JP2021167982A - Imaging optical system and imaging device using the same - Google Patents

Imaging optical system and imaging device using the same Download PDF

Info

Publication number
JP2021167982A
JP2021167982A JP2021124629A JP2021124629A JP2021167982A JP 2021167982 A JP2021167982 A JP 2021167982A JP 2021124629 A JP2021124629 A JP 2021124629A JP 2021124629 A JP2021124629 A JP 2021124629A JP 2021167982 A JP2021167982 A JP 2021167982A
Authority
JP
Japan
Prior art keywords
lens
group
optical system
object side
imaging optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021124629A
Other languages
Japanese (ja)
Other versions
JP7077465B2 (en
Inventor
正和 山岸
Masakazu Yamagishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2021124629A priority Critical patent/JP7077465B2/en
Publication of JP2021167982A publication Critical patent/JP2021167982A/en
Application granted granted Critical
Publication of JP7077465B2 publication Critical patent/JP7077465B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

To achieve an imaging optical system that makes an aberration fluctuation small upon focusing from infinity to a near distance, has a high optical performance over an entire focus, and is easy to sufficiently secure peripheral illumination.SOLUTION: In an imaging optical system comprising: a first lens group with positive refractive power; and a second lens group with positive or negative refractive power, in which upon focusing, an interval between the first lens group and the second lens group changes, the first lens group includes an aperture stop. Let a lens highest in an incident height h of an on-axis ray of light on an object side of the aperture stop be a lens Gh, the first lens group consists of: a first a group with negative refractive power that is composed from a lens on a most object side to an adjacent lens on an object side of the lens Gh; a first b group that is composed from the lens Gh to an adjacent lens on the object side of the aperture stop; and a first c group that is composed of a lens arranged on an image side of the aperture stop, in which a focal length f1a of the first a group, and a focal length f of an entire system are each properly set.SELECTED DRAWING: Figure 1

Description

本発明は撮像光学系に関し、特に一眼レフカメラ、デジタルスチルカメラ、フィルム用カメラ、ビデオカメラ、監視用カメラ等の撮像装置に好適なものである。 The present invention relates to an imaging optical system, and is particularly suitable for an imaging device such as a single-lens reflex camera, a digital still camera, a film camera, a video camera, or a surveillance camera.

近年、レンズ交換式のスチルカメラ等の撮像装置に用いる撮像光学系には、大口径比で、無限遠から近距離へのフォーカシングに際して収差変動が少なく、フォーカス全域にわたり高い光学性能を有することが要求されている。 In recent years, the imaging optical system used in an imaging device such as an interchangeable lens still camera is required to have a large aperture ratio, little aberration fluctuation during focusing from infinity to a short distance, and high optical performance over the entire focus range. ing.

特許文献1は、撮像倍率1.5程度の近接撮影においても十分な収差補正がなされた広角マクロレンズ系を開示している。特許文献2は、球面収差やコマ収差を低減したダブルガウスタイプのマクロレンズ系を開示している。 Patent Document 1 discloses a wide-angle macro lens system in which sufficient aberration correction is performed even in close-up photography with an imaging magnification of about 1.5. Patent Document 2 discloses a double gauss type macro lens system in which spherical aberration and coma are reduced.

特開2008−298840号公報Japanese Unexamined Patent Publication No. 2008-298840 特開2013−231941号公報Japanese Unexamined Patent Publication No. 2013-231941

ダブルガウスタイプの撮像光学系は、大口径比化が容易で、物体距離の変動に対する収差変動が比較的少ないという特徴がある。しかしながら、ダブルガウスタイプの撮像光学系において、無限遠から近距離へのフォーカシングに際して全系を移動させると、瞳の移動量が増加してくる。この結果、フォーカス全域で周辺光量を確保しようとすると、レンズ有効径が増大し全系が大型化してくる。 The double-Gauss type imaging optical system is characterized in that it is easy to make a large-diameter ratio and that there is relatively little aberration fluctuation with respect to fluctuations in object distance. However, in a double Gauss type imaging optical system, if the entire system is moved during focusing from infinity to a short distance, the amount of movement of the pupil increases. As a result, when trying to secure the amount of peripheral light over the entire focus range, the effective diameter of the lens increases and the entire system becomes large.

大口径比で、無限遠から近距離へのフォーカシングに際して高い光学性能を有し、かつ周辺光量を充分得るためには、レンズ構成や各レンズに用いる材料等を適切に設定することが重要となってくる。 In order to have a large aperture ratio, high optical performance when focusing from infinity to a short distance, and to obtain a sufficient amount of peripheral light, it is important to appropriately set the lens configuration and materials used for each lens. come.

本発明は、無限遠から近距離へのフォーカシングに伴う収差変動が少なく、フォーカス全域で高い光学性能を有し、周辺光量を充分確保することが容易な撮像光学系及びそれを有する撮像装置を提供することを目的とする。 The present invention provides an imaging optical system having little aberration fluctuation due to focusing from infinity to a short distance, having high optical performance over the entire focus range, and easily securing a sufficient amount of peripheral light, and an imaging apparatus having the same. The purpose is.

本発明の撮像光学系は、物体側から像側へ順に配置された、正の屈折力の第1レンズ群、正または負の屈折力の第2レンズ群から成り、フォーカシングに際して前記第1レンズ群と第2レンズ群の間隔が変化する撮像光学系において、
前記第1レンズ群は開口絞りを含み、前記開口絞りの物体側において軸上光線の入射高hが最も高いレンズをレンズGhとするとき、前記第1レンズ群は、最も物体側のレンズから前記レンズGhの物体側に隣接して配置されたレンズまでで構成される負の屈折力の第1a群、前記レンズGhから前記開口絞りの物体側に隣接して配置されたレンズまでで構成される第1b群、前記開口絞りの像側に配置されたレンズにより構成される第1c群からなり、前記第1a群の焦点距離をf1a、全系の焦点距離をfとするとき、
−1.5<f1a/f<−0.5
なる条件式を満足することを特徴としている。
The imaging optical system of the present invention comprises a first lens group having a positive refractive power and a second lens group having a positive or negative refractive power arranged in order from the object side to the image side. In an imaging optical system in which the distance between the second lens group and the second lens group changes.
When the first lens group includes an aperture aperture and the lens having the highest incident height h of the axial light beam on the object side of the aperture aperture is the lens Gh, the first lens group includes the lens on the object side first. A first group of negative refractive forces composed of up to a lens arranged adjacent to the object side of the lens Gh, from the lens Gh to a lens arranged adjacent to the object side of the aperture aperture. When the group 1b is composed of the group 1c and the group 1c composed of the lenses arranged on the image side of the aperture aperture, the focal distance of the group 1a is f1a, and the focal distance of the entire system is f.
-1.5 <f1a / f <-0.5
It is characterized by satisfying the conditional expression.

