JP2013164103A - Embedded pipe structure and method for constructing embedded pipe structure - Google Patents

Embedded pipe structure and method for constructing embedded pipe structure Download PDF

Info

Publication number
JP2013164103A
JP2013164103A JP2012026523A JP2012026523A JP2013164103A JP 2013164103 A JP2013164103 A JP 2013164103A JP 2012026523 A JP2012026523 A JP 2012026523A JP 2012026523 A JP2012026523 A JP 2012026523A JP 2013164103 A JP2013164103 A JP 2013164103A
Authority
JP
Japan
Prior art keywords
buried pipe
hole
pipe structure
grout material
buried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012026523A
Other languages
Japanese (ja)
Inventor
Shunji Azuma
俊司 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2012026523A priority Critical patent/JP2013164103A/en
Publication of JP2013164103A publication Critical patent/JP2013164103A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a newl embedded pipe structure capable of effectively preventing an embedded pipe from being uplifted and sinked by simple work, and to provide a method for constructing the embedded pipe structure.SOLUTION: A through-hole 5 penetrating a pipe wall of an embedded pipe 4 is formed from the inside of the embedded pipe 4 and thereafter a tubular nozzle for injecting grout material is inserted into a base material 2 or a backfilling material 3 which is present around the embedded pipe 4, via the through-hole 5. The grout material is injected to the base material 2 or the backfilling material 3 through a nozzle provided in the nozzle for injecting the grout material while the nozzle for injecting the grout material is pulled out, and thus a lumped body 6 produced by the solidification of the grout material is formed around the embedded pipe 4.

Description

本発明は、埋設管が存する土地が液状化した際に、前記埋設管が浮上することを防止するための埋設管構造、及び埋設管構造構築方法に関する。   The present invention relates to a buried pipe structure and a buried pipe structure construction method for preventing the buried pipe from floating when land where the buried pipe exists is liquefied.

立坑や管路等の地下に埋設された埋設管は、地震によって前記埋設管が存する土地が液状化すると浮上する場合がある。前記埋設管の浮上が生じると、道路に著しい不陸が生じ、避難ルートが遮断されたり、消防車や救急車の出動範囲が限られたり、支援物資の輸送が困難となったりする。   A buried pipe buried underground such as a shaft or pipe may surface if the land where the buried pipe is liquefied due to an earthquake. When the buried pipe is lifted, the road is markedly uneven, and the evacuation route is blocked, the range of dispatch of fire engines and ambulances is limited, and the transportation of support supplies becomes difficult.

そのため、現在、前記埋設管の浮上対策として、良質土で締め固めながら埋め戻す「締め固め」、地下水位以深を浸透性の高い材料(砕石)で埋め戻す「砕石等による埋め戻し」、及び地下水位以深をセメント固化改良土にて埋め戻す「固化」の三工法が提案されている(例えば、下記非特許文献1参照。)。   Therefore, at present, as a countermeasure against the levitation of the buried pipe, “consolidation” is to refill while compacting with high-quality soil, “backfill with crushed stone” and the like to refill deeper than the groundwater level with highly permeable material (crushed stone), and groundwater Three methods of “solidification” have been proposed in which the deeper than that is filled with cement-improved soil (for example, refer to Non-Patent Document 1 below).

「下水道施設の耐震対策指針と解説」、(社)日本下水道協会“Guidelines and explanations for seismic measures for sewer facilities”, Japan Sewerage Association

前記三工法によって構築された埋設管構造は、いずれも埋設管の周囲に存する基礎材や埋め戻し材の性質を変えることによって、前記埋設管の浮上を防止するものであり、前記埋設管自体の構造はそのままであることから、液状化現象時における前記埋設管自体の浮力に影響を与えるものではなかった。   The buried pipe structure constructed by the three construction methods prevents the floating of the buried pipe by changing the properties of the base material and the backfill material existing around the buried pipe. Since the structure remains the same, it did not affect the buoyancy of the buried pipe itself during the liquefaction phenomenon.

又、前記三工法は、新たに埋設管を敷設する場合には有効な手段といえるが、既存の埋設管に対して行うにあたっては、地面を掘削して埋設管を露出させる掘削作業が必要となる。   In addition, the above three methods can be said to be effective means for newly laying buried pipes, but when performing on existing buried pipes, excavation work that excavates the ground and exposes the buried pipes is necessary. Become.

本発明は、前記技術的課題を解決するために開発されたものであって、簡単な作業にて埋設管の浮上を効果的に防止することができる新規な埋設管構造、及びこの埋設管構造を構築するための新規な埋設管構造構築方法を提供することを目的とする。   The present invention has been developed to solve the above technical problem, and is a novel buried pipe structure capable of effectively preventing the buried pipe from rising by a simple operation, and the buried pipe structure. An object of the present invention is to provide a new buried pipe structure construction method for constructing the structure.

本発明の埋設管構造は、埋設管と、前記埋設管の周囲に存する、基礎材又は埋め戻し材と、前記埋設管の管壁を貫通して設けられた一ないし複数の貫通孔と、前記埋設管の周囲に付着された塊状体と、を具備してなり、前記塊状体が、前記貫通孔を通じて前記基礎材又は前記埋め戻し材に向かって浸透させたグラウト材が固化することによって形成されてなることを特徴とする(以下、本発明構造と称する。)。   The buried pipe structure of the present invention includes a buried pipe, a base material or a backfill material existing around the buried pipe, one or a plurality of through holes provided through a pipe wall of the buried pipe, A lump attached to the periphery of the buried pipe, and the lump is formed by solidifying a grout material that has permeated the base material or the backfill material through the through hole. (Hereinafter referred to as the structure of the present invention).

