JP2021180271A - Evaluation method for epitaxial growth preprocessing condition - Google Patents
Evaluation method for epitaxial growth preprocessing condition Download PDFInfo
- Publication number
- JP2021180271A JP2021180271A JP2020085453A JP2020085453A JP2021180271A JP 2021180271 A JP2021180271 A JP 2021180271A JP 2020085453 A JP2020085453 A JP 2020085453A JP 2020085453 A JP2020085453 A JP 2020085453A JP 2021180271 A JP2021180271 A JP 2021180271A
- Authority
- JP
- Japan
- Prior art keywords
- epitaxial growth
- defects
- pretreatment
- heat treatment
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000011156 evaluation Methods 0.000 title claims abstract description 31
- 238000007781 pre-processing Methods 0.000 title abstract 8
- 239000000758 substrate Substances 0.000 claims abstract description 61
- 230000007547 defect Effects 0.000 claims abstract description 57
- 238000012360 testing method Methods 0.000 claims abstract description 30
- 239000004065 semiconductor Substances 0.000 claims abstract description 15
- 239000013078 crystal Substances 0.000 claims abstract description 14
- 238000007689 inspection Methods 0.000 claims abstract description 8
- 238000005259 measurement Methods 0.000 claims abstract description 7
- 238000010438 heat treatment Methods 0.000 claims description 34
- 239000011164 primary particle Substances 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 9
- 238000005498 polishing Methods 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 6
- 239000002002 slurry Substances 0.000 claims description 6
- 230000035945 sensitivity Effects 0.000 abstract description 14
- 238000004904 shortening Methods 0.000 abstract 1
- 235000012431 wafers Nutrition 0.000 description 16
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 12
- 239000001257 hydrogen Substances 0.000 description 11
- 229910052739 hydrogen Inorganic materials 0.000 description 11
- 239000007789 gas Substances 0.000 description 6
- 238000001947 vapour-phase growth Methods 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 3
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000004438 BET method Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000008034 disappearance Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000011362 coarse particle Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
本発明は、半導体単結晶基板にエピタキシャル成長を行うときの、エピタキシャル成長前処理条件の評価方法に関する。 The present invention relates to a method for evaluating epitaxial growth pretreatment conditions when epitaxially growing a semiconductor single crystal substrate.
近年、半導体の微細化が進み、半導体単結晶基板表面に存在する欠陥を減らす必要性がますます高まってきた。一般的に、エピタキシャル成長前の基板表面に欠陥が存在すると、その欠陥が核となり、エピタキシャル成長後により大きな欠陥となり、半導体デバイスの歩留に影響することが知られている。エピタキシャル成長前に存在する欠陥を除去するため、エピタキシャル成長前に水素雰囲気による熱処理や、塩化水素ガスによる気相エッチングを行う手法等が知られている。 In recent years, the miniaturization of semiconductors has progressed, and the need to reduce defects existing on the surface of semiconductor single crystal substrates has increased. It is generally known that if a defect exists on the surface of the substrate before the epitaxial growth, the defect becomes a nucleus and becomes a larger defect after the epitaxial growth, which affects the yield of the semiconductor device. In order to remove defects existing before epitaxial growth, there are known methods such as heat treatment with a hydrogen atmosphere and gas phase etching with hydrogen chloride gas before epitaxial growth.
例えば、特許文献1には、エピタキシャル成長前に水素雰囲気熱処理を行うことにより、基板表面の欠陥を低減させることが記載されている。特許文献2には、エピタキシャル成長前に塩化水素ガスで気相エッチングを行うことにより、基板表面の欠陥を低減させることが記載されている。
For example, Patent Document 1 describes that defects on the surface of a substrate are reduced by performing a hydrogen atmosphere heat treatment before epitaxial growth.
しかし、実際の製品向けの基板や工程管理用のモニターウェーハ等では、そもそもエピタキシャル成長前に存在する欠陥が少ないこともあり、エピタキシャル成長前の処理条件の検討において、統計的に有意なデータを得るのに多大な時間が掛かることが課題であった。 However, in the case of substrates for actual products, monitor wafers for process control, etc., there are few defects that exist before epitaxial growth, so it is necessary to obtain statistically significant data in the examination of processing conditions before epitaxial growth. The problem was that it took a lot of time.
したがって、エピタキシャル成長前処理の有効性を、高感度に評価することができる評価方法が求められている。 Therefore, there is a demand for an evaluation method capable of evaluating the effectiveness of the epitaxial growth pretreatment with high sensitivity.