本発明によれば、無限遠から近距離へのフォーカシングに際して収差変動が少なく、フォーカス全域で高い光学性能を有し、周辺光量を充分確保することが容易な撮像光学系が得られる。 According to the present invention, it is possible to obtain an imaging optical system in which aberration fluctuation is small when focusing from infinity to a short distance, high optical performance is obtained over the entire focus range, and it is easy to secure a sufficient amount of peripheral light.

本発明の実施例1におけるレンズ断面図Cross-sectional view of the lens in Example 1 of the present invention (A)、(B)本発明における実施例1の無限遠と近距離(撮影倍率0.5)における縦収差図(A), (B) Longitudinal aberration diagram at infinity and short distance (photographing magnification 0.5) of Example 1 in the present invention. 本発明の実施例2におけるレンズ断面図Cross-sectional view of the lens in Example 2 of the present invention (A)、(B)本発明における実施例2の無限遠と近距離(撮影倍率0.5)における縦収差図(A), (B) Longitudinal aberration diagram at infinity and short distance (photographing magnification 0.5) of Example 2 in the present invention. 本発明の実施例3におけるレンズ断面図Cross-sectional view of the lens in Example 3 of the present invention (A)、(B)本発明における実施例3の無限遠と近距離(撮影倍率0.5)における縦収差図(A), (B) Longitudinal aberration diagram at infinity and short distance (photographing magnification 0.5) of Example 3 in the present invention. 本発明の撮像装置の要部概略図Schematic diagram of the main part of the image pickup apparatus of the present invention

以下、図面を用いて本発明の撮像光学系及びそれを有する撮像装置の実施例について説明する。本発明の撮像光学系は、物体側から像側へ順に配置された、正の屈折力の第1レンズ群、正または負の屈折力の第2レンズ群から成り、フォーカシングに際して第1レンズ群と第2レンズ群の間隔が変化する。 Hereinafter, examples of the imaging optical system of the present invention and an imaging apparatus having the same will be described with reference to the drawings. The imaging optical system of the present invention comprises a first lens group having a positive refractive power and a second lens group having a positive or negative refractive power arranged in order from the object side to the image side. The spacing of the second lens group changes.

図1は、本発明の実施例1の撮像光学系について、無限遠に合焦(フォーカス)しているときのレンズ断面図である。図2(A)、(B)は、本発明の実施例1の撮像光学系について、無限遠と近距離(撮像倍率−0.5)に合焦しているときの縦収差図である。実施例1はFナンバー2.91、撮像画角42.2度の撮像光学系である。 FIG. 1 is a cross-sectional view of a lens of the imaging optical system according to the first embodiment of the present invention when it is in focus at infinity. 2 (A) and 2 (B) are longitudinal aberration diagrams of the imaging optical system of the first embodiment of the present invention when they are in focus at infinity and a short distance (imaging magnification −0.5). The first embodiment is an imaging optical system having an F number of 2.91 and an imaging angle of view of 42.2 degrees.

図3は、本発明の実施例2の撮像光学系について、無限遠に合焦しているときのレンズ断面図である。図4(A)、(B)は、本発明の実施例2の撮像光学系について、無限遠と近距離(撮像倍率−0.5)に合焦しているときの縦収差図である。実施例2はFナンバー2.91、撮像画角40.8度の撮像光学系である。 FIG. 3 is a cross-sectional view of the lens of the imaging optical system according to the second embodiment of the present invention when the lens is in focus at infinity. 4 (A) and 4 (B) are longitudinal aberration diagrams of the imaging optical system of the second embodiment of the present invention when they are in focus at infinity and a short distance (imaging magnification −0.5). The second embodiment is an imaging optical system having an F number of 2.91 and an imaging angle of view of 40.8 degrees.

図5は、本発明の実施例3の撮像光学系について、無限遠に合焦しているときのレンズ断面図である。図6(A)、(B)は、本発明の実施例3の撮像光学系について、無限遠と近距離(撮像倍率−0.5)に合焦しているときの縦収差図である。実施例3はFナンバー2.91、撮像画角41.4度の撮像光学系である。図7は本発明の撮像装置の要部概略図である。 FIG. 5 is a cross-sectional view of the lens of the imaging optical system according to the third embodiment of the present invention when the lens is in focus at infinity. 6 (A) and 6 (B) are longitudinal aberration diagrams of the imaging optical system of the third embodiment of the present invention when they are in focus at infinity and a short distance (imaging magnification −0.5). Example 3 is an imaging optical system having an F number of 2.91 and an imaging angle of view of 41.4 degrees. FIG. 7 is a schematic view of a main part of the image pickup apparatus of the present invention.

本発明の撮像光学系はデジタルカメラやビデオカメラ、放送用カメラ、監視用カメラ、銀塩写真用カメラ等の撮像装置に用いられる。 The imaging optical system of the present invention is used in imaging devices such as digital cameras, video cameras, broadcasting cameras, surveillance cameras, and silver halide photography cameras.

実施例1乃至3に対応する図1、図3、図5のレンズ断面図において、左方が物体側で、右方が像側である。レンズ断面図において、L0は撮像光学系である。L1は正の屈折力の第1レンズ群、L2は負の屈折力の第2レンズ群である。 In the lens cross-sectional views of FIGS. 1, 3, and 5 corresponding to the first to third embodiments, the left side is the object side and the right side is the image side. In the lens cross-sectional view, L0 is an imaging optical system. L1 is a first lens group having a positive refractive power, and L2 is a second lens group having a negative refractive power.

無限遠から至近へのフォーカシングに際して、第1レンズ群L1と第2レンズ群L2は、互いの間隔が拡大するように矢印に示すように物体側に移動する。第1レンズ群L1は、負の屈折力の第1a群L1a、正の屈折力の第1b群L1b、正の屈折力の第1c群L1cより構成されている。SPは開口絞りであり、第1レンズ群L1に配置されている。第1レンズ群L1を構成する第1a群L1a、第1b群L1b、第1c群L1cの各群の区分けは次のとおりである。 When focusing from infinity to close proximity, the first lens group L1 and the second lens group L2 move toward the object as shown by the arrows so that the distance between them increases. The first lens group L1 is composed of a first group L1a having a negative refractive power, a first group L1b having a positive refractive power, and a first c group L1c having a positive refractive power. The SP is an aperture diaphragm and is arranged in the first lens group L1. The division of each group of the first group L1a, the first b group L1b, and the first c group L1c constituting the first lens group L1 is as follows.

