JP2021177319A - 家電システム - Google Patents

家電システム Download PDF

Info

Publication number
JP2021177319A
JP2021177319A JP2020082482A JP2020082482A JP2021177319A JP 2021177319 A JP2021177319 A JP 2021177319A JP 2020082482 A JP2020082482 A JP 2020082482A JP 2020082482 A JP2020082482 A JP 2020082482A JP 2021177319 A JP2021177319 A JP 2021177319A
Authority
JP
Japan
Prior art keywords
unit
home
defect
electric appliance
home appliance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020082482A
Other languages
English (en)
Other versions
JP7449771B2 (ja
Inventor
正史 瀧川
Masashi Takigawa
裕樹 丸谷
Hiroki Marutani
達也 中川
Tatsuya Nakagawa
将也 金山
Masaya Kanayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lifestyle Products and Services Corp
Original Assignee
Toshiba Lifestyle Products and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lifestyle Products and Services Corp filed Critical Toshiba Lifestyle Products and Services Corp
Priority to JP2020082482A priority Critical patent/JP7449771B2/ja
Priority to CN202110218751.0A priority patent/CN113624522A/zh
Publication of JP2021177319A publication Critical patent/JP2021177319A/ja
Application granted granted Critical
Publication of JP7449771B2 publication Critical patent/JP7449771B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/005Testing of complete machines, e.g. washing-machines or mobile phones
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computational Linguistics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Evolutionary Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Selective Calling Equipment (AREA)

Abstract

【課題】より適切な故障診断を行うことができる家電システムを提供する。【解決手段】家電システム1は、複数の家電機器10a〜10cと、インタフェース装置20と、学習装置30と、故障診断装置40と、を備える。故障診断装置40は、家電機器10が有する1つ以上のセンサ102の検出結果に基づく情報が入力されると各家電機器に関する故障診断の結果を出力するように学習した学習済みモデルに基づき、各家電機器の故障診断を行う。【選択図】図1