本発明は、上記問題を解決するためになされたものであり、エピタキシャル成長前処理条件の有効性を高感度に評価することができ、エピタキシャル成長前処理の条件検討に掛かる時間を短縮することが可能な、エピタキシャル成長前処理の評価方法を提供することを目的とする。 The present invention has been made to solve the above problems, and the effectiveness of the epitaxial growth pretreatment conditions can be evaluated with high sensitivity, and the time required for examining the conditions for the epitaxial growth pretreatment can be shortened. , It is an object of the present invention to provide an evaluation method of epitaxial growth pretreatment.
本発明は、上記目的を達成するためになされたものであり、半導体単結晶基板のエピタキシャル成長前処理条件の評価方法であって、レーザー散乱方式のウェーハ表面検査装置を用いて測定したときに、33nm以上のサイズに分類される欠陥が、直径300mmの基板換算で1000個以上存在する試験用基板を用い、エピタキシャル成長前処理条件をパラメータとしてエピタキシャル成長前処理及びエピタキシャル成長を行い、エピタキシャル成長後の前記試験用基板の表面の欠陥数を測定し、該測定結果を比較してエピタキシャル成長前処理条件の評価を行うエピタキシャル成長前処理条件の評価方法を提供する。 The present invention has been made to achieve the above object, and is a method for evaluating epitaxial growth pretreatment conditions for a semiconductor single crystal substrate, and has a diameter of 33 nm when measured using a laser scattering type wafer surface inspection device. Using a test substrate having 1000 or more defects classified into the above sizes in terms of a substrate having a diameter of 300 mm, epitaxial growth pretreatment and epitaxial growth were performed using the epitaxial growth pretreatment conditions as parameters, and the test substrate after epitaxial growth was subjected to epitaxial growth. Provided is an evaluation method of an epitaxial growth pretreatment condition for measuring the number of defects on the surface and comparing the measurement results to evaluate the epitaxial growth pretreatment condition.
このようなエピタキシャル成長前処理条件の評価方法によれば、エピタキシャル成長前処理条件の有効性を高感度に評価することができ、エピタキシャル成長前処理の条件検討に掛かる時間を短縮することができる。 According to such an evaluation method of the epitaxial growth pretreatment condition, the effectiveness of the epitaxial growth pretreatment condition can be evaluated with high sensitivity, and the time required for examining the conditions of the epitaxial growth pretreatment can be shortened.
このとき、平均一次粒子径が10μm以上の粒子を含むスラリーを用いて最終仕上げ研磨を行い欠陥を導入することにより、前記試験用基板を作製することができる。 At this time, the test substrate can be produced by performing final finish polishing using a slurry containing particles having an average primary particle diameter of 10 μm or more and introducing defects.
これにより、基板表面の欠陥の分布や、基板間の欠陥数が均一な高欠陥密度の試験用基板を容易に作製でき、高感度でエピタキシャル成長前処理条件の評価を行うことが可能な試験用基板を得ることができる。 This makes it possible to easily manufacture a test substrate with a high defect density in which the distribution of defects on the substrate surface and the number of defects between the substrates are uniform, and it is possible to evaluate the epitaxial growth pretreatment conditions with high sensitivity. Can be obtained.
このとき、前記エピタキシャル成長前処理条件のパラメータを、熱処理温度、熱処理時間、熱処理雰囲気及び熱処理圧力から選択することができる。 At this time, the parameters of the epitaxial growth pretreatment conditions can be selected from the heat treatment temperature, the heat treatment time, the heat treatment atmosphere, and the heat treatment pressure.
このようなパラメータは、エピタキシャル成長における欠陥の消滅や生成に大きな影響を及ぼす条件であるため、評価するパラメータとして適切なものであり、より高感度の評価を行うことが可能となる。 Since such a parameter is a condition that greatly affects the disappearance and formation of defects in epitaxial growth, it is appropriate as a parameter to be evaluated, and it is possible to perform a higher-sensitivity evaluation.
以上のように、本発明のエピタキシャル成長前処理条件の評価方法によれば、エピタキシャル成長前処理条件の有効性を高感度に評価することができ、エピタキシャル成長前処理の条件検討に掛かる時間を短縮することが可能となる。 As described above, according to the evaluation method of the epitaxial growth pretreatment condition of the present invention, the effectiveness of the epitaxial growth pretreatment condition can be evaluated with high sensitivity, and the time required for examining the conditions of the epitaxial growth pretreatment can be shortened. It will be possible.
以下、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail, but the present invention is not limited thereto.
上述のように、エピタキシャル成長前処理の有効性を高感度に評価することができ、エピタキシャル成長前処理の条件検討に掛かる時間を短縮することが可能な、エピタキシャル成長前処理の評価方法が求められていた。 As described above, there has been a demand for an evaluation method for the epitaxial growth pretreatment, which can evaluate the effectiveness of the epitaxial growth pretreatment with high sensitivity and shorten the time required for examining the conditions of the epitaxial growth pretreatment.
