JP2011107313A - Optical system and optical equipment using the same - Google Patents

Optical system and optical equipment using the same Download PDF

Info

Publication number
JP2011107313A
JP2011107313A JP2009260833A JP2009260833A JP2011107313A JP 2011107313 A JP2011107313 A JP 2011107313A JP 2009260833 A JP2009260833 A JP 2009260833A JP 2009260833 A JP2009260833 A JP 2009260833A JP 2011107313 A JP2011107313 A JP 2011107313A
Authority
JP
Japan
Prior art keywords
lens
optical system
positive lens
group
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009260833A
Other languages
Japanese (ja)
Other versions
JP5460255B2 (en
JP2011107313A5 (en
Inventor
Shigenobu Sugita
茂宣 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009260833A priority Critical patent/JP5460255B2/en
Publication of JP2011107313A publication Critical patent/JP2011107313A/en
Publication of JP2011107313A5 publication Critical patent/JP2011107313A5/ja
Application granted granted Critical
Publication of JP5460255B2 publication Critical patent/JP5460255B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an optical system which can obtain high optical performance over the whole of an object distance ranging from an infinity object to a close distance object. <P>SOLUTION: The optical system includes: a front group having lens parts arranged in order, from an object side to an image side, of a positive lens, a negative lens, an aperture diaphragm, a negative lens and a positive lens; and a rear group having lens parts arranged in order of a negative lens and a positive lens, wherein focusing is performed by changing the distance between the front group and the rear group, and the refractive index, Abbe number, partial dispersion ratio NdpR, νdpR and θgFpR of the material of at least one positive lens GpR among the positive lenses arranged more on the image side than the aperture diaphragm are suitably set respectively. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は光学系に関し、例えば銀塩フィルム用カメラ、デジタルスチルカメラ、ビデオカメラ、望遠鏡、双眼鏡、プロジェクタ、複写機等の光学機器に好適な光学系に関するものである。   The present invention relates to an optical system, for example, an optical system suitable for optical equipment such as a silver salt film camera, a digital still camera, a video camera, a telescope, binoculars, a projector, and a copying machine.

従来より一眼レフカメラでは撮影レンズの後方に回転式の反射鏡を設け、撮影レンズからの光束を反射させてファインダー系に導光させる構造をとっている。そのため一眼レフカメラに用いられる撮影レンズには像側に回転式の反射鏡を配置する程度の長いバックフォーカスが容易に得られ、しかも高い光学性能が容易に得られる撮影レンズであることが要求されている。従来よりこれらの要求を比較的容易に達成することのできる標準画角の撮影レンズとして、所謂ガウス型レンズが知られている(特許文献1)。   Conventionally, a single-lens reflex camera has a structure in which a rotary reflecting mirror is provided behind the photographing lens to reflect the light beam from the photographing lens and guide it to the finder system. Therefore, a photographic lens used in a single-lens reflex camera is required to be a photographic lens that can easily obtain a long back focus to the extent that a rotary reflecting mirror is disposed on the image side and can easily obtain high optical performance. ing. Conventionally, a so-called Gaussian lens is known as a photographing lens having a standard angle of view that can achieve these requirements relatively easily (Patent Document 1).

ガウス型レンズはレンズ系全体を繰り出すことによりフォーカスを行うことが多く、物体距離(撮影距離)の変動に対する収差変動も少ない。この為、簡易構造で比較的容易に至近距離物体への撮影ができる。一方でガウス型レンズは、撮影倍率が大きくなると軸上色収差が比較的大きくなる傾向がある。ガウス型レンズは物体距離の変動に対する収差変動が比較的少ないが、例えば−0.5倍程度のマクロ撮影領域までフォーカスした場合は、やはり、球面収差、コマ収差、軸上色収差が多く発生してくる。これに対してガウス型レンズの像側に屈折力の小さなレンズ群を配置して、各レンズ群の相対的な関係を変化させてフォーカスを行い、物体距離の変動に対する収差変動を軽減した撮影レンズが知られている(特許文献2)。   Gaussian lenses often focus by extending the entire lens system, and there is little aberration fluctuation with respect to fluctuations in object distance (shooting distance). For this reason, it is possible to shoot an object at a close range relatively easily with a simple structure. On the other hand, the Gaussian lens tends to have a relatively large axial chromatic aberration as the photographing magnification increases. Gaussian lenses have relatively small aberration fluctuations with respect to object distance fluctuations, but for example, when focusing to a macro shooting area of about -0.5 times, spherical aberration, coma aberration, and axial chromatic aberration are often generated. come. On the other hand, a lens group with a small refractive power is arranged on the image side of the Gaussian lens, and focusing is performed by changing the relative relationship of each lens group, thereby reducing aberration fluctuations due to fluctuations in object distance. Is known (Patent Document 2).

特開平06−337348号公報Japanese Patent Laid-Open No. 06-337348 特開平05−142474号公報JP 05-142474 A

ガウス型レンズやそれを変形した変形ガウス型レンズは、物体距離の変動に対する収差変動が比較的少ないという特徴がある。しかしながら撮影距離を短くし撮影倍率が大きくなると、例えば撮影倍率が−0.5程度になると、諸収差の変動、特に球面収差、コマ収差、軸上色収差の変動が多くなってくる。このためガウス型レンズやそれを変形した変形ガウス型レンズにおいて、撮影倍率が大きい至近距離物体を含む物体距離全般にわたり高い光学性能を得るには、光学系を構成する各レンズの材料を適切に設定することが重要になってくる。例えば屈折率、アッベ数、部分分散比等を適切に選択した材料のレンズを用いることが重要になってくる。   A Gaussian lens or a modified Gaussian lens obtained by deforming the Gaussian lens has a characteristic that aberration variation with respect to variation in object distance is relatively small. However, when the photographing distance is shortened and the photographing magnification is increased, for example, when the photographing magnification is about −0.5, fluctuations in various aberrations, particularly, spherical aberration, coma aberration, and axial chromatic aberration increase. For this reason, in order to obtain high optical performance over a wide range of object distances, including close-up objects with a large shooting magnification, in the Gaussian lens or a modified Gaussian lens modified from it, the material of each lens constituting the optical system is set appropriately. It becomes important to do. For example, it is important to use a lens made of a material in which the refractive index, Abbe number, partial dispersion ratio, and the like are appropriately selected.

本発明は、無限遠物体から至近距離物体に至る物体距離全般にわたり、高い光学性能が得られる光学系の提供を目的とする。特に撮影距離が短くなり最大撮影倍率が大きくなっても収差変動が少なく、高い光学性能が得られる光学系の提供を目的とする。   An object of the present invention is to provide an optical system capable of obtaining high optical performance over the entire object distance from an object at infinity to a close object. In particular, an object of the present invention is to provide an optical system in which aberration variation is small and high optical performance can be obtained even when the photographing distance is shortened and the maximum photographing magnification is increased.

本発明の光学系は、物体側より像側へ順に、正レンズ、負レンズ、開口絞り、負レンズ、正レンズの順に配置されたレンズ部を有する前群、負レンズ、正レンズの順に配置されたレンズ部を有する後群を有し、前群と後群の間隔を変化させることでフォーカスを行い、該開口絞りより像側に配置された正レンズのうち少なくとも1つの正レンズGpRの材料の屈折率、アッベ数、部分分散比を各々NdpR、νdpR、θgFpRとするとき、
1.53<NdpR<1.85
50<νdpR<80
0.005<θgFpR−0.6438+0.001682×νdpR<0.080
なる条件式を満たすことを特徴としている。
The optical system of the present invention is arranged in the order of the front group having a lens unit arranged in the order of positive lens, negative lens, aperture stop, negative lens, and positive lens, negative lens, and positive lens in order from the object side to the image side. A rear group having a lens portion, focusing is performed by changing the distance between the front group and the rear group, and the material of at least one positive lens GpR among the positive lenses arranged on the image side from the aperture stop When the refractive index, Abbe number, and partial dispersion ratio are NdpR, νdpR, and θgFpR, respectively.
1.53 <NdpR <1.85
50 <νdpR <80
0.005 <θgFpR−0.6438 + 0.001682 × νdpR <0.080
It is characterized by satisfying the following conditional expression.

本発明によれば、無限遠物体から至近距離物体に至る物体距離全般にわたり、高い光学性能が得られる光学系が得られる。   According to the present invention, it is possible to obtain an optical system capable of obtaining high optical performance over the entire object distance from an object at infinity to a close object.