開口絞りSPの物体側において軸上光線の入射高hが最も高いレンズをレンズGhとする。第1a群L1aは、最も物体側のレンズからレンズGhの物体側に隣接して配置されたレンズまでで構成される。第1b群L1bは、レンズGhから開口絞りSPの物体側に隣接して配置されたレンズまでで構成される。第1c群L1cは、開口絞りSPより像側に配置されたレンズにより構成される。IPは像面であり、デジタルスチルカメラやビデオカメラの撮像光学系として使用する際にはCCDセンサやCMOSセンサ等の固体撮像素子の撮像面が、銀塩フィルム用カメラのときはフィルム面に相当する。 The lens with the highest incident height h of the axial light beam on the object side of the aperture diaphragm SP is referred to as a lens Gh. The first group L1a is composed of a lens closest to the object side to a lens arranged adjacent to the object side of the lens Gh. The first group L1b is composed of a lens Gh to a lens arranged adjacent to the object side of the aperture diaphragm SP. The first c group L1c is composed of lenses arranged on the image side of the aperture diaphragm SP. The IP is an image plane, and when used as an image pickup optical system for a digital still camera or video camera, the image pickup surface of a solid-state image sensor such as a CCD sensor or CMOS sensor corresponds to the film surface for a silver halide film camera. do.

収差図において、FnoはFナンバーである。ωは半画角(度)である。また球面収差図において実線のdはd線(波長587.6nm)、二点鎖線のgはg線(波長435.8nm)である。非点収差図で点線のΔMはd線におけるメリディオナル像面、実線のΔSはd線におけるサジタル像面である。歪曲収差図はd線について示している。倍率色収差図において二点鎖線のgはg線である。後述する数値データをmm単位で表したとき縦収差図において、球面収差は0.4mm、非点収差は0.4mm、歪曲は2%、倍率色収差は0.05mmのスケールで描かれている。 In the aberration diagram, Fno is the F number. ω is the half angle of view (degrees). In the spherical aberration diagram, the solid line d is the d line (wavelength 587.6 nm), and the alternate long and short dash line g is the g line (wavelength 435.8 nm). In the astigmatism diagram, the dotted ΔM is the meridional image plane on the d line, and the solid ΔS is the sagittal image plane on the d line. The distortion diagram shows the d-line. In the chromatic aberration of magnification diagram, g of the alternate long and short dash line is g line. When the numerical data described later is expressed in mm units, the spherical aberration is 0.4 mm, the astigmatism is 0.4 mm, the distortion is 2%, and the chromatic aberration of magnification is 0.05 mm in the longitudinal aberration diagram.

ダブルガウスタイプの撮像光学系において、無限遠から近距離へのフォーカシングに際して全体を移動させる方式をとる場合、撮影倍率を向上させようとするとフォーカシングに伴う瞳の移動量が増加してくる。この結果、フォーカス全域で周辺光量を確保しようとすると、レンズの有効径が増加してくる。 In a double-Gauss type imaging optical system, when a method of moving the entire lens when focusing from infinity to a short distance is adopted, the amount of movement of the pupil due to focusing increases when trying to improve the shooting magnification. As a result, the effective diameter of the lens increases when trying to secure the peripheral illumination over the entire focus range.

特許文献1に開示された広角マクロレンズ系は、物体側のレンズ群の負の屈折力が弱いため、レンズ間隔が広く、レンズ全長が増大する傾向があった。特許文献2に開示されたマクロレンズ系は、物体側のレンズ群の負の屈折力が弱く、レンズの有効径が増大する傾向があった。 In the wide-angle macro lens system disclosed in Patent Document 1, since the negative refractive power of the lens group on the object side is weak, the lens interval is wide and the total length of the lens tends to increase. In the macro lens system disclosed in Patent Document 2, the negative refractive power of the lens group on the object side is weak, and the effective diameter of the lens tends to increase.

本発明は物体側に負の屈折力の大きなレンズ群を配置することによって、無限遠から近距離へのフォーカシングに際して高い光学性能を有しつつ、周辺光量を充分確保している。 In the present invention, by arranging a lens group having a large negative refractive power on the object side, a sufficient amount of peripheral light is secured while having high optical performance when focusing from infinity to a short distance.

本発明の撮像光学系の構成について説明する。本発明の撮像光学系L0は、物体側から像側へ順に配置された、正の屈折力の第1レンズ群L1、正または負の屈折力の第2レンズ群L2から成る。第1レンズ群L1は開口絞りSPを有している。開口絞りSPの物体側において軸上光線の入射高hが最も高くなるレンズをレンズGhとする。 The configuration of the imaging optical system of the present invention will be described. The imaging optical system L0 of the present invention includes a first lens group L1 having a positive refractive power and a second lens group L2 having a positive or negative refractive power arranged in order from the object side to the image side. The first lens group L1 has an aperture stop SP. The lens having the highest incident height h of the axial light beam on the object side of the aperture diaphragm SP is referred to as a lens Gh.

このとき、第1レンズ群L1は、最も物体側のレンズからレンズGhの物体側に隣接して配置されたレンズまでで構成される負の屈折力の第1a群L1a、レンズGhから開口絞りSPの物体側に隣接して配置されたレンズまでで構成される第1b群L1bを有する。更に開口絞りSPの像側に配置されたレンズにより構成される第1c群L1cからなる。 At this time, the first lens group L1 is the first a group L1a of negative refractive power composed of the lens closest to the object side to the lens arranged adjacent to the object side of the lens Gh, and the aperture aperture SP from the lens Gh. It has a first group L1b composed of up to a lens arranged adjacent to the object side of the above. Further, it is composed of a first c group L1c composed of lenses arranged on the image side of the aperture diaphragm SP.

そして、第1a群L1aの焦点距離をf1a、全系の焦点距離をfとするとき、
−1.5<f1a/f<−0.5 ・・・(1)
なる条件式を満足する。
Then, when the focal length of the first group L1a is f1a and the focal length of the entire system is f,
-1.5 <f1a / f <-0.5 ... (1)
Satisfies the conditional expression.

次に、条件式(1)の技術的意味について説明する。条件式(1)は、第1a群L1aの焦点距離を適切に設定することで、レンズの大型化を防ぎながら軸外光束のケラレを少なくするための条件式である。条件式(1)の上限値を超えて第1a群L1aの負の屈折力が強くなる(負の屈折力の絶対値が大きくなる)と、光線のはねあげが大きくなり像側に続く第1b群L1bの有効径が大型化してしまう。 Next, the technical meaning of the conditional expression (1) will be described. The conditional expression (1) is a conditional expression for reducing the eclipse of the off-axis luminous flux while preventing the lens from becoming large by appropriately setting the focal length of the first group L1a. When the upper limit of the conditional expression (1) is exceeded and the negative refractive power of the first group L1a becomes stronger (the absolute value of the negative refractive power becomes larger), the bounce of light rays becomes larger and the first group b continues to the image side. The effective diameter of L1b becomes large.