本発明者らは、上記課題について鋭意検討を重ねた結果、半導体単結晶基板のエピタキシャル成長前処理条件の評価方法であって、レーザー散乱方式のウェーハ表面検査装置を用いて測定したときに、33nm以上のサイズに分類される欠陥が、直径300mmの基板換算で1000個以上存在する試験用基板を用い、エピタキシャル成長前処理条件をパラメータとしてエピタキシャル成長前処理及びエピタキシャル成長を行い、エピタキシャル成長後の前記試験用基板の表面の欠陥数を測定し、該測定結果を比較してエピタキシャル成長前処理条件の評価を行うエピタキシャル成長前処理条件の評価方法により、エピタキシャル成長前処理条件の有効性を高感度に評価することができ、エピタキシャル成長前処理の条件検討に掛かる時間を短縮することができることを見出し、本発明を完成した。 As a result of diligent studies on the above problems, the present inventors have conducted an evaluation method for epitaxial growth pretreatment conditions for a semiconductor single crystal substrate, and when measured using a laser scattering type wafer surface inspection device, the nm is 33 nm or more. Using a test substrate having 1000 or more defects classified into the sizes of 300 mm in diameter in terms of a substrate, epitaxial growth pretreatment and epitaxial growth were performed using the epitaxial growth pretreatment conditions as parameters, and the surface of the test substrate after epitaxial growth was performed. The effectiveness of the epitaxial growth pretreatment condition can be evaluated with high sensitivity by the evaluation method of the epitaxial growth pretreatment condition, which measures the number of defects in the above and compares the measurement results to evaluate the epitaxial growth pretreatment condition. We have found that the time required for studying the processing conditions can be shortened, and completed the present invention.
以下、本発明の一実施形態に係るエピタキシャル成長前処理条件の評価方法について、図を参照しながら説明する。
本発明者は、エピタキシャル成長前処理の条件検討に掛かる時間短縮のため、エピタキシャル成長前の試験用基板に、人為的に多くの欠陥を形成したものを作製し、その試験用基板にエピタキシャル成長を行うことで、エピタキシャル成長前処理の有効性を高感度で評価することが可能となり、条件の検討に掛かる所要時間を劇的に短縮できることを見出した。
Hereinafter, the evaluation method of the epitaxial growth pretreatment condition according to the embodiment of the present invention will be described with reference to the drawings.
In order to shorten the time required for studying the conditions of the epitaxial growth pretreatment, the present inventor prepared a test substrate before epitaxial growth with many defects artificially formed, and subjected to epitaxial growth on the test substrate. It has been found that the effectiveness of the epitaxial growth pretreatment can be evaluated with high sensitivity, and the time required for studying the conditions can be dramatically shortened.
(半導体単結晶基板、試験用基板)
まず、エピタキシャル成長を行う対象とする半導体単結晶基板の種類、材料は、特に限定されない。本発明に係るエピタキシャル成長前処理条件の評価方法は、例えば、シリコン単結晶基板上へのエピタキシャル成長とすることが好ましい。また、評価を行う試験用基板として、意図的に欠陥数を増加させた半導体単結晶基板を使用する。この試験用基板は、レーザー散乱方式のウェーハ表面検査装置を用いて測定したときに、33nm以上のサイズに分類される欠陥(LLS)が、直径300mmの基板換算で1000個以上存在するものである。つまり、試験用基板の表面の欠陥数の下限値は試験用基板の大きさに応じて変わり、例えば、直径200mmの基板を試験用基板とする場合は、445個以上存在するものを使用することとなる。なお、欠陥数の上限値は特に限定されないが、より安定して高感度の評価を行う観点から、直径300mmの基板換算で10000個以下とすることができる。
(Semiconductor single crystal substrate, test substrate)
First, the type and material of the semiconductor single crystal substrate to be subjected to epitaxial growth are not particularly limited. The method for evaluating the epitaxial growth pretreatment conditions according to the present invention is preferably, for example, epitaxial growth on a silicon single crystal substrate. Further, as the test substrate for evaluation, a semiconductor single crystal substrate whose number of defects is intentionally increased is used. This test substrate has 1000 or more defects (LLS) classified into a size of 33 nm or more when measured using a laser scattering type wafer surface inspection device in terms of a substrate having a diameter of 300 mm. .. That is, the lower limit of the number of defects on the surface of the test substrate varies depending on the size of the test substrate. For example, when a substrate having a diameter of 200 mm is used as the test substrate, 445 or more of the substrates should be used. It becomes. The upper limit of the number of defects is not particularly limited, but from the viewpoint of more stable and high-sensitivity evaluation, the number can be 10,000 or less in terms of a substrate having a diameter of 300 mm.