実施例1の光学系の断面図Sectional view of the optical system of Example 1 (A)(B)実施例1の光学系の無限遠物体と撮影倍率−0.950での収差図(A) (B) Infinity object of the optical system of Example 1 and aberration diagrams at a photographing magnification of −0.950 実施例2の光学系の断面図Sectional drawing of the optical system of Example 2 (A)(B)実施例2の光学系の無限遠物体と撮影倍率−0.480での収差図(A) (B) Infinity object of the optical system of Example 2 and aberration diagrams at a photographing magnification of −0.480 実施例3の光学系の断面図Sectional drawing of the optical system of Example 3 (A)(B)実施例3の光学系の無限遠物体と撮影倍率−0.480での収差図(A) (B) An aberration diagram of the optical system of Example 3 at infinity and an imaging magnification of −0.480. 本発明の撮像装置の要部概略図Schematic diagram of main parts of an imaging apparatus of the present invention

本発明の光学系及びそれを有する光学機器の実施例について説明する。本発明の光学系は、物体側より像側へ順に、前群と後群を有する。前群は物体側より像側へ順に、正レンズ、負レンズ、開口絞り、負レンズ、正レンズの順に配置されたレンズ部を有する。後群は負レンズ、正レンズの順に配置されたレンズ部を有する。前群と後群の間隔を変化させることでフォーカスを行っている。   Examples of the optical system of the present invention and an optical apparatus having the optical system will be described. The optical system of the present invention has a front group and a rear group in order from the object side to the image side. The front group includes a lens unit arranged in order of the positive lens, the negative lens, the aperture stop, the negative lens, and the positive lens in order from the object side to the image side. The rear group has a lens unit arranged in the order of a negative lens and a positive lens. Focusing is performed by changing the interval between the front group and the rear group.

図1は本発明の実施例1の光学系のレンズ断面図である。図2(A)、(B)は本発明の実施例1の光学系の物体距離が無限遠物体と撮影倍率−0.950での収差図である。図3は本発明の実施例2の光学系のレンズ断面図である。図4(A)、(B)は本発明の実施例2の光学系の物体距離が無限遠物体と撮影倍率−0.480での収差図である。図5は本発明の実施例3の光学系のレンズ断面図である。図6(A)、(B)は本発明の実施例3の光学系の物体距離が無限遠物体と撮影倍率−0.480での収差図である。図7は本発明の光学系をデジタルカメラ等の光学機器に適用したときの要部概略図である。図1、図3の実施例1、2の光学系はガウス型の光学系、図5の実施例3の光学系はレトロフォーカス型の光学系である。   FIG. 1 is a lens cross-sectional view of an optical system according to Example 1 of the present invention. FIGS. 2A and 2B are aberration diagrams when the object distance of the optical system according to the first embodiment of the present invention is infinity and when the photographing magnification is −0.950. FIG. 3 is a lens sectional view of the optical system according to Example 2 of the present invention. FIGS. 4A and 4B are aberration diagrams when the object distance of the optical system according to Example 2 of the present invention is infinity and when the photographing magnification is −0.480. FIG. 5 is a lens cross-sectional view of the optical system according to Example 3 of the present invention. FIGS. 6A and 6B are aberration diagrams when the object distance of the optical system according to the third embodiment of the present invention is infinity and the photographing magnification is −0.480. FIG. 7 is a schematic view of the main part when the optical system of the present invention is applied to an optical apparatus such as a digital camera. The optical systems of Examples 1 and 2 in FIGS. 1 and 3 are Gaussian optical systems, and the optical system of Example 3 in FIG. 5 is a retrofocus optical system.

本発明の光学系は、デジタルカメラ、ビデオカメラ、銀塩フィルム用カメラ、望遠鏡、双眼鏡の観察装置、複写機、プロジェクタ等の光学機器に用いられるものである。レンズ断面図において、左方が前方(物体側、拡大側)で、右方が後方(像側、縮小側)である。プロジェクタ等の画像投射装置に用いるときは、左方がスクリーン側、右方が被投射画像側となる。LEは光学系である。LFは前群、LRは後群である。SPは光量調節用の開口絞り(絞り)であり、前群LF中に配置されている。IPは像面であり、ビデオカメラやデジタルスチルカメラの撮影光学系として使用する際にはCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)の撮像面に相当する感光面が置かれる。   The optical system of the present invention is used for optical devices such as digital cameras, video cameras, silver salt film cameras, telescopes, binocular observation devices, copying machines, and projectors. In the lens cross-sectional view, the left is the front (object side, enlargement side), and the right is the rear (image side, reduction side). When used in an image projection apparatus such as a projector, the left side is the screen side and the right side is the projected image side. LE is an optical system. LF is the front group and LR is the rear group. SP is an aperture stop (aperture) for adjusting the amount of light, and is disposed in the front group LF. IP is an image plane, and when used as a photographing optical system of a video camera or a digital still camera, a photosensitive surface corresponding to an imaging surface of a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor is placed.

図1の実施例1では無限遠物体から近距離物体へのフォーカスの際には矢印の如く前群LFと後群LRを互いに異なった速度で物体側へ移動させている。図3、図5の実施例2、3では前群LFを物体側へ移動させ、後群LRを不動としている。各収差図中、球面収差において実線はd線(波長587.6nm)、二点鎖線はg線(波長435.8nm)、点線はF線(波長486nm)を各々表わしている。非点収差においては実線はd線のサジタル光線による像面ΔS、点線はd線のメリディオナル光線による像面ΔMを表わしている。倍率色収差においては、二点鎖線はg線である。歪曲収差においてはd線における歪曲を表わしている。FnoはFナンバー、ωは半画角である。   In Example 1 of FIG. 1, when focusing from an infinitely distant object to a close object, the front group LF and the rear group LR are moved toward the object side at different speeds as indicated by arrows. In Embodiments 2 and 3 of FIGS. 3 and 5, the front group LF is moved to the object side, and the rear group LR is not moved. In each aberration diagram, in the spherical aberration, the solid line represents the d line (wavelength 587.6 nm), the two-dot chain line represents the g line (wavelength 435.8 nm), and the dotted line represents the F line (wavelength 486 nm). In astigmatism, the solid line represents the image plane ΔS of the d-line sagittal ray, and the dotted line represents the image plane ΔM of the d-line meridional ray. In lateral chromatic aberration, the two-dot chain line is the g-line. In the distortion aberration, it represents distortion in the d-line. Fno is the F number, and ω is the half angle of view.

まず本発明の光学系において、フォーカスによる収差変動を軽減する光学作用について説明する。ガウス型レンズは多くの場合、ペッツバール和を小さくし、像面湾曲の補正を良好に行うために、正レンズに高屈折率の材料を使用している。また正の屈折力を有する全系の色収差を補正するべく、多くの場合、正レンズには低分散、負レンズには高分散の材料が用いられる。現在市販される高屈折率で低分散材料には、部分分散比θgFが大きいものが少ないため、正レンズでのg線の軸上色収差の発生量が不足し、負レンズでの軸上色収差補正効果が上回るため、全系としてg線の色収差は過補正となる傾向にある。特許文献1のガウス型レンズでは、複数の正レンズのいずれかに部分分散比θgFの大きい高分散材料を使用することでg線の軸上色収差の補正を行っている。この方法は無限遠物体の撮影においては良好な光学性能が得られる。無限遠物体から近距離物体へのフォーカスを行うと、高分散材料より成る正レンズでの軸上光線への入射高hが変化する。このため物体距離の変動によって軸上色収差が変動する傾向となる。   First, an optical function for reducing aberration fluctuations due to focusing in the optical system of the present invention will be described. In many cases, a Gauss type lens uses a material having a high refractive index for the positive lens in order to reduce the Petzval sum and correct the curvature of field well. Further, in order to correct the chromatic aberration of the entire system having a positive refractive power, in many cases, a low dispersion material is used for the positive lens and a high dispersion material is used for the negative lens. Currently, there are few high-refractive index, low-dispersion materials on the market that have a large partial dispersion ratio θgF, so the amount of axial chromatic aberration of g-line in the positive lens is insufficient, and the axial chromatic aberration correction in the negative lens. Since the effect is higher, the chromatic aberration of g-line tends to be overcorrected as a whole system. In the Gaussian lens disclosed in Patent Document 1, g-axis axial chromatic aberration is corrected by using a high dispersion material having a large partial dispersion ratio θgF for any of a plurality of positive lenses. With this method, good optical performance can be obtained in photographing an object at infinity. When focusing from an object at infinity to an object at a short distance, the incident height h to the on-axis light beam with a positive lens made of a high dispersion material changes. For this reason, the longitudinal chromatic aberration tends to fluctuate due to the fluctuation of the object distance.