条件式(1)の下限値を超えて、第1a群L1aの負の屈折力が弱くなる(負の屈折力の絶対値が小さくなる)と、入射瞳を充分に物体側へ移動させることができず、第1a群L1aの径が大型化してしまう。より好ましくは、条件式(1)の数値範囲を次の如く設定するのが良い。
−1.0<f1a/f<−0.6 ・・・(1a)
When the lower limit of the conditional equation (1) is exceeded and the negative refractive power of the first group L1a becomes weaker (the absolute value of the negative refractive power becomes smaller), the entrance pupil may be sufficiently moved toward the object. This is not possible, and the diameter of the first group L1a becomes large. More preferably, the numerical range of the conditional expression (1) is set as follows.
-1.0 <f1a / f <-0.6 ... (1a)

以上により、本発明では、無限遠から近距離へのフォーカシングに際して収差変動が少なく、高い光学性能を有し、周辺光量を充分確保した撮像光学系L0を得ている。 As described above, in the present invention, the imaging optical system L0 is obtained, which has less aberration variation during focusing from infinity to a short distance, has high optical performance, and has a sufficient peripheral illumination.

次に本発明のより好ましい構成について説明する。第1a群L1aと第1b群L1bとの合成焦点距離をf1abとする。第2レンズ群L2の焦点距離をf2とする。無限遠から近距離へのフォーカシングに際して第1レンズ群L1が光軸上を移動する移動量をT1とする。但し、フォーカシングに際してのレンズ群の移動量の符号は無限遠に合焦しているときと比較して近距離に合焦しているときにレンズ群が像側に位置するときを正とする。また、近距離とは撮像倍率が−0.5のときをいう。 Next, a more preferable configuration of the present invention will be described. Let f1ab be the combined focal length of the first group L1a and the first b group L1b. Let the focal length of the second lens group L2 be f2. Let T1 be the amount of movement of the first lens group L1 on the optical axis when focusing from infinity to a short distance. However, the sign of the amount of movement of the lens group during focusing is positive when the lens group is located on the image side when the lens group is in focus at a short distance as compared with the case where the lens group is in focus at infinity. The short distance means that the imaging magnification is -0.5.

このとき次の条件式のうち1つ以上を満足するのが良い。
|f/f1ab|<0.25 ・・・(2)
|f/f2|<0.40 ・・・(3)
0.30<|T1/f|<0.95 ・・・(4)
At this time, it is preferable to satisfy one or more of the following conditional expressions.
| F / f1ab | <0.25 ... (2)
| F / f2 | <0.40 ... (3)
0.30 << | T1 / f | <0.95 ... (4)

次に前述の各条件式の技術的意味について説明する。条件式(2)は、開口絞りSPの物体側のレンズ系の屈折力を弱めることにより、長いバックフォーカスを確保して、例えばデジタル一眼レフカメラなどの撮像装置への対応を容易にしている。条件式(2)の上限値を超えると長いバックフォーカスを確保するのが困難となる。条件式(2)は、より好ましくは次の数値範囲とするのが良い。
0.05<|f/f1ab|<0.15 ・・・(2a)
Next, the technical meaning of each of the above conditional expressions will be described. The conditional expression (2) secures a long back focus by weakening the refractive power of the lens system on the object side of the aperture diaphragm SP, and facilitates compatibility with an imaging device such as a digital single-lens reflex camera. If the upper limit of the conditional expression (2) is exceeded, it becomes difficult to secure a long back focus. The conditional expression (2) is more preferably in the following numerical range.
0.05 << f / f1ab | <0.15 ... (2a)

条件式(3)は、第2レンズ群の屈折力を弱くすることでフォーカシングに際してのコマ収差の変動・像面湾曲の変動を少なくするためのものである。条件式(3)の上限値を超えるとコマ収差や像面湾曲を良好に補正するのが困難になる。条件式(3)は、より好ましくは次の数値範囲とするのが良い。
|f/f2|<0.32 ・・・(3a)
Conditional expression (3) is for reducing fluctuations in coma aberration and curvature of field during focusing by weakening the refractive power of the second lens group. If the upper limit of the conditional expression (3) is exceeded, it becomes difficult to satisfactorily correct coma aberration and curvature of field. The conditional expression (3) is more preferably in the following numerical range.
| F / f2 | <0.32 ... (3a)

条件式(4)は無限遠から近距離へのフォーカシングにおける第1レンズ群L1の移動量T1に関する。条件式(4)の下限値を超えると、近距離での撮影倍率が低くなる。 Conditional expression (4) relates to the amount of movement T1 of the first lens group L1 in focusing from infinity to a short distance. If the lower limit of the conditional expression (4) is exceeded, the shooting magnification at a short distance becomes low.

条件式(4)の上限値を超えて、フォーカシングに伴う第1レンズ群L1の移動量が大きくなると、各レンズを保持する鏡筒で軸外光束がけられやすくなるか、光束がけられないようするためレンズ有効径が大型化してしまう。条件式(4)は、より好ましくは次の数値範囲とするのが良い。
0.35<|T1/f|<0.85 ・・・(4a)
When the upper limit of the conditional expression (4) is exceeded and the amount of movement of the first lens group L1 due to focusing becomes large, the lens barrel holding each lens is likely to have an off-axis luminous flux, or the luminous flux is prevented from being emitted. Therefore, the effective diameter of the lens becomes large. The conditional expression (4) is more preferably in the following numerical range.
0.35 << | T1 / f | <0.85 ... (4a)

また各実施例において好ましくは次の構成をとるのが良い。第1b群L1bに含まれる開口絞りSPに隣接して配置されたレンズは像側のレンズ面が凹形状であり、第1c群L1cに含まれる開口絞りSPに隣接して配置されたレンズは物体側のレンズ面が凹形状であることが好ましい。 Further, in each embodiment, it is preferable to have the following configuration. The lens arranged adjacent to the aperture diaphragm SP included in the first group L1b has a concave lens surface on the image side, and the lens arranged adjacent to the aperture diaphragm SP included in the first c group L1c is an object. It is preferable that the lens surface on the side has a concave shape.

開口絞りSPを挟んで対称のレンズ形状とすれば諸収差、特に球面収差、コマ収差等の補正が容易になる。第2レンズ群L2に含まれるレンズの中で最も像側には、物体側のレンズ面が凹形状の正レンズが配置されていることが良い。これによれば、撮像光学系L0をデジタルカメラに用いて、撮影する場合にセンサ面で反射した外光がさらにレンズ面に反射して起こるゴースト、フレアを低減することが容易になる。 If the lens shape is symmetrical with the aperture diaphragm SP in between, various aberrations, particularly spherical aberration, coma, and the like can be easily corrected. Among the lenses included in the second lens group L2, it is preferable that a positive lens having a concave lens surface on the object side is arranged on the image side most. According to this, when the imaging optical system L0 is used in a digital camera, it becomes easy to reduce ghosts and flares caused by the external light reflected by the sensor surface reflected on the lens surface when taking a picture.

第1a群L1aは、物体側から像側へ順に配置された、負レンズ、正レンズ、負レンズから成ることが好ましい。これによれば、第1a群L1aにおいて球面収差およびコマ収差を良好に補正することが容易になる。 The first group L1a is preferably composed of a negative lens, a positive lens, and a negative lens arranged in order from the object side to the image side. According to this, it becomes easy to satisfactorily correct spherical aberration and coma aberration in the first group L1a.