Description

本発明の実施形態は、家電システムに関する。
家電機器では、さまざまな原因により異なる不具合が発生する場合がある。ところで、家電機器の不具合と家電機器のセンサの検出値との因果関係は不明な場合がある。このため、適切な故障診断を行うことが難しい場合があった。
特開2016−173782号公報
本発明が解決しようとする課題は、より適切な故障診断を行うことができる家電システムを提供することである。
実施形態の家電システムは、診断部を持つ。前記診断部は、家電機器が有する1つ以上のセンサの検出結果に基づく情報が入力されると前記家電機器に関する故障診断の結果を出力するように学習された学習済みモデルに基づき、前記家電機器の故障診断を行う。
第1実施形態の家電システムの構成を示す図。 第1実施形態の家電機器の構成の一部を示す図。 第1実施形態の対応テーブルの内容の一例を示す図。 第1実施形態における第1のデータテーブルの例を示す図。 第1実施形態における学習済みモデルを模式的に示す図。 第1実施形態における第2のデータテーブルの例を示す図。 第1実施形態における第1の処理フローの例を示す図。 第1実施形態における第2の処理フローの例を示す図。
以下、実施形態の家電システムを、図面を参照して説明する。以下の説明では、同一または類似の機能を有する構成に同一の符号を付す。構成の重複する説明は省略する場合がある。「XXに基づく」とは、「少なくともXXに基づく」ことを意味し、XXに加えて別の要素に基づく場合も含み得る。「XXに基づく」とは、XXを直接に用いる場合に限定されず、XXに対して演算や加工が行われたものに基づく場合も含み得る。「XXまたはYY」とは、XXとYYのうちいずれか一方の場合に限定されず、XXとYYの両方の場合も含み得る。これは選択的要素が3つ以上の場合も同様である。「XX」および「YY」は、任意の要素(例えば任意の情報)である。
(第1の実施形態)
[家電システムの構成]
図1は、第1の実施形態の家電システム1の構成を示す図である。家電システム1は、各家電機器について蓄積された家電機器の動作状態やセンサが感知した物理量などの情報を用いて学習済みモデルを生成する。家電システム1は、生成した学習済みモデルを用いて家電機器の故障診断を行う。
図1に示すように、家電システム1は、複数の家電機器(家電機器10a、10b、…、10c)と、インタフェース装置(インタフェースユニット)20と、学習装置(学習ユニット)30と、故障診断装置(故障診断ユニット)40とを備える。家電機器10a、10b、・・・、10c、学習装置30、故障診断装置40のそれぞれは、直接または不図示のネットワークを介してインタフェース装置20と通信可能である。以下では説明の便宜上、インタフェース装置20と、学習装置30と、故障診断装置40とがそれぞれ独立した装置である例について説明する。ただし後述するように、インタフェース装置20、学習装置30、および故障診断装置40は、1つの装置によって実現されてもよい。なお、家電機器10a、10b、・・・、10cを総称して、家電機器10という。家電機器10は、ユーザの各家庭に配置される。
[家電機器の構成]
図1に示すように、家電機器10aは、センサ102aと、送信部101aとを備える。家電機器10aは、例えば、冷蔵庫、洗濯機、空気調和機(エアコン)、電気掃除機、電子レンジ、テレビジョン受像機、照明器具などである。
センサ102aは、家電機器10aに設けられる1つ以上のセンサである。センサ102aは、家電機器10aにおいて、センサの数に応じた数の物理量などを感知する。物理量の種類は、温度、湿度、圧力、電流、電圧、モータの回転数、扉の開閉数などである。センサは、カメラのような撮像装置でもよい。このため、「センサの検出結果」とは、カメラにより撮影された画像データなどでもよい。以下では説明を簡単にするため、このような画像データがある場合も含めて「物理量」と称する。この物理量は、「診断用情報」と称されてもよい。センサ102aが感知する物理量の種類は、家電機器の種類(例えば、冷蔵庫、洗濯機、空気調和機、電気掃除機、電子レンジ、テレビジョン受像機、照明器具など)や家電機器の機種(型番など)によって異なる。
送信部101aは、不図示の高周波回路とアンテナなどを含み、例えば家電機器10aが配置された家庭内の無線ルータおよびネットワークを介して、インタフェース装置20と通信可能である。送信部101aは、センサ102aが感知した物理量を、その物理量が感知された時刻の家電機器10aの動作状態と、家電機器10aの識別子ID1と共に、所定の時間が経過するごとにインタフェース装置20に送信する。
例えば、家電機器10aが冷蔵庫である場合には、家電機器10aの動作状態とは、冷蔵運転中であるか冷凍運転中であるか、急速冷凍モードであるか否か、急速製氷モードであるか否か、通常チルドモードであるか急速チルドモードであるか、解凍モードであるか否かなどによって決定される動作時の状態のことである。動作状態は、上記各運転モードが開始されてからの時間情報を含んでもよい。例えば、家電機器10aが洗濯機である場合には、家電機器10aの動作状態とは、標準モード、スピードモード、念入りモードのいずれであるか、乾燥機能を使用するか否かなどによって決定される動作時の状態のことである。
例えば、家電機器10aが空気調和機である場合には、暖房運転、冷房運転、除湿運転のいずれであるか、空気清浄機能を使用しているか否か、内部の自動清掃機能(例えばカビ取り機能)を使用しているか否かなどによって決定される動作時の状態のことである。例えば、家電機器10aが電気掃除機である場合には、吸引力が強であるか弱であるかなどによって決定される動作時の状態のことである。例えば、家電機器10aが電子レンジである場合には、オーブン機能を使用しているか否か、水蒸気を用いているか否かなどによって決定される動作時の状態のことである。例えば、家電機器10aがテレビジョン受像機である場合には、録画機能を使用しているか否か、2画面表示しているか否かなどによって決定される動作時の状態のことである。例えば、家電機器10aが照明器具である場合には、光量が強、中、弱のいずれであるかなどによって決定される動作時の状態のことである。
図2は、家電機器10aの構成の一部を示す図である。図2に示すように、センサ102aは、第1センサS1、第2センサS2、および第3センサS3を含む複数のセンサを含む。第1から第3のセンサS1,S2、S3は、互いに異なる場所に配置されたセンサ、または互いに異なる物理量を感知するセンサである。例えば、家電機器10aが冷蔵庫である場合、第1センサS1は、コンプレッサに流れる電流を検出するセンサである。第2センサS2は、冷蔵室内の温度を検出するセンサである。第3センサS3は、冷蔵室内を撮影するカメラである。
本実施形態では、家電機器10aは、異常判定部103を有する。異常判定部103は、第1センサS1の検出結果と予め設定された第1閾値とに基づき、家電機器10aに含まれる第1部品C1(例えばコンプレッサ)の異常を判定する。例えば、異常判定部103は、第1センサS1により検出された電流の大きさが第1閾値以上であると、コンプレッサに異常があると判定する。家電機器10aでは、第1部品C1に関する異常判定には、第2センサS2の検出結果および第3センサS3の検出結果は用いられない。
同様に、異常判定部103は、第2センサS2の検出結果と、家電機器10aの動作状態と、予め設定された第2閾値とに基づき、家電機器10aに含まれる第2部品C2(例えば扉部材)の異常を判定する。家電機器10aでは、第2部品C2に関する異常判定には、第3センサS3の検出結果および第3センサS3の検出結果は用いられない。一方で、第3センサS3の検出結果は、家電機器10aでは異常判定に用いられず、冷蔵庫内の食材の在庫管理などに用いられる。
次に、図1に戻り、家電機器10b、10cについて説明する。家電機器10bは、センサ102bと、送信部101bとを備える。センサ102bは、家電機器10bに設けられる1つ以上のセンサである。センサ102bは、家電機器10bにおいて、センサの数に応じた数の物理量を感知する。センサ102bが感知する物理量の種類は、センサ102aが感知する物理量の種類と同様、家電機器の種類や種類ごとの機種などによって異なる。
送信部101bは、センサ102bが感知した物理量を、物理量が感知された時刻の家電機器10bの動作状態と、家電機器10bの識別子ID2と共に、所定の時間が経過するごとにインタフェース装置20に送信する。なお、家電機器10bの動作状態は、家電機器10aの動作状態と同様である。
家電機器10cは、センサ102cと、送信部101cとを備える。センサ102cは、家電機器10cに設けられる1つ以上のセンサである。センサ102cは、家電機器10cにおいて、センサの数に応じた数の物理量を感知する。センサ102cが感知する物理量の種類は、センサ102aが感知する物理量の種類と同様、家電機器10の種類や種類ごとの機種によって異なる。
送信部101cは、センサ102bが感知した物理量を、物理量が感知された時刻の家電機器10cの動作状態と、家電機器10cの識別子ID2と共に、所定の時間が経過するごとにインタフェース装置20に送信する。なお、家電機器10cの動作状態は、家電機器10aの動作状態と同様である。図2を用いて説明した家電機器10aの構成は、家電機器10b、10cでも同様である。なお以下では、送信部101a、101b、101cを総称して、送信部101という。また、センサ102a、102b、102cを総称して、センサ102という。
[インタフェース装置の構成]