通常ガウス型レンズは、絞りを挟んで対称に近い光学配置が取られ、レンズ系全体を光軸方向に動かすことでフォーカスを行っている。至近距離物体の撮影のため、レンズ系を物体側に繰り出した際、絞りより像側のレンズを通過する軸外主光線の入射高が小さくなるが絞りより物体側のレンズ群を通過する軸外主光線の入射高も同時に小さくなる。それにより絞り前後で軸外収差を相殺する関係は物体距離に依らず維持されるため、倍率色収差や像面湾曲の物体距離による変動はあまり発生しない。ところが全体として正のパワーを持つレンズ系が、至近距離物体の撮影時に前方に移動する。このため物体側から入射する軸上光線の入射高が大きくなり、球面収差、コマ収差、軸上色収差の物体距離による変動が大きく発生する傾向にある。特に前述したように無限遠物体の撮影時でも過補正の傾向にある軸上色収差においては、至近距離物体の撮影で、更に過補正の傾向が増し光学性能が劣化してくる。   Normally, a Gaussian lens has an optical arrangement close to symmetry with a diaphragm interposed therebetween, and performs focusing by moving the entire lens system in the optical axis direction. When the lens system is extended to the object side for photographing a close-range object, the incident height of the off-axis principal ray that passes through the lens on the image side from the aperture is reduced, but off-axis that passes through the lens group on the object side from the aperture The incident height of the chief ray is also reduced at the same time. As a result, the relationship of canceling off-axis aberrations before and after the stop is maintained regardless of the object distance, so that there is little variation in lateral chromatic aberration and field curvature due to the object distance. However, a lens system having a positive power as a whole moves forward when photographing a close-range object. For this reason, the incident height of the axial ray incident from the object side increases, and there is a tendency that the variation due to the object distance of spherical aberration, coma aberration, and axial chromatic aberration greatly occurs. In particular, as described above, in the case of axial chromatic aberration that tends to be overcorrected even when shooting an object at infinity, the tendency of overcorrection further increases and the optical performance deteriorates when shooting an object at a close distance.

そこで特許文献2のマクロレンズでは、ガウス型レンズ群の像側に正レンズと負レンズを有する弱いパワーの後群を配置している。そして各レンズ群の相対間隔を変化させることでフォーカスを行っている。それによりガウス型レンズ系で物体距離の変動によって変動する各収差を後群の各レンズ面への軸上光線の入射高の関係を変化させることで補正し、物体距離の変動による収差変動を軽減している。ここで後群のパワーを弱くするのは、ガウス型レンズ系だけで良好に補正されている倍率色収差、及び像面湾曲等の軸外収差に対する影響を少なくするためである。そのため球面収差、コマ収差に関しては、物体距離の変動による収差変動を軽減する効果を得ているものの、軸上色収差の変動の軽減に対しては必ずしも十分でない。   Therefore, in the macro lens disclosed in Patent Document 2, a weak power rear group having a positive lens and a negative lens is arranged on the image side of the Gaussian lens group. Then, focusing is performed by changing the relative distance between the lens groups. As a result, each aberration that varies due to the object distance variation in the Gaussian lens system is corrected by changing the relationship of the incident height of the on-axis light beam to each lens surface in the rear group, and the aberration variation due to the object distance variation is reduced. is doing. The reason why the power of the rear group is weakened is to reduce the influence on the lateral chromatic aberration and the off-axis aberration such as curvature of field, which are favorably corrected only by the Gauss type lens system. For this reason, with respect to spherical aberration and coma aberration, although an effect of reducing aberration fluctuation due to fluctuation of object distance is obtained, it is not necessarily sufficient for reducing fluctuation of axial chromatic aberration.

そこで本発明では、まずガウス型レンズ系において軸上色収差の変動に最も寄与している箇所を限定した。ガウス型レンズ系において無限遠物体の撮影時で最も軸上光線の入射高が大きい箇所は、最も物体側の正レンズであるが、レンズ系が繰り出すに連れ、絞りより後側のレンズへの入射高が大きくなる。そしてそれに伴う収束性パワーの増加により、絞りより前側のレンズへの軸上光線の入射高が小さくなっていくことが分かった。そのため仮に無限遠物体の撮影時の軸上色収差のみ改善を図った場合は、異常部分分散性を有する材料を最も物体側の正レンズに配置する方法が考えられる。しかしながら、至近距離物体の撮影時は逆に最も物体側のレンズへの軸上光線の入射高が小さくなる方向に変化する。このため、異常部分分散材料でのg線の軸上色収差の発生傾向が弱まり、逆に距離変動を引き起こしてしまう。   Therefore, in the present invention, first, the portion that contributes most to the variation of longitudinal chromatic aberration in the Gaussian lens system is limited. When shooting an object at infinity in a Gaussian lens system, the point where the incident height of the on-axis light beam is the largest is the most positive lens on the object side. The height increases. Then, it was found that the incident height of the on-axis light beam to the lens on the front side of the stop becomes smaller due to the increase in the converging power. Therefore, if only the axial chromatic aberration at the time of photographing an object at infinity is improved, a method of arranging a material having an anomalous partial dispersion on the most positive lens on the object side can be considered. However, at the time of shooting an object at a close distance, the incident light beam on the lens closest to the object side changes in the direction of decreasing the incident height. For this reason, the tendency of occurrence of longitudinal chromatic aberration of the g-line in the abnormal partial dispersion material is weakened, and conversely, the distance is changed.

そこで至近距離物体の撮影時で無限遠物体の撮影時よりも軸上光線の入射高が大きくなっている像側の正レンズに異常部分分散性を有する材料を用いることで、最も効果的に軸上色収差の変動を軽減できることを見出した。現在市販される異常部分分散材料のうち、最も多く使用されている低屈折率低分散材料に蛍石や商品名FK01等がある。これらの材料は異常部分分散性こそ大きいが屈折率が1.5を下回り、正レンズに使用した場合、ペッツバール和が大きくなるため像面湾曲を良好に補正するのが難しくなり好ましくない。   Therefore, when using a material with anomalous partial dispersion for the positive lens on the image side where the incident height of the on-axis light beam is larger when shooting an object at close distance than when shooting an object at infinity, the axis is most effectively used. It was found that fluctuations in upper chromatic aberration can be reduced. Among the abnormal partial dispersion materials currently on the market, fluorite and the trade name FK01 are the most frequently used low refractive index low dispersion materials. Although these materials have high anomalous partial dispersibility, the refractive index is less than 1.5, and when used for a positive lens, the Petzval sum becomes large, which makes it difficult to correct field curvature well, which is not preferable.

そこで本発明の光学系では、異常部分分散性はやや劣るが屈折率が1.6程度の材料(中屈折率低分散材料)を正レンズの材料として用いることで軸上色収差の変動の補正と像面湾曲の補正を良好に行っている。このとき全ての正レンズに、この中屈折率定分散材料を使用すると、やはりペッツバール和が大きくなるため一部に高屈折率低分散の材料より成る正レンズを用いている。また異常部分分散性を有する材料は軟らかいため材料に傷がつきやすく、外部にさらされる最も物体側のレンズに用いるのは適さない。   Therefore, in the optical system of the present invention, the use of a material having a refractive index of about 1.6 (a medium refractive index low dispersion material) as a positive lens material is slightly inferior in anomalous partial dispersion. The field curvature is corrected well. At this time, if this medium refractive index constant dispersion material is used for all the positive lenses, the Petzval sum is also increased, so that a positive lens made of a material having a high refractive index and low dispersion is used in part. In addition, since the material having anomalous partial dispersion is soft, the material is easily damaged, and is not suitable for use on the lens on the most object side exposed to the outside.

そこで本発明のレンズ系では最も物体側の正レンズに高屈折率低分散材料を配置している。更に本発明者は前述したように、最も物体側のレンズは至近距離物体の撮影時に軸上光線の入射高が小さくなるため、色収差としてg線の補正不足傾向が弱まり、軸上色収差の変動の補正効果が更に得られることも見出した。これにより本発明では、特許文献2のレンズ系の像面側に後群を配置する構成によらずに物体距離の変動による球面収差やコマ収差をはじめ、全収差の変動を良好に補正できる光学系を得ている。またこの構成は、ガウス型レンズ系の物体側に負の屈折力のレンズ群を配置した所謂レトロフォーカス型レンズ系にも応用可能であることも確認した。   Therefore, in the lens system of the present invention, a high refractive index and low dispersion material is disposed on the most positive lens on the object side. Further, as described above, the present inventor has a lower incidence of axial rays when photographing the closest object, so that the tendency of insufficient correction of g-line as chromatic aberration is weakened, and fluctuation of axial chromatic aberration is reduced. It has also been found that a correction effect can be further obtained. As a result, in the present invention, an optical system capable of satisfactorily correcting variations in all aberrations including spherical aberration and coma due to variations in object distance, regardless of the configuration in which the rear group is disposed on the image plane side of the lens system of Patent Document 2. I have a system. It was also confirmed that this configuration can be applied to a so-called retrofocus lens system in which a lens unit having a negative refractive power is arranged on the object side of a Gaussian lens system.

本発明の光学系では、物体側より像側へ順に正レンズ、負レンズ、絞り、負レンズ、正レンズの順に配置されるレンズ部を有する前群と、負レンズ、正レンズの順に配置されるレンズ部を有する後群を有している。そして前群と後群の間隔を変化させることでフォーカスを行っている。ここで前群は絞りを挟んで対称なレンズ構成とすることで、像面湾曲や倍率色収差等の軸外収差、またそれらの距離変動を良好に補正している。また、フォーカスに際して前群が移動することで発生する球面収差、コマ収差等の軸上収差の変動を後群の各面での軸上光線の入射高を変化させることで良好に補正している。   In the optical system according to the present invention, the front group having a lens unit arranged in order of the positive lens, the negative lens, the stop, the negative lens, and the positive lens from the object side to the image side, and the negative lens and the positive lens are arranged in this order. A rear group having a lens portion is provided. Focusing is performed by changing the interval between the front group and the rear group. Here, the front lens group has a symmetrical lens structure with the stop interposed therebetween, so that off-axis aberrations such as field curvature and lateral chromatic aberration, and their distance variations are corrected well. Also, fluctuations in axial aberrations such as spherical aberration and coma that occur when the front group moves during focusing are corrected well by changing the incident height of axial rays on each surface of the rear group. .