次に各実施例のレンズ構成の特徴について説明する。実施例1において、第1b群L1bは、物体側から像側へ順に配置された、正レンズ、正レンズと負レンズを接合した接合レンズよりなる。実施例2、3において、第1b群L1bは、物体側から像側へ順に配置された正レンズ、正レンズ、正レンズと負レンズを接合した接合レンズよりなる。 Next, the features of the lens configuration of each embodiment will be described. In the first embodiment, the first group L1b comprises a positive lens and a bonded lens in which a positive lens and a negative lens are joined, which are arranged in order from the object side to the image side. In Examples 2 and 3, the first group L1b includes a positive lens, a positive lens, and a bonded lens obtained by joining a positive lens and a negative lens, which are arranged in order from the object side to the image side.

実施例1、2において、第1c群L1cは、物体側から像側へ順に配置された、負レンズと正レンズを接合した接合レンズ、正レンズよりなる。実施例3において、第1c群L1cは物体側から像側へ順に配置された正レンズと負レンズを接合した接合レンズ、正レンズよりなる。実施例1乃至3において、第2レンズ群L2は物体側から像側へ順に配置された負レンズ、正レンズよりなる。 In Examples 1 and 2, the first c group L1c is composed of a bonded lens and a positive lens in which a negative lens and a positive lens are joined, which are arranged in order from the object side to the image side. In the third embodiment, the first c group L1c is composed of a bonded lens and a positive lens in which a positive lens and a negative lens are arranged in order from the object side to the image side. In Examples 1 to 3, the second lens group L2 includes negative lenses and positive lenses arranged in order from the object side to the image side.

以上の如く構成することによって、無限遠から近距離へのフォーカシングに際して高い光学性能を有し、周辺光量を充分確保した撮像光学系が容易に得られる。 With the above configuration, it is possible to easily obtain an imaging optical system having high optical performance when focusing from infinity to a short distance and ensuring a sufficient amount of peripheral illumination.

以上、本発明の好ましい撮像光学系の実施例について説明したが、本発明はこれらの実施例に限定されないことは言うまでもなく、その要旨の範囲内で種々の変形及び変更が可能である。 Although examples of the preferred imaging optical system of the present invention have been described above, it goes without saying that the present invention is not limited to these examples, and various modifications and changes can be made within the scope of the gist thereof.

次に、図7を用いて、本発明の撮像光学系を用いた撮像装置(デジタルカメラ)の実施例を説明する。 Next, an embodiment of an image pickup apparatus (digital camera) using the image pickup optical system of the present invention will be described with reference to FIG. 7.

図7において、10は実施例1乃至3の撮像光学系1を有する撮影レンズである。撮像光学系1は保持部材である鏡筒2に保持されている。20はカメラ本体であり、撮影レンズ10からの光束を上方に反射するクイックリターンミラー3、撮影レンズ10の像形成位置に配置された焦点板4より構成されている。更に、焦点板4に形成された逆像を正立像に変換するペンタダハプリズム5、その正立像を観察するための接眼レンズ6などによって構成されている。 In FIG. 7, reference numeral 10 denotes a photographing lens having the imaging optical system 1 of Examples 1 to 3. The imaging optical system 1 is held by a lens barrel 2 which is a holding member. Reference numeral 20 denotes a camera body, which is composed of a quick return mirror 3 that reflects a light beam from the photographing lens 10 upward, and a focal plate 4 arranged at an image forming position of the photographing lens 10. Further, it is composed of a pentadha prism 5 that converts an inverted image formed on the focal plate 4 into an erect image, an eyepiece 6 for observing the erect image, and the like.

7は感光面であり、CCDセンサやCMOSセンサ等のズームレンズによって形成される像を受光する固体撮像素子(光電変換素子)や銀塩フィルムが配置される。撮影時にはクイックリターンミラー3が光路から退避して、感光面7上に撮影レンズ10によって像が形成される。実施例1乃至3にて説明した利益は、本実施例に開示したような撮像装置において効果的に享受される。また本発明の撮像光学系はクイックリターンミラーのない、ミラーレスのカメラにも同様に適用することができる。またプロジェクター用の画像投射光学系に適用することもできる。 Reference numeral 7 denotes a photosensitive surface, on which a solid-state image sensor (photoelectric conversion element) or a silver salt film that receives an image formed by a zoom lens such as a CCD sensor or a CMOS sensor is arranged. At the time of shooting, the quick return mirror 3 retracts from the optical path, and an image is formed on the photosensitive surface 7 by the shooting lens 10. The benefits described in Examples 1 to 3 are effectively enjoyed in the imaging apparatus as disclosed in this Example. Further, the imaging optical system of the present invention can be similarly applied to a mirrorless camera without a quick return mirror. It can also be applied to an image projection optical system for a projector.

以下に実施例1乃至3に対応する数値データ1乃至3を示す。各数値データにおいてiは物体側から数えた面の順番を示す。数値データにおいてriは物体側より順に第i番目のレンズ面の曲率半径、diは物体側より順に第i番目のレンズ厚及び空気間隔、ndiとνdiは各々物体側より順に第i番目のレンズの材料の屈折率とアッベ数である。 Numerical data 1 to 3 corresponding to Examples 1 to 3 are shown below. In each numerical data, i indicates the order of the surfaces counted from the object side. In the numerical data, ri is the radius of curvature of the i-th lens surface in order from the object side, di is the i-th lens thickness and air spacing in order from the object side, and ndi and νdi are the i-th lenses in order from the object side. The refractive index and Abbe number of the material.

また、焦点距離、Fナンバー等のスペックに加え、像高は半画角を決定する最大像高、レンズ全長は第1レンズ面から像面までの距離である。バックフォーカスBFは最終レンズ面から像面までの長さを示している。また、各光学面の間隔dが(可変)となっている部分は、フォーカシングに際して変化するものであり、別表に無限遠と近距離に合焦したときの面間隔を記している。また前述の各条件式に関するパラメータと数値データとの関係を表1に示す。 In addition to specifications such as focal length and F number, the image height is the maximum image height that determines the half angle of view, and the total lens length is the distance from the first lens plane to the image plane. The back focus BF indicates the length from the final lens surface to the image surface. Further, the portion where the distance d of each optical surface is (variable) changes during focusing, and the surface distance when focusing at infinity and a short distance is shown in the attached table. Table 1 shows the relationship between the parameters related to each of the above conditional expressions and the numerical data.

