are techniques for burying a pipe after reinforcing a deformed portion that is easily detached, they cannot be applied to an existing pipe already buried in the ground. Further, the techniques described in Patent Documents 3 to 5 are techniques for preventing the floating or subsidence of the buried pipe due to the liquefaction of the ground, and cannot prevent the influence of the thrust force acting in a substantially horizontal direction. ..

本発明の一態様は、埋設管に液状化対策を施すことでスラスト力の影響による埋設管の移動を防ぎ、埋設管の接続部の離脱を防ぐことを目的とする。 One aspect of the present invention is to prevent the buried pipe from moving due to the influence of the thrust force by taking measures against liquefaction in the buried pipe, and to prevent the connection portion of the buried pipe from coming off.

上記の課題を解決するために、本発明は、以下の態様を含む。
1) 埋設管に対する液状化対策工法であって、前記埋設管は、直管部と、内部を流れる水の流れが当該直管部と異なることにより生じるスラスト力が付加される変形部とを有しており、地盤を掘削して形成される溝中に敷設された前記変形部の周囲に導入された基礎材中に、当該基礎材の流動性を低下させる注入材を注入する注入工程を包含する、液状化対策工法。
2) 前記注入工程において、前記スラスト力が付加される方向の下流側の前記基礎材に前記注入材を注入する、1)に記載の液状化対策工法。
3) 前記変形部の周囲は防護材により覆われており、前記注入工程において、前記防護材の周囲に導入された前記基礎材中に前記注入材を注入する、1)又は2)に記載の液状化対策工法。
4) 前記注入工程の前に、前記溝中に前記埋設管を敷設し、当該埋設管の周囲に前記基礎材を導入する前記埋設管の埋設工程をさらに含む、1)から3)のいずれかに記載の液状化対策工法。
5) 前記注入材は、シリカ溶液、粘土、セメント、スラグ、気泡、及び気体からなる群より選択される1種又は複数種を含む、1)から4)のいずれかに記載の液状化対策工法。
6) 直管部と、内部を流れる水の流れが当該直管部とは異なることにより生じるスラスト力が付加される変形部とを有する埋設管と、地盤を掘削して形成される溝中に敷設された前記変形部の周囲に導入された基礎材中に設けられ、当該基礎材よりも流動性が低下した補強部とを備えた、液状化対策構造。
In order to solve the above problems, the present invention includes the following aspects.
1) It is a liquefaction countermeasure construction method for a buried pipe, and the buried pipe has a straight pipe portion and a deformed portion to which a thrust force generated by the flow of water flowing inside is different from that of the straight pipe portion. Including an injection step of injecting an injection material that reduces the fluidity of the foundation material into the foundation material introduced around the deformed portion laid in the groove formed by excavating the ground. Liquefaction countermeasure construction method.
2) The liquefaction countermeasure method according to 1), wherein the injection material is injected into the foundation material on the downstream side in the direction in which the thrust force is applied in the injection step.
3) The periphery of the deformed portion is covered with a protective material, and the injection material is injected into the foundation material introduced around the protective material in the injection step according to 1) or 2). Liquefaction countermeasure construction method.
4) Any one of 1) to 3), further including the burying step of the buried pipe in which the buried pipe is laid in the groove and the foundation material is introduced around the buried pipe before the injection step. Liquefaction countermeasure construction method described in.
5) The liquefaction countermeasure method according to any one of 1) to 4), wherein the injection material contains one or more kinds selected from the group consisting of silica solution, clay, cement, slag, air bubbles, and gas. ..
6) In a buried pipe having a straight pipe portion and a deformed portion to which a thrust force generated by the flow of water flowing inside is different from that of the straight pipe portion, and in a groove formed by excavating the ground. A liquefaction countermeasure structure provided in a foundation material introduced around the deformed portion laid and provided with a reinforcing portion having a lower fluidity than the foundation material.

本発明の一態様によれば、埋設管に液状化対策を施すことでスラスト力の影響による埋設管の移動を防ぎ、埋設管の接続部の離脱を防ぐことができる。 According to one aspect of the present invention, by taking measures against liquefaction in the buried pipe, it is possible to prevent the buried pipe from moving due to the influence of the thrust force and prevent the connection portion of the buried pipe from coming off.

本発明の一実施形態に係る液状化対策工法を施した埋設管を示す上面図である。It is a top view which shows the buried pipe which applied the liquefaction measures construction method which concerns on one Embodiment of this invention. 土壌中に埋設された埋設管を説明する断面図である。It is sectional drawing explaining the buried pipe buried in the soil. 本発明の一実施形態に係る液状化対策工法を説明する断面図である。It is sectional drawing explaining the liquefaction measures construction method which concerns on one Embodiment of this invention. 埋設管に生じるスラスト力の他の例を説明する模式図である。It is a schematic diagram explaining another example of the thrust force generated in the buried pipe. 埋設管に生じるスラスト力の他の例を説明する模式図である。It is a schematic diagram explaining another example of the thrust force generated in the buried pipe. 埋設管に生じるスラスト力の他の例を説明する模式図である。It is a schematic diagram explaining another example of the thrust force generated in the buried pipe. 本発明の一実施形態に係る液状化対策工法の他の例を説明する上面図である。It is a top view explaining another example of the liquefaction measures construction method which concerns on one Embodiment of this invention.

〔液状化対策工法〕
以下、本発明の一実施形態について、図面を参照して説明するが、本発明はこの実施形態に限定されない。
[Liquefaction countermeasure method]
Hereinafter, an embodiment of the present invention will be described with reference to the drawings, but the present invention is not limited to this embodiment.