各実施例において、開口絞りSPより像側に配置された正レンズのうち少なくとも1つの正レンズGpRの材料の屈折率、アッベ数、部分分散比を各々NdpR、νdpR、θgFpRとする。このとき、
1.53<NdpR<1.85 ・・・(1a)
50<νdpR<80 ・・・(2a)
0.005<θgFpR−0.6438+0.001682×νdpR<0.080
・・・(3a)
なる条件式を満たしている。ここで部分分散比θgFは材料のg線、F線、C線に対する屈折率を各々ng、nF、nCとする。このとき
θgF=(ng−nF)/(nF−nC)
である。
In each embodiment, the refractive index, Abbe number, and partial dispersion ratio of the material of at least one positive lens GpR among the positive lenses disposed on the image side from the aperture stop SP are NdpR, νdpR, and θgFpR, respectively. At this time,
1.53 <NdpR <1.85 (1a)
50 <νdpR <80 (2a)
0.005 <θgFpR−0.6438 + 0.001682 × νdpR <0.080
... (3a)
The following conditional expression is satisfied. Here, the partial dispersion ratio θgF is defined as ng, nF, and nC for the refractive indexes of the material with respect to g-line, F-line, and C-line, respectively. At this time θgF = (ng−nF) / (nF−nC)
It is.

次に前述の条件式(1a)〜(3a)の技術的意味について説明する。条件式(1a)の下限値を下回ると、ペッツバール和が正の方向に大きくなり、像面湾曲が大きくなってくる。また、上限値を上回ると、良質な材料の入手が困難になる。条件式(2a)の下限値を下回ると、軸上色収差の物体距離に対する変動が大きくなってくる。また上限値を上回ると、良質な材料の入手が困難になる。条件式(3a)の下限値を下回ると、g線の軸上色収差の発生効果が弱まり、全系として軸上色収差が過補正になる。また上限値を上回ると、逆にg線の軸上色収差の発生効果が強くなり過ぎ、全系として軸上色収差補正が不足になってしまう。条件式(1a)〜(3a)は、より好ましくは、条件式(1b)〜(3b)を満たすと良い。   Next, the technical meaning of the conditional expressions (1a) to (3a) will be described. If the lower limit of conditional expression (1a) is not reached, the Petzval sum increases in the positive direction and the field curvature increases. If the upper limit is exceeded, it will be difficult to obtain a good quality material. If the lower limit value of conditional expression (2a) is not reached, the variation of axial chromatic aberration with respect to the object distance increases. If the upper limit is exceeded, it will be difficult to obtain good quality materials. If the lower limit of conditional expression (3a) is not reached, the effect of generating g-line axial chromatic aberration is weakened, and the axial chromatic aberration is overcorrected in the entire system. On the other hand, if the value exceeds the upper limit, the effect of generating g-line axial chromatic aberration becomes too strong, and the axial chromatic aberration correction becomes insufficient as a whole system. More preferably, the conditional expressions (1a) to (3a) satisfy the conditional expressions (1b) to (3b).

1.55<NdpR<1.65 ・・・(1b)
55<νdpR<75 ・・・(2b)
0.010<θgFpR−0.6438+0.001682×νdpR<0.040
・・・(3b)
本発明の光学系は以上の諸条件を満足することによって達成される。更に色収差の補正を良好に行い、高い光学性能を得るには次の諸条件のうち1以上を満足するのが良い。前群LFの絞りSPより物体側に配置された正レンズのうち少なくとも1つの正レンズGpFの材料の屈折率、アッベ数、部分分散比を各々NdpF、νdpF、θgFpFとする。前群LFに配置された負レンズのうち、少なくとも1つの負レンズGnFの材料の屈折率、アッベ数、部分分散比を各々NdnF、νdnF、θgFnFとする。後群LRの焦点距離をfR、全系の焦点距離をfとする。
1.55 <NdpR <1.65 (1b)
55 <νdpR <75 (2b)
0.010 <θgFpR−0.6438 + 0.001682 × νdpR <0.040
... (3b)
The optical system of the present invention is achieved by satisfying the above conditions. Further, in order to satisfactorily correct chromatic aberration and obtain high optical performance, it is preferable to satisfy one or more of the following conditions. The refractive index, Abbe number, and partial dispersion ratio of the material of at least one positive lens GpF among the positive lenses disposed on the object side from the stop SP of the front group LF are NdpF, νdpF, and θgFpF, respectively. Of the negative lenses arranged in the front group LF, the refractive index, Abbe number, and partial dispersion ratio of at least one negative lens GnF are NdnF, νdnF, and θgFnF, respectively. The focal length of the rear group LR is fR, and the focal length of the entire system is f.

このとき、
1.65<NdpF<1.90 ・・・(4a)
30<νdpF<60 ・・・(5a)
−0.020<θgFpF−0.6438+0.001682×νdpF<0.005
・・・(6a)
1.90<NdnF+0.0125νdnF<2.24 ・・・(7a)
−0.020<θgFnF−0.6438+0.001682×νdnF<0.003
・・・(8a)
|fR/f|>40 ・・・(9a)
なる条件式のうち1以上を満たすのが良い。
At this time,
1.65 <NdpF <1.90 (4a)
30 <νdpF <60 (5a)
−0.020 <θgFpF−0.6438 + 0.001682 × νdpF <0.005
... (6a)
1.90 <NdnF + 0.0125νdnF <2.24 (7a)
−0.020 <θgFnF−0.6438 + 0.001682 × νdnF <0.003
... (8a)
| FR / f |> 40 (9a)
It is preferable to satisfy one or more of the following conditional expressions.

次に前述の各条件式の技術的意味について説明する。条件式(4a)の下限値を下回ると、ペッツバール和が正の方向に大きくなり、像面湾曲が大きくなってくる。また上限値を上回ると、良質な材料の入手が困難になる。条件式(5a)の下限値を下回ると、軸上色収差の物体距離に対する変動が大きくなってくる。また上限値を上回ると、良質な材料の入手が困難になる。条件式(6a)の下限値を下回ると、g線の軸上色収差が不足し、全系として軸上色収差が過補正になる。また上限値を上回ると、軸上色収差の物体距離に対する変動が大きくなってしまう。条件式(4a)〜(6a)の数値範囲は、より好ましくは、条件式(4b)〜(6b)を満たすと良い。   Next, the technical meaning of each conditional expression described above will be described. If the lower limit of conditional expression (4a) is not reached, the Petzval sum increases in the positive direction, and the field curvature increases. If the upper limit is exceeded, it will be difficult to obtain good quality materials. If the lower limit of conditional expression (5a) is not reached, the variation of axial chromatic aberration with respect to the object distance becomes large. If the upper limit is exceeded, it will be difficult to obtain good quality materials. If the lower limit of conditional expression (6a) is not reached, the axial chromatic aberration of the g-line will be insufficient, and the axial chromatic aberration will be overcorrected as a whole system. If the upper limit is exceeded, the variation of axial chromatic aberration with respect to the object distance becomes large. More preferably, the numerical ranges of the conditional expressions (4a) to (6a) satisfy the conditional expressions (4b) to (6b).

1.65<NdpF<1.88 ・・・(4b)
31<νdpF<58 ・・・(5b)
−0.010<θgFpF−0.6438+0.001682×νdpF<0.004
・・・(6b)
条件式(7a)の下限値を下回る場合で屈折率NdnFが小さいときには、球面収差やコマ収差、及び像面湾曲が補正不足となる。またアッベ数νdnFが小さいときには、軸上色収差及び倍率色収差が過補正になる。上限値を上回る場合で屈折率NdnFが大きいときには球面収差やコマ収差、及び像面湾曲が過補正となり、アッベ数νdnFが小さいときには、軸上色収差及び倍率色収差が補正不足となる。条件式(8a)の下限値を下回ると良好な材料の入手が困難となる。また、上限値を上回ると、g線の軸上色収差が過補正になる。条件式(7a)、(8a)の数値範囲は、より好ましくは条件式(7b)、(8b)を満たすと良い。
1.65 <NdpF <1.88 (4b)
31 <νdpF <58 (5b)
−0.010 <θgFpF−0.6438 + 0.001682 × νdpF <0.004
... (6b)
When the refractive index NdnF is small when the lower limit value of conditional expression (7a) is not reached, spherical aberration, coma aberration, and field curvature are insufficiently corrected. When the Abbe number νdnF is small, the longitudinal chromatic aberration and the lateral chromatic aberration are overcorrected. When the upper limit value is exceeded and the refractive index NdnF is large, spherical aberration, coma aberration, and field curvature are overcorrected, and when the Abbe number νdnF is small, axial chromatic aberration and lateral chromatic aberration are undercorrected. If the lower limit of conditional expression (8a) is not reached, it will be difficult to obtain a good material. If the upper limit is exceeded, the axial chromatic aberration of the g line is overcorrected. More preferably, the numerical ranges of the conditional expressions (7a) and (8a) satisfy the conditional expressions (7b) and (8b).

2.00<NdnF+0.0125νdnF<2.22 ・・・(7b)
−0.010<θgFnF−0.6438+0.001682×νdnF<0.000
・・・(8b)
条件式(9a)の下限を下回ると後群LRのパワーが大きくなり過ぎ、前群で補正されている倍率色収差や像面湾曲等の、軸外収差が多く発生するため、良くない。条件式(9a)の数値は、より好ましくは条件式(9b)を満たすと良い。
2.00 <NdnF + 0.0125νdnF <2.22 (7b)
−0.010 <θgFnF−0.6438 + 0.001682 × νdnF <0.000
... (8b)
If the lower limit of conditional expression (9a) is not reached, the power of the rear group LR becomes too large, and many off-axis aberrations such as lateral chromatic aberration and field curvature corrected in the front group occur, which is not good. More preferably, the numerical value of conditional expression (9a) satisfies conditional expression (9b).

|fR/f|>5.0・・・(9b)
各実施例の光学系は無限遠物体から至近距離物体へのフォーカスに際し、前群LFが物体側に移動し、後群LRが固定または物体側に移動している。後群LRが像側に移動した場合、後群LRの各レンズ面での軸上光線の入射高が変化し過ぎるため、至近距離物体の撮影のときの球面収差とコマ収差を良好に補正するのが難しくなる。
| FR / f |> 5.0 (9b)
In the optical system of each embodiment, when focusing from an object at infinity to a close object, the front group LF is moved to the object side, and the rear group LR is fixed or moved to the object side. When the rear lens group LR moves to the image side, the incident height of the axial ray on each lens surface of the rear lens group LR changes too much, so that the spherical aberration and the coma aberration at the time of shooting an object at a close distance are corrected well. It becomes difficult.

以下、各実施例における詳細なレンズ構成について説明する。
(実施例1)
物体側から像側へ順に、前群LFは物体側に凸面を向けた正レンズFFP1、物体側に凸面を向けた正レンズFFP2、像側に凹面を向けた負レンズFFN、開口絞りSPを有している。更に物体側に凹面を向けた負レンズFRNと像側に凸面を向けた正レンズFRP1を接合した接合レンズ、正レンズFRP2より構成されている。後群LRは像側に凹面を向けた負レンズRNと両レンズ面が凸形状の正レンズRPより構成されている。実施例1の光学系はガウス型レンズ系である。
Hereinafter, a detailed lens configuration in each example will be described.
Example 1
In order from the object side to the image side, the front lens group LF includes a positive lens FFP1 having a convex surface facing the object side, a positive lens FFP2 having a convex surface facing the object side, a negative lens FFN having a concave surface facing the image side, and an aperture stop SP. is doing. Further, the lens includes a negative lens FRN having a concave surface facing the object side and a cemented lens obtained by cementing a positive lens FRP1 having a convex surface facing the image side, and a positive lens FRP2. The rear group LR includes a negative lens RN having a concave surface facing the image side and a positive lens RP having both lens surfaces convex. The optical system of Example 1 is a Gaussian lens system.

ここで正レンズFRP2が条件式(1a)から(3a)を満たしており、全系のペッツバール和を小さくし、像面湾曲を良好に補正しつつ、軸上色収差の物体距離に対する変動を良好に抑えている。また、正レンズFFP1が条件式(4a)から(6a)を満たしており、全系のペッツバール和を小さくし、像面湾曲を良好に補正しつつ、軸上色収差の物体距離に対する変動を良好に抑えている。また負レンズFFN及び負レンズFRNが、共に条件式(7a)、(8a)を満たしており、軸上色収差を良好に補正している。また後群LRは条件式(9a)を満たしており、像面湾曲や倍率色収差等の軸外収差に影響を与えることなく、球面収差とコマ収差の物体距離に対する変動を良好に補正している。また後群LRはフォーカスに際し、物体側に移動しており、前群LFでの球面収差やコマ収差の変動を後群LRの各面での軸上光線の入射高を変化させることで、良好に補正している。   Here, the positive lens FRP2 satisfies the conditional expressions (1a) to (3a), the Petzval sum of the entire system is reduced, the field curvature is corrected well, and the variation of axial chromatic aberration with respect to the object distance is improved. It is suppressed. Further, the positive lens FFP1 satisfies the conditional expressions (4a) to (6a), the Petzval sum of the entire system is reduced, the field curvature is corrected well, and the variation of the longitudinal chromatic aberration with respect to the object distance is improved. It is suppressed. Further, the negative lens FFN and the negative lens FRN both satisfy the conditional expressions (7a) and (8a), and the axial chromatic aberration is corrected well. The rear lens group LR satisfies the conditional expression (9a), and corrects the variation of spherical aberration and coma with respect to the object distance without affecting the off-axis aberrations such as field curvature and lateral chromatic aberration. . Further, the rear group LR moves to the object side at the time of focusing, and the spherical aberration and the coma aberration in the front group LF are changed by changing the incident height of the axial ray on each surface of the rear group LR. It is corrected to.

(実施例2)
実施例2のレンズ構成は実施例1と同じである。実施例2は実施例1に対して後群LRがフォーカスに際し、固定している点が異なっている。フォーカスに際して、後群LRを実施例1のように物体側に移動した方が後群LRの各レンズ面での軸上光線高hの選択性があり、より良好に物体距離に対する変動を補正することができる。ただし実施例2では、後群LRを固定させることで、メカ保持機構の簡易化を図っている。
(Example 2)
The lens configuration of Example 2 is the same as that of Example 1. The second embodiment is different from the first embodiment in that the rear group LR is fixed when focused. When focusing, moving the rear group LR to the object side as in the first embodiment has selectivity of the axial ray height h on each lens surface of the rear group LR, and more appropriately corrects the variation with respect to the object distance. be able to. However, in the second embodiment, the mechanical holding mechanism is simplified by fixing the rear group LR.

(実施例3)
物体側から像側へ順に前群LFは物体側の面が凸でメニスカス形状の負レンズFFN、両凸形状の正レンズFFP1、物体側に凸面を向けた正レンズFFP2、像側に凹面を向けた負レンズFFN2、開口絞りSPを有している。更に負レンズFRNと正レンズFRP1を接合した接合レンズ、正レンズFRP2より構成されている。後群LRは像側に凹面を向けた負レンズRNと両レンズ面が凸形状の正レンズRPより構成される。実施例3における光学系は、レトロフォーカス型レンズ系である。正レンズFRP1、FRP2が、共に条件式(1a)から(3a)を満たしており、全系のペッツバール和を小さくし像面湾曲を良好に補正しつつ、軸上色収差の物体距離に対する変動を良好に抑えている。また正レンズFFP2が条件式(4a)から(6a)を満たしており、全系のペッツバール和を小さくし、像面湾曲を良好に補正しつつ、軸上色収差の物体距離に対する変動を良好に抑えている。また負レンズFFN2が条件式(7a)、(8a)を満たしており、軸上色収差を良好に補正している。また後群LRは条件式(9a)を満たしており、十分パワーが弱いため像面湾曲や倍率色収差等の軸外収差に影響を与えることなく、球面収差とコマ収差の物体距離に対する変動を良好に補正している。また後群LRはフォーカスに際し固定であり、前群LFでの球面収差やコマ収差の変動を、後群LRの各レンズ面での軸上光線の入射高を変化させることで補正すると共に、メカ保持構造の簡易化を図っている。
(Example 3)
In order from the object side to the image side, the front lens group LF has a convex meniscus lens FFN with a convex object side surface, a biconvex positive lens FFP1, a positive lens FFP2 with a convex surface facing the object side, and a concave surface facing the image side. And a negative lens FFN2 and an aperture stop SP. Further, the lens includes a cemented lens obtained by cementing the negative lens FRN and the positive lens FRP1, and a positive lens FRP2. The rear group LR includes a negative lens RN having a concave surface facing the image side, and a positive lens RP having convex both lens surfaces. The optical system in Example 3 is a retrofocus lens system. Both positive lenses FRP1 and FRP2 satisfy the conditional expressions (1a) to (3a), and the variation of axial chromatic aberration with respect to the object distance is improved while reducing the Petzval sum of the entire system and correcting the curvature of field well. It is suppressed to. The positive lens FFP2 satisfies the conditional expressions (4a) to (6a), reduces the Petzval sum of the entire system, corrects the curvature of field well, and suppresses the fluctuation of the longitudinal chromatic aberration with respect to the object distance. ing. Further, the negative lens FFN2 satisfies the conditional expressions (7a) and (8a), and the axial chromatic aberration is corrected well. The rear lens group LR satisfies the conditional expression (9a), and its power is sufficiently weak so that the fluctuation of the spherical aberration and the coma aberration with respect to the object distance is good without affecting off-axis aberrations such as field curvature and lateral chromatic aberration. It is corrected to. The rear group LR is fixed at the time of focusing, and the variation of spherical aberration and coma aberration in the front group LF is corrected by changing the incident height of the axial ray on each lens surface of the rear group LR. The holding structure is simplified.

以上、本発明の好ましい光学系の実施例について説明したが本発明はこれらの実施例に限定されないことは言うまでもなく、その要旨の範囲内で種々の変形及び変更が可能である。   As mentioned above, although the Example of the preferable optical system of this invention was described, it cannot be overemphasized that this invention is not limited to these Examples, A various deformation | transformation and change are possible within the range of the summary.

数値実施例1〜3に対応する数値実施例1〜3のレンズデータを示す。これらの数値実施例において、iは物体側からの面の順序を示す。riは物体側より第i番目のレンズ面の曲率半径である。diは物体側より第i番目の基準状態の軸上面間隔、ndi、νdi、θgFiは第i番目の光学部材のd線における屈折率、アッベ数、部分分散比を各々表わしている。また光線有効径も示す。また、焦点距離、Fナンバー等のスペックに加え、画角は全系の半画角、像高は半画角を決定する最大像高、レンズ全長は第1レンズ面から最終レンズ面までの距離、BFは最終レンズ面から像面までの長さ(バックフォーカス)を示している。また、各光学面の間隔dが(可変)となっている部分は、フォーカシングに際して変化するものであり、別表に撮影倍率に応じた面間隔を記している。撮影倍率1/∞とは、物体距離無限での撮影を表している。尚、以下に記載する数値実施例1〜3のレンズデータに基づく、各条件式の計算結果を表1に示す。   Lens data of Numerical Examples 1 to 3 corresponding to Numerical Examples 1 to 3 are shown. In these numerical examples, i indicates the order of the surfaces from the object side. ri is the radius of curvature of the i-th lens surface from the object side. di represents the distance between the upper surfaces of the axes in the i-th reference state from the object side, and ndi, νdi, and θgFi represent the refractive index, Abbe number, and partial dispersion ratio of the i-th optical member at the d-line. The effective beam diameter is also shown. In addition to specs such as focal length and F-number, the angle of view is the half angle of view of the entire system, the image height is the maximum image height that determines the half angle of view, and the total lens length is the distance from the first lens surface to the final lens surface. , BF indicate the length (back focus) from the final lens surface to the image plane. Further, the part where the distance d between the optical surfaces is (variable) changes during focusing, and the surface distance corresponding to the photographing magnification is shown in the attached table. The shooting magnification 1 / ∞ represents shooting at an infinite object distance. Table 1 shows the calculation results of the conditional expressions based on the lens data of Numerical Examples 1 to 3 described below.

(数値実施例1)

単位 mm

面データ
面番号 r d nd νd θgF 有効径
1 39.096 4.51 1.77250 49.6 0.5520 33.26
2 181.579 0.15 31.94
3 21.011 3.57 1.60300 65.4 0.5401 26.29
4 32.983 1.27 24.45
5 52.555 1.30 1.65412 39.7 0.5737 23.88
6 14.422 13.76 19.45
7(絞り) ∞ 3.24 13.24
8 -13.801 1.30 1.65412 39.7 0.5737 13.41
9 -139.302 4.91 1.77250 49.6 0.5520 16.27
10 -18.079 0.15 18.91
11 67.358 3.48 1.56907 71.3 0.5451 22.47
12 -54.087 (可変) 23.02
13 -555.436 1.60 1.67270 32.1 0.5988 24.04
14 43.700 1.43 24.78
15 119.406 3.16 1.77250 49.6 0.5520 25.03
16 -68.054 (可変) 25.53
像面 ∞

焦点距離 50.20
Fナンバー 2.90
画角 23.32
像高 21.64
レンズ全長 84.64
BF 40.01

撮影倍率 1/∞ -0.012 -0.290 -0.480 -0.950
d12 0.80 1.25 4.74 7.26 12.13
d16 0.00 0.16 10.94 18.25 37.82

入射瞳位置 31.55
射出瞳位置 -20.62
前側主点位置 40.19
後側主点位置 -10.19

レンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 51.81 37.65 37.00 -7.40
2 13 542.44 6.19 26.22 23.15

単レンズデータ
レンズ 始面 焦点距離
1 1 63.62
2 3 86.31
3 5 -30.80
4 8 -23.52
5 9 26.43
6 11 53.27
7 13 -60.16
8 15 56.53

(Numerical example 1)

Unit mm

Surface data surface number rd nd νd θgF Effective diameter
1 39.096 4.51 1.77250 49.6 0.5520 33.26
2 181.579 0.15 31.94
3 21.011 3.57 1.60 300 65.4 0.5401 26.29
4 32.983 1.27 24.45
5 52.555 1.30 1.65412 39.7 0.5737 23.88
6 14.422 13.76 19.45
7 (Aperture) ∞ 3.24 13.24
8 -13.801 1.30 1.65412 39.7 0.5737 13.41
9 -139.302 4.91 1.77250 49.6 0.5520 16.27
10 -18.079 0.15 18.91
11 67.358 3.48 1.56907 71.3 0.5451 22.47
12 -54.087 (variable) 23.02
13 -555.436 1.60 1.67270 32.1 0.5988 24.04
14 43.700 1.43 24.78
15 119.406 3.16 1.77250 49.6 0.5520 25.03
16 -68.054 (variable) 25.53
Image plane ∞

Focal length 50.20
F number 2.90
Angle of view 23.32
Statue height 21.64
Total lens length 84.64
BF 40.01

Magnification 1 / ∞ -0.012 -0.290 -0.480 -0.950
d12 0.80 1.25 4.74 7.26 12.13
d16 0.00 0.16 10.94 18.25 37.82

Entrance pupil position 31.55
Exit pupil position -20.62
Front principal point position 40.19
Rear principal point position -10.19

Lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 51.81 37.65 37.00 -7.40
2 13 542.44 6.19 26.22 23.15

Single lens Data lens Start surface Focal length
1 1 63.62
2 3 86.31
3 5 -30.80
4 8 -23.52
5 9 26.43
6 11 53.27
7 13 -60.16
8 15 56.53

(数値実施例2)

単位 mm

面データ
面番号 r d nd νd θgF 有効径
1 56.164 5.39 1.69680 55.5 0.5434 41.73
2 1622.472 0.15 40.59
3 29.388 7.15 1.60300 65.4 0.5401 33.12
4 50.623 1.46 27.57
5 122.946 2.00 1.65412 39.7 0.5737 26.97
6 21.398 14.96 23.74
7(絞り) ∞ 4.41 22.14
8 -22.541 2.00 1.65412 39.7 0.5737 22.48
9 -100.349 3.22 1.71999 50.2 0.5521 24.87
10 -33.277 0.15 25.74
11 -25747.812 4.43 1.56907 71.3 0.5451 27.19
12 -33.334 (可変) 27.78
13 -126.966 1.60 1.61340 44.3 0.5633 28.97
14 83.775 1.05 29.62
15 199.853 2.99 1.83481 42.7 0.5642 29.77
16 -109.271 0 30.00
像面 ∞

焦点距離 90.40
Fナンバー 2.90
画角 17.90
像高 29.20
レンズ全長 117.18
BF 65.43

撮影倍率 1/∞ -0.021 -0.290 -0.480
d12 0.80 2.57 25.28 41.33

入射瞳位置 41.50
射出瞳位置 -19.28
前側主点位置 35.43
後側主点位置 -24.97

レンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 87.36 45.31 32.91 -21.64
2 13 -15320.31 5.64 -449.64 -467.02

単レンズデータ
レンズ 始面 焦点距離
1 1 83.38
2 3 103.13
3 5 -39.92
4 8 -44.90
5 9 67.79
6 11 58.65
7 13 -82.05
8 15 85.00

(Numerical example 2)

Unit mm

Surface data surface number rd nd νd θgF Effective diameter
1 56.164 5.39 1.69680 55.5 0.5434 41.73
2 1622.472 0.15 40.59
3 29.388 7.15 1.60 300 65.4 0.5401 33.12
4 50.623 1.46 27.57
5 122.946 2.00 1.65412 39.7 0.5737 26.97
6 21.398 14.96 23.74
7 (Aperture) ∞ 4.41 22.14
8 -22.541 2.00 1.65412 39.7 0.5737 22.48
9 -100.349 3.22 1.71999 50.2 0.5521 24.87
10 -33.277 0.15 25.74
11 -25747.812 4.43 1.56907 71.3 0.5451 27.19
12 -33.334 (variable) 27.78
13 -126.966 1.60 1.61340 44.3 0.5633 28.97
14 83.775 1.05 29.62
15 199.853 2.99 1.83481 42.7 0.5642 29.77
16 -109.271 0 30.00
Image plane ∞

Focal length 90.40
F number 2.90
Angle of View 17.90
Statue height 29.20
Total lens length 117.18
BF 65.43

Magnification 1 / ∞ -0.021 -0.290 -0.480
d12 0.80 2.57 25.28 41.33

Entrance pupil position 41.50
Exit pupil position -19.28
Front principal point position 35.43
Rear principal point position -24.97

Lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 87.36 45.31 32.91 -21.64
2 13 -15320.31 5.64 -449.64 -467.02

Single lens Data lens Start surface Focal length
1 1 83.38
2 3 103.13
3 5 -39.92
4 8 -44.90
5 9 67.79
6 11 58.65
7 13 -82.05
8 15 85.00

(数値実施例3)

単位 mm

面データ
面番号 r d nd νd θgF 有効径
1 56.502 1.80 1.77250 49.6 0.5520 31.70
2 17.704 22.37 26.58
3 60.168 5.35 1.59282 68.6 0.5446 24.83
4 -31.916 0.15 24.57
5 25.115 3.03 1.85026 32.3 0.5929 20.51
6 61.775 2.41 19.48
7 -169.332 1.10 1.65412 39.7 0.5737 18.38
8 22.845 11.69 17.26
9(絞り) ∞ 1.43 16.41
10 474.312 1.10 1.84666 23.8 0.6205 16.50
11 28.564 3.72 1.59282 68.6 0.5446 16.66
12 -42.085 0.15 17.12
13 67.981 2.54 1.59282 68.6 0.5446 17.64
14 -111.242 (可変) 17.96
15 858.813 1.20 1.51633 64.1 0.5353 19.13
16 34.051 1.34 19.57
17 472.914 2.16 1.84666 23.8 0.6205 19.58
18 -111.924 0 20.20
像面 ∞

焦点距離 35.20
Fナンバー 2.90
画角 31.58
像高 21.64
レンズ全長 102.44
BF 40.10

撮影倍率 1/∞ -0.008 -0.290 -0.480
d14 0.80 0.99 7.54 11.95

入射瞳位置 24.54
射出瞳位置 -10.95
前側主点位置 35.47
後側主点位置 4.90

レンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 28.60 56.85 33.81 6.93
2 15 -203.67 4.70 -3.46 -6.90

単レンズデータ
レンズ 始面 焦点距離
1 1 -34.06
2 3 35.96
3 5 47.95
4 7 -30.70
5 10 -35.94
6 11 29.28
7 13 71.56
8 15 -68.70
9 17 107.08
(Numerical Example 3)

Unit mm

Surface data surface number rd nd νd θgF Effective diameter
1 56.502 1.80 1.77250 49.6 0.5520 31.70
2 17.704 22.37 26.58
3 60.168 5.35 1.59282 68.6 0.5446 24.83
4 -31.916 0.15 24.57
5 25.115 3.03 1.85026 32.3 0.5929 20.51
6 61.775 2.41 19.48
7 -169.332 1.10 1.65412 39.7 0.5737 18.38
8 22.845 11.69 17.26
9 (Aperture) ∞ 1.43 16.41
10 474.312 1.10 1.84666 23.8 0.6205 16.50
11 28.564 3.72 1.59282 68.6 0.5446 16.66
12 -42.085 0.15 17.12
13 67.981 2.54 1.59282 68.6 0.5446 17.64
14 -111.242 (variable) 17.96
15 858.813 1.20 1.51633 64.1 0.5353 19.13
16 34.051 1.34 19.57
17 472.914 2.16 1.84666 23.8 0.6205 19.58
18 -111.924 0 20.20
Image plane ∞

Focal length 35.20
F number 2.90
Angle of view 31.58
Statue height 21.64
Total lens length 102.44
BF 40.10

Magnification 1 / ∞ -0.008 -0.290 -0.480
d14 0.80 0.99 7.54 11.95

Entrance pupil position 24.54
Exit pupil position -10.95
Front principal point position 35.47
Rear principal point position 4.90

Lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 28.60 56.85 33.81 6.93
2 15 -203.67 4.70 -3.46 -6.90

Single lens Data lens Start surface Focal length
1 1 -34.06
2 3 35.96
3 5 47.95
4 7 -30.70
5 10 -35.94
6 11 29.28
7 13 71.56
8 15 -68.70
9 17 107.08

次に実施例1〜3に示した光学系をデジタル一眼レフカメラ等の光学機器に適用した実施例を図7を用いて説明する。図7は一眼レフカメラの要部概略図である。図7において、10は実施例1〜3の光学系を有する撮影レンズである。光学系1は保持部材である鏡筒2に保持されている。20はカメラ本体であり、撮影レンズ10からの光束を上方に反射するクイックリターンミラー3、撮影レンズ10の像形成位置に配置された焦点板4を有している。更に焦点板4に形成された逆像を正立像に変換するペンタダハプリズム5、その正立像を拡大結像するための接眼レンズ6等を有している。7は感光面であり、CCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)や銀塩フィルムが配置される。撮影時にはクイックリターンミラー3が光路から退避して感光面7上に撮影レンズ10によって像が形成される。   Next, an embodiment in which the optical system shown in Embodiments 1 to 3 is applied to an optical apparatus such as a digital single lens reflex camera will be described with reference to FIG. FIG. 7 is a schematic diagram of a main part of a single-lens reflex camera. In FIG. 7, reference numeral 10 denotes a photographic lens having the optical systems of Examples 1 to 3. The optical system 1 is held by a lens barrel 2 that is a holding member. Reference numeral 20 denotes a camera body, which includes a quick return mirror 3 that reflects the light beam from the photographing lens 10 upward and a focusing screen 4 that is disposed at an image forming position of the photographing lens 10. Further, it has a penta roof prism 5 for converting an inverted image formed on the focusing screen 4 into an erect image, an eyepiece 6 for enlarging the erect image, and the like. Reference numeral 7 denotes a photosensitive surface, on which a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor, or a silver salt film is disposed. At the time of photographing, the quick return mirror 3 is retracted from the optical path and an image is formed on the photosensitive surface 7 by the photographing lens 10.

LE:光学系、SP:絞り、IP:撮像面、LF:前群、LR:後群 LE: Optical system, SP: Aperture, IP: Imaging surface, LF: Front group, LR: Rear group

Claims (8)

物体側より像側へ順に、正レンズ、負レンズ、開口絞り、負レンズ、正レンズの順に配置されたレンズ部を有する前群、負レンズ、正レンズの順に配置されたレンズ部を有する後群を有し、前群と後群の間隔を変化させることでフォーカスを行い、該開口絞りより像側に配置された正レンズのうち少なくとも1つの正レンズGpRの材料の屈折率、アッベ数、部分分散比を各々NdpR、νdpR、θgFpRとするとき、
1.53<NdpR<1.85
50<νdpR<80
0.005<θgFpR−0.6438+0.001682×νdpR<0.080
なる条件式を満たすことを特徴とする光学系。
In order from the object side to the image side, a front group having a lens unit arranged in the order of a positive lens, a negative lens, an aperture stop, a negative lens, and a positive lens, and a rear group having a lens unit arranged in the order of a negative lens and a positive lens And focusing by changing the distance between the front group and the rear group, and the refractive index, Abbe number, and portion of the material of at least one positive lens GpR among the positive lenses arranged on the image side from the aperture stop When the dispersion ratios are NdpR, νdpR, and θgFpR, respectively.
1.53 <NdpR <1.85
50 <νdpR <80
0.005 <θgFpR−0.6438 + 0.001682 × νdpR <0.080
An optical system characterized by satisfying the following conditional expression:
前記前群の絞りより物体側に配置された正レンズのうち少なくとも1つの正レンズGpFの材料の屈折率、アッベ数、部分分散比を各々NdpF、νdpF、θgFpFとするとき、
1.65<NdpF<1.90
30<νdpF<60
−0.020<θgFpF−0.6438+0.001682×νdpF<0.005
なる条件式を満たすことを特徴とする請求項1に記載の光学系。
When the refractive index, Abbe number, and partial dispersion ratio of the material of at least one positive lens GpF among the positive lenses disposed on the object side from the stop of the front group are NdpF, νdpF, and θgFpF, respectively.
1.65 <NdpF <1.90
30 <νdpF <60
−0.020 <θgFpF−0.6438 + 0.001682 × νdpF <0.005
The optical system according to claim 1, wherein the following conditional expression is satisfied.
前記前群に配置された負レンズのうち、少なくとも1つの負レンズGnFの材料の屈折率、アッベ数、部分分散比を各々NdnF、νdnF、θgFnFとするとき、
1.90<NdnF+0.0125νdnF<2.24
−0.020<θgFnF−0.6438+0.001682×νdnF<0.003
なる条件式を満たすことを特徴とする請求項1又は2に記載の光学系。
When the refractive index, Abbe number, and partial dispersion ratio of the material of at least one negative lens GnF among the negative lenses arranged in the front group are NdnF, νdnF, and θgFnF, respectively.
1.90 <NdnF + 0.0125νdnF <2.24
−0.020 <θgFnF−0.6438 + 0.001682 × νdnF <0.003
The optical system according to claim 1, wherein the following conditional expression is satisfied.
前記後群の焦点距離をfR、全系の焦点距離をfとするとき、
|fR/f|>40
なる条件式を満たすことを特徴とする請求項1乃至3のいずれか1項に記載の光学系。
When the focal length of the rear group is fR and the focal length of the entire system is f,
| FR / f |> 40
The optical system according to claim 1, wherein the following conditional expression is satisfied.
無限遠物体から至近距離物体へのフォーカスに際し、前記前群が物体側に移動し、前記後群が不動、または物体側に移動することを特徴とする、請求項1乃至4のいずれか1項に記載の光学系。   5. The focus according to claim 1, wherein the front group moves toward the object side and the rear group moves immovably or moves toward the object side when focusing from an object at infinity to a close object. The optical system described in 1. 物体側から像側へ順に、前記前群は物体側に凸面を向けた正レンズ、物体側に凸面を向けた正レンズ、像側に凹面を向けた負レンズ、開口絞り、物体側に凹面を向けた負レンズと像側に凸面を向けた正レンズを接合した接合レンズ、正レンズより構成され、前記後群は像側に凹面を向けた負レンズと両レンズ面が凸形状の正レンズより構成されることを特徴とする請求項1乃至5のいずれか1項の光学系。   In order from the object side to the image side, the front group includes a positive lens having a convex surface facing the object side, a positive lens having a convex surface facing the object side, a negative lens having a concave surface facing the image side, an aperture stop, and a concave surface facing the object side. The rear lens group is composed of a negative lens having a concave surface facing the image side and a positive lens having both convex surfaces. 6. The optical system according to claim 1, wherein the optical system is configured. 物体側から像側へ順に、前記前群は物体側の面が凸でメニスカス形状の負レンズ、両凸形状の正レンズ、物体側に凸面を向けた正レンズ、像側に凹面を向けた負レンズ、開口絞り、負レンズと正レンズを接合した接合レンズ、正レンズより構成され、前記後群は像側に凹面を向けた負レンズと両レンズ面が凸形状の正レンズより構成されることを特徴とする請求項1乃至5のいずれか1項の光学系。   In order from the object side to the image side, the front group has a negative meniscus lens with a convex object side surface, a biconvex positive lens, a positive lens with a convex surface on the object side, and a negative lens with a concave surface on the image side. The rear lens group is composed of a lens, an aperture stop, a cemented lens obtained by cementing a negative lens and a positive lens, and a positive lens, and the rear group is composed of a negative lens having a concave surface facing the image side and a positive lens having both convex surfaces. The optical system according to claim 1, wherein: 請求項1から7いずれかに記載の光学系を有することを特徴とする光学機器。   An optical apparatus comprising the optical system according to claim 1.
JP2009260833A 2009-11-16 2009-11-16 Optical system and optical instrument using the same Expired - Fee Related JP5460255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009260833A JP5460255B2 (en) 2009-11-16 2009-11-16 Optical system and optical instrument using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009260833A JP5460255B2 (en) 2009-11-16 2009-11-16 Optical system and optical instrument using the same