(数値データ1)
単位 mm

面データ
面番号 r d nd νd
1 44.754 1.33 1.51742 52.4
2 20.133 2.64
3 37.890 2.21 1.83481 42.7
4 126.802 1.37
5 -56.860 1.08 1.65412 39.7
6 37.197 0.10
7 25.847 4.24 1.91082 35.3
8 -91.901 0.10
9 22.695 5.37 1.49700 81.5
10 -27.281 1.21 1.67300 38.1
11 16.999 4.00
12(絞り) ∞ 3.22
13 -17.664 1.08 1.74951 35.3
14 -57.124 2.52 1.77250 49.6
15 -19.984 0.10
16 43.300 3.11 1.59522 67.7
17 -54.253 (可変)
18 -120.283 1.02 1.57135 53.0
19 40.483 1.26
20 -197.824 1.49 1.83400 37.2
21 -47.842 (可変)
像面 ∞
(Numerical data 1)
Unit mm

Surface data Surface number rd nd ν d
1 44.754 1.33 1.51742 52.4
2 20.133 2.64
3 37.890 2.21 1.83481 42.7
4 126.802 1.37
5 -56.860 1.08 1.65412 39.7
6 37.197 0.10
7 25.847 4.24 1.91082 35.3
8-91.901 0.10
9 22.695 5.37 1.49700 81.5
10 -27.281 1.21 1.67300 38.1
11 16.999 4.00
12 (Aperture) ∞ 3.22
13 -17.664 1.08 1.74951 35.3
14 -57.124 2.52 1.77250 49.6
15 -19.984 0.10
16 43.300 3.11 1.59522 67.7
17 -54.253 (variable)
18 -120.283 1.02 1.57135 53.0
19 40.483 1.26
20 -197.824 1.49 1.83400 37.2
21 -47.842 (variable)
Image plane ∞

各種データ
無限遠
焦点距離 55.99
Fナンバー 2.91
像高 21.60
レンズ全長 83.72

無限遠 近距離

d17 1.59 6.52
d21 44.70 64.14
Various data Infinite focal length 55.99
F number 2.91
Image height 21.60
Lens overall length 83.72

Infinity short distance

d17 1.59 6.52
d21 44.70 64.14

(数値データ2)
単位 mm

面データ
面番号 r d nd νd 有効径
1 100.713 1.90 1.51742 52.4 34.40
2 31.744 2.40 31.62
3 54.445 3.70 1.83481 42.7 31.45
4 335.375 1.80 31.08
5 -93.936 1.70 1.65412 39.7 31.08
6 65.641 0.15 31.74
7 40.381 5.26 1.91082 35.3 32.72
8 274.681 0.20 32.39
9 97.015 3.61 1.77250 49.6 32.21
10 -230.550 0.15 31.80
11 46.053 6.93 1.43875 94.9 30.02
12 -53.455 1.60 1.67300 38.1 28.55
13 28.307 5.38 25.80
14(絞り) ∞ 5.07 25.75
15 -28.710 1.70 1.74951 35.3 25.70
16 -91.895 5.27 1.77250 49.6 27.21
17 -32.073 0.15 28.40
18 59.915 4.50 1.59522 67.7 28.26
19 -138.951 (可変) 27.84
20 -271.305 1.50 1.57135 53.0 27.02
21 59.363 2.14 28.00
22 -463.747 2.49 1.83400 37.2 28.20
23 -84.618 (可変) 28.84
像面 ∞
(Numerical data 2)
Unit mm

Surface data Surface number rd nd νd Effective diameter
1 100.713 1.90 1.51742 52.4 34.40
2 31.744 2.40 31.62
3 54.445 3.70 1.83481 42.7 31.45
4 335.375 1.80 31.08
5 -93.936 1.70 1.65412 39.7 31.08
6 65.641 0.15 31.74
7 40.381 5.26 1.91082 35.3 32.72
8 274.681 0.20 32.39
9 97.015 3.61 1.77250 49.6 32.21
10 -230.550 0.15 31.80
11 46.053 6.93 1.43875 94.9 30.02
12 -53.455 1.60 1.67300 38.1 28.55
13 28.307 5.38 25.80
14 (Aperture) ∞ 5.07 25.75
15 -28.710 1.70 1.74951 35.3 25.70
16 -91.895 5.27 1.77250 49.6 27.21
17 -32.073 0.15 28.40
18 59.915 4.50 1.59522 67.7 28.26
19 -138.951 (variable) 27.84
20 -271.305 1.50 1.57135 53.0 27.02
21 59.363 2.14 28.00
22 -463.747 2.49 1.83400 37.2 28.20
23 -84.618 (variable) 28.84
Image plane ∞

各種データ
無限遠
焦点距離 91.23
Fナンバー 2.91
像高 34.00
レンズ全長 132.54

無限遠 近距離
d19 2.62 11.75
d25 72.31 101.74
Various data Infinite focal length 91.23
F number 2.91
Image height 34.00
Lens overall length 132.54

Infinity short distance
d19 2.62 11.75
d25 72.31 101.74

(数値データ3)
単位 mm

面データ
面番号 r d nd νd 有効径
1 102.350 1.90 1.51742 52.4 34.74
2 30.964 3.04 31.82
3 54.214 3.61 1.83481 42.7 31.50
4 300.347 1.72 30.99
5 -96.419 1.70 1.65412 39.7 30.99
6 66.963 0.15 31.69
7 39.557 5.68 1.91082 35.3 32.77
8 262.701 0.20 32.37
9 93.505 3.34 1.77250 49.6 32.18
10 -307.363 0.15 31.79
11 45.450 7.06 1.43875 94.9 30.09
12 -53.047 1.60 1.67300 38.1 28.60
13 27.448 2.68 25.82
14(絞り) ∞ 5.07 25.84
15 -29.243 4.10 1.77250 49.6 25.87
16 -19.345 1.30 1.74951 35.3 26.63
17 -31.853 0.15 28.00
18 57.017 5.01 1.59522 67.7 27.99
19 -128.825 (可変) 27.52
20 -198.208 1.50 1.57135 53.0 26.32
21 59.707 2.21 27.39
22 -577.406 2.81 1.83400 37.2 27.77
23 -79.829 (可変) 28.54
像面 ∞
(Numerical data 3)
Unit mm

Surface data Surface number rd nd νd Effective diameter
1 102.350 1.90 1.51742 52.4 34.74
2 30.964 3.04 31.82
3 54.214 3.61 1.83481 42.7 31.50
4 300.347 1.72 30.99
5 -96.419 1.70 1.65412 39.7 30.99
6 66.963 0.15 31.69
7 39.557 5.68 1.91082 35.3 32.77
8 262.701 0.20 32.37
9 93.505 3.34 1.77250 49.6 32.18
10 -307.363 0.15 31.79
11 45.450 7.06 1.43875 94.9 30.09
12 -53.047 1.60 1.67300 38.1 28.60
13 27.448 2.68 25.82
14 (Aperture) ∞ 5.07 25.84
15 -29.243 4.10 1.77250 49.6 25.87
16 -19.345 1.30 1.74951 35.3 26.63
17 -31.853 0.15 28.00
18 57.017 5.01 1.59522 67.7 27.99
19 -128.825 (variable) 27.52
20 -198.208 1.50 1.57135 53.0 26.32
21 59.707 2.21 27.39
22 -577.406 2.81 1.83400 37.2 27.77
23 -79.829 (variable) 28.54
Image plane ∞