本発明構造においては、前記埋設管が複数の管体を連結させた管路であり、前記貫通孔が、前記管体の管頂部を基点として、前記管体の周方向に沿って、45±10度、135±10度、225±10度、又は315±10度の位相にある位置から選ばれたいずれかの位置に形成されてなるものが好ましい態様となる。   In the structure of the present invention, the buried pipe is a pipe line connecting a plurality of pipe bodies, and the through hole is 45 ± along the circumferential direction of the pipe body from the top of the pipe body. A preferred embodiment is one formed at any position selected from positions at a phase of 10 degrees, 135 ± 10 degrees, 225 ± 10 degrees, or 315 ± 10 degrees.

本発明構造においては、前記埋設管が、口径800mm以上を有してなり、前記貫通孔の直径が30〜100mmとなされたものが好ましい態様となる。   In the structure of the present invention, it is preferable that the buried pipe has a diameter of 800 mm or more and the through hole has a diameter of 30 to 100 mm.

本発明構造においては、前記塊状体が、前記貫通孔を設けた位置における前記埋設管の接線方向に略直交する方向に延設されてなるものが好ましい態様となる。   In the structure of the present invention, it is preferable that the massive body is extended in a direction substantially orthogonal to the tangential direction of the buried pipe at the position where the through hole is provided.

本発明構造においては、前記塊状体には、金属性又はプラスチック製の、棒状体或いはパイプ状体からなる支持竿が挿入配置されてなるものが好ましい態様となる。   In the structure of the present invention, it is preferable that the lump is formed by inserting and arranging a support rod made of a metallic or plastic rod-shaped body or pipe-shaped body.

本発明構造においては、更に、前記貫通孔を閉塞する蓋材を具備してなるものが好ましい態様となる。   In the structure of the present invention, a preferred embodiment is one that further comprises a lid member that closes the through hole.

本発明の埋設管構造構築方法は、前記本発明構造を構築するための方法であって、前記埋設管の管内から、前記埋設管の管壁を貫通する貫通孔を形成する貫通孔形成工程と、前記貫通孔を通じて、管状のグラウト材注入用ノズルを前記埋設管の周囲に存する基礎材、又は埋め戻し材に刺し入れるノズル刺し入れ工程と、前記基礎材又は埋め戻し材に刺し入れられた前記グラウト材注入用ノズルを引き戻しながら、前記グラウト材注入用ノズルに設けられたノズル口を通じてグラウト材を前記基礎材、又は埋め戻し材に向かって噴射するグラウト材噴射工程と、を実行することによって、前記埋設管の周囲に、前記グラウト材が固化してなる塊状体を形成することを特徴とする(以下、本発明方法と称する。)   The buried pipe structure construction method of the present invention is a method for constructing the structure of the present invention, and includes a through hole forming step of forming a through hole penetrating the tube wall of the buried pipe from the inside of the buried pipe. , A nozzle insertion step for inserting a tubular grout material injection nozzle through the through-hole into the base material or backfill material existing around the buried pipe, and the base material or backfill material inserted into the nozzle By performing a grout material injection step of injecting the grout material toward the base material or backfill material through the nozzle port provided in the grout material injection nozzle while pulling back the grout material injection nozzle, A lump formed by solidifying the grout material is formed around the buried pipe (hereinafter referred to as the method of the present invention).

本発明によれば、簡単な作業にて、液状化現象時における埋設管の浮上を効果的に防止することができる。   According to the present invention, it is possible to effectively prevent the buried pipe from floating during the liquefaction phenomenon with a simple operation.

図1(a)は、本発明構造を示す正面断面図であり、図1(b)は、本発明構造を示す側面断面図である。1A is a front sectional view showing the structure of the present invention, and FIG. 1B is a side sectional view showing the structure of the present invention. 図2(a)〜(d)は、本発明方法を実施している状況を示す正面断面図である。2 (a) to 2 (d) are front cross-sectional views showing a situation where the method of the present invention is performed. 図3(a)は、埋設管を構成する管体に対し、外圧試験(扁平試験)を行っている状況を示す概略図であり、図3(b)は、外圧試験における管体の円周方向のひずみを測定することによって得られたグラフである。FIG. 3 (a) is a schematic diagram showing a situation in which an external pressure test (flat test) is performed on a tubular body constituting an embedded pipe, and FIG. 3 (b) shows the circumference of the tubular body in the external pressure test. It is the graph obtained by measuring the distortion of a direction. 図4(a)、(b)は、本発明構造の別の例を示す正面断面図である。FIGS. 4A and 4B are front sectional views showing another example of the structure of the present invention. 図5は、本発明構造の更に別の例を示す正面断面図である。FIG. 5 is a front sectional view showing still another example of the structure of the present invention.

以下、本発明の実施形態を図面に基づいて説明するが、本発明はこの実施形態に限定されるものではない。   Hereinafter, although an embodiment of the present invention is described based on a drawing, the present invention is not limited to this embodiment.

<実施形態1>
[本発明構造1]
図1に本発明構造1を示す。この本発明構造1は、基礎材2と埋め戻し材3とによって埋設された埋設管4と、前記埋設管4の管壁を貫通して設けられた複数の貫通孔5と、前記埋設管4の周囲に付着された塊状体6と、を具備する。
<Embodiment 1>
[Invention Structure 1]
FIG. 1 shows the structure 1 of the present invention. The structure 1 of the present invention includes an embedded pipe 4 embedded with a base material 2 and a backfill material 3, a plurality of through holes 5 provided through the tube wall of the embedded pipe 4, and the embedded pipe 4. And a lump 6 attached to the periphery of the.