Publications (3)

Publication Number Publication Date
JP2011107313A true JP2011107313A (en) 2011-06-02
JP2011107313A5 JP2011107313A5 (en) 2013-01-17
JP5460255B2 JP5460255B2 (en) 2014-04-02

Family

ID=44230866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009260833A Expired - Fee Related JP5460255B2 (en) 2009-11-16 2009-11-16 Optical system and optical instrument using the same

Country Status (1)

Country Link
JP (1) JP5460255B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014021340A (en) * 2012-07-19 2014-02-03 Ricoh Co Ltd Image forming lens, imaging lens unit, and imaging apparatus
WO2014203631A1 (en) * 2013-06-19 2014-12-24 リコーイメージング株式会社 Fixed-focal-length lens system
JP5655164B2 (en) * 2011-12-27 2015-01-14 富士フイルム株式会社 Imaging lens and imaging apparatus
JP2015169707A (en) * 2014-03-05 2015-09-28 株式会社リコー Imaging optical system, stereo camera, and on-vehicle camera device
JP2018180238A (en) * 2017-04-12 2018-11-15 株式会社リコー Projection optical system and image projection device
JP2021167982A (en) * 2017-06-02 2021-10-21 キヤノン株式会社 Imaging optical system and imaging device using the same
US11353689B2 (en) 2017-11-30 2022-06-07 SZ DJI Technology Co., Ltd. Lens system, imaging apparatus, and moving object
JP7152823B1 (en) 2022-06-01 2022-10-13 株式会社目白67 imaging lens

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05142474A (en) * 1991-11-26 1993-06-11 Fuji Photo Optical Co Ltd Macrolens with far exit pupil
JPH06308386A (en) * 1993-04-21 1994-11-04 Olympus Optical Co Ltd Lens capable of short-distance photography
JP2003185916A (en) * 2001-12-18 2003-07-03 Mamiya Op Co Ltd Macro lens
JP2008020656A (en) * 2006-07-13 2008-01-31 Sigma Corp Macro lens

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05142474A (en) * 1991-11-26 1993-06-11 Fuji Photo Optical Co Ltd Macrolens with far exit pupil
JPH06308386A (en) * 1993-04-21 1994-11-04 Olympus Optical Co Ltd Lens capable of short-distance photography
JP2003185916A (en) * 2001-12-18 2003-07-03 Mamiya Op Co Ltd Macro lens
JP2008020656A (en) * 2006-07-13 2008-01-31 Sigma Corp Macro lens

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5655164B2 (en) * 2011-12-27 2015-01-14 富士フイルム株式会社 Imaging lens and imaging apparatus
JPWO2013099211A1 (en) * 2011-12-27 2015-04-30 富士フイルム株式会社 Imaging lens and imaging apparatus
JP2014021340A (en) * 2012-07-19 2014-02-03 Ricoh Co Ltd Image forming lens, imaging lens unit, and imaging apparatus
US9557539B2 (en) 2013-06-19 2017-01-31 Ricoh Imaging Company, Ltd. Fixed focal-length lens system
JP2015004717A (en) * 2013-06-19 2015-01-08 リコーイメージング株式会社 Single focus lens system
WO2014203631A1 (en) * 2013-06-19 2014-12-24 リコーイメージング株式会社 Fixed-focal-length lens system
JP2015169707A (en) * 2014-03-05 2015-09-28 株式会社リコー Imaging optical system, stereo camera, and on-vehicle camera device
JP2018180238A (en) * 2017-04-12 2018-11-15 株式会社リコー Projection optical system and image projection device
US11042013B2 (en) 2017-04-12 2021-06-22 Ricoh Company, Ltd. Projection optical system and image projection device
JP2021167982A (en) * 2017-06-02 2021-10-21 キヤノン株式会社 Imaging optical system and imaging device using the same
JP7077465B2 (en) 2017-06-02 2022-05-30 キヤノン株式会社 Imaging optical system and imaging equipment using it
US11353689B2 (en) 2017-11-30 2022-06-07 SZ DJI Technology Co., Ltd. Lens system, imaging apparatus, and moving object
JP7152823B1 (en) 2022-06-01 2022-10-13 株式会社目白67 imaging lens
WO2023234051A1 (en) * 2022-06-01 2023-12-07 株式会社目白67 Image forming lens
JP2023177009A (en) * 2022-06-01 2023-12-13 株式会社目白67 imaging lens

Also Published As

Publication number Publication date
JP5460255B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
US10215972B2 (en) Optical system and image pickup apparatus including the same
JP6646262B2 (en) Optical system and imaging apparatus having the same
JP5441377B2 (en) Single focus optical system and imaging apparatus having the same
US10545320B2 (en) Zoom lens and image pickup apparatus including the same
US9684155B2 (en) Optical system and image pickup apparatus including the same
JP5111056B2 (en) Optical system and imaging apparatus having the same
US10754169B2 (en) Optical system and image pickup apparatus including the same
US8854747B2 (en) Optical system and image pickup apparatus including the same
JP5460255B2 (en) Optical system and optical instrument using the same
JP2016200743A (en) Optical system and imaging apparatus including the same
WO2010090281A1 (en) Macro lens
US10025075B2 (en) Zoom lens and image pickup apparatus including the same
JP5582706B2 (en) Optical system and imaging apparatus having the same
JP2009192599A (en) Optical system and optical apparatus including the same
JP2011123334A (en) Rear attachment lens, and photographing optical system including the same
JP2011107312A (en) Zoom lens and image pickup device having the same
US20170351113A1 (en) Optical system and image pickup apparatus including the same
US20180275370A1 (en) Zoom lens and image pickup apparatus
US11181717B2 (en) Optical system and imaging apparatus having the same
JP6253379B2 (en) Optical system and imaging apparatus having the same
US9946065B2 (en) Zoom lens and image pickup apparatus including the same
US11971607B2 (en) Optical system and image pickup apparatus
CN111751965B (en) Zoom lens and imaging apparatus having the same
US10578843B2 (en) Image pickup apparatus, rear attachment lens, and image pickup system including the same
JP2012123155A (en) Optical system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140114

R151 Written notification of patent or utility model registration

Ref document number: 5460255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03