各種データ
無限遠
焦点距離 90.00
Fナンバー 2.91
像高 34.00
レンズ全長 132.06

無限遠 近距離
d19 2.68 10.70
d23 71.55 102.77
Various data Infinite focal length 90.00
F number 2.91
Image height 34.00
Lens overall length 132.06

Infinity short distance
d19 2.68 10.70
d23 71.55 102.77

Figure 2021167982
Figure 2021167982

L0 撮像光学系
L1 第1レンズ群
L2 第2レンズ群
L1a 第1a群
L1b 第1b群
L1c 第1c群
SP 開口絞り
L0 Imaging optical system L1 1st lens group L2 2nd lens group L1a 1st group L1b 1b group L1c 1c group SP Aperture aperture

本発明の撮像光学系は、物体側から像側へ順に配置された、正の屈折力の第1レンズ群、正または負の屈折力の第2レンズ群から成り、フォーカシングに際して前記第1レンズ群と第2レンズ群の間隔が変化する撮像光学系において、
フォーカシングに際して前記第1レンズ群は移動し、
前記第1レンズ群は開口絞りを含み、
前記開口絞りの物体側において軸上光線の入射高hが最も高いレンズをレンズGhとするとき、前記第1レンズ群は、最も物体側のレンズから前記レンズGhの物体側に隣接して配置されたレンズまでで構成される負の屈折力の第1a群、前記レンズGhから前記開口絞りの物体側に隣接して配置されたレンズまでで構成される第1b群、前記開口絞りの像側に配置されたレンズにより構成される第1c群からなり、前記第1a群の焦点距離をf1a、全系の焦点距離をfとするとき、
−1.5<f1a/f<−0.5
なる条件式を満足することを特徴としている。
The imaging optical system of the present invention comprises a first lens group having a positive refractive power and a second lens group having a positive or negative refractive power arranged in order from the object side to the image side. In an imaging optical system in which the distance between the second lens group and the second lens group changes.
The first lens group moves during focusing,
The first lens group includes an aperture diaphragm.
When the lens with the highest incident height h of the axial light beam on the object side of the aperture aperture is the lens Gh, the first lens group is arranged adjacent to the object side of the lens Gh from the lens on the most object side. The first group of negative refractive power composed of up to the lens, the first group b composed of the lens Gh to the lens arranged adjacent to the object side of the aperture aperture, on the image side of the aperture aperture. When it is composed of a first c group composed of arranged lenses, and the focal distance of the first group is f1a and the focal distance of the entire system is f,
-1.5 <f1a / f <-0.5
It is characterized by satisfying the conditional expression.

Claims (13)

物体側から像側へ順に配置された、正の屈折力の第1レンズ群、正または負の屈折力の第2レンズ群から成り、フォーカシングに際して前記第1レンズ群と第2レンズ群の間隔が変化する撮像光学系において、
前記第1レンズ群は開口絞りを含み、前記開口絞りの物体側において軸上光線の入射高hが最も高いレンズをレンズGhとするとき、前記第1レンズ群は、最も物体側のレンズから前記レンズGhの物体側に隣接して配置されたレンズまでで構成される負の屈折力の第1a群、前記レンズGhから前記開口絞りの物体側に隣接して配置されたレンズまでで構成される第1b群、前記開口絞りの像側に配置されたレンズにより構成される第1c群からなり、前記第1a群の焦点距離をf1a、全系の焦点距離をfとするとき、
−1.5<f1a/f<−0.5
なる条件式を満足することを特徴とする撮像光学系。
It consists of a first lens group with a positive refractive power and a second lens group with a positive or negative refractive power arranged in order from the object side to the image side, and the distance between the first lens group and the second lens group during focusing is increased. In a changing imaging optical system
When the first lens group includes an aperture aperture and the lens having the highest incident height h of the axial light beam on the object side of the aperture aperture is the lens Gh, the first lens group includes the lens on the object side first. A first group of negative refractive forces composed of up to a lens arranged adjacent to the object side of the lens Gh, from the lens Gh to a lens arranged adjacent to the object side of the aperture aperture. When the group 1b is composed of the group 1c and the group 1c composed of the lenses arranged on the image side of the aperture aperture, the focal distance of the group 1a is f1a, and the focal distance of the entire system is f.
-1.5 <f1a / f <-0.5
An imaging optical system characterized by satisfying the conditional expression.
前記開口絞りの物体側に隣接して配置されたレンズは、像側のレンズ面が凹形状であり、前記開口絞りの像側に隣接して配置されたレンズは、物体側のレンズ面が凹形状であることを特徴とする請求項1に記載の撮像光学系。 The lens arranged adjacent to the object side of the aperture diaphragm has a concave lens surface on the image side, and the lens arranged adjacent to the image side of the aperture diaphragm has a concave lens surface on the object side. The imaging optical system according to claim 1, wherein the image pickup optical system is characterized by having a shape. 前記第1a群と前記第1b群との合成焦点距離をf1abとするとき、
|f/f1ab|<0.25
なる条件式を満足することを特徴とする請求項1または2に記載の撮像光学系。
When the combined focal length between the 1st group and the 1b group is f1ab,
| F / f1ab | <0.25
The imaging optical system according to claim 1 or 2, wherein the conditional expression is satisfied.
前記第2レンズ群の焦点距離をf2とするとき、
|f/f2|<0.40
なる条件式を満足することを特徴とする請求項1乃至3のいずれか一項に記載の撮像光学系。
When the focal length of the second lens group is f2,
| F / f2 | <0.40
The imaging optical system according to any one of claims 1 to 3, wherein the conditional expression is satisfied.
フォーカシングに際して前記第1レンズ群は移動し、無限遠から近距離へのフォーカシングに伴う前記第1レンズ群の移動量をT1とするとき、
0.30<|T1/f|<0.95
なる条件式を満足することを特徴とする請求項1乃至4のいずれか一項に記載の撮像光学系。
When the first lens group moves during focusing and the amount of movement of the first lens group due to focusing from infinity to a short distance is T1.
0.30 << | T1 / f | <0.95
The imaging optical system according to any one of claims 1 to 4, wherein the conditional expression is satisfied.
前記第2レンズ群の最も像側には、物体側のレンズ面が凹形状の正レンズが配置されていることを特徴とする請求項1乃至5のいずれか一項に記載の撮像光学系。 The imaging optical system according to any one of claims 1 to 5, wherein a positive lens having a concave lens surface on the object side is arranged on the most image side of the second lens group. 前記第1a群は、物体側から像側へ順に配置された、負レンズ、正レンズ、負レンズから成ることを特徴とする請求項1乃至6のいずれか一項に記載の撮像光学系。 The imaging optical system according to any one of claims 1 to 6, wherein the first group 1a comprises a negative lens, a positive lens, and a negative lens arranged in order from the object side to the image side. 前記第1b群は、物体側から像側へ順に配置された、正レンズ、正レンズと負レンズを接合した接合レンズよりなることを特徴とする請求項1乃至7のいずれか一項に記載の撮像光学系。 The first b group according to any one of claims 1 to 7, wherein the first b group comprises a positive lens and a bonded lens in which a positive lens and a negative lens are joined, which are arranged in order from the object side to the image side. Imaging optical system. 前記第1b群は、物体側から像側へ順に配置された、正レンズ、正レンズ、正レンズと負レンズを接合した接合レンズよりなることを特徴とする請求項1乃至7のいずれか一項に記載の撮像光学系。 Any one of claims 1 to 7, wherein the first group 1b comprises a positive lens, a positive lens, and a bonded lens obtained by joining a positive lens and a negative lens, which are arranged in order from the object side to the image side. The imaging optical system according to the above. 前記第1c群は、物体側から像側へ順に配置された、負レンズと正レンズを接合した接合レンズ、正レンズよりなることを特徴とする請求項1乃至9のいずれか一項に記載の撮像光学系。 The first c group according to any one of claims 1 to 9, wherein the first c group comprises a bonded lens in which a negative lens and a positive lens are joined, and a positive lens, which are arranged in order from the object side to the image side. Imaging optical system. 前記第1c群は、物体側から像側へ順に配置された、正レンズと負レンズを接合した接合レンズ、正レンズよりなることを特徴とする請求項1乃至9のいずれか一項に記載の撮像光学系。 The first c group according to any one of claims 1 to 9, wherein the first c group comprises a bonded lens in which a positive lens and a negative lens are joined, and a positive lens arranged in order from the object side to the image side. Imaging optical system. 前記第2レンズ群は、物体側から像側へ順に配置された、負レンズ、正レンズよりなることを特徴とする請求項1乃至11のいずれか一項に記載の撮像光学系。 The imaging optical system according to any one of claims 1 to 11, wherein the second lens group comprises a negative lens and a positive lens arranged in order from the object side to the image side. 請求項1乃至12のいずれか一項に記載の撮像光学系と、該撮像光学系によって形成された像を受光する撮像素子を有することを特徴とする撮像装置。 An image pickup apparatus comprising the image pickup optical system according to any one of claims 1 to 12 and an image pickup element that receives an image formed by the image pickup optical system.
JP2021124629A 2017-06-02 2021-07-29 Imaging optical system and imaging equipment using it Active JP7077465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021124629A JP7077465B2 (en) 2017-06-02 2021-07-29 Imaging optical system and imaging equipment using it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017109742A JP6983541B2 (en) 2017-06-02 2017-06-02 Imaging optical system and imaging equipment using it
JP2021124629A JP7077465B2 (en) 2017-06-02 2021-07-29 Imaging optical system and imaging equipment using it