インタフェース装置20は、家電機器10と学習装置30との間の通信を仲介する。インタフェース装置20は、家電機器10と故障診断装置40との間の通信を仲介する。インタフェース装置20は、学習装置30と故障診断装置40との間の通信を仲介する。インタフェース装置20は、仲介部201を備える。例えば、インタフェース装置20は、ネットワークに接続されたサーバに含まれる。
仲介部201は、センサ102が感知した物理量と、家電機器10の動作状態と、家電機器10の識別子を家電機器10から受信する。具体的には、仲介部201は、家電機器10aのセンサ102aが感知した物理量と、家電機器10aの動作状態と、家電機器10aの識別子ID1とを家電機器10aから受信する。仲介部201は、家電機器10bのセンサ102bが感知した物理量と、家電機器10bの動作状態と、家電機器10bの識別子ID2とを家電機器10bから受信する。仲介部201は、家電機器10cのセンサ102cが感知した物理量と、家電機器10cの動作状態と、家電機器10cの識別子ID2とを家電機器10cから受信する。
仲介部201は、家電機器10から受信するデータを、学習装置30と故障診断装置40とのうち一方または双方に振り分ける。すなわち、仲介部201は、家電機器10から受信した家電機器10の識別子と、学習装置30から学習済みモデルと共に受信した識別子とに基づいて、センサ102が感知した物理量と、家電機器10の動作状態と、家電機器10の識別子の送信先を決定する。
具体的には、仲介部201は、家電機器10の識別子と、当該家電機器10の故障診断に用いることができる学習済みモデルの識別子との対応関係が登録された対応テーブルCTを記憶している。例えば、仲介部201は、学習装置30から学習済みモデルと共に受信した識別子をテーブルCTに記憶する。そして、家電機器10から受信した家電機器10の識別子に対応する学習済みモデルの識別子がテーブルCTにないと判定した場合、センサ102が感知した物理量と、家電機器10の動作状態と、家電機器10の識別子を学習装置30に送信する。一方で、仲介部201は、家電機器10から受信した家電機器10の識別子に対応する学習済みモデルの識別子がテーブルCTにあると判定した場合、センサ102が感知した物理量と、家電機器10の動作状態と、家電機器10の識別子を故障診断装置40に送信する。
図3は、上述したテーブルCTの内容の一例を示す図である。本実施系形態では、同一種類の家電機器10に関して、第1基準に基づき分類された大グループ毎に生成された第1学習済みモデルと、上記大グループを上記第1基準とは別の第2基準に基づき細分化した小グループ毎に生成された第2学習済みモデルとを含む。大グループおよび小グループについては詳しく後述する。本実施形態では、対応テーブルCTでは、家電機器10の識別子と、当該家電機器10の故障診断に用いることができる第1学習済みモデルの識別子(大グループで分類された学習済みモデルの識別子)と、当該家電機器10の故障診断に用いることができる第2学習済みモデルの識別子(小グループで分類された学習済みモデルの識別子)との対応関係が登録されている。
図1に戻り説明を続ける。仲介部201は、家電機器10で実際に発生した不具合と、故障診断装置40の後述する蓄積部403が記録する当該不具合に関連付けられた各時刻の物理量及び動作状態とから成る各組のデータのうち、所定の一定期間におけるデータを教師データとして故障診断装置40から受信する。そして、仲介部201は、受信した教師データを学習装置30に送信する。なお、実際に発生した不具合内容は、センサ102が感知した物理量の異常値(例えば異常判定部103により判定された異常)や、修理など実際にサービス対応を行った不具合内容(修理内容)などに基づいて特定される。言い換えると、本実施形態では、家電機器10に設けられた1つ以上のセンサの検出結果および家電機器10の動作状態を入力情報とし、部品交換など実際に行われた修理に対応する不具合内容を出力情報の正解データとする教師データが用いられる。
このインタフェース装置20が存在することにより、各家電機器10は、学習装置30や故障診断装置40と個別に通信する必要がない。つまり、各家電機器10は、通信先の設定を変更する必要がなく、常にインタフェース装置20とのみ通信を行えばよい。
[学習装置の構成]
学習装置30は、同一の学習済みモデルを使用できると判定した家電機器10の種類や機種ごとに、ニューラルネットワークなどの学習済みモデルを生成する。図1に示すように、学習装置30は、受信部301と、蓄積部302と、学習部303とを備える。蓄積部302は、「第2情報蓄積部」の一例である。
受信部301は、センサ102aが感知した物理量と、家電機器10aの動作状態と、家電機器10aの識別子ID1とをインタフェース装置20から受信する。また、受信部301は、センサ102bが感知した物理量と、家電機器10bの動作状態と、家電機器10bの識別子ID2とをインタフェース装置20から受信する。また、受信部301は、センサ102cが感知した物理量と、家電機器10cの動作状態と、家電機器10cの識別子ID2とをインタフェース装置20から受信する。
蓄積部302は、家電機器10aの識別子ID1に応じて決定される学習モデルに関連付けて、受信部301が受信したセンサ102aが感知した物理量と、家電機器10aの動作状態とを記録する。また、蓄積部302は、家電機器10bの識別子ID2に応じて決定される学習モデルに関連付けて、受信部301が受信したセンサ102bが感知した物理量と、家電機器10bの動作状態とを記録する。また、蓄積部302は、家電機器10cの識別子ID3に応じて決定される学習モデルに関連付けて、受信部301が受信したセンサ102cが感知した物理量と、家電機器10cの動作状態とを記録する。また、家電機器10に不具合が発生した場合、蓄積部302は、不具合が発生した家電機器10の不具合内容と、不具合が発生する前に蓄積した物理量と動作状態とを関連付けて記録する。上述したように、家電機器10の不具合内容は、センサ102が感知した物理量の異常値(例えば異常判定部103により判定された異常)に加えて、修理など実際にサービス対応を行った不具合内容(修理内容)などに基づいて特定される。例えば、実際のサービス対応で家電機器10の第1部品C1に不具合が見つかった場合は、不具合内容としては第1部品C1に関する不具合が登録される。また、実際のサービス対応で家電機器10の第2部品C2に不具合が見つかった場合は、不具合内容としては第2部品C2に関する不具合が登録される。
図4は、第1の実施形態における第1のデータテーブルTBL1の例を示す図である。図4に示すように、蓄積部302は、家電機器10の識別子に応じた学習モデルごとに、物理量(例えば図2における第1センサS1、第2センサS2、…により感知された物理量)と、動作状態とを記録する。なお、図4に示す第1のデータテーブルTBL1は、家電機器10aの識別子ID1に応じて決定される学習モデルと、家電機器10bの識別子ID2に応じて決定される学習モデルと、家電機器10cの識別子ID3に応じて決定される学習モデルとが同一である場合に蓄積部302が記録するデータの例である。すなわち、図4に示す第1のデータテーブルTBL1は、家電機器10a、10b、10cが同一の学習モデルを用いて不具合の発生を予測することができる場合に蓄積部302が記録するデータの例である。家電機器10a、10b、10cが同一の学習モデルを用いて不具合の発生を予測することができる場合とは、例えば、家電機器10a、10b、10cの家電機器の種類が同一であり機種も同一である場合である。また、家電機器10a、10b、10cが同一の学習モデルを用いて不具合の発生を予測することができる場合とは、例えば、家電機器10a、10b、10cの家電機器の種類が同一であり、機種は異なるが例えば主要部品構成が同じであり、機種の違いが不具合の発生の予測に実質的に影響しない場合である。
学習部303は、学習モデルごとに、物理量と動作状態を入力情報とし、不具合内容を出力情報の正解データとする教師データを用いて、学習モデルにおける係数(例えばノード間の重み付け係数)を決定することにより、学習済みモデルを生成する。
例えば、学習モデルが入力層、中間層、出力層から成るニューラルネットワークの学習モデルであり、家電機器10について、図4に示すような第1のデータテーブルTBL1が蓄積部302に記録されたと仮定する。すなわち、家電機器10a、10b、10cは、同一の学習モデル#1を用いて不具合の発生を予測することができると仮定する。また、家電機器10aは、時刻t100に不具合1が発生して不具合1を解消する処理が行われ、時刻t1〜t100の物理量と動作状態とが不具合1に関連付けられると仮定する。また、家電機器10aは、時刻t200に不具合2が発生して不具合2を解消する処理が行われ、時刻t150〜t200の物理量と動作状態とが不具合2に関連付けられると仮定する。また、家電機器10bは、時刻t140に不具合2が発生して不具合2を解消する処理が行われ、時刻t1〜t140の物理量と動作状態とが不具合2に関連付けられると仮定する。
この場合、不具合1と、時刻t1〜t100のそれぞれにおける物理量及び動作状態とを第1組のデータとする。また、不具合2と、時刻t150〜t100のそれぞれにおける物理量及び動作状態とを第2組のデータとする。また、不具合2と、時刻t1〜t140のそれぞれにおける物理量及び動作状態とを第3組のデータとする。また、上述の3組のデータ以外に、家電機器10a、10bの他の時刻において発生した不具合や、学習モデル#1を用いて不具合の発生を予測できる家電機器10a、10b以外の家電機器10cなどにおいて発生した不具合についても、家電機器10a、10bと同様に、不具合と、その不具合に関連付けられた各時刻の物理量及び動作状態とを別の1組のデータとする。そして、学習部303は、不具合と、その不具合に関連付けられた各時刻の物理量及び動作状態とから成る各組のデータのうち、所定の一定期間におけるデータを教師データとする。所定の一定期間は、家電機器10で実際に不具合が生じた時点から過去に所定期間(例えば1週間)遡った時点以前の一定期間(例えば3週間)である。本実施形態では、所定の期間は、各不具合が発生した時点に対する過去30日から過去7日までの24日間である。学習部303は、各組のデータのうち、不具合と、所定の一定期間における物理量及び動作状態とを教師データとして学習モデルに入力して、学習モデルにおける係数を決定する。すなわち、学習済みモデルが生成される。