評価前の試験用基板表面の欠陥数は、レーザー散乱方式のウェーハ表面検査装置により測定された値である。ウェーハ表面検査装置は、レーザー散乱方式のものであれば特に限定されないが、例えば、KLA社製のSP3を使用することができる。 The number of defects on the surface of the test substrate before evaluation is a value measured by a laser scattering type wafer surface inspection device. The wafer surface inspection device is not particularly limited as long as it is of a laser scattering type, but for example, SP3 manufactured by KLA can be used.
また、試験用基板は、上記の数値範囲を満たす高欠陥密度のものであれば、どのような製造方法により製造されたものであってもよい。特に、製品の最終仕上げ研磨で使用するスラリーに対して、製品の最終仕上げ研磨で使用するスラリーに含まれる研磨粒子の平均一次粒子径よりも、10倍以上大きな平均一次粒子径を有する粗大粒子を添加して研磨を行うことで作製することが好ましく、平均一次粒子径が10μm以上の粒子を含むスラリーを用いて最終仕上げ研磨を行い、欠陥を導入することにより作製することがより好ましい。なお、この粒子の平均一次粒子径の上限は特に限定されないが、100μm程度とすることができる。このようにして試験用基板を製造すれば、基板表面の欠陥の分布が均一であり、かつ、試験用基板間の欠陥数が均一な高欠陥密度の試験用基板を容易に作製でき、高感度でエピタキシャル成長前処理条件の評価を行うことが可能な試験用基板を得ることができる。 Further, the test substrate may be manufactured by any manufacturing method as long as it has a high defect density that satisfies the above numerical range. In particular, coarse particles having an average primary particle size 10 times or more larger than the average primary particle size of the polishing particles contained in the slurry used in the final finish polishing of the product with respect to the slurry used in the final finish polishing of the product. It is preferably produced by adding and polishing, and more preferably by performing final finish polishing using a slurry containing particles having an average primary particle size of 10 μm or more and introducing defects. The upper limit of the average primary particle size of the particles is not particularly limited, but can be about 100 μm. By manufacturing the test substrate in this way, it is possible to easily produce a test substrate having a high defect density in which the distribution of defects on the surface of the substrate is uniform and the number of defects between the test substrates is uniform, and the sensitivity is high. It is possible to obtain a test substrate capable of evaluating the epitaxial growth pretreatment conditions.
なお、本明細書でいう平均一次粒子径とは、BET法により測定される比表面積から算出される平均一次粒子径である。BET法は、粒子表面に吸着占有面積が既知の分子を液体窒素の温度で吸着させ、その吸着量から試料の比表面積を求める方法である。比表面積を球状粒子の直径に換算した値が平均一次粒子径である。 The average primary particle size referred to in the present specification is an average primary particle size calculated from the specific surface area measured by the BET method. The BET method is a method in which a molecule having a known adsorption area is adsorbed on the particle surface at the temperature of liquid nitrogen, and the specific surface area of the sample is obtained from the adsorption amount. The value obtained by converting the specific surface area into the diameter of the spherical particles is the average primary particle diameter.
(エピタキシャル成長前処理)
本発明においては、上述の試験用基板を用いて、エピタキシャル成長前処理の条件の評価を行う。評価すべきエピタキシャル成長前処理条件は特に限定されないが、例えば、熱処理温度、熱処理時間、熱処理雰囲気及び熱処理圧力から選択することができる。このようなパラメータは、エピタキシャル成長における欠陥の消滅や生成に及ぼす影響が高いものであるため、パラメータとして適切なものであり、感度の高い評価を行うことが可能となる。上記の各パラメータにおいて、評価を行いたい数値範囲を適宜設定して、エピタキシャル成長前処理を行えばよい。熱処理雰囲気としては、水素ガスに対して添加するガスの種類(塩化水素ガス等)や濃度をパラメータとしてとして選択、設定できる。
(Epitaxial growth pretreatment)
In the present invention, the conditions of the epitaxial growth pretreatment are evaluated using the above-mentioned test substrate. The epitaxial growth pretreatment conditions to be evaluated are not particularly limited, and can be selected from, for example, a heat treatment temperature, a heat treatment time, a heat treatment atmosphere, and a heat treatment pressure. Since such a parameter has a high influence on the disappearance and formation of defects in epitaxial growth, it is appropriate as a parameter, and it is possible to perform highly sensitive evaluation. In each of the above parameters, the numerical range to be evaluated may be appropriately set and the epitaxial growth pretreatment may be performed. As the heat treatment atmosphere, the type (hydrogen chloride gas, etc.) and concentration of the gas to be added to the hydrogen gas can be selected and set as parameters.