前記埋設管4は、口径1500mm、管長4mの管体(FRPM管(強化プラスチック複合管))41を連結させて構築された管路であり、地面を掘削して溝床7を形成し、前記溝床7の底部に砂からなる前記基礎材2を均一に敷き詰めて形成した基床部21上に、前記管体41を、その軸心が前記基床部21の床面と平行となるように敷設した後、前記管体41の管頂部が埋まるまで前記基礎材2を撒き入れて締め固め、更に、その上から良質土からなる埋め戻し材3を投入して締め固めて構築されたものである。   The buried pipe 4 is a pipe constructed by connecting a pipe body (FRPM pipe (reinforced plastic composite pipe)) 41 having a diameter of 1500 mm and a pipe length of 4 m, excavating the ground to form the groove floor 7, The tube 41 is placed on the base floor 21 formed by uniformly spreading the foundation material 2 made of sand on the bottom of the groove floor 7 so that its axis is parallel to the floor surface of the base floor 21. The base material 2 is poured and compacted until the tube top portion of the tubular body 41 is filled, and then the backfill material 3 made of high-quality soil is added and compacted. It is.

前記貫通孔5は、前記管体41の受け口側寄りの位置と、挿し口側寄りの位置における各管頂部を基点として、前記管体41の周方向に沿って、45度、135度、225度、及び315度の位相にある位置(前記管体41一本あたり都合八箇所の位置)に設けられたものであり、各貫通孔5の直径はいずれも50mmに設定されている。   The through-hole 5 has 45 degrees, 135 degrees, and 225 along the circumferential direction of the tubular body 41 with reference to the top of each tube at the position closer to the receiving end of the tubular body 41 and the position closer to the insertion opening. , And at a position at a phase of 315 degrees (eight convenient positions per tube 41), and the diameter of each through-hole 5 is set to 50 mm.

前記塊状体6は、前記貫通孔5を通じて、前記基礎材2又は前記埋め戻し材3に浸透させたグラウト材が、固化することによって形成されたものである。従って、前記塊状体6は、前記埋設管4を構成する前記管体41の周囲に部分的に形成されている。言い換えれば、前記塊状体6は、各貫通孔5を設けた位置それぞれを基端として前記管体41の周囲に向かって放射状に形成されている。   The mass 6 is formed by solidifying the grout material that has penetrated the base material 2 or the backfill material 3 through the through-hole 5. Therefore, the lump 6 is partially formed around the tube 41 constituting the buried tube 4. In other words, the massive body 6 is formed radially toward the periphery of the tubular body 41 with the respective positions where the through holes 5 are provided as the base ends.

このような構成を有する本発明構造1は、前記埋設管4に前記塊状体6の重量が付加されたものとなることから、前記埋設管4が存する土地が液状化した際に前記埋設管4を構成する前記管体41に浮力が生じても、前記塊状体6の重量が前記浮力に対する抵抗力となり、前記埋設管4の浮き上がりが好適に防止される。   Since the structure 1 of the present invention having such a configuration is obtained by adding the weight of the lump 6 to the buried pipe 4, when the land where the buried pipe 4 exists is liquefied, the buried pipe 4. Even when buoyancy occurs in the tube body 41 constituting the structure, the weight of the massive body 6 becomes a resistance force to the buoyancy, and the floating of the embedded tube 4 is preferably prevented.

又、本実施形態においては、前記塊状体6を前記埋設管4を構成する前記管体41の周囲に放射状に配置していることから、液状化現象時において、係る塊状体6の嵩が前記埋設管4が浮かび上がる方向への抵抗となり、より一層、液状化現象時における前記埋設管4の浮き上がりが好適に防止される。   In the present embodiment, since the massive body 6 is arranged radially around the tubular body 41 constituting the embedded pipe 4, the bulk of the massive body 6 is increased during the liquefaction phenomenon. The resistance in the direction in which the buried pipe 4 is lifted up, and the floating of the buried pipe 4 during the liquefaction phenomenon is further preferably prevented.

なお、付言するに、本発明構造1となされていない通常の埋設管においては、液状化現象時において、埋設管の浮上に加えて、埋設管が沈下する例も報告されているが、本実施形態においては、前記塊状体6を前記埋設管4を構成する前記管体41の周囲に放射状に配置しているから、前記塊状体6の嵩が前記埋設管4が沈下する方向への抵抗となり、液状化現象時における前記埋設管4の沈下も好適に防止されている。   In addition, in the case of ordinary buried pipes that are not made into the structure 1 of the present invention, an example in which the buried pipe sinks in addition to the floating of the buried pipe during the liquefaction phenomenon has been reported. In the embodiment, since the massive body 6 is arranged radially around the tubular body 41 constituting the buried pipe 4, the bulk of the massive body 6 becomes a resistance in the direction in which the buried pipe 4 sinks. The subsidence of the buried pipe 4 during the liquefaction phenomenon is also suitably prevented.

[本発明方法]
本発明方法にて前記本発明構造1を構築するにあたっては、まず、前記埋設管4の管内から、前記埋設管4の管壁を貫通する前記貫通孔5を形成する貫通孔形成工程を実行する。本実施形態においては、前記埋設管4内に作業員Sが入り、ドリルやホールカッターなどの削孔用の工具Dを用いて前記埋設管4を構成する前記管体41の管壁の所定箇所(前記八箇所)を内側から削孔することによって前記貫通孔形成工程を実行した(図2(a)参照)。
[Method of the present invention]
In constructing the structure 1 of the present invention by the method of the present invention, first, a through hole forming step for forming the through hole 5 penetrating the tube wall of the buried pipe 4 from the inside of the buried pipe 4 is executed. . In the present embodiment, a worker S enters the buried pipe 4 and a predetermined portion of the pipe wall of the tubular body 41 constituting the buried pipe 4 using a drilling tool D such as a drill or a hole cutter. The through hole forming step was performed by drilling holes (from the eight locations) from the inside (see FIG. 2A).

所定箇所に前記貫通孔5を形成した後、前記貫通孔5を通じて、管状のグラウト材注入用ノズル8を前記埋設管4の周囲に存する前記基礎材2又は前記埋め戻し材3に刺し入れるノズル刺し入れ工程を実行する(図2(b)参照)。本実施形態においては、前記グラウト材注入用ノズル8の先端に設けられたノズル口81が前記貫通孔5から1m離れる位置まで、前記グラウト材注入用ノズル8を前記基礎材2又は前記埋め戻し材3に向かって刺し入れた。前記グラウト材注入用ノズル8は、地上に配されたグラウト材注入プラント(図示せず)とチューブ82を介して接続されており、前記グラウト材注入プラントから輸送されてきたグラウト材を前記ノズル口81を通じて噴射できる仕組みとなっている。なお、前記グラウト材の噴射攪拌式は、特に限定されるものではなく、例えば、グラウト噴射系と称される1相流方式、エアー・グラウト噴射系と称される二相流方式、又は、水・エアー・グラウト噴射系と称される三相流方式などの公知の噴射攪拌式を適宜選択して用いることができる。   After the through hole 5 is formed at a predetermined location, the nozzle piercing the tubular grout material injection nozzle 8 through the through hole 5 into the base material 2 or the backfill material 3 existing around the buried pipe 4. An insertion process is performed (refer FIG.2 (b)). In this embodiment, the grout material injection nozzle 8 is moved to the base material 2 or the backfill material until the nozzle port 81 provided at the tip of the grout material injection nozzle 8 is 1 m away from the through hole 5. Stabbed into 3 The grout material injection nozzle 8 is connected to a grout material injection plant (not shown) disposed on the ground via a tube 82, and the grout material transported from the grout material injection plant is connected to the nozzle port. It is a mechanism that can be injected through 81. In addition, the jet agitation method of the grout material is not particularly limited, and for example, a one-phase flow method called a grout injection system, a two-phase flow method called an air grout injection system, or water A known jet stirring method such as a three-phase flow method called an air-grout injection system can be appropriately selected and used.

前記グラウト材注入用ノズル8を所定深さまで差し入れた後、前記グラウト材注入用ノズル8に設けられたノズル口81を通じてグラウト材を、前記基礎材2又は埋め戻し材3に向かって噴射するグラウト材噴射工程を実行する。前記グラウト材噴射工程においては、前記基礎材2又は埋め戻し材3に刺し入れられた前記グラウト材注入用ノズル8を一定速度にてゆっくりと引き戻しながらグラウト材を噴射させる(図2(c)参照)。これにより、前記前記グラウト材注入用ノズル8を刺し入れた深さ分、前記グラウト材を前記基礎材2、又は埋め戻し材3に浸透させた層が形成される。その後、前記グラウト材が固化すれば、前記塊状体6が前記埋設管4の外周面に付着した状態にて形成される(図2(d)参照)。   After inserting the grout material injection nozzle 8 to a predetermined depth, the grout material sprays the grout material toward the base material 2 or the backfill material 3 through a nozzle port 81 provided in the grout material injection nozzle 8. An injection process is performed. In the grout material injection step, the grout material is injected while slowly pulling back the grout material injection nozzle 8 inserted in the base material 2 or the backfill material 3 at a constant speed (see FIG. 2C). ). As a result, a layer in which the grout material is permeated into the base material 2 or the backfill material 3 is formed by the depth at which the grout material injection nozzle 8 is inserted. Thereafter, when the grout material is solidified, the lump 6 is formed in a state of adhering to the outer peripheral surface of the buried pipe 4 (see FIG. 2D).

前記貫通孔形成工程において形成した複数の貫通孔5毎に、前記ノズル刺し入れ工程と、前記グラウト材噴射工程とを実行すれば、前記貫通孔5を設けた位置において、それぞれ前記塊状体6が形成され、もって、本発明構造1が構築される(図1参照)。   If the nozzle insertion step and the grout material injection step are executed for each of the plurality of through-holes 5 formed in the through-hole forming step, the mass bodies 6 are respectively formed at the positions where the through-holes 5 are provided. Thus, the structure 1 of the present invention is constructed (see FIG. 1).

なお、本発明においては、前記グラウト材噴射工程の実行の後、蓋材(図示せず)にて、前記貫通孔5を前記管体41の内壁側から閉塞することが好ましい。   In the present invention, it is preferable that the through hole 5 is closed from the inner wall side of the tube body 41 with a lid material (not shown) after the execution of the grout material injection step.

ところで、本発明方法においては、前記貫通孔形成工程において、前記埋設管4内から前記貫通孔5を形成する必要があるため、前記埋設管4を構成する前記管体41は作業員が中に入り得るに十分な口径のものであることが好ましい。具体的には、前記埋設管4の口径は、800mm以上であることが好ましく、1000mm以上であることがより好ましい。   By the way, in the method of the present invention, since it is necessary to form the through-hole 5 from the buried pipe 4 in the through-hole forming step, the pipe body 41 constituting the buried pipe 4 is not covered by an operator. It is preferable that the diameter is sufficient to enter. Specifically, the diameter of the buried pipe 4 is preferably 800 mm or more, and more preferably 1000 mm or more.

又、本実施形態においては、前記貫通孔形成工程において、前記埋設管4に対し、前記貫通孔5を、管頂部を基点として、前記埋設管4を構成する前記管体41の周方向に沿って、45度、135度、225度、及び315度の位相にある位置(前記管体41一本あたり都合8箇所の位置)に設けているが、これは、前記埋設管4を構成する前記管体41に対し、常に管頂側から管底側に向かって前記管体41を扁平させる圧力が負荷されていることを理由とする。   Further, in the present embodiment, in the through hole forming step, the through hole 5 with respect to the embedded tube 4 is arranged along the circumferential direction of the tube body 41 constituting the embedded tube 4 with the tube top as a base point. Are provided at positions that are in a phase of 45 degrees, 135 degrees, 225 degrees, and 315 degrees (eight convenient positions per one of the tube bodies 41). This is because the tube body 41 is always loaded with a pressure that flattens the tube body 41 from the tube top side toward the tube bottom side.