具体的には、図4に示す第1のデータテーブルTBL1における時刻t1〜t200が1日ステップであり、1日から200日までを表しているものと仮定する。この場合、学習部303は、第1組のデータのうち、不具合1と、時刻t70〜t93のそれぞれにおける物理量及び動作状態とを教師データとする。また、学習部303は、第2組のデータのうち、不具合2と、時刻t170〜t193のそれぞれにおける物理量及び動作状態とを教師データとする。また、学習部303は、第3組のデータのうち、不具合2と、時刻t110〜t133のそれぞれにおける物理量及び動作状態とを教師データとする。また、学習部303は、家電機器10a、10bの他の時刻において発生した不具合や、学習モデル#1を用いて不具合の発生を予測できる家電機器10cなどの家電機器において発生した不具合についても、同様に、各不具合と、各不具合が発生した時刻から過去30日から過去7日までの24日間における物理量及び動作状態とを教師データとする。
そして、学習部303は、教師データを訓練データと検証データとに分ける。学習部303は、訓練データを学習モデルに入力する。学習部303は、入力した訓練データに対応する実際に発生した不具合に学習モデルの出力が一致するように、学習モデルの係数を調整する。このように、学習部303は、学習モデルにおける係数を決定する。そして、学習部303は、係数を決定した学習モデルに検証データを入力する。学習部303は、学習モデルの出力が入力した検証データに関連付けられた実際に発生した不具合内容であるか否かを判定する。学習部303は、検証データについて、学習モデルの出力が実際に発生した不具合内容と一致すると判定した場合、その係数の学習モデルを学習済みモデルとする。また、学習部303は、検証データについて、学習モデルの出力が実際に発生した不具合内容と異なると判定した場合、新たに教師データを用意して、訓練データと検証データとに分けて、学習済みモデルが得られるまで、上述の処理を繰り返す。学習部303は、このように、学習済みモデルを生成する。
なお、学習部303は、学習モデル#1以外の各学習モデルについても、学習モデル#1と同様の方法を用いて係数を決定する。学習部303は、係数を決定する度に、係数の決定した学習済みモデルと共にその学習済みモデルに関連付けられている家電機器10の識別子をインタフェース装置20に送信する。
このように生成された学習済みモデルの出力が、不具合が発生することを示した場合、その不具合が発生する時期は、所定の一定期間のうち現在時刻に最も近い時刻と現在時刻との時間差の分だけ、現在時刻から進めた時刻となる。例えば、所定の一定期間が過去30日から過去7日までの24日間であり、学習済みモデルの出力が、不具合が発生することを示した場合、不具合が発生する時期は、現在と過去7日との時間差7日を現在から進めた、7日後となる。
したがって、所定の一定期間のうち現在時刻に最も近い時刻は、不具合が発生する前にその不具合を対策できる時刻に設定する必要がある。ただし、現在時刻に近いほど不具合の発生時期に近いため、所定の一定期間のうち現在時刻に最も近い時刻が現在時刻に近づくにつれて、所定の一定期間における物理量の特徴も現れやすくなると考えられる。その結果、所定の一定期間のうち現在時刻に最も近い時刻を現在時刻に近づけた方が、学習済みモデルによる不具合の発生の判断をより正確に行うことができると考えられる。そのため、所定の一定期間のうち現在時刻に最も近い時刻は、不具合が発生する前にその不具合を対策できる時刻で、かつ、できる限り現在時刻に近い時刻とすることが望ましい。
ここで1つの実施例では、学習済みモデルは、同一種類の家電機器に関して、第1基準に基づき分類された大グループ毎(大分類毎)に生成された第1学習済みモデルM1と、前記大グループを前記第1基準とは別の第2基準に基づき細分化した小グループ毎(小分類毎)に生成された第2学習済みモデルM2とを含む。第2基準は、家電機器10の機種に基づく基準である。一方で、第1基準は、家電機器10の基本形式や構成部品に基づく基準である。例えば家電機器10が冷蔵庫である場合、第1基準は、冷却器(エバポレータ)が1つタイプであるか2つタイプであるか、貯蔵室のレイアウト(野菜室や冷凍室の配置位置など)、または搭載する圧縮機が同じであるか否かなどである。例えば家電機器10が洗濯機である場合、第1基準は、ドラム式洗濯機であるか縦型洗濯機であるか、乾燥機能の有無などである。例えば家電機器10が空気調和器である場合、第1基準は、内部の自動清掃機能(例えばカビ取り機能)の有無などである。
図5は、第1学習済みモデルM1および第2学習済みモデルM2を模式的に示す図である。これら学習済みモデルM1、M2に対する入力情報は、例えば、第1センサS1の直近の検出値、1時間前の検出値、2時間前の検出値、…、第2センサS2の直近の検出値、1時間前の検出値、2時間前の検出値、…、第3センサS3の直近の検出値、1時間前の検出値、2時間前の検出値、およびそれら検出値が検出された時点での家電機器10の動作状態などを含む。一方で、学習済みモデルM1、M2から出力される出力情報は、上記所定期間後(例えば1週間後)に不具合A(例えば第1部品C1に関する不具合)が発生する確率、上記所定期間後に不具合B(例えば第2部品C2に関する不具合)が発生する確率、上記所定期間後に不具合Cが発生する確率、…などを含む。
[故障診断装置の構成]
故障診断装置40は、家電機器10それぞれの不具合の発生を予測する。図1に示すように、故障診断装置40は、受信部401と、診断部402と、蓄積部403と、更新部404とを備える。蓄積部403は、「第1情報蓄積部」の一例である。なお図1中の「報知部405」については、第2の実施形態で説明する。
受信部401は、インタフェース装置20から送信されるデータを受信する。受信部401がインタフェース装置20から受信したデータが、学習済みモデルである場合、診断部402は、その学習済みモデルを、不具合の発生を予測する学習モデルとして備える。そして、受信部401がインタフェース装置20から受信したデータが、センサ102が感知した物理量と、家電機器10の動作状態とである場合、診断部402は、その物理量とその動作状態とを、識別子に対応する学習済みモデルに入力する。そして、診断部402は、学習済みモデルの出力に基づいて、識別子に対応する家電機器10の不具合の発生を予測する。なお、不具合の発生の予測内容は、不具合の発生時期と、発生する不具合内容とを含む。
図6は、第1の実施形態における第2のデータテーブルTBL2の例を示す図である。図6に示すように、インタフェース装置20からセンサ102が感知した物理量と、家電機器10の動作状態と、家電機器10の識別子を受信部401が受信した場合、蓄積部403は、家電機器10の識別子に応じた学習済みモデルに関連付けて、受信部401が受信したセンサ102が感知した物理量と家電機器10の動作状態とを、診断部402が予測した不具合の発生時期と、不具合内容と共に、第2のデータテーブルTBL2として記録する。
診断部402が不具合の発生を予測していないときの不具合、または、診断部402が不具合の発生を予測したがその不具合を解消する処理が行われないときの不具合が、同一の学習済みモデルを用いた故障診断において所定回数発生した場合、更新部404は、その不具合と、蓄積部403が記録するその不具合に関連付けられた各時刻の物理量及び動作状態とから成る各組のデータのうち、所定の一定期間におけるデータを教師データとして、インタフェース装置20に送信する。なお、所定回数とは、不具合の発生を予測する学習モデルを改善するための教師データが訓練データと検証データとして使用するのに十分な数量であるといえる回数のことである。つまり、更新部404は、十分な数の訓練データと検証データとが蓄積された場合に、所定の一定期間におけるデータを教師データとして、インタフェース装置20に送信する。
[家電機器における不具合の発生を予測する処理]
次に、家電システム1が行う家電機器10における不具合の発生を予測する処理(故障診断)について説明する。本実施形態では、学習済みモデルは、上述したように家電機器10で実際に不具合が生じた時点から過去に所定期間(例えば1週間)遡った時点以前の一定期間(例えば3週間)に亘り蓄積された情報を用いて学習されている。そして、診断部402は、直近の上記一定期間(例えば直近の3週間)に亘り蓄積された情報に基づき故障診断を行う。
図4は、第1の実施形態の家電システム1が行う不具合の発生を予測する処理フローを示す図である。ここでは、図4に示す第1の実施形態における第1の処理フローを参照して説明する。
なお、仲介部201は、家電機器10から受信した家電機器10の識別子と対応する識別子が記憶している識別子の中にないと判定したものとする。そして、仲介部201は、センサ102が感知した物理量と、家電機器10の動作状態と、家電機器10の識別子を学習装置30に送信したものとする。また、学習部303は、上述した処理によって学習済みモデルを既に生成したものとする。そして、学習部303は、生成した学習済みモデルと共に対応する家電機器10の識別子をインタフェース装置20に送信したものとする。また、仲介部201は、学習装置30から受信した学習モデルと共に識別子を記憶したものとする。また、仲介部201は、受信した学習モデルと共に識別子を故障診断装置40に送信したものとする。そして、受信部401は、インタフェース装置20から学習モデルと共に識別子を受信したものとする。また、診断部402は、その学習済みモデルを既に備えているものとする。