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017109742A Division JP6983541B2 (en) 2017-06-02 2017-06-02 Imaging optical system and imaging equipment using it

Publications (2)

Publication Number Publication Date
JP2021167982A true JP2021167982A (en) 2021-10-21
JP7077465B2 JP7077465B2 (en) 2022-05-30

Family

ID=64957051

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017109742A Active JP6983541B2 (en) 2017-06-02 2017-06-02 Imaging optical system and imaging equipment using it
JP2021124629A Active JP7077465B2 (en) 2017-06-02 2021-07-29 Imaging optical system and imaging equipment using it

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017109742A Active JP6983541B2 (en) 2017-06-02 2017-06-02 Imaging optical system and imaging equipment using it

Country Status (1)

Country Link
JP (2) JP6983541B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116482829A (en) 2023-04-11 2023-07-25 辰瑞光学(常州)股份有限公司 Optical imaging system
CN116449542B (en) * 2023-06-15 2023-09-15 武汉大学 Large-view-field high-precision ultraviolet imaging lens

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004302170A (en) * 2003-03-31 2004-10-28 Fuji Photo Optical Co Ltd Macro lens
JP2011027859A (en) * 2009-07-22 2011-02-10 Ricoh Co Ltd Imaging optical system, camera device, and handheld terminal
JP2011107313A (en) * 2009-11-16 2011-06-02 Canon Inc Optical system and optical equipment using the same
JP2011209377A (en) * 2010-03-29 2011-10-20 Olympus Imaging Corp Imaging optical system, and imaging apparatus using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004302170A (en) * 2003-03-31 2004-10-28 Fuji Photo Optical Co Ltd Macro lens
JP2011027859A (en) * 2009-07-22 2011-02-10 Ricoh Co Ltd Imaging optical system, camera device, and handheld terminal
JP2011107313A (en) * 2009-11-16 2011-06-02 Canon Inc Optical system and optical equipment using the same
JP2011209377A (en) * 2010-03-29 2011-10-20 Olympus Imaging Corp Imaging optical system, and imaging apparatus using the same

Also Published As

Publication number Publication date
JP2018205474A (en) 2018-12-27
JP7077465B2 (en) 2022-05-30
JP6983541B2 (en) 2021-12-17

Similar Documents

Publication Publication Date Title
JP6537331B2 (en) Optical system and imaging apparatus having the same
US10073252B2 (en) Optical system and image pickup apparatus including the same
JP5111056B2 (en) Optical system and imaging apparatus having the same
US8498063B2 (en) Telephoto lens system
JP6173279B2 (en) Zoom lens and imaging apparatus having the same
JP6667297B2 (en) Optical system and imaging apparatus having the same
US20130120640A1 (en) Zoom lens and image pickup apparatus including the same
JP5582706B2 (en) Optical system and imaging apparatus having the same
JP2014228812A (en) Zoom lens and imaging apparatus
JP7077465B2 (en) Imaging optical system and imaging equipment using it
JP4156828B2 (en) Macro lens and camera equipped with the same
JP2007328162A (en) Zoom lens and imaging apparatus having the same
JP2006047348A (en) Zoom lens and imaging device having the same
US10539768B2 (en) Rear converter optical system and imaging apparatus including the same
JP4914121B2 (en) Eyepiece optical system and viewfinder optical system having the same
JP3619153B2 (en) Zoom lens and optical apparatus using the same
JP2003329919A (en) Optical system capable of short-distance photographing and optical equipment using same
JP6921595B2 (en) Optical system and imaging device with it
JP2004094056A (en) Large diameter telephoto-zoom lens
JP2008191672A (en) Macro lens and camera equipped with the same
JP6296803B2 (en) Optical system and imaging apparatus having the same
JP6869740B2 (en) Zoom lens and imaging device with it
JP2005316181A (en) Zoom lens and imaging apparatus having same
JP2019095619A (en) Zoom lens and image capturing device having the same
JP6541741B2 (en) Image pickup optical system and image pickup apparatus having the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210729

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210729

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220518

R151 Written notification of patent or utility model registration

Ref document number: 7077465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151