図1は、本発明の一実施形態に係る液状化対策工法を施す埋設管10を示す上面図である。なお、各図に示す座標軸において、Z軸は鉛直方向に延伸しており、X軸及びY軸は水平方向に延伸している。したがって、図1は、埋設管10が土壌中に埋設されている場合に、埋設管10を地面側から見た上面図である。
図1に示すように、液状化対策工法により液状化対策される埋設管10は、直管部11と、内部を流れる水の流れが直管部11とは異なる変形部12とを有する。直管部11と変形部12とは、内部を水が流通可能なように接続されている。変形部12には、内部を流れる水の流れが直管部11と異なることにより生じるスラスト力Wが付加される。埋設管10は、地盤を掘削して形成される溝13中に埋設される。埋設管10が埋設された溝13は、基礎材15により埋められる。
図1に示す例において、変形部12は、直管部11に対して屈曲した屈曲部である。変形部12の円弧の外側には、補強部14が位置しており、埋設管10と補強部14とにより液状化対策構造100が構築されている。液状化対策工法は、補強部14を形成することにより埋設管10に液状化対策を施す。
FIG. 1 is a top view showing a buried pipe 10 to which a liquefaction countermeasure construction method according to an embodiment of the present invention is applied. In the coordinate axes shown in each figure, the Z axis is extended in the vertical direction, and the X axis and the Y axis are extended in the horizontal direction. Therefore, FIG. 1 is a top view of the buried pipe 10 as viewed from the ground side when the buried pipe 10 is buried in the soil.
As shown in FIG. 1, the buried pipe 10 to be liquefied by the liquefaction countermeasure method has a straight pipe portion 11 and a deformed portion 12 in which the flow of water flowing inside is different from that of the straight pipe portion 11. The straight pipe portion 11 and the deformed portion 12 are connected so that water can flow inside. A thrust force W generated by the flow of water flowing inside the deformed portion 12 being different from that of the straight pipe portion 11 is applied to the deformed portion 12. The buried pipe 10 is buried in a groove 13 formed by excavating the ground. The groove 13 in which the buried pipe 10 is embedded is filled with the base material 15.
In the example shown in FIG. 1, the deformed portion 12 is a bent portion bent with respect to the straight pipe portion 11. A reinforcing portion 14 is located outside the arc of the deformed portion 12, and a liquefaction countermeasure structure 100 is constructed by the buried pipe 10 and the reinforcing portion 14. In the liquefaction countermeasure construction method, the liquefaction countermeasure is applied to the buried pipe 10 by forming the reinforcing portion 14.

埋設管10は、例えば、灌漑のために農業用水が流れる農業用パイプラインであるが、これに限定されない。埋設管10の口径は、例えば、50mm以上、4000mm以下である。埋設管10の全長は、数十kmに及ぶ場合もある。 The buried pipe 10 is, for example, an agricultural pipeline through which agricultural water flows for irrigation, but is not limited thereto. The diameter of the buried pipe 10 is, for example, 50 mm or more and 4000 mm or less. The total length of the buried pipe 10 may reach several tens of kilometers.

液状化対策工法は、地盤を掘削して形成される溝13中に敷設された変形部12の周囲に導入された基礎材15中に、基礎材15の流動性を低下させる注入材を注入する注入工程を包含する。注入工程は、基礎材15中に注入材を注入することで、補強部14を形成する工程である。補強部14は、注入材と、注入材が注入された範囲の基礎材15とから構成され、注入材を含むことにより基礎材15の流動性が低下した部分であり得る。 In the liquefaction countermeasure method, an injection material that reduces the fluidity of the foundation material 15 is injected into the foundation material 15 introduced around the deformed portion 12 laid in the groove 13 formed by excavating the ground. Includes injection step. The injection step is a step of forming the reinforcing portion 14 by injecting the injection material into the base material 15. The reinforcing portion 14 is composed of an injection material and a foundation material 15 in a range in which the injection material is injected, and may be a portion where the fluidity of the foundation material 15 is reduced due to the inclusion of the injection material.

図2を参照して、注入工程について説明する。図2は、図1のAA’線で切断した断面図であり、本発明の一実施形態に係る液状化対策工法を説明する図である。図2に示すように、埋設管10は、地面Gの下に埋設される。 The injection process will be described with reference to FIG. FIG. 2 is a cross-sectional view taken along the line AA'of FIG. 1, and is a diagram illustrating a liquefaction countermeasure method according to an embodiment of the present invention. As shown in FIG. 2, the buried pipe 10 is buried under the ground G.

埋設管10を埋設する場合、まず、地面Gを掘削して溝13を形成する。そして、溝13の底に基礎材15を敷き詰め、基礎材15上に埋設管10を敷設する。そして、埋設管10の管頂が埋まるまで基礎材15を導入して締め固める。これにより、溝13内において埋設管10の周囲が基礎材15で覆われる。そして、基礎材15上に埋め戻し材17を導入して締め固めることにより、埋設管10が埋設される。基礎材15は、砂、砂利、砕石等を主に含む材料である。埋め戻し材17は、通常、掘削した地盤材料であるが、外部から持ってきた地盤材料であってもよい。このように、液状化対策工法は、溝13中に埋設管10を敷設し、埋設管10の周囲に基礎材15を導入する埋設管10の埋設工程をさらに包含してもよい。 When burying the buried pipe 10, first, the ground G is excavated to form the groove 13. Then, the foundation material 15 is laid on the bottom of the groove 13, and the buried pipe 10 is laid on the foundation material 15. Then, the base material 15 is introduced and compacted until the top of the buried pipe 10 is filled. As a result, the periphery of the buried pipe 10 is covered with the foundation material 15 in the groove 13. Then, the buried pipe 10 is buried by introducing the backfilling material 17 onto the foundation material 15 and compacting it. The foundation material 15 is a material mainly containing sand, gravel, crushed stone and the like. The backfill material 17 is usually excavated ground material, but may be ground material brought from the outside. As described above, the liquefaction countermeasure method may further include the burying step of the buried pipe 10 in which the buried pipe 10 is laid in the groove 13 and the foundation material 15 is introduced around the buried pipe 10.

スラスト力は、管の内部を流れる水の流れが変化する部分で生じ、管の接続部分の離脱や管の破損の原因となり得るものである。内部を流れる水の流れが直管部11とは異なる変形部12において生じるスラスト力Wは、変形部12の周囲の基礎材15により溝13外の地盤に伝播する。通常、地盤の土圧がこのスラスト力の反力となるので、スラスト力Wによる変形部12の移動は抑制されている。 Thrust force is generated in a portion where the flow of water flowing inside the pipe changes, and can cause disconnection of the connection portion of the pipe or breakage of the pipe. The thrust force W generated in the deformed portion 12 in which the flow of water flowing inside is different from that of the straight pipe portion 11 propagates to the ground outside the groove 13 by the foundation material 15 around the deformed portion 12. Normally, the earth pressure of the ground becomes the reaction force of this thrust force, so that the movement of the deformed portion 12 due to the thrust force W is suppressed.

ここで、地震時には、掘削して形成した溝13の外側の地盤は液状化せず、溝13に埋め戻した基礎材15部分のみが液状化する場合がある。このように、基礎材15が地震により液状化すると、変形部12に付加されるスラスト力Wが地盤に伝播せず、地盤の土圧がスラスト力Wの反力とならない。その結果、溝13において基礎材15が導入された範囲内で変形部12が変位してしまい、直管部11と変形部12との接続部分が離脱して漏水発生に繋がる。また、硬質塩化ビニル管のように直管部11と変形部12とを接着剤により接合しているような管材の場合には、管が破損する可能性もある。 Here, at the time of an earthquake, the ground outside the groove 13 formed by excavation may not be liquefied, and only the portion 15 of the foundation material backfilled in the groove 13 may be liquefied. As described above, when the foundation material 15 is liquefied by the earthquake, the thrust force W applied to the deformed portion 12 does not propagate to the ground, and the earth pressure of the ground does not become the reaction force of the thrust force W. As a result, the deformed portion 12 is displaced within the range in which the base material 15 is introduced in the groove 13, and the connecting portion between the straight pipe portion 11 and the deformed portion 12 is separated, leading to the occurrence of water leakage. Further, in the case of a pipe material such as a rigid vinyl chloride pipe in which the straight pipe portion 11 and the deformed portion 12 are joined by an adhesive, the pipe may be damaged.

注入工程では、スラスト力Wが付加される変形部12の周囲に導入された基礎材15中に、基礎材15の流動性を低下させる注入材を注入し、基礎材15中に補強部14を形成する。補強部14は、地震時の土粒子の動きが抑制されるので、例え地震により基礎材15が液状化したとしても、補強部14によりスラスト力Wが地盤に伝播する。その結果、地盤の土圧が反力となり、スラスト力Wによる変形部12の移動が抑制される。このように、注入工程により、基礎材15を強度低下しにくくすることができる。 In the injection step, the injection material that reduces the fluidity of the foundation material 15 is injected into the foundation material 15 introduced around the deformed portion 12 to which the thrust force W is applied, and the reinforcing portion 14 is placed in the foundation material 15. Form. Since the movement of soil particles is suppressed in the reinforcing portion 14, even if the foundation material 15 is liquefied due to the earthquake, the thrust force W is propagated to the ground by the reinforcing portion 14. As a result, the earth pressure of the ground becomes a reaction force, and the movement of the deformed portion 12 due to the thrust force W is suppressed. In this way, the injection step makes it difficult for the base material 15 to lose its strength.

注入工程においては、変形部12の周囲の基礎材15に注入材を注入する。すなわち、溝13内の変形部12と溝13の外側の地盤との間に注入材を注入する。これにより、変形部12と地盤との間に補強部14が形成される。補強部14は、変形部12及び地盤に接していることが好ましいが、変形部12又は地盤から離れていてもよい。 In the injection step, the injection material is injected into the foundation material 15 around the deformed portion 12. That is, the injection material is injected between the deformed portion 12 in the groove 13 and the ground outside the groove 13. As a result, the reinforcing portion 14 is formed between the deformed portion 12 and the ground. The reinforcing portion 14 is preferably in contact with the deformed portion 12 and the ground, but may be separated from the deformed portion 12 or the ground.

注入工程における注入材の注入方法として、例えば、基礎材15が導入されている位置の上方に相当する位置の地面Gの一部に開口部を形成し、開口部に挿入した注入管を介して注入材を注入する方法が挙げられるが、これに限定されない。埋設管10の管径が大きい場合には、埋設管10内に人が入って、図2に示すように、内側から管に開口部を形成し、開口部に挿入した注入管16を介して基礎材15に注入材を注入してもよい。 As a method of injecting the injection material in the injection step, for example, an opening is formed in a part of the ground G at a position corresponding to above the position where the foundation material 15 is introduced, and an opening is formed through an injection pipe inserted into the opening. Examples include, but are not limited to, a method of injecting an injection material. When the diameter of the buried pipe 10 is large, a person enters the buried pipe 10 to form an opening in the pipe from the inside as shown in FIG. 2, and the injection pipe 16 inserted into the opening is used to form an opening. The injection material may be injected into the base material 15.

また、注入工程においては、スラスト力Wが付加される方向の下流側の基礎材15に注入材を注入してもよい。スラスト力Wが付加される方向の下流側の基礎材15に注入材を注入することで、スラスト力Wの影響による変形部12の移動を効果的に抑制することができる。図1及び2に示す例においては、変形部12が屈曲部であるため、スラスト力Wは、変形部12の円弧の内側から外側に向かう方向(図2中Y軸方向)に付加される。したがって、注入工程においては、変形部12の円弧の外側の基礎材15に注入材を注入することで、補強部14を形成する。また、後述する図5に示す例においても、スラスト力Wが付加される方向の下流側の基礎材55に注入材を注入し、補強部54を形成する。 Further, in the injection step, the injection material may be injected into the foundation material 15 on the downstream side in the direction in which the thrust force W is applied. By injecting the injection material into the foundation material 15 on the downstream side in the direction in which the thrust force W is applied, the movement of the deformed portion 12 due to the influence of the thrust force W can be effectively suppressed. In the examples shown in FIGS. 1 and 2, since the deformed portion 12 is a bent portion, the thrust force W is applied in the direction from the inside to the outside of the arc of the deformed portion 12 (Y-axis direction in FIG. 2). Therefore, in the injection step, the reinforcing portion 14 is formed by injecting the injection material into the foundation material 15 outside the arc of the deformed portion 12. Further, also in the example shown in FIG. 5 described later, the injection material is injected into the foundation material 55 on the downstream side in the direction in which the thrust force W is applied to form the reinforcing portion 54.

なお、図1及び2に示すように、埋設管10が略水平方向に延伸するように設けられている場合には、スラスト力Wが付加される方向は、略水平方向である。一方、図3に示すように、埋設管が略鉛直方向に延伸する部分を含む場合、スラスト力Wが付加される方向は、変形部12の屈曲の角度に応じて斜め上方又は斜め下方の方向となる。図3は、本発明の一実施形態に係る液状化対策工法を説明する断面図である。 As shown in FIGS. 1 and 2, when the buried pipe 10 is provided so as to extend in a substantially horizontal direction, the direction in which the thrust force W is applied is the substantially horizontal direction. On the other hand, as shown in FIG. 3, when the buried pipe includes a portion extending in a substantially vertical direction, the direction in which the thrust force W is applied is an obliquely upward or diagonally downward direction depending on the bending angle of the deformed portion 12. Will be. FIG. 3 is a cross-sectional view illustrating a liquefaction countermeasure construction method according to an embodiment of the present invention.

注入材は、埋設管の埋め戻しに用いられる基礎材の流動性を低下させるものである。注入材の例として、シリカ溶液、粘土、セメント、スラグ、気泡、及び気体からなる群より選択される1種又は複数種を有効成分として含んでいてもよい。注入材は、例えば、流動性の液体であり、時間の経過に伴って固化してゲル状になることで基礎材の流動性を低下させるものであってもよい。このような注入材は、ゲル化促進剤をさらに含んでいてもよく、これにより注入材のゲル化時間を調整することができる。注入材として、例えば、公知のグラウト材を用いることができる。 The injection material reduces the fluidity of the base material used for backfilling the buried pipe. As an example of the injection material, one or more selected from the group consisting of silica solution, clay, cement, slag, air bubbles, and gas may be contained as an active ingredient. The injection material is, for example, a fluid liquid, and may be a material that solidifies with the passage of time into a gel to reduce the fluidity of the base material. Such an injectable material may further contain a gelation accelerator, whereby the gelation time of the injectable material can be adjusted. As the injection material, for example, a known grout material can be used.

注入材として用いるグラウト材の材質は特に限定されず、埋設管10の周辺の地盤の性状に対応させて選択して採用することが好ましい。例えば、注入材として用いるグラウト材としては、一液型のものや二液型のものがある。一液型のグラウト材としてはセメントミルクがあり、二液型のグラウト材としては水ガラス系溶液型のグラウト材、懸濁液型グラウト材等がある。 The material of the grout material used as the injection material is not particularly limited, and it is preferable to select and adopt it according to the properties of the ground around the buried pipe 10. For example, the grout material used as an injection material includes a one-component type and a two-component type. The one-component grout material includes cement milk, and the two-component grout material includes a water glass-based solution type grout material, a suspension type grout material, and the like.

例えば、埋設管10の周囲が透水係数の小さい(浸透性の悪い)土壌である場合、水ガラス系溶液型のグラウト材が好ましく用いられる。水ガラス系溶液型のグラウト材としては、「耐久グラウト注入工法施工指針」(発行者;一般社団法人日本グラウト協会、発行;平成24年3月、以下同じ)に分類されている水ガラス系溶液型の無機系グラウト材に属するアルカリ性グラウト材や中性・酸性グラウト材、特殊中性・酸性グラウト材や特殊シリカ(シリカコロイド)グラウト材、有機系グラウト材に属するアルカリ性グラウト材があり、何れも用いることが可能である。特に、特殊中性・酸性グラウト材や特殊シリカ(シリカコロイド)グラウト材の場合、長期間耐久性を保持し得るグラウト材として好ましく用いることができる。 For example, when the soil around the buried pipe 10 has a small permeability coefficient (poor permeability), a water glass-based solution type grout material is preferably used. As a water glass solution type grout material, a water glass solution classified in "Durable grout injection method construction guideline" (publisher; Japan Grout Association, published; March 2012, the same applies hereinafter). There are alkaline grout materials, neutral / acidic grout materials, special neutral / acidic grout materials, special silica (silica colloid) grout materials, and alkaline grout materials belonging to organic grout materials, all of which belong to the type of inorganic grout material. It can be used. In particular, in the case of a special neutral / acidic grout material or a special silica (silica colloid) grout material, it can be preferably used as a grout material capable of maintaining durability for a long period of time.

また、埋設管10の周囲の土壌の透水係数が大きい(浸透性が良い)場合、懸濁液型のグラウト材が好ましく用いられる。懸濁液型のグラウト材としては、非水ガラス系グラウト材に属する超微粒子系グラウト材や特殊スラグ系グラウト材、水ガラス系グラウト材に属するアルカリ性グラウト材や中性・酸性グラウト材がある。特に、透水係数の小さい土壌に対する浸透性を考慮した場合、懸濁液型の非水ガラス系に属する特殊スラグ系であっても用いることができる。 Further, when the permeability coefficient of the soil around the buried pipe 10 is large (good permeability), a suspension type grout material is preferably used. Examples of the suspension type grout material include ultrafine grout materials and special slag grout materials belonging to non-water glass grout materials, alkaline grout materials belonging to water glass grout materials, and neutral / acidic grout materials. In particular, when considering the permeability to soil having a small permeability coefficient, even a special slag system belonging to a suspension type non-water glass system can be used.

液状化対策工法は、すでに埋設管10が地面Gの下に埋設されている既設管に対して、埋設した状態のまま実行することができる。これにより、液状化対策のために、既設管を掘り出したり、既設管を新しいものに取り替えたりする必要がない。なお、埋設管10を埋設する際に、基礎材15中に注入材を注入してもよい。すなわち、液状化対策工法は、埋設管を新設する際に実行してもよいし、既設管に対して実行してもよい。 The liquefaction countermeasure construction method can be executed in an existing pipe in which the buried pipe 10 is already buried under the ground G in a buried state. As a result, it is not necessary to dig up the existing pipe or replace the existing pipe with a new one as a measure against liquefaction. When burying the buried pipe 10, the injection material may be injected into the foundation material 15. That is, the liquefaction countermeasure method may be executed when a buried pipe is newly installed, or may be executed for an existing pipe.

注入工程において基礎材15中に注入材を注入する範囲は特に限定されず、埋設管10の口径、内圧、埋設管10と地盤との間の距離、基礎材15の間隙率(土粒子、空気及び水からなる地盤における土粒子以外の割合を示す指標)等に応じて、適宜選択すればよい。 The range in which the injection material is injected into the foundation material 15 in the injection step is not particularly limited, and the diameter of the buried pipe 10, the internal pressure, the distance between the buried pipe 10 and the ground, and the porosity of the foundation material 15 (soil particles, air). And an index showing the ratio of non-soil particles in the ground consisting of water), etc., may be appropriately selected.

また、注入工程において注入する注入材の注入量は特に限定されないが、土質調査等により、注入範囲の基礎材15の間隙率を想定し、空気と水の部分を注入材で置き換えるために必要な量を選択してもよい。 The injection amount of the injection material to be injected in the injection step is not particularly limited, but it is necessary to replace the air and water parts with the injection material by assuming the porosity of the foundation material 15 in the injection range by soil survey or the like. You may choose the amount.

注入工程において注入材を注入する範囲及び注入量は、例えば、以下のように算出することができる。すなわち、注入材を注入する範囲は、変形部12と溝13の外側の地盤との間の隙間であるため、その隙間の体積をV、隙間内の基礎材15の間隙率をnとした場合、注入材の注入量Lは、L=V×nである。したがって、例えば、隙間の長さ(l)が7.04m、高さ(h)が1.3m、変形部12と溝13の外側の地盤との間の距離(d)を0.5mとした場合、V=7.04×1.3×0.5=約4.6mとなる。そして隙間内の基礎材15の間隙率nが40%であれば、注入材の注入量はL=4.6m×0.4=1.8mとなる。 The range and amount of the injection material to be injected in the injection step can be calculated as follows, for example. That is, since the range in which the injection material is injected is the gap between the deformed portion 12 and the ground outside the groove 13, the volume of the gap is V, and the porosity of the foundation material 15 in the gap is n. , The injection amount L of the injection material is L = V × n. Therefore, for example, the length (l) of the gap is 7.04 m, the height (h) is 1.3 m, and the distance (d) between the deformed portion 12 and the ground outside the groove 13 is 0.5 m. In this case, V = 7.04 × 1.3 × 0.5 = about 4.6 m 3 . If the porosity n of the foundation material 15 in the gap is 40%, the injection amount of the injection material is L = 4.6m 3 × 0.4 = 1.8m 3 .

このように、液状化対策工法によれば、埋設管10の埋め戻しに用いた基礎材15が地震の影響で液状化した場合でも、補強部14によりスラスト力Wを地盤に伝播させることができる。これにより、地盤の土圧が反力となり、スラスト力Wによる変形部12の移動が抑制される。液状化対策工法によれば、変形部12の周囲の基礎材15を強度低下しにくくすることができる。 As described above, according to the liquefaction countermeasure construction method, even when the foundation material 15 used for backfilling the buried pipe 10 is liquefied due to the influence of the earthquake, the thrust force W can be propagated to the ground by the reinforcing portion 14. .. As a result, the earth pressure of the ground becomes a reaction force, and the movement of the deformed portion 12 due to the thrust force W is suppressed. According to the liquefaction countermeasure method, it is possible to prevent the strength of the foundation material 15 around the deformed portion 12 from decreasing.

液状化対策工法が施される埋設管10は、直管部11と変形部12とを有することにより、内部に水を流した際に、変形部12にスラスト力が付加されるものである。変形部12に付加されるスラスト力について、図4〜6を参照して説明する。図4〜6は、埋設管に生じるスラスト力の例を説明する模式図である。 The buried pipe 10 to which the liquefaction countermeasure method is applied has a straight pipe portion 11 and a deformed portion 12, so that a thrust force is applied to the deformed portion 12 when water is flowed inside. The thrust force applied to the deformed portion 12 will be described with reference to FIGS. 4 to 6. 4 to 6 are schematic views illustrating an example of a thrust force generated in a buried pipe.

図4に示すように、直管部11と屈曲した変形部12とを有する埋設管10には内圧Pが付加され、変形部12にはスラスト力Wが付加される。スラスト力Wは、水の流れが変化する箇所で生じ、管の内圧及び断面積(口径の二乗)に比例する。また、変形部12は屈曲しているため、付加されるスラスト力は図3においてΘで示す角度の影響を受ける。Θは、変形部12の曲がり角度を示している。 As shown in FIG. 4, an internal pressure P is applied to the buried pipe 10 having a straight pipe portion 11 and a bent deformed portion 12, and a thrust force W is applied to the deformed portion 12. The thrust force W is generated at a place where the flow of water changes, and is proportional to the internal pressure of the pipe and the cross-sectional area (square of the diameter). Further, since the deformed portion 12 is bent, the applied thrust force is affected by the angle indicated by Θ in FIG. Θ indicates the bending angle of the deformed portion 12.

したがって、内圧をP、変形部12の断面積をAとした場合、スラスト力Wは、以下の式(1)により算出することができる:
W=2PAsin(Θ/2)・・・(1)
Therefore, when the internal pressure is P and the cross-sectional area of the deformed portion 12 is A, the thrust force W can be calculated by the following equation (1):
W = 2PAsin (Θ / 2) ... (1)

変形部12に付加されるスラスト力Wの反力となる地盤の土圧は、地盤の土の単位体積重量、変形部12の円弧の外側の幅(変形部12の両端間の長さ)、変形部12が埋設された深さに比例する。 The earth pressure, which is the reaction force of the thrust force W applied to the deformed portion 12, is the unit volume weight of the ground soil, the outer width of the arc of the deformed portion 12 (the length between both ends of the deformed portion 12), and the earth pressure. It is proportional to the depth at which the deformed portion 12 is embedded.

このように、基礎材15に液状化が生じたとしても、埋設管10は、変形部12と地盤との間に形成された補強部14によって、地盤へのスラスト力の伝播が阻害されない。その結果、スラスト力の反力となる地盤の土圧が低下せず、変形部12の移動が抑制される。このように、変形部12の離脱を防ぐことができる。 As described above, even if the foundation material 15 is liquefied, in the buried pipe 10, the propagation of the thrust force to the ground is not hindered by the reinforcing portion 14 formed between the deformed portion 12 and the ground. As a result, the earth pressure of the ground, which is the reaction force of the thrust force, does not decrease, and the movement of the deformed portion 12 is suppressed. In this way, it is possible to prevent the deformed portion 12 from coming off.

スラスト力は、図4に示す屈曲した変形部12を有する埋設管10以外にも、図5及び6に示すような形状の埋設管にも付加される。すなわち、埋設管が備える変形部の構造には、図4に示すような屈曲構造以外にも、図5に示す分岐構造及び図6に示す片落管構造等が含まれる。 The thrust force is applied not only to the buried pipe 10 having the bent deformed portion 12 shown in FIG. 4 but also to the buried pipe having the shape shown in FIGS. 5 and 6. That is, the structure of the deformed portion included in the buried pipe includes a branch structure shown in FIG. 5, a single drop pipe structure shown in FIG. 6, and the like, in addition to the bent structure as shown in FIG.