家電機器10のそれぞれにおいて、センサ102は、物理量を感知する(ステップS1)。送信部101は、自身を備える家電機器10のセンサ102が感知した物理量と、その家電機器10の動作状態と、その家電機器10の識別子とを、所定の時間が経過するごとにインタフェース装置20に送信する(ステップS2)。
仲介部201は、センサ102が感知した物理量と、家電機器10の動作状態と、家電機器10の識別子とを、家電機器10から受信する。仲介部201は、家電機器10から受信した家電機器10の識別子と同一の識別子が記憶している識別子の中にあるか否かを判定している。そして、仲介部201は、家電機器10から受信した家電機器10の識別子と同一の識別子がその記憶した識別子の中にないと判定した場合、センサ102が感知した物理量と、家電機器10の動作状態と、家電機器10の識別子を学習装置30に送信する。また、仲介部201は、家電機器10から受信した家電機器10の識別子と同一の識別子がその記憶した識別子の中にあると判定した場合、センサ102が感知した物理量と、家電機器10の動作状態と、家電機器10の識別子を故障診断装置40に送信する。
ここで挙げている例では、診断部402が学習済みモデルを既に備えている。そのため、仲介部201は、家電機器10から受信した家電機器10の識別子と同一の識別子が記憶している識別子の中にあると判定する(ステップS3)。そして、仲介部201は、センサ102が感知した物理量と、家電機器10の動作状態と、家電機器10の識別子とを故障診断装置40に送信する(ステップS4)。
受信部401は、センサ102が感知した物理量と、家電機器10の動作状態と、家電機器10の識別子とを、インタフェース装置20から受信する。蓄積部403は、一定期間(例えば直近の3週間)のデータを記録するまでの間、受信部401が受信したセンサ102が感知した物理量と、家電機器10の動作状態と、家電機器10の識別子とを、その識別子に対応する学習済みモデルと時刻と共に、第2のデータテーブルTBL2に記録する(ステップS5)。なお、蓄積部403が上記一定期間のデータを記録するまでの間、学習済みモデルに入力するデータ数が不足している。そのため、センサ102が感知した物理量と家電機器10の動作状態は、診断部402に入力されない。よって、診断部402による不具合の発生時期と不具合内容の予測は行われない。なお、診断部402による不具合の発生時期と不具合内容の予測は行われないことは、第2のデータテーブルTBL2において「−」と示されている。
蓄積部403が上記一定期間のデータを記録すると、診断部402は、上記一定期間のデータを、家電機器10の識別子に対応する学習済みモデルに入力する。そして、診断部402は、その学習済みモデルの出力に基づいて、不具合の発生時期と、その不具合内容とを予測する(ステップS6)。
例えば、上記一定期間は、各不具合が発生した時点に対して過去30日から過去7日までの24日間であると仮定する。また、図3に示す第2のデータテーブルTBL2における時刻t1001〜t1200が1日ステップであり、現在を基準に207日前から7日前までを表しているものと仮定する。そして、診断部402は、学習済みモデルに時刻t1177〜t1200それぞれの物理量と動作状態とを入力したとする。また、学習済みモデルの出力が不具合2が発生することを示したとする。この場合、診断部402は、現在から7日後に不具合2が発生すると予測したことになる。診断部402は、上記処理による故障診断を例えば所定の周期で(例えば1日ごとに)繰り返し行う。
本実施形態では、家電機器10の異常判定部103は、第1センサSの検出結果と第1閾値とを用いて第1部品C1に関する異常検出を行う。言い換えると、家電機器10の異常判定部103は、第1部品C1に関する異常検出では、第2センサS2および第3センサS3の検出結果などは用いない。一方で、診断部402は、上記一定期間に亘り蓄積された第1センサS1、S2、S3、…の検出結果に基づく情報を用いて、第1部品C1の故障診断を行う。また、診断部402は、上記一定期間に亘り蓄積された第1センサS1、S2、S3、…の検出結果に基づく情報を用いて、第2部品C2の故障診断を行う。
本実施形態では、診断部402は、上述した第1学習済みモデルM1(大グループ毎に生成された学習済みモデル)を用いた第1故障診断と、第2学習済みモデルM2(小グループ毎に生成された学習済みモデル)を用いた第2故障診断とを行う。ここで、本来であれば、機種毎に得られた教師データにより学習済みモデルを用いることが好ましい。しかしながら、実際には、特定の機種において不具合情報の収集が進まない場合も想定される。そこで、本実施形態では、上述した第2学習済みモデルM2に加えて、第1学習済みモデルM1を用いても故障診断を行う。これにより、機種毎では十分な教師データが得られず、学習済みモデルM2による予測精度が高くない場合であっても、精度の高い故障診断を行うことができる。
[学習済みモデルを更新する処理]
次に、家電システム1が行う学習済みモデルを更新する処理について説明する。図8は、第1の実施形態の家電システム1が行う学習済みモデルを更新する処理フローを示す図である。ここでは、図8に示す第1の実施形態における第2の処理フローを参照して説明する。
上述したように、上記一定期間のうち現在時刻に最も近い時刻は、不具合が発生する前にその不具合を対策できる時刻であり、かつ、できる限り現在時刻に近い時刻とすることが望ましい。しかしながら、診断部402が不具合の発生を予測した場合であってもその不具合を回避する処理が実際に行われるとは限らない。また、診断部402による不具合の発生の予測が常に正しいとは限らない。そのため、診断部402が不具合が発生しないと判断している期間であっても、実際には不具合が発生する可能性がある。このような場合、実際に発生した不具合内容がわかるため、このような場合に蓄積部403が記録する所定の期間の物理量及び動作状態を学習済みモデルを改善するための教師データとすることが可能である。
ここで説明する家電システム1が行う学習済みモデルを更新する処理は、実際に発生した不具合内容と、蓄積部403が記録する所定の期間の物理量及び動作状態を教師データとして学習済みモデルを改善する処理である。なお、この処理は、上述したステップS1〜ステップS6の処理が行われ、不具合が発生すると予測した場合であっても、予測した不具合の発生を防ぐ処理を行わず、実際に不具合が発生した場合に行われる処理である。
ステップS1〜ステップS6の処理が行われた後、実際に不具合が発生するまで、蓄積部403は、家電機器10ごとに、受信部401が受信したセンサ102が感知した物理量と、家電機器10の動作状態と、家電機器10の識別子とを、その識別子に対応する学習済みモデルと時刻と共に、第2のデータテーブルTBL2に記録する(ステップS11)。そして、家電機器10に不具合が発生すると、蓄積部403は、センサ102が感知した物理量と、家電機器10の動作状態と、家電機器10の識別子と、その識別子に対応する学習済みモデルと、時刻と共に、発生した不具合内容を、第2のデータテーブルTBL2に記録する(ステップS12)。
更新部404は、第2のデータテーブルTBL2における各学習済みモデルについて、発生した不具合が所定回数以上であるか否かを判定する(ステップS13)。
更新部404は、第2のデータテーブルTBL2における各学習済みモデルについて、発生した不具合が所定回数未満であると判定した場合(ステップS13においてNO)、ステップS11の処理に戻す。
また、更新部404は、第2のデータテーブルTBL2における各学習済みモデルについて、発生した不具合が所定回数以上であると判定した場合(ステップS13においてYES)、そう判定した学習済みモデルごとに、発生した不具合内容と、その不具合内容に関連付けられた各時刻の物理量及び動作状態とから成るデータのうち、所定の期間におけるデータを教師データとして、インタフェース装置20に送信する(ステップS14)。
仲介部201は、故障診断装置40から教師データを受信する。仲介部201は、受信した教師データを学習装置30に送信する(ステップS15)。
受信部301は、教師データ(すなわち、学習済みモデルごとの所定の期間におけるデータ)を、インタフェース装置20から受信する。蓄積部302は、教師データを記録する(ステップS16)。
学習部303は、ステップS16の処理で蓄積部302が記録した教師データに基づいて学習済みモデルを改善する(ステップS17)。具体的には、学習部303は、教師データを訓練データと検証データとに分ける。学習部303は、訓練データを学習モデルに入力する。学習部303は、入力した訓練データに対応する実際に発生した不具合に学習モデルの出力が一致するように、学習モデルの係数を調整する。このように、学習部303は、学習モデルにおける係数を決定する。そして、学習部303は、係数を決定した学習モデルに検証データを入力する。学習部303は、学習モデルの出力が入力した検証データに関連付けられた実際に発生した不具合内容であるか否かを判定する。学習部303は、検証データについて、学習モデルの出力が実際に発生した不具合内容と一致すると判定した場合、その係数の学習モデルを学習済みモデルとする。また、学習部303は、検証データについて、学習モデルの出力が実際に発生した不具合内容と異なると判定した場合、新たな教師データが得られるまでステップS11〜ステップS15の処理を繰り返す。このように、学習済みモデルを改善する。