(エピタキシャル成長)
エピタキシャル成長前処理に続けてエピタキシャル成長を行う。本発明はエピタキシャル成長前処理条件を評価することを目的としているため、エピタキシャル成長条件は、エピタキシャル成長前処理の各パラメータ間で、共通の条件とすることが好ましい。エピタキシャル成長条件は、実際に製品となる半導体単結晶基板を処理する条件で行っても良いし、評価用のエピタキシャル成長条件を設定して、エピタキシャル成長を行っても良い。このようなエピタキシャル成長前処理とエピタキシャル成長を、エピタキシャル成長前処理のパラメータ毎に実施する。
(Epitaxial growth)
After the epitaxial growth pretreatment, epitaxial growth is performed. Since the present invention aims to evaluate the epitaxial growth pretreatment conditions, it is preferable that the epitaxial growth conditions are common among the parameters of the epitaxial growth pretreatment. The epitaxial growth condition may be set under the condition of actually processing the semiconductor single crystal substrate to be the product, or the epitaxial growth condition for evaluation may be set and the epitaxial growth may be performed. Such epitaxial growth pretreatment and epitaxial growth are carried out for each parameter of the epitaxial growth pretreatment.
(エピタキシャル成長後の評価)
上記のようにして、エピタキシャル成長を行った試験用基板の表面(エピタキシャル層の表面)の欠陥数を測定して、エピタキシャル成長前処理のパラメータ毎の欠陥数を比較することで、エピタキシャル成長前処理条件の評価を行う。欠陥数の測定方法、装置等は、欠陥数が測定でき、基板間の比較が可能であれば、特に限定されない。試験用基板の表面の欠陥数を規定するときに用いたときと同じ測定装置を用いて、同じ条件で測定を行っても良いし、異なる測定装置を用いたり、異なる条件(欠陥サイズ、測定モード等)で測定を行ったりしてもよい。
(Evaluation after epitaxial growth)
As described above, the number of defects on the surface of the test substrate (surface of the epitaxial layer) subjected to epitaxial growth is measured, and the number of defects for each parameter of the epitaxial growth pretreatment is compared to evaluate the epitaxial growth pretreatment conditions. I do. The method for measuring the number of defects, the apparatus, and the like are not particularly limited as long as the number of defects can be measured and comparisons between substrates are possible. The measurement may be performed under the same conditions using the same measuring device used when defining the number of defects on the surface of the test substrate, using different measuring devices, or under different conditions (defect size, measurement mode). Etc.) may be used for measurement.
(エピタキシャル成長装置)
エピタキシャル成長前処理及びエピタキシャル成長は、通常の気相成長装置を用いて行うことができる。例えば、図5に示すような、チャンバー1内に設置したサセプター2上に半導体単結晶Wを載置して気相成長を行うことが可能な、枚葉式の気相成長装置100を用いて行うこともできるし、バッチ式の気相成長装置を用いてもよい。
(Epitaxial growth device)
Epitaxy pretreatment and epitaxial growth can be performed using a normal vapor phase growth apparatus. For example, as shown in FIG. 5, a single-wafer type vapor
本発明に係る半導体単結晶基板のエピタキシャル成長前処理条件の評価方法では、高欠陥密度の試験用基板を使用して評価を行うことで、簡便に高い感度でエピタキシャル成長前処理条件の有効性を評価できるため、従来のように数多くのデータを収集して統計的な検討、評価を行う場合と比較して、極めて短時間でエピタキシャル成長前処理の条件の検討、評価が行えるようになる。 In the method for evaluating the epitaxial growth pretreatment condition of the semiconductor single crystal substrate according to the present invention, the effectiveness of the epitaxial growth pretreatment condition can be easily evaluated with high sensitivity by performing the evaluation using a test substrate having a high defect density. Therefore, it becomes possible to examine and evaluate the conditions of the epitaxial growth pretreatment in an extremely short time as compared with the case where a large amount of data is collected and statistically examined and evaluated as in the conventional case.
以下、実施例を挙げて本発明について具体的に説明するが、これは本発明を限定するものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but this does not limit the present invention.