即ち、前記埋設管4に対して前記貫通孔5を形成するということは、前記埋設管4の物理的強度を減じることであり、前記埋設管4の物理的強度が減じられれば、前記圧力によって生じる変形応力によって、前記貫通孔5を起点としてクラック等の損傷が生じる場合がある。この点につき、本発明者が、前記埋設管4を構成する前記管体41に対し、図3(a)に示す外圧試験(扁平試験)を行ったところ、前記管体41の管頂部から管底部に向かって付加された圧力によって前記管体41に生じるひずみは、管頂部、管底部、及び両管側部において大きく、前記管体41の管頂部と両管側部との間、及び前記管体41の管底部と両管側部との間に生じるひずみは、比較的小さいことが確認された(図3(b)参照)。   That is, the formation of the through-hole 5 in the buried pipe 4 means that the physical strength of the buried pipe 4 is reduced. If the physical strength of the buried pipe 4 is reduced, the pressure is reduced. The generated deformation stress may cause damage such as cracks starting from the through hole 5. In this regard, the present inventor conducted an external pressure test (flat test) shown in FIG. 3A on the pipe body 41 constituting the buried pipe 4. The strain generated in the tube body 41 by the pressure applied toward the bottom is large in the tube top portion, tube bottom portion, and both tube side portions, between the tube top portion and both tube side portions of the tube body 41, and It was confirmed that the strain generated between the tube bottom portion of the tube body 41 and both tube side portions was relatively small (see FIG. 3B).

そこで、本発明においては、前記管体41の管頂部を基点として、前記管体41の周方向に沿って、45±10度(好ましくは、45±5度)、135±10度(好ましくは135±5度)、225±10度(好ましくは、225度±5度)、又は315±10度(好ましくは、315±5度)の位相にある位置において、前記貫通孔5を設けることが好ましい(なお、前記埋設管4が立坑(マンホール)のような軸心を鉛直方向に向けて設置されたものにあっては、この限りではない。)。   Therefore, in the present invention, 45 ± 10 degrees (preferably 45 ± 5 degrees), 135 ± 10 degrees (preferably 45 ± 5 degrees) along the circumferential direction of the tubular body 41 with the tube top portion of the tubular body 41 as a base point. 135 ± 5 degrees), 225 ± 10 degrees (preferably 225 degrees ± 5 degrees), or 315 ± 10 degrees (preferably 315 ± 5 degrees), the through hole 5 is provided It is preferable (this is not the case if the buried pipe 4 is installed with a shaft centered in the vertical direction such as a manhole).

又、本実施形態においては、前記変形応力の生じ難い位置四箇所すべてにおいて、前記貫通孔5を設けているが、本発明は、係る四箇所すべてにおいて前記貫通孔5を設けることを必須とするものでは無い。   Moreover, in this embodiment, although the said through-hole 5 is provided in all the four places where the said deformation stress does not produce easily, this invention makes it essential to provide the said through-hole 5 in all the four places which concern. It is not a thing.

例えば、図4(a)に示すように、前記貫通孔5を前記埋設管4の管底側の二箇所に設けても良く、又、図4(b)に示すように、前記貫通孔5を前記埋設管4の管頂部側の二箇所に設けても良い。前記貫通孔5を前記埋設管4の管底部側の二箇所に設けて本発明構造1を構築した場合、液状化現象時における前記埋設管4の沈下をより防止し得ることが確認されており、一方、前記貫通孔5を前記埋設管4の管底部側の二箇所に設けて本発明構造1を構築した場合、液状化現象時における前記埋設管4の浮き上がりをより防止し得ることが確認されている。なお、前記貫通孔5を設けるにあたっては、その後に形成される前記塊状体6によるウェイトバランスを鑑みて、前記塊状体6が左右対称となるように設けることが好ましい。   For example, as shown in FIG. 4 (a), the through holes 5 may be provided at two locations on the tube bottom side of the embedded pipe 4, and as shown in FIG. 4 (b), the through holes 5 are provided. May be provided at two places on the top side of the buried pipe 4. It has been confirmed that when the through hole 5 is provided at two locations on the tube bottom side of the buried pipe 4 and the structure 1 of the present invention is constructed, the buried pipe 4 can be further prevented from sinking during the liquefaction phenomenon. On the other hand, when the structure 1 of the present invention is constructed by providing the through holes 5 at two locations on the tube bottom side of the embedded tube 4, it is confirmed that the embedded tube 4 can be prevented from being lifted during the liquefaction phenomenon. Has been. In addition, when providing the said through-hole 5, it is preferable to provide so that the said massive body 6 may become left-right symmetric in view of the weight balance by the said massive body 6 formed after that.

又、本実施形態においては、前記貫通孔5を、前記埋設管4を構成する前記管体41一本あたり八箇所設けているが、係る貫通孔5の数は特に限定されるものではない。前記貫通孔5を多く設ければ、最終的に形成される前記塊状体6の総重量が大きくなり、液状化現象時における前記埋設管4の浮き上がりがより一層防止される。但し、前記貫通孔5を多く設けると、相対的に前記埋設管4を構成する前記管体41の物理強度が減少することから、前記貫通孔5は、管長が4mの前記管体41一本あたり、2〜16箇所の範囲内(好ましくは、4〜12箇所の範囲内)とすることが好ましい。   Moreover, in this embodiment, although the said through-hole 5 is provided in eight places per said pipe body 41 which comprises the said embedment pipe 4, the number of the through-holes 5 which concern is not specifically limited. If a large number of the through holes 5 are provided, the total weight of the lump 6 finally formed becomes large, and the floating of the buried pipe 4 during the liquefaction phenomenon is further prevented. However, if a large number of the through holes 5 are provided, the physical strength of the pipe body 41 constituting the embedded pipe 4 is relatively reduced. Therefore, the through hole 5 has one pipe body 41 having a pipe length of 4 m. It is preferable to make it within a range of 2 to 16 locations (preferably within a range of 4 to 12 locations).