学習部303は、改善した学習済みモデルをインタフェース装置20に送信する(ステップS18)。仲介部201は、学習装置30から改善された学習済みモデルを受信する。仲介部201は、受信した学習済みモデルを故障診断装置40に送信する(ステップS19)。
受信部401は、インタフェース装置20から改善された学習済みモデルを受信する。診断部402は、受信部401が受信した学習済みモデルを新たな学習済みモデルとして備える(ステップS20)。
診断部402が備える学習済みモデルは、このように改善される。家電システム1は、このように改善された学習済みモデルを用いて、図4を参照して説明した処理を行うことで、家電機器10の不具合の発生をより正確に予測できる。
なお、第1の実施形態において、送信部101a、101b、101c、仲介部201、受信部301、401、蓄積部302、403、学習部303、診断部402、更新部404のぞれぞれは、ソフトウェア機能部である。
以上、第1の実施形態の家電システム1について説明した。家電システム1は、診断部402を持つ。診断部402は、家電機器10に不具合が発生したときを基準とする過去の所定の期間における家電機器10の物理量及び動作状態と、不具合とを教師データとして係数が決定された学習済みモデルに基づいて、不具合の発生を予測する。
この家電システム1により、センサが感知した物理量との因果関係が明確でない不具合について、その不具合の発生時期と不具合内容とを予測することができる。また、所定の期間のうち現在時刻に最も近い時刻を調整することにより、学習済みモデルによる不具合の発生の判断の精度と予測時期との両方を適切に設定することができる。
家電システム1は、学習部303を持つ。学習部303は、不具合が発生したときを基準とする過去の所定の期間における家電機器10の物理量と、不具合とを前記教師データとして前記係数を決定する。
この家電システム1により、不具合を正確に予測するための学習済みモデルを生成することができる。
家電システム1は、更新部404を持つ。更新部404は、学習済みモデルに発生した不具合の回数が所定回数以上の場合に、学習部303に教師データを送信する。そして、学習部303は、更新部404が送信した前記教師データに基づいて、学習済みモデルを改善する。
この家電システム1により、不具合をより正確に予測するための学習済みモデルを生成する、つまり、学習済みモデルを改善することができる。また、新たな不具合内容を含む教師データで改善前の学習済みモデルを改善した場合、家電システム1は、改善前の学習済みモデルでは予測できなかった不具合の発生を予測することができる。
家電システム1において、不具合の内容は、前記家電機器に対して実際に行った修理内容に基づいて特定される。
この家電システム1により、一般的に物理量の異常値によって判断された不具合内容のみならず、家電機器10のユーザからの要望に応じた不具合内容を含めることができる。その結果、家電システム1は、物理量の異常値によって判断された不具合内容以外の不具合内容についても、不具合の発生を予測することができる。
(第2の実施形態)
[家電システムの構成]
第2の実施形態の家電システム1の構成は、第1の実施形態の家電システム1の構成と同様である。ただし、故障診断装置40が報知部405を有する点が異なる。
報知部405は、不具合の発生の予測結果を、家電機器10のユーザに報知する。例えば、報知部405は、家電機器10または家電機器10のユーザの端末装置UTに所定の制御指令を送信することで、家電機器10の報知器(表示装置など)または端末装置UTにより上記不具合の発生の予測結果を報知させる。端末装置UTは、スマートフォンやタブレット端末のような携帯型端末装置でもよく、パーソナルコンピュータでもよく、スマートスピーカなどでもよい。
本実施形態では、報知部405は、診断部402による故障診断の結果に対応する症状が家電機器10で実際に生じているか否かをユーザに確認させる報知を家電機器10または端末装置UTにより出力させる。例えば、不具合が発生した家電機器10が冷蔵庫である場合、報知部405は、発生を予測した不具合内容に応じて、「冷蔵庫から異音が聞こえませんか」、「冷えが悪くなっていませんか」などをユーザに報知する。そして、ユーザがYESと回答した場合、診断部402は、サービスセンターへ家電機器10の修理を依頼、または、サービスセンターなど修理を依頼するための連絡先をユーザに案内する。
以上、第2の実施形態の家電システム1について説明した。家電システム1は、診断部402を持つ。診断部402は、不具合の発生の予測結果を、家電機器10のユーザに報知する。
この家電システム1により、不具合が発生した家電機器10の修理に早急に対応することができる。
なお、実施形態における処理は、適切な処理が行われる範囲において、処理の順番が入れ替わってもよい。
なお、実施形態では、学習装置30は、同一の学習モデルを使用できると判定した家電機器の種類や機種ごとに、ニューラルネットワークなどの学習モデルを生成するものとして説明した。この同一の学習モデルを使用できるか否かの判定は、次のように行われるものであってもよい。例えば、クラスタ分析アルゴリズムなどを用いる学習モデルを生成する。学習部303は、学習モデルにラベルのないデータセットを入力して学習済みモデルを生成する。そして、学習部303は、同一の学習モデルを使用できると判定ための対象の家電機器10のデータを学習済みモデルに、学習済みモデルの出力結果が示す不具合の発生を予測する学習モデルを特定すればよい。
なお、上述の実施形態では、家電機器10a、10b、10c、インタフェース装置20、学習装置30、故障診断装置40のそれぞれは、独立した装置として説明した。しかしながら、別の実施形態では、学習装置30の構成と故障診断装置40の構成とが1つの装置(例えばクラウドサーバ)において実現されるものであってもよい。また、故障診断装置40の一部または全部は、家電機器10に備えられてもよい。
実施形態における蓄積部302、403、その他の記憶装置(レジスタ、ラッチを含む)のそれぞれは、適切な情報の送受信が行われる範囲においてどこに備えられていてもよい。また、実施形態における蓄積部302、403、その他の記憶装置のそれぞれは、適切な情報の送受信が行われる範囲において複数存在しデータを分散して記憶していてもよい。
実施形態について説明したが、上述の家電機器10a、10b、10c、インタフェース装置20、学習装置30、故障診断装置40、その他の制御装置は内部に、コンピュータシステムを有していてもよい。そして、上述した処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。コンピュータの具体例を以下に示す。
次に、少なくとも1つの実施形態に係るコンピュータの構成について説明する。
コンピュータ5は、CPU、メインメモリ、ストレージ、インタフェースを備える。
例えば、上述の家電機器10a、10b、10c、インタフェース装置20、学習装置30、故障診断装置40、その他の制御装置のそれぞれは、コンピュータに実装される。そして、上述した各処理部の動作は、プログラムの形式でストレージに記憶されている。CPUは、プログラムをストレージから読み出してメインメモリに展開し、当該プログラムに従って上記処理を実行する。また、CPUは、プログラムに従って、上述した各記憶部に対応する記憶領域をメインメモリに確保する。
ストレージの例としては、HDD(Hard Disk Drive)、SSD(Solid State Drive)、磁気ディスク、光磁気ディスク、CD−ROM(Compact Disc Read Only Memory)、DVD−ROM(Digital Versatile Disc Read Only Memory)、半導体メモリ等が挙げられる。ストレージは、コンピュータのバスに直接接続された内部メディアであってもよいし、コンピュータが備えるインタフェースまたは通信回線を介してコンピュータに接続される外部メディアであってもよい。また、このプログラムが通信回線によってコンピュータに配信される場合、配信を受けたコンピュータが当該プログラムをメインメモリに展開し、上記処理を実行してもよい。少なくとも1つの実施形態において、ストレージは、一時的でない有形の記憶媒体である。
また、上記プログラムは、前述した機能の一部を実現してもよい。さらに、上記プログラムは、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるファイル、いわゆる差分ファイル(差分プログラム)であってもよい。
上記各実施形態では、送信部101a、101b、101c、仲介部201、受信部301、401、蓄積部302、403、学習部303、診断部402、更新部404はソフトウェア機能部であるものとしたが、LSI等のハードウェア機能部であってもよい。また、送信部101a、101b、101c、仲介部201、受信部301、401、蓄積部302、403、学習部303、診断部402、更新部404の一部がソフトウェア機能部であり、残りがLSI等のハードウェア機能部であってもよい。
以上説明した少なくともひとつの実施形態によれば、診断部を持つことにより、家電機器における不具合の発生を予測することができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1…家電システム、10a、10b、10c…家電機器、20…インタフェース装置、30…学習装置、40…故障診断装置、101a、101b、101c…送信部、102a、102b、102c…センサ、103…異常判定部、201…仲介部、301、401…受信部、302、403…蓄積部、303…学習部、402…診断部、404…更新部、405…報知部。

Claims (12)

  1. 家電機器が有する1つ以上のセンサの検出結果に基づく情報が入力されると前記家電機器に関する故障診断の結果を出力するように学習された学習済みモデルに基づき、前記家電機器の故障診断を行う診断部、
    を備える家電システム。
  2. 前記情報を蓄積する情報蓄積部をさらに備え、
    前記学習済みモデルは、一定期間に亘り蓄積された前記情報が入力されると前記故障診断の結果を出力するように学習されており、
    前記診断部は、前記情報蓄積部により前記一定期間に亘り蓄積された前記情報に基づき前記故障診断を行う、
    請求項1に記載の家電システム。
  3. 前記学習済みモデルは、家電機器で実際に不具合が生じた時点から過去に所定期間遡った時点以前の前記一定期間に亘り蓄積された前記情報を用いて学習されており、
    前記診断部は、直近の前記一定期間に亘り蓄積された前記情報に基づき前記故障診断を行う、
    請求項2に記載の家電システム。
  4. 前記1つ以上のセンサは、第1センサと、第2センサとを含み、
    前記家電機器は、前記第1センサの検出結果と閾値とに基づき前記家電機器に含まれる第1部品の異常を判定する異常判定部を有し、
    前記診断部は、前記一定期間に亘り蓄積された前記第1センサおよび前記第2センサの検出結果に基づく前記情報を用いて、前記第1部品の故障診断を行う、
    請求項2または請求項3に記載の家電システム。
  5. 前記学習済みモデルは、複数の家電機器についてそれぞれ前記一定期間に亘り蓄積された前記情報と、前記複数の家電機器でそれぞれ実際に生じた不具合の内容との組み合わせを教師データとして学習されている、
    請求項2から請求項4のうちいずれか1項に記載の家電システム。
  6. 前記不具合の内容は、実際に行われた修理内容に基づいて特定された内容を含む、
    請求項5に記載の家電システム。
  7. 前記学習済みモデルを更新する更新部をさらに備える、
    請求項1から請求項6のうちいずれか1項に記載の家電システム。
  8. 新しく取得された家電機器の不具合に関する情報に基づき前記学習済みモデルを追加学習させる学習部をさらに備え、
    前記更新部は、前記学習部により追加学習させられた前記学習済みモデルによって前記診断部が用いる前記学習済みモデルを更新する、
    請求項7に記載の家電システム。
  9. 前記情報を蓄積する第1情報蓄積部と、前記診断部とを含む故障診断ユニットと、
    前記情報を蓄積する第2情報蓄積部と、前記学習部とを含む学習ユニットと、
    前記家電機器から受信するデータを、前記故障診断ユニットと前記学習ユニットとのうち一方または双方に振り分ける仲介部と、
    を備える請求項8に記載の家電システム。
  10. 前記学習済みモデルは、同一種類の家電機器に関して、機種、基本形式、または構成部品に基づき分類されたグループ毎に生成されている、
    請求項1から請求項9のうちいずれか1項に記載の家電システム。
  11. 前記学習済みモデルは、同一種類の家電機器に関して、第1基準に基づき分類された大グループ毎に生成された第1学習済みモデルと、前記大グループを前記第1基準とは別の第2基準に基づき細分化した小グループ毎に生成された第2学習済みモデルとを含み、
    前記診断部は、前記第1学習済みモデルを用いた第1故障診断と、前記第2学習済みモデルを用いた第2故障診断とを行う、
    請求項1から請求項10のうちいずれか1項に記載の家電システム。
  12. 前記診断部による前記故障診断の結果に対応する症状が前記家電機器で実際に生じているか否かをユーザに確認させる報知を前記家電機器または端末装置により出力させる報知部をさらに備える
    請求項1から請求項11のうちいずれか1項に記載の家電システム。
JP2020082482A 2020-05-08 2020-05-08 家電システム Active JP7449771B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020082482A JP7449771B2 (ja) 2020-05-08 2020-05-08 家電システム
CN202110218751.0A CN113624522A (zh) 2020-05-08 2021-02-26 家电系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020082482A JP7449771B2 (ja) 2020-05-08 2020-05-08 家電システム