(実施例)
図1に示すフローで、エピタキシャル成長前処理の評価を行った。評価で使用する基板は、直径300mmのシリコンウェーハである。シリコンウェーハの最終研磨工程において、スラリー中に10μm以上の平均一次粒子径を有する酸化アルミニウムを故意に添加して高欠陥密度ウェーハ(試験用基板)を作製、準備した。その後、SC1洗浄、SC2洗浄、HF洗浄を行った。なお、準備した高欠陥密度ウェーハを表面欠陥検査装置であるSP3のDCOモードで測定したときの、33nm以上のサイズに分類される欠陥(LLS)数は、すべての高欠陥密度ウェーハで1000個以上であり、4000±2000個の範囲であった。
(Example)
The epitaxial growth pretreatment was evaluated by the flow shown in FIG. The substrate used in the evaluation is a silicon wafer having a diameter of 300 mm. In the final polishing step of a silicon wafer, aluminum oxide having an average primary particle size of 10 μm or more was intentionally added to the slurry to prepare and prepare a high defect density wafer (test substrate). Then, SC1 washing, SC2 washing, and HF washing were performed. When the prepared high defect density wafers are measured in the DCO mode of SP3, which is a surface defect inspection device, the number of defects (LLS) classified into sizes of 33 nm or more is 1000 or more for all high defect density wafers. It was in the range of 4000 ± 2000 pieces.
次に、枚葉式エピタキシャル成長装置を用いて、エピタキシャル成長前処理として水素雰囲気下での熱処理を行い、続けてエピタキシャル膜の成長を行った。エピタキシャル成長後の欠陥数を、SP3のDCOモードで測定し、33nm以上のサイズに分類される欠陥(LLS)数を取得した。 Next, using a single-wafer epitaxial growth apparatus, heat treatment was performed in a hydrogen atmosphere as an epitaxial growth pretreatment, and then the epitaxial film was grown. The number of defects after epitaxial growth was measured in the DCO mode of SP3, and the number of defects (LLS) classified into sizes of 33 nm or more was obtained.
熱処理温度を1130℃とし、水素雰囲気下での熱処理時間をパラメータとして、それぞれ、30,60,180,300,600秒の前処理を行った結果を比較すると、図3に示すように、熱処理時間の延長により検出欠陥数が減少傾向にあることが確認された。 Comparing the results of pretreatment for 30, 60, 180, 300, and 600 seconds with the heat treatment temperature set to 1130 ° C and the heat treatment time in a hydrogen atmosphere as parameters, as shown in FIG. 3, the heat treatment time It was confirmed that the number of detected defects tends to decrease due to the extension of.
また、熱処理温度を1130℃とし、水素雰囲気下での熱処理圧力をパラメータとして、それぞれ、5Torr(666.4Pa)、12Torr(1599.5Pa)、100Torr(13328.9Pa)、300Torr(39986.8Pa)、700Torr(93302.6Pa)で前処理を行った結果を比較すると、図4に示すように、熱処理時の低圧化により検出欠陥数は減少傾向にあることが確認された。 Further, the heat treatment temperature was set to 1130 ° C., and the heat treatment pressure in a hydrogen atmosphere was used as a parameter, and 5 Torr (666.4 Pa), 12 Torr (1599.5 Pa), 100 Torr (1328.9 Pa), 300 Torr (39986.8 Pa), respectively. Comparing the results of the pretreatment at 700 Torr (93302.6 Pa), it was confirmed that the number of detected defects tended to decrease due to the lower pressure during the heat treatment, as shown in FIG.
この結果より、高欠陥密度ウェーハを用いて、エピタキシャル成長前処理である水素雰囲気熱処理の時間延長・低圧化の有効性を、高感度に短時間で評価することができることがわかった。 From this result, it was found that the effectiveness of time extension and low pressure reduction of hydrogen atmosphere heat treatment, which is an epitaxial growth pretreatment, can be evaluated with high sensitivity in a short time by using a high defect density wafer.
(比較例)
図2に示すフローで、エピタキシャル成長前処理の評価を行った。評価で使用する基板は、直径300mmのシリコンウェーハである。通常の研磨工程によりウェーハを作製し、その後SC1洗浄、SC2洗浄、HF洗浄を行った。なお、準備した通常欠陥密度ウェーハをSP3のDCOモードで測定したときの33nm以上のサイズに分類される欠陥(LLS)数は、すべてのウェーハで100個以下であり、50±30個の範囲であった。
(Comparative example)
The epitaxial growth pretreatment was evaluated by the flow shown in FIG. The substrate used in the evaluation is a silicon wafer having a diameter of 300 mm. Wafers were prepared by a normal polishing process, and then SC1 cleaning, SC2 cleaning, and HF cleaning were performed. The number of defects (LLS) classified into sizes of 33 nm or more when the prepared normal defect density wafers are measured in the DCO mode of SP3 is 100 or less for all wafers, and is in the range of 50 ± 30. there were.