更に、本実施形態においては、前記貫通孔5の直径を50mmとしているが、係る貫通孔5の直径は、数は特に限定されるものではない。前記貫通孔5の直径を大きくし、管径の大きな前記グラウト材注入用ノズ8を挿入し得るようにすれば、最終的に形成される前記塊状体6の総重量が大きくなり、液状化現象時における前記埋設管4の浮き上がりがより一層防止される。但し、前記貫通孔5の直径が大きくなりすぎると、相対的に前記埋設管4の物理強度が減少することから、口径が800mm以上の前記管体41であれば、前記貫通孔5の直径は、30〜100mmの範囲内(好ましくは、40〜70mmの範囲内)とすることが好ましい。   Further, in the present embodiment, the diameter of the through hole 5 is 50 mm, but the number of the diameter of the through hole 5 is not particularly limited. If the diameter of the through-hole 5 is increased so that the grout material injection nose 8 having a large tube diameter can be inserted, the total weight of the mass 6 to be finally formed increases and a liquefaction phenomenon occurs. The floating of the buried pipe 4 at the time is further prevented. However, if the diameter of the through-hole 5 becomes too large, the physical strength of the buried pipe 4 is relatively reduced. Therefore, if the pipe body 41 has a diameter of 800 mm or more, the diameter of the through-hole 5 is , Preferably within a range of 30 to 100 mm (preferably within a range of 40 to 70 mm).

加えて、本実施形態においては、前記ノズル刺し入れ工程において、前記グラウト材注入用ノズル8の先端に設けられたノズル口81が前記貫通孔5から1m離れる位置まで、前記グラウト材注入用ノズル8を前記基礎材2又は前記埋め戻し材3に向かって刺し入れている。前記グラウト材注入用ノズル8の刺し入れ深さが深くなれば深くなるほど、最終的に形成される前記塊状体6の重量が大きくなり、液状化現象時における前記埋設管4の浮き上がりがより一層防止される。但し、前記埋設管4を敷設するために掘削された溝を越えて、前記グラウト材注入用ノズル8を刺し入れるのは困難であり、又、無駄が多いことから、前記グラウト材注入用ノズル8の刺し入れ深さは、0.5〜3mとすることが好ましい。なお、前記グラウト材注入用ノズル8の刺し入れ方向は、前記貫通孔5を設けた位置における前記埋設管4の接線方向に略直交する方向(具体的には、接線方向と90度±20度(好ましくは、90度±10度)の交差角で交差する方向)とすることが好ましい。前記グラウト材注入用ノズル8の刺し入れ方向を前記方向とすれば、最終的に形成される前記塊状体6が、前記貫通孔5を設けた位置における前記埋設管4の接線方向に略直交する方向に延設されて嵩高くなり、もって、液状化現象時における前記埋設管4の浮き上がりがより一層防止される。   In addition, in the present embodiment, in the nozzle insertion step, the grout material injection nozzle 8 is provided until the nozzle port 81 provided at the tip of the grout material injection nozzle 8 is 1 m away from the through-hole 5. Is inserted into the base material 2 or the backfill material 3. The deeper the piercing depth of the grout material injection nozzle 8 is, the larger the weight of the lump 6 finally formed becomes, and the floating of the buried pipe 4 during the liquefaction phenomenon is further prevented. Is done. However, it is difficult to insert the grout material injection nozzle 8 beyond the groove excavated for laying the buried pipe 4, and the grout material injection nozzle 8 is wasteful. The penetration depth is preferably 0.5 to 3 m. The grouting material injection nozzle 8 is inserted in a direction substantially perpendicular to the tangential direction of the buried pipe 4 at the position where the through hole 5 is provided (specifically, 90 ° ± 20 ° with the tangential direction). (Preferably, the direction intersecting at an intersection angle of 90 degrees ± 10 degrees). If the insertion direction of the grout material injection nozzle 8 is the direction, the mass 6 finally formed is substantially orthogonal to the tangential direction of the buried pipe 4 at the position where the through hole 5 is provided. It extends in the direction and becomes bulky, so that the buried pipe 4 is further prevented from floating during the liquefaction phenomenon.

そして、本発明においては、前記管体41一本あたりに最終的に形成される前記塊状体6の総重量が、前記管体41一本あたりの浮力(両端を閉塞させた状態で、水中にて生じる浮力)の90%以上(好ましくは100〜120%)となるようにすることが好ましい。前記塊状体6の総重量は、前記貫通孔5の数、前記貫通孔5の直径、前記グラウト材注入用ノズル8の刺し入れ深さ、前記グラウト材注入用ノズル8の引き戻し速度等を調整し、前記グラウト材の注入量を調整することによって決定することができる。   And in this invention, the total weight of the said lump 6 finally formed per said tube 41 is the buoyancy per said tube 41 (in the state which closed both ends, it is in water. The buoyancy generated in the above is preferably 90% or more (preferably 100 to 120%). The total weight of the mass 6 is adjusted by adjusting the number of the through holes 5, the diameter of the through holes 5, the penetration depth of the grout material injection nozzle 8, the pullback speed of the grout material injection nozzle 8, and the like. It can be determined by adjusting the injection amount of the grout material.

ところで、前記塊状体6は、前記基礎材2又は埋め戻し材3に浸透させたグラウト材が固化することによって形成されたものであるが、本発明においては、地震発生の際、前記塊状体6にひび割れや欠落が生じ難くなるようにすべく、図5に示すように、前記貫通孔5から前記塊状体6に向かって、ステンレスなどの金属性又は繊維強化プラスチックや熱硬化性樹脂などのプラスチック製の、棒状体或いはパイプ状体からなる支持竿9を挿入配置し、前記塊状体6の物理的強度を向上させることが好ましい。   By the way, although the said lump 6 is formed when the grout material penetrate | infiltrated into the said base material 2 or the backfilling material 3 solidifies, in the present invention, the said lump 6 is produced at the time of earthquake occurrence. As shown in FIG. 5, a metal or a fiber reinforced plastic such as stainless steel or a plastic such as a thermosetting resin is directed from the through-hole 5 toward the lump body 6 in order to make it difficult to cause cracks or cracks. It is preferable to insert and arrange a support rod 9 made of a rod-like body or a pipe-like body to improve the physical strength of the lump 6.

なお、本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施例はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。   The present invention can be implemented in various other forms without departing from the spirit or main features thereof. For this reason, the above-described embodiment is merely an example in all respects and should not be interpreted in a limited manner. The scope of the present invention is indicated by the claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

本発明は、特に、既存の埋設管に対する液状化現象対策として好適に利用することができる。   In particular, the present invention can be suitably used as a countermeasure against the liquefaction phenomenon for existing buried pipes.

1 本発明構造(埋設管構造)
2 基礎材
21 基床部
3 埋め戻し材
4 埋設管
41 管体
5 貫通孔
6 塊状体
7 溝床
8 グラウト材注入用ノズル
81 ノズル口
82 チューブ
9 支持竿
1 Structure of the present invention (buried pipe structure)
2 Base material 21 Base floor 3 Backfill material 4 Buried pipe 41 Tube 5 Through hole 6 Mass 7 Groove floor 8 Grout material injection nozzle 81 Nozzle port 82 Tube 9 Support rod

Claims (7)

埋設管と、
前記埋設管の周囲に存する、基礎材又は埋め戻し材と、
前記埋設管の管壁を貫通して設けられた一ないし複数の貫通孔と、
前記埋設管の周囲に付着された塊状体と、
を具備してなり、
前記塊状体が、前記貫通孔を通じて前記基礎材又は前記埋め戻し材に向かって浸透させたグラウト材が固化することによって形成されてなることを特徴とする埋設管構造。
Buried pipe,
A base material or a backfill material existing around the buried pipe;
One or a plurality of through holes provided through the pipe wall of the buried pipe;
A lump attached to the periphery of the buried pipe;
Comprising
The buried pipe structure is characterized in that the lump is formed by solidifying a grout material permeated toward the base material or the backfill material through the through hole.
請求項1に記載の埋設管構造において、
前記埋設管が複数の管体を連結させた管路であり、
前記貫通孔が、前記管体の管頂部を基点として、前記管体の周方向に沿って、45±10度、135±10度、225±10度、又は315±10度の位相にある位置から選ばれたいずれかの位置に形成されてなる埋設管構造。
The buried pipe structure according to claim 1,
The buried pipe is a pipe connecting a plurality of pipes;
The position where the through hole is in a phase of 45 ± 10 degrees, 135 ± 10 degrees, 225 ± 10 degrees, or 315 ± 10 degrees along the circumferential direction of the tubular body with the top of the tubular body as a base point A buried pipe structure formed at any position selected from
請求項1又は2に記載の埋設管構造において、
前記埋設管が、口径800mm以上を有してなり、
前記貫通孔の直径が30〜100mmとなされた埋設管構造。
The buried pipe structure according to claim 1 or 2,
The buried pipe has a diameter of 800 mm or more;
A buried pipe structure in which the diameter of the through hole is 30 to 100 mm.
請求項1ないし3のいずれか1項に記載の埋設管構造において、
前記塊状体が、前記貫通孔を設けた位置における前記埋設管の接線方向に略直交する方向に延設されてなる埋設管構造。
The buried pipe structure according to any one of claims 1 to 3,
A buried pipe structure in which the lump is extended in a direction substantially orthogonal to a tangential direction of the buried pipe at a position where the through hole is provided.
請求項1ないし4のいずれか1項に記載の埋設管構造において、
前記塊状体には、金属性又はプラスチック製の、棒状体或いはパイプ状体からなる支持竿が挿入配置されてなる埋設管構造。
The buried pipe structure according to any one of claims 1 to 4,
A buried pipe structure in which a metal or plastic support rod made of a rod-like body or a pipe-like body is inserted and arranged in the lump.
請求項1ないし5のいずれか1項に記載の埋設管構造において、
更に、前記貫通孔を閉塞する蓋材を具備してなる埋設管構造。
The buried pipe structure according to any one of claims 1 to 5,
Furthermore, a buried pipe structure comprising a lid member that closes the through hole.
請求項1ないし6のいずれか1項に記載の埋設管構造を構築するための埋設管構造構築方法であって、
前記埋設管の管内から、前記埋設管の管壁を貫通する貫通孔を形成する貫通孔形成工程と、
前記貫通孔を通じて、管状のグラウト材注入用ノズルを前記埋設管の周囲に存する基礎材、又は埋め戻し材に刺し入れるノズル刺し入れ工程と、
前記基礎材又は埋め戻し材に刺し入れられた前記グラウト材注入用ノズルを引き戻しながら、前記グラウト材注入用ノズルに設けられたノズル口を通じてグラウト材を前記基礎材、又は埋め戻し材に向かって噴射するグラウト材噴射工程と、
を実行することによって、
前記埋設管の周囲に、前記グラウト材が固化してなる塊状体を形成することを特徴とする埋設管構造構築方法。
An embedded pipe structure construction method for constructing an embedded pipe structure according to any one of claims 1 to 6,
A through hole forming step of forming a through hole penetrating the tube wall of the buried pipe from the inside of the buried pipe;
Nozzle insertion step of inserting a tubular grout material injection nozzle into the base material existing around the buried pipe or backfill material through the through-hole,
While pulling back the grout material injection nozzle stabbed in the base material or backfill material, the grout material is sprayed toward the base material or backfill material through a nozzle port provided in the grout material injection nozzle. A grout material injection process,
By running
A method for constructing a buried pipe structure, characterized in that a mass formed by solidifying the grout material is formed around the buried pipe.
JP2012026523A 2012-02-09 2012-02-09 Embedded pipe structure and method for constructing embedded pipe structure Pending JP2013164103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012026523A JP2013164103A (en) 2012-02-09 2012-02-09 Embedded pipe structure and method for constructing embedded pipe structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012026523A JP2013164103A (en) 2012-02-09 2012-02-09 Embedded pipe structure and method for constructing embedded pipe structure