図5に示す埋設管50は、直管部51と、直管部51から分岐した変形部52とを備えており、溝53に敷設されている。埋設管50においては、矢印に示すように、管壁に略垂直に内圧Pが付加される。そして、内圧Pのうち、対向する成分は相殺される一方で、直管部51と変形部52とが分岐する部分の管壁に付加される成分が相殺されず、スラスト力Wが生じる。このように、水の流れが変化する変形部52には、直管部51側からこれに対向する側へと、スラスト力Wが付加される。 The buried pipe 50 shown in FIG. 5 includes a straight pipe portion 51 and a deformed portion 52 branched from the straight pipe portion 51, and is laid in the groove 53. In the buried pipe 50, the internal pressure P is applied substantially vertically to the pipe wall as shown by the arrow. Then, while the opposing components of the internal pressure P are offset, the components added to the pipe wall of the portion where the straight pipe portion 51 and the deformed portion 52 branch are not canceled, and a thrust force W is generated. In this way, the thrust force W is applied to the deformed portion 52 in which the flow of water changes from the straight pipe portion 51 side to the side facing the straight pipe portion 51.

したがって、埋設管50についても、変形部52の周囲に導入された基礎材15中に注入材を注入することで、変形部52と地盤との間に補強部54を形成する。これにより、基礎材55に液状化が生じたとしても、地盤へのスラスト力の伝播が阻害されない。その結果、スラスト力の反力となる地盤の土圧が低下せず、変形部52の移動が抑制される。このように、変形部52の離脱を防ぐことができる。 Therefore, also for the buried pipe 50, the reinforcing portion 54 is formed between the deformed portion 52 and the ground by injecting the injection material into the foundation material 15 introduced around the deformed portion 52. As a result, even if liquefaction occurs in the foundation material 55, the propagation of the thrust force to the ground is not hindered. As a result, the earth pressure of the ground, which is the reaction force of the thrust force, does not decrease, and the movement of the deformed portion 52 is suppressed. In this way, it is possible to prevent the deformed portion 52 from coming off.

さらに、図6に示す埋設管60は、直管部61a及び直管部61bを備えている。直管部61aと直管部61bとは、その口径が異なっており、変形部62により接続されている。埋設管60は、管の口径が変化する片落管である。埋設管60は、地盤を掘削ライン63bまで掘削して形成された溝に敷きつめられた基礎材65b上に敷設される。そして、埋設管60上は基礎材埋め戻しライン63aまで基礎材65aで埋められ、基礎材65aから地面Gまで埋め戻し材で埋められている。 Further, the buried pipe 60 shown in FIG. 6 includes a straight pipe portion 61a and a straight pipe portion 61b. The straight pipe portion 61a and the straight pipe portion 61b have different diameters and are connected by the deformed portion 62. The buried pipe 60 is a one-sided pipe whose diameter changes. The buried pipe 60 is laid on the foundation material 65b laid in the groove formed by excavating the ground to the excavation line 63b. The buried pipe 60 is filled with the foundation material 65a up to the foundation material backfilling line 63a, and is filled with the backfilling material from the foundation material 65a to the ground G.

埋設管60において、変形部62には、矢印に示すように、管壁に略垂直に内圧Pが付加される。そして、内圧Pの対向する上下方向の成分は相殺されるが、それ以外の成分によりスラスト力Wが生じる。このように、水の流れが変化する変形部62には、口径の小さい直管部61aの方向にスラスト力Wが付加される。 In the buried pipe 60, the internal pressure P is applied to the deformed portion 62 substantially perpendicular to the pipe wall as shown by the arrow. Then, the components in the vertical direction facing each other of the internal pressure P are canceled out, but the thrust force W is generated by the other components. In this way, the thrust force W is applied to the deformed portion 62 in which the flow of water changes in the direction of the straight pipe portion 61a having a small diameter.

注入工程においては、変形部62の周囲に注入材を注入し、補強部64a及び補強部64bを形成する。すなわち、変形部62の周囲の基礎材埋め戻しライン63aと埋設管60との間に注入材を注入して補強部64aを形成する。また、変形部62の周囲の掘削ライン63bと埋設管60との間に注入材を注入して補強部64bを形成する。 In the injection step, the injection material is injected around the deformed portion 62 to form the reinforcing portion 64a and the reinforcing portion 64b. That is, the injection material is injected between the foundation material backfill line 63a around the deformed portion 62 and the buried pipe 60 to form the reinforcing portion 64a. Further, an injection material is injected between the excavation line 63b around the deformed portion 62 and the buried pipe 60 to form the reinforcing portion 64b.

これにより、基礎材65a又は基礎材65bが液状化したとしても、スラスト力Wは補強部64a又は補強部64bにより埋設管60の上下の地盤に伝播し、地盤へのスラスト力Wの伝播が阻害されない。その結果、スラスト力Wの反力となる地盤の土圧が低下せず、変形部62の移動が抑制される。このように、変形部62の離脱を防ぐことができる。 As a result, even if the foundation material 65a or the foundation material 65b is liquefied, the thrust force W is propagated to the ground above and below the buried pipe 60 by the reinforcing portion 64a or the reinforcing portion 64b, and the propagation of the thrust force W to the ground is hindered. Not done. As a result, the earth pressure of the ground, which is the reaction force of the thrust force W, does not decrease, and the movement of the deformed portion 62 is suppressed. In this way, it is possible to prevent the deformed portion 62 from coming off.

ここで、図7に示すように、埋設管10の変形部12がスラストブロック71により囲まれた液状化対策構造70についても、本発明の範疇に含まれる。すなわち、変形部12の周囲はスラストブロック(防護材)71により覆われており、注入工程において、スラストブロック71の周囲に導入された基礎材15中に注入材を注入してもよい。図7は、本発明の一実施形態に係る液状化対策工法の他の例を説明する上面図である。 Here, as shown in FIG. 7, the liquefaction countermeasure structure 70 in which the deformed portion 12 of the buried pipe 10 is surrounded by the thrust block 71 is also included in the category of the present invention. That is, the periphery of the deformed portion 12 is covered with the thrust block (protective material) 71, and the injection material may be injected into the foundation material 15 introduced around the thrust block 71 in the injection step. FIG. 7 is a top view illustrating another example of the liquefaction countermeasure construction method according to the embodiment of the present invention.

液状化対策構造70は、埋設管10及びスラストブロック71と共に、補強部14を備えている。注入工程においては、スラストブロック71の周囲、すなわちスラストブロック71と地盤との間の基礎材15中に注入材を注入することで補強部14を形成する。すなわち、スラストブロック71を介して、変形部12の周囲に注入材を注入する。ここで、スラストブロック71は、液状化対策として埋設管に設けられる公知の防護材であり、例えば、コンクリートブロックであり得る。スラストブロック71の大きさは、埋設管10の内圧、口径、屈曲角等に応じて設計され得る。 The liquefaction countermeasure structure 70 includes a reinforcing portion 14 together with the buried pipe 10 and the thrust block 71. In the injection step, the reinforcing portion 14 is formed by injecting the injection material around the thrust block 71, that is, into the foundation material 15 between the thrust block 71 and the ground. That is, the injection material is injected around the deformed portion 12 via the thrust block 71. Here, the thrust block 71 is a known protective material provided in the buried pipe as a measure against liquefaction, and may be, for example, a concrete block. The size of the thrust block 71 can be designed according to the internal pressure, diameter, bending angle, etc. of the buried pipe 10.

地震により基礎材が液状化すると、変形部に付加されるスラスト力によりスラストブロックごと変形部が変位する虞がある。図7の構成では、変形部12の周囲のスラストブロック71の周囲に補強部14が形成されているので、基礎材15が液状化しても、スラスト力Wは補強部74により地盤に伝播し、地盤へのスラスト力Wの伝播が阻害されない。その結果、スラスト力の反力となる地盤の土圧が低下せず、変形部12及びスラストブロック71の移動が抑制される。このように、変形部12の離脱を防ぐことができる。 When the foundation material is liquefied due to an earthquake, the deformed portion may be displaced together with the thrust block due to the thrust force applied to the deformed portion. In the configuration of FIG. 7, since the reinforcing portion 14 is formed around the thrust block 71 around the deformed portion 12, even if the foundation material 15 is liquefied, the thrust force W is propagated to the ground by the reinforcing portion 74. The propagation of the thrust force W to the ground is not hindered. As a result, the earth pressure of the ground, which is the reaction force of the thrust force, does not decrease, and the movement of the deformed portion 12 and the thrust block 71 is suppressed. In this way, it is possible to prevent the deformed portion 12 from coming off.

〔液状化対策構造〕
本発明の一実施形態に係る液状化対策構造は、直管部と、内部を流れる水の流れが当該直管部とは異なることにより生じるスラスト力が付加される変形部とを有する埋設管と、地盤を掘削して形成される溝中に敷設された前記変形部の周囲に導入された基礎材中に設けられ、当該基礎材よりも流動性が低下した補強部とを備えている。
すなわち、上述した本発明の一実施形態に係る液状化対策工法により構築される液状化対策構造100は、本発明に係る液状化対策構造の一態様である。したがって、本発明に係る液状化対策構造の詳細は、上述した本発明の一実施形態に係る液状化対策工法の説明に準じる。
[Liquefaction countermeasure structure]
The liquefaction countermeasure structure according to the embodiment of the present invention includes a straight pipe portion and a buried pipe having a deformed portion to which a thrust force generated by the flow of water flowing inside is different from that of the straight pipe portion. It is provided in a foundation material introduced around the deformed portion laid in a groove formed by excavating the ground, and has a reinforcing portion having a lower fluidity than the foundation material.
That is, the liquefaction countermeasure structure 100 constructed by the liquefaction countermeasure construction method according to the above-described embodiment of the present invention is one aspect of the liquefaction countermeasure structure according to the present invention. Therefore, the details of the liquefaction countermeasure structure according to the present invention are based on the above-mentioned description of the liquefaction countermeasure construction method according to the embodiment of the present invention.

本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention.

10 埋設管
11 直管部
12 変形部
13 溝
14 補強部
15 基礎材
100 液状化対策構造
10 Buried pipe 11 Straight pipe part 12 Deformation part 13 Groove 14 Reinforcement part 15 Foundation material 100 Liquefaction countermeasure structure

Claims (6)

埋設管に対する液状化対策工法であって、
前記埋設管は、直管部と、内部を流れる水の流れが当該直管部と異なることにより生じるスラスト力が付加される変形部とを有しており、
地盤を掘削して形成される溝中に敷設された前記変形部の周囲に導入された基礎材中に、当該基礎材の流動性を低下させる注入材を注入する注入工程を包含する、液状化対策工法。
It is a liquefaction countermeasure construction method for buried pipes.
The buried pipe has a straight pipe portion and a deformed portion to which a thrust force generated by the flow of water flowing inside is different from that of the straight pipe portion.
Liquefaction, which comprises an injection step of injecting an injection material that reduces the fluidity of the foundation material into the foundation material introduced around the deformed portion laid in the groove formed by excavating the ground. Countermeasure construction method.
前記注入工程において、前記スラスト力が付加される方向の下流側の前記基礎材に前記注入材を注入する、請求項1に記載の液状化対策工法。 The liquefaction countermeasure method according to claim 1, wherein in the injection step, the injection material is injected into the foundation material on the downstream side in the direction in which the thrust force is applied. 前記変形部の周囲は防護材により覆われており、
前記注入工程において、前記防護材の周囲に導入された前記基礎材中に前記注入材を注入する、請求項1又は2に記載の液状化対策工法。
The circumference of the deformed part is covered with a protective material, and the circumference is covered with a protective material.
The liquefaction countermeasure method according to claim 1 or 2, wherein in the injection step, the injection material is injected into the foundation material introduced around the protective material.
前記注入工程の前に、前記溝中に前記埋設管を敷設し、当該埋設管の周囲に前記基礎材を導入する前記埋設管の埋設工程をさらに含む、請求項1から3のいずれか1項に記載の液状化対策工法。 Any one of claims 1 to 3, further comprising an burying step of the buried pipe in which the buried pipe is laid in the groove and the foundation material is introduced around the buried pipe before the injection step. Liquefaction countermeasure construction method described in. 前記注入材は、シリカ溶液、粘土、セメント、スラグ、気泡、及び気体からなる群より選択される1種又は複数種を含む、請求項1から4のいずれか1項に記載の液状化対策工法。 The liquefaction countermeasure method according to any one of claims 1 to 4, wherein the injection material contains one or more selected from the group consisting of silica solution, clay, cement, slag, air bubbles, and gas. .. 直管部と、内部を流れる水の流れが当該直管部とは異なることにより生じるスラスト力が付加される変形部とを有する埋設管と、
地盤を掘削して形成される溝中に敷設された前記変形部の周囲に導入された基礎材中に設けられ、当該基礎材よりも流動性が低下した補強部と
を備えた、液状化対策構造。
A buried pipe having a straight pipe portion and a deformed portion to which a thrust force generated by the flow of water flowing inside is different from that of the straight pipe portion.
Liquefaction countermeasures provided in the foundation material introduced around the deformed portion laid in the groove formed by excavating the ground and provided with a reinforcing portion having a lower fluidity than the foundation material. structure.
JP2020087463A 2020-05-19 2020-05-19 Liquefaction countermeasure construction method and liquefaction countermeasure structure Active JP7394344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020087463A JP7394344B2 (en) 2020-05-19 2020-05-19 Liquefaction countermeasure construction method and liquefaction countermeasure structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020087463A JP7394344B2 (en) 2020-05-19 2020-05-19 Liquefaction countermeasure construction method and liquefaction countermeasure structure

Publications (2)

Publication Number Publication Date
JP2021181706A true JP2021181706A (en) 2021-11-25
JP7394344B2 JP7394344B2 (en) 2023-12-08

Family

ID=78606128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020087463A Active JP7394344B2 (en) 2020-05-19 2020-05-19 Liquefaction countermeasure construction method and liquefaction countermeasure structure

Country Status (1)

Country Link
JP (1) JP7394344B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54149925A (en) * 1978-05-16 1979-11-24 Kubota Ltd Protection of ducts from thrust
JPH07317959A (en) * 1994-05-27 1995-12-08 Sekisui Chem Co Ltd Pipe burying method
JP2002276853A (en) * 2001-03-19 2002-09-25 National Institute For Rural Engineering Uneven force countermeasure structure for buried pipe
JP2005163897A (en) * 2003-12-02 2005-06-23 Mitsui Kagaku Sanshi Kk Protective structure for deformed part of internal pressure buried pipe
JP2013164103A (en) * 2012-02-09 2013-08-22 Sekisui Chem Co Ltd Embedded pipe structure and method for constructing embedded pipe structure
JP2015209638A (en) * 2014-04-24 2015-11-24 国立大学法人 東京大学 Liquefaction countermeasure method of existing buried pipe
JP2016017341A (en) * 2014-07-09 2016-02-01 国立大学法人 東京大学 Liquefaction countermeasure construction method for existing underground pipe
JP2019138408A (en) * 2018-02-13 2019-08-22 積水化学工業株式会社 Burial structure and burial method of duct line

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54149925A (en) * 1978-05-16 1979-11-24 Kubota Ltd Protection of ducts from thrust
JPH07317959A (en) * 1994-05-27 1995-12-08 Sekisui Chem Co Ltd Pipe burying method
JP2002276853A (en) * 2001-03-19 2002-09-25 National Institute For Rural Engineering Uneven force countermeasure structure for buried pipe
JP2005163897A (en) * 2003-12-02 2005-06-23 Mitsui Kagaku Sanshi Kk Protective structure for deformed part of internal pressure buried pipe
JP2013164103A (en) * 2012-02-09 2013-08-22 Sekisui Chem Co Ltd Embedded pipe structure and method for constructing embedded pipe structure
JP2015209638A (en) * 2014-04-24 2015-11-24 国立大学法人 東京大学 Liquefaction countermeasure method of existing buried pipe
JP2016017341A (en) * 2014-07-09 2016-02-01 国立大学法人 東京大学 Liquefaction countermeasure construction method for existing underground pipe
JP2019138408A (en) * 2018-02-13 2019-08-22 積水化学工業株式会社 Burial structure and burial method of duct line

Also Published As

Publication number Publication date
JP7394344B2 (en) 2023-12-08

Similar Documents

Publication Publication Date Title
CN108442382B (en) In-situ protection and enclosure soil-retaining structure for pressure pipeline crossing deep foundation pit and construction method
CN106381866A (en) Construction method of ultra-deep underground diaphragm wall in water-rich soft-soil area
CN101343868B (en) Underground continuous wall construction method of city-across pipeline
Moore Buried pipes and culverts
CN109914456A (en) A kind of bridge and subway tunnel adjoin newly-built or with design and construction method when building
CN108611985A (en) Framed underpass bridge construction method that special geology is overweight
CN208651807U (en) One kind being suitable for mountain area complicated landform slurry delivery pipe line paving system
JP7394344B2 (en) Liquefaction countermeasure construction method and liquefaction countermeasure structure
CN111287177A (en) Construction method of large-diameter overlong punched cast-in-place pile in dense pebble bed area
CN107012802A (en) A kind of construction method of RPM highway culvert
JP5314252B2 (en) Pipeline structure
CN204570718U (en) A kind of raft foundation with fluid pipeline path
CN211006678U (en) Engineering foundation pit maintenance device
CN111677006A (en) Structure and method for preventing and controlling differential settlement of roadbed at edge of linear underground structure
Teja Field investigation on structural performance of the buried UPVC pipes with and without geogrid reinforcement
CN104746526B (en) A kind of raft foundation with fluid pipeline path
CN216999838U (en) Retaining wall structure with drainage guiding function
CN217603649U (en) Protection architecture of existing important pipeline in underground
CN215767022U (en) Foam concrete road base settlement monitoring device
JP7461211B2 (en) Ground improvement method
CN114875889B (en) Staggered crossing grooving method suitable for double-row narrow-distance ground wall construction
CN212801527U (en) Structure is buried underground to a fender of bored concrete pile is dug soon to major diameter
KR101853726B1 (en) Soil inflow blocking plate for preventing ground settlement and method for preventing settlement of ground using the same
JPH0663269B2 (en) Pipe burying method
JP2008057188A (en) Earthquake resisting manhole structure and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231116

R150 Certificate of patent or registration of utility model

Ref document number: 7394344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150