次に、枚葉式エピタキシャル成長装置を用いて、エピタキシャル成長前処理として水素雰囲気下での熱処理を行い、続けてエピタキシャル膜の成長を行った。エピタキシャル成長後の欠陥数を、SP3のDCOモードで測定し、33nm以上のサイズに分類される欠陥(LLS)数を取得した。 Next, using a single-wafer epitaxial growth apparatus, heat treatment was performed in a hydrogen atmosphere as an epitaxial growth pretreatment, and then the epitaxial film was grown. The number of defects after epitaxial growth was measured in the DCO mode of SP3, and the number of defects (LLS) classified into sizes of 33 nm or more was obtained.
熱処理温度を1130℃とし、水素雰囲気下での熱処理時間をパラメータとして、それぞれ、30,180,390秒の前処理を行った結果を比較すると、図3に示すように、熱処理時間の延長による検出欠陥数の変化は、ほとんど確認できなかった。 Comparing the results of pretreatment for 30, 180, and 390 seconds, respectively, with the heat treatment temperature set to 1130 ° C and the heat treatment time in a hydrogen atmosphere as parameters, detection by extension of the heat treatment time is shown in FIG. Almost no change in the number of defects could be confirmed.
また、熱処理温度を1130℃とし、水素雰囲気下での熱処理圧力をパラメータとして、それぞれ、10Torr(1332.9Pa)、100Torr(13328.9Pa)、300Torr(39986.8Pa)、760Torr(101300Pa)で前処理を行った結果を比較すると、図4に示すように、熱処理時の圧力による検出欠陥数の変化は、ほとんど確認できなかった。 Further, the heat treatment temperature is set to 1130 ° C., and the heat treatment pressure in a hydrogen atmosphere is used as a parameter, and the pretreatment is performed with 10 Torr (1332.9 Pa), 100 Torr (1328.9 Pa), 300 Torr (39986.8 Pa), and 760 Torr (101300 Pa), respectively. As shown in FIG. 4, when the results of the above steps were compared, the change in the number of detected defects due to the pressure during the heat treatment could hardly be confirmed.
上記結果より、比較例では評価の感度が低いため、水素雰囲気熱処理の時間延長・低圧化の有効性について評価することが困難であるが、実施例では、感度の高い評価を行うことが可能となり、水素雰囲気熱処理の時間延長・低圧化の有効性を評価することが可能となることがわかった。また、少ない実験で感度の高い評価を行うことが可能であり、エピタキシャル成長前処理の条件検討に掛かる時間を短縮することが可能となることがわかった。 From the above results, it is difficult to evaluate the effectiveness of the time extension and low pressure reduction of the hydrogen atmosphere heat treatment because the evaluation sensitivity is low in the comparative example, but in the example, it is possible to perform the evaluation with high sensitivity. It was found that it is possible to evaluate the effectiveness of time extension and low pressure reduction of hydrogen atmosphere heat treatment. In addition, it was found that it is possible to perform highly sensitive evaluation with a small number of experiments, and it is possible to shorten the time required for examining the conditions of the epitaxial growth pretreatment.
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an example, and any of the above-described embodiments having substantially the same configuration as the technical idea described in the claims of the present invention and having the same effect and effect is the present invention. Is included in the technical scope of.
1…チャンバー、 2…サセプター、 100…気相成長装置。
W…半導体単結晶基板。
1 ... chamber, 2 ... susceptor, 100 ... vapor phase deposition device.
W ... Semiconductor single crystal substrate.
Claims (3)
レーザー散乱方式のウェーハ表面検査装置を用いて測定したときに、33nm以上のサイズに分類される欠陥が、直径300mmの基板換算で1000個以上存在する試験用基板を用い、エピタキシャル成長前処理条件をパラメータとしてエピタキシャル成長前処理及びエピタキシャル成長を行い、
エピタキシャル成長後の前記試験用基板の表面の欠陥数を測定し、該測定結果を比較してエピタキシャル成長前処理条件の評価を行うことを特徴とするエピタキシャル成長前処理条件の評価方法。 This is an evaluation method for epitaxial growth pretreatment conditions for semiconductor single crystal substrates.