Publications (1)

Publication Number Publication Date
JP2013164103A true JP2013164103A (en) 2013-08-22

Family

ID=49175579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012026523A Pending JP2013164103A (en) 2012-02-09 2012-02-09 Embedded pipe structure and method for constructing embedded pipe structure

Country Status (1)

Country Link
JP (1) JP2013164103A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5728747B1 (en) * 2014-07-09 2015-06-03 国立大学法人 東京大学 Liquefaction countermeasures for existing buried pipes
JP2016125601A (en) * 2015-01-05 2016-07-11 国立研究開発法人農業・食品産業技術総合研究機構 Existing pipe line floating prevention structure and its method
CN108007789A (en) * 2017-12-22 2018-05-08 绍兴文理学院 The physical model test device that deep basal pit unstability impacts neighbouring buried pipeline
CN113279771A (en) * 2021-06-22 2021-08-20 中建交通建设集团有限公司 Prevent prefabricated assembled structure of shield tunnel section of jurisdiction come-up under water
CN114277810A (en) * 2021-12-14 2022-04-05 北京城建集团有限责任公司 Backfilling method for snow making engineering
JP7394344B2 (en) 2020-05-19 2023-12-08 国立研究開発法人農業・食品産業技術総合研究機構 Liquefaction countermeasure construction method and liquefaction countermeasure structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3952529A (en) * 1974-04-12 1976-04-27 Lefever Kenneth W Earthquake fault zone pipeline construction method and arrangement
JPS54137816A (en) * 1978-04-19 1979-10-25 Kawasaki Heavy Ind Ltd Iron pipe burying execution method and its device
JPH02120421A (en) * 1988-10-27 1990-05-08 Tokyu Constr Co Ltd Floating prevention method for underground construction
JP2009281001A (en) * 2008-05-20 2009-12-03 Chuo Kaihatsu Kk Lift prevention method and buried structure for underground buried object

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3952529A (en) * 1974-04-12 1976-04-27 Lefever Kenneth W Earthquake fault zone pipeline construction method and arrangement
JPS54137816A (en) * 1978-04-19 1979-10-25 Kawasaki Heavy Ind Ltd Iron pipe burying execution method and its device
JPH02120421A (en) * 1988-10-27 1990-05-08 Tokyu Constr Co Ltd Floating prevention method for underground construction
JP2009281001A (en) * 2008-05-20 2009-12-03 Chuo Kaihatsu Kk Lift prevention method and buried structure for underground buried object

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5728747B1 (en) * 2014-07-09 2015-06-03 国立大学法人 東京大学 Liquefaction countermeasures for existing buried pipes
JP2016125601A (en) * 2015-01-05 2016-07-11 国立研究開発法人農業・食品産業技術総合研究機構 Existing pipe line floating prevention structure and its method
CN108007789A (en) * 2017-12-22 2018-05-08 绍兴文理学院 The physical model test device that deep basal pit unstability impacts neighbouring buried pipeline
CN108007789B (en) * 2017-12-22 2023-10-27 绍兴文理学院 Physical model test device for influencing adjacent buried pipelines by instability of deep foundation pit
JP7394344B2 (en) 2020-05-19 2023-12-08 国立研究開発法人農業・食品産業技術総合研究機構 Liquefaction countermeasure construction method and liquefaction countermeasure structure
CN113279771A (en) * 2021-06-22 2021-08-20 中建交通建设集团有限公司 Prevent prefabricated assembled structure of shield tunnel section of jurisdiction come-up under water
CN114277810A (en) * 2021-12-14 2022-04-05 北京城建集团有限责任公司 Backfilling method for snow making engineering

Similar Documents

Publication Publication Date Title
CN108442382B (en) In-situ protection and enclosure soil-retaining structure for pressure pipeline crossing deep foundation pit and construction method
JP2013164103A (en) Embedded pipe structure and method for constructing embedded pipe structure
JP5990214B2 (en) Reinforcement method of hole wall in construction method of cast-in-place concrete pile.
KR101664368B1 (en) A cast-in place pile arrangement method for head of concrete pile exposed to outside using geo tube
CN101328712A (en) Construction method of interlocking pile for soft soil and soil layer with obstacle
CN104499479A (en) Dig-hole pile construction method based on penetration of sand gravel backfilling layer
JP2009281001A (en) Lift prevention method and buried structure for underground buried object
CN108166483A (en) Bored pile construction method
JP5882143B2 (en) Anti-floating pile for underground structures and anti-floating method for underground structures
CN104863108B (en) A kind of ground-connecting-wall soil lateral pressure box embedded device
CN107653878A (en) Cast-in-situ bored pile is reusable to be longitudinally separated formula steel pile casting construction
CN103911993B (en) A kind of PHA anchor pole and construction method thereof
KR100618597B1 (en) Cast in place concrete pile using vibro magnetic shovel hammer, and the construction method of this
JP6413469B2 (en) Pile foundation and pile foundation construction method
CN111379573B (en) Connecting system for connecting shield tunnel in middle of oil and gas pipeline
JP3889750B2 (en) Face stabilization method in underground structure construction method
CN103911986B (en) A kind of construction method combining strike-on steel pipe pile
CN102979105A (en) Underground water control method of wellhole grouting and seepage insulation
CN101761098B (en) Embedding method of surveying slant and settling tube
CN101100857A (en) Soil cement fixed pile wall based on foundation ditch supporting and construction method thereof
CN208039234U (en) A kind of engineering pile in solution cavity geology
CN111549794A (en) Miniature supporting method and miniature pile supporting structure suitable for soft foundation treatment
CN111379574A (en) Method for connecting oil-gas pipeline into shield tunnel from middle
TWI539063B (en) Middle column implantation method
CN212671804U (en) Connecting device for connecting shield tunnel in middle of oil and gas pipeline

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151215