Publications (2)

Publication Number Publication Date
JP2021177319A true JP2021177319A (ja) 2021-11-11
JP7449771B2 JP7449771B2 (ja) 2024-03-14

Family

ID=78377860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020082482A Active JP7449771B2 (ja) 2020-05-08 2020-05-08 家電システム

Country Status (2)

Country Link
JP (1) JP7449771B2 (ja)
CN (1) CN113624522A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115169505A (zh) * 2022-09-06 2022-10-11 杭州浅水数字技术有限公司 特种设备运动部件机械故障预警方法及其预警系统
DE102022211505A1 (de) 2021-10-29 2023-05-04 Renesas Electronics Corporation Halbleitervorrichtung
WO2024142592A1 (ja) * 2022-12-27 2024-07-04 パナソニックIpマネジメント株式会社 異常検知方法、異常検知装置、および、プログラム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114567870B (zh) * 2022-02-28 2024-04-16 海信视像科技股份有限公司 基于gatt的配网配账号方法、控制终端及显示设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014002003A (ja) * 2012-06-18 2014-01-09 Canon Inc 電子機器
JP2018085589A (ja) * 2016-11-22 2018-05-31 パナソニックIpマネジメント株式会社 診断方法、診断装置及び表示装置
JP2019159730A (ja) * 2018-03-12 2019-09-19 株式会社リコー 保守システム、保守サーバ、保守方法
JP2019179300A (ja) * 2018-03-30 2019-10-17 日立グローバルライフソリューションズ株式会社 サーバ、プログラム、及び機器システム
JP2019212131A (ja) * 2018-06-06 2019-12-12 シャープ株式会社 予測装置、電気機器、管理システム、予測方法、及び制御プログラム
JP2020042705A (ja) * 2018-09-13 2020-03-19 いすゞ自動車株式会社 故障予測装置、故障予測方法及びプログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014002003A (ja) * 2012-06-18 2014-01-09 Canon Inc 電子機器
JP2018085589A (ja) * 2016-11-22 2018-05-31 パナソニックIpマネジメント株式会社 診断方法、診断装置及び表示装置
JP2019159730A (ja) * 2018-03-12 2019-09-19 株式会社リコー 保守システム、保守サーバ、保守方法
JP2019179300A (ja) * 2018-03-30 2019-10-17 日立グローバルライフソリューションズ株式会社 サーバ、プログラム、及び機器システム
JP2019212131A (ja) * 2018-06-06 2019-12-12 シャープ株式会社 予測装置、電気機器、管理システム、予測方法、及び制御プログラム
JP2020042705A (ja) * 2018-09-13 2020-03-19 いすゞ自動車株式会社 故障予測装置、故障予測方法及びプログラム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022211505A1 (de) 2021-10-29 2023-05-04 Renesas Electronics Corporation Halbleitervorrichtung
CN115169505A (zh) * 2022-09-06 2022-10-11 杭州浅水数字技术有限公司 特种设备运动部件机械故障预警方法及其预警系统
WO2024142592A1 (ja) * 2022-12-27 2024-07-04 パナソニックIpマネジメント株式会社 異常検知方法、異常検知装置、および、プログラム

Also Published As

Publication number Publication date
JP7449771B2 (ja) 2024-03-14
CN113624522A (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
JP7449771B2 (ja) 家電システム
KR102687417B1 (ko) 고장 예측을 위해 가전기기의 운영데이터를 관리하는 방법 및 장치
JP7078437B2 (ja) サーバ、プログラム、及び機器システム
CN110506186B (zh) 用于诊断异常状态的原因的冰箱及云服务器
JP7260292B2 (ja) 異常診断装置及び異常診断方法
CN104101051A (zh) 一种空调器及其冷媒循环异常检测控制方法和装置
CN112050549B (zh) 家电设备系统、家电设备的诊断方法、以及终端设备
JP2019212131A (ja) 予測装置、電気機器、管理システム、予測方法、及び制御プログラム
US12000604B2 (en) Failure diagnosis system configured to diagnose a state of an air-conditioning apparatus having a refrigerant circuit
JP2018085589A (ja) 診断方法、診断装置及び表示装置
CN107152751B (zh) 电子膨胀阀故障检测方法、空调及计算机可读存储介质
JP2020109581A (ja) 診断方法、診断装置、診断システム及び診断プログラム
CN111578447A (zh) 空调健康度诊断方法、装置、计算机设备和存储介质
US20240068721A1 (en) Systems and methods for refrigerant leakage diagnosis
AU2018404247B2 (en) State analyzer system and state analysis device
JP2021184132A (ja) 情報処理システム
JP7240984B2 (ja) 通知管理サーバ、および、通知管理方法
US11906223B2 (en) Systems and methods for determining a fault of an air system for heating, ventilation and/or cooling
WO2023248402A1 (ja) 空気調和システム及び異常診断方法
Wu et al. A fault detection model for air handling units based on the machine learning algorithms
Kaushik et al. Detecting faults in the cooling systems by monitoring temperature and energy
JP7545818B2 (ja) 異常診断装置及び異常診断方法
CN113701431B (zh) 信息处理系统
WO2023045154A1 (zh) 冰箱的故障检测方法和装置
JP2023055023A (ja) 家電システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240304

R150 Certificate of patent or registration of utility model

Ref document number: 7449771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150