When measured using a laser scattering type wafer surface inspection device, a test substrate having 1000 or more defects classified into a size of 33 nm or more in terms of a substrate with a diameter of 300 mm is used, and the epitaxial growth pretreatment conditions are set as parameters. Epitaxial growth pretreatment and epitaxial growth are performed as
A method for evaluating epitaxial growth pretreatment conditions, which comprises measuring the number of defects on the surface of the test substrate after epitaxial growth and comparing the measurement results to evaluate epitaxial growth pretreatment conditions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020085453A JP7251517B2 (en) | 2020-05-14 | 2020-05-14 | Method for evaluating pretreatment conditions for epitaxial growth |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020085453A JP7251517B2 (en) | 2020-05-14 | 2020-05-14 | Method for evaluating pretreatment conditions for epitaxial growth |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021180271A true JP2021180271A (en) | 2021-11-18 |
JP7251517B2 JP7251517B2 (en) | 2023-04-04 |
Family
ID=78510440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020085453A Active JP7251517B2 (en) | 2020-05-14 | 2020-05-14 | Method for evaluating pretreatment conditions for epitaxial growth |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7251517B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024193661A1 (en) * | 2023-03-22 | 2024-09-26 | 广东天域半导体股份有限公司 | Epitaxial growth detection method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003112997A (en) * | 2001-10-05 | 2003-04-18 | Shin Etsu Handotai Co Ltd | Method for manufacturing epitaxial wafer |
JP2003282580A (en) * | 2002-03-27 | 2003-10-03 | Shin Etsu Handotai Co Ltd | Manufacturing method for silicon epitaxial wafer |
JP2016210649A (en) * | 2015-05-08 | 2016-12-15 | 株式会社Sumco | Manufacturing method of silicon epitaxial wafer and silicon epitaxial wafer |
-
2020
- 2020-05-14 JP JP2020085453A patent/JP7251517B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003112997A (en) * | 2001-10-05 | 2003-04-18 | Shin Etsu Handotai Co Ltd | Method for manufacturing epitaxial wafer |
JP2003282580A (en) * | 2002-03-27 | 2003-10-03 | Shin Etsu Handotai Co Ltd | Manufacturing method for silicon epitaxial wafer |
JP2016210649A (en) * | 2015-05-08 | 2016-12-15 | 株式会社Sumco | Manufacturing method of silicon epitaxial wafer and silicon epitaxial wafer |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024193661A1 (en) * | 2023-03-22 | 2024-09-26 | 广东天域半导体股份有限公司 | Epitaxial growth detection method |
Also Published As
Publication number | Publication date |
---|---|
JP7251517B2 (en) | 2023-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9340900B2 (en) | Epitaxial wafer and method of producing same | |
US10513798B2 (en) | Method for determining defect region | |
CN104969328B (en) | Method for producing a gallium arsenide substrate, gallium arsenide substrate and use thereof | |
JP6388058B2 (en) | Silicon wafer manufacturing method | |
KR20190048278A (en) | Method for predicting thickness of oxide layer of silicon wafer | |
JP6350637B2 (en) | Semiconductor wafer evaluation standard setting method, semiconductor wafer evaluation method, semiconductor wafer manufacturing process evaluation method, and semiconductor wafer manufacturing method | |
JP2680482B2 (en) | Semiconductor substrate, semiconductor substrate and semiconductor device manufacturing method, and semiconductor substrate inspection / evaluation method | |
JP7251517B2 (en) | Method for evaluating pretreatment conditions for epitaxial growth | |
EP1900858B1 (en) | Epitaxial wafer and method of producing same | |
US12027428B2 (en) | Semiconductor wafer evaluation method and manufacturing method and semiconductor wafer manufacturing process management method | |
JP2006108151A (en) | Method of manufacturing silicon epitaxial wafer | |
JP7309922B2 (en) | Semiconductor wafer manufacturing method | |
JP2000208578A (en) | Evaluation method for silicon wafer and silicon wafer | |
JP7484808B2 (en) | Method for evaluating crystal defects in semiconductor single crystal substrate | |
KR100384680B1 (en) | A Method for detecting micro defects | |
KR100901823B1 (en) | Method of testing defect of silicon wafer | |
TWI741955B (en) | Method of processing silicon carbide wafer | |
Mbanaso et al. | Advanced Cryogenic Aerosol Cleaning: Small Particle Removal and Damage-Free Performance | |
JP2013149753A (en) | Method of evaluating cleanliness of vapor growth device and method of manufacturing silicon epitaxial wafer | |
JP2007180266A (en) | Standard silicon wafer used for inspection made by defect inspection device, its manufacturing method, and inspection method using standard silicon wafer | |
JPH10135293A (en) | Semiconductor crystal estimation method | |
CN115732350A (en) | Micro-defect measurement structure and method of forming the same | |
JP2024035995A (en) | Semiconductor wafer evaluation method, semiconductor wafer manufacturing method, and semiconductor wafer | |
TW202338952A (en) | Method for washing silicon wafer, and method for producing silicon wafer with natural oxide film | |
CN117517367A (en) | Detection method of <111> crystal orientation silicon single crystal facet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220518 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230214 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230221 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230306 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7251517 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |