JP2021162135A - Sealing device - Google Patents

Sealing device Download PDF

Info

Publication number
JP2021162135A
JP2021162135A JP2020067213A JP2020067213A JP2021162135A JP 2021162135 A JP2021162135 A JP 2021162135A JP 2020067213 A JP2020067213 A JP 2020067213A JP 2020067213 A JP2020067213 A JP 2020067213A JP 2021162135 A JP2021162135 A JP 2021162135A
Authority
JP
Japan
Prior art keywords
oil holding
holding groove
sealing device
seal member
shaft member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020067213A
Other languages
Japanese (ja)
Other versions
JP7506511B2 (en
Inventor
浩二 渡部
Koji Watabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2020067213A priority Critical patent/JP7506511B2/en
Publication of JP2021162135A publication Critical patent/JP2021162135A/en
Application granted granted Critical
Publication of JP7506511B2 publication Critical patent/JP7506511B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sealing Devices (AREA)
  • Sealing With Elastic Sealing Lips (AREA)

Abstract

To reduce friction between a seal member and a shaft member in an environment in which the shaft member rotates at high speed.SOLUTION: A sealing device 100 seals an annular gap G between an outer peripheral surface F1 of a shaft member 11 and an inner peripheral surface F2 of a shaft hole H into which the shaft member 11 is inserted. A seal member 20 is a plate-like annular member including a first surface S1 and a second surface S2 opposite to the first surface S1 and curves so that a contact area Q at the inner periphery side of the first surface S1 contacts with the outer peripheral surface F1 of the shaft member 11 in a use state. A plate spring 30 is a plate-like annular member facing the second surface S2 of the seal member 20 and presses an inner periphery side portion of the seal member 20 against the outer peripheral surface F1 of the shaft member 11 in the use state. A support medium 40 supports outer periphery side portions of the seal member 20 and the plate spring 30. In the contact area Q, an oil retaining groove 22 is formed along a circumferential direction of the seal member 20.SELECTED DRAWING: Figure 1

Description

本発明は、軸部材の周囲の隙間を封止するための技術に関する。 The present invention relates to a technique for sealing a gap around a shaft member.

軸部材の外周面と当該軸部材が挿入される軸孔の内周面との間に形成される環状の間隙を封止する密封装置が従来から提案されている。例えば特許文献1および特許文献2には、PTFE(ポリテトラフルオロエチレン)等の樹脂材料で形成された板状かつ環状のシール部材を湾曲させた状態で軸部材の外周面に接触させる構造の密封装置が開示されている。 Conventionally, a sealing device for sealing an annular gap formed between an outer peripheral surface of a shaft member and an inner peripheral surface of a shaft hole into which the shaft member is inserted has been proposed. For example, in Patent Document 1 and Patent Document 2, a sealing structure in which a plate-shaped and annular sealing member made of a resin material such as PTFE (polytetrafluoroethylene) is brought into contact with the outer peripheral surface of the shaft member in a curved state is sealed. The device is disclosed.

特開2015−203491号公報Japanese Unexamined Patent Publication No. 2015-203491 国際公開第2019/073808号International Publication No. 2019/073808

軸部材が高速で回転する環境では、軸部材が低速で回転する環境と比較してシール部材と軸部材との間の摩擦が増加する。したがって、シール部材の摩耗が発生し易いという問題がある。以上の事情を考慮して、本発明は、軸部材が高速で回転する環境において当該軸部材との間の摩擦を低減することを目的とする。 In an environment in which the shaft member rotates at a high speed, friction between the seal member and the shaft member increases as compared with an environment in which the shaft member rotates at a low speed. Therefore, there is a problem that wear of the seal member is likely to occur. In consideration of the above circumstances, an object of the present invention is to reduce friction between the shaft member and the shaft member in an environment where the shaft member rotates at high speed.

本発明のひとつの態様に係る密封装置は、軸部材の外周面と前記軸部材が挿入される軸孔の内周面との間の環状の隙間を封止する密封装置であって、第1面と前記第1面の反対側の第2面とを含む板状かつ環状のシール部材であって、使用状態において前記第1面のうち内周側の接触領域が前記軸部材の外周面に接触するように湾曲するシール部材と、前記シール部材の前記第2面に対向する板状かつ環状の板バネであって、前記使用状態において前記シール部材のうち内周側の部分を前記軸部材の外周面に押圧する板バネと、前記シール部材および前記板バネにおける外周側の部分を支持する環状の支持体とを具備し、前記接触領域には、前記シール部材の周方向に沿う油保持溝が形成される。 The sealing device according to one aspect of the present invention is a sealing device that seals an annular gap between the outer peripheral surface of the shaft member and the inner peripheral surface of the shaft hole into which the shaft member is inserted. A plate-shaped and annular sealing member including a surface and a second surface opposite to the first surface, and in a used state, a contact region on the inner peripheral side of the first surface is on the outer peripheral surface of the shaft member. A seal member that is curved so as to come into contact with the seal member, and a plate-shaped and annular leaf spring that faces the second surface of the seal member. A leaf spring that presses against the outer peripheral surface of the seal member and an annular support that supports the seal member and the outer peripheral side portion of the leaf spring are provided, and oil is retained in the contact region along the circumferential direction of the seal member. A groove is formed.

本発明の好適な態様においては、周方向の位置に応じて当該油保持溝の深さが異なる。具体的には、前記油保持溝は、第1端と第2端とにわたり周方向に延在し、前記油保持溝の深さは、周方向における中央部から前記第1端にかけて減少し、かつ、前記中央部から前記第2端にかけて減少する。例えば、前記油保持溝の底面は、当該油保持溝の深さが周方向に沿って連続的に変化する平面または曲面、あるいは、当該油保持溝の深さが周方向に沿って段階的に変化する階段面である。また、本発明の具体的な態様において、前記油保持溝の幅は、前記中央部から前記第1端にかけて減少し、かつ、前記中央部から前記第2端にかけて減少する。 In a preferred embodiment of the present invention, the depth of the oil holding groove differs depending on the position in the circumferential direction. Specifically, the oil holding groove extends in the circumferential direction over the first end and the second end, and the depth of the oil holding groove decreases from the central portion in the circumferential direction to the first end. Moreover, it decreases from the central portion to the second end. For example, the bottom surface of the oil holding groove is a flat surface or a curved surface in which the depth of the oil holding groove changes continuously along the circumferential direction, or the depth of the oil holding groove is stepwise along the circumferential direction. It is a changing staircase surface. Further, in a specific aspect of the present invention, the width of the oil holding groove decreases from the central portion to the first end, and decreases from the central portion to the second end.

本発明の好適な態様において、前記シール部材は、前記油保持溝と前記シール部材の内周面との間に位置する側壁部を含み、前記側壁部には、前記油保持溝に連通する供給路が形成される。 In a preferred embodiment of the present invention, the sealing member includes a side wall portion located between the oil holding groove and the inner peripheral surface of the sealing member, and the side wall portion is supplied so as to communicate with the oil holding groove. A road is formed.

本発明の好適な態様において、前記接触領域には、前記油保持溝を含む複数の油保持溝が形成され、前記複数の油保持溝は、前記シール部材の内周縁に沿って配列される。さらに好適な態様において、前記シール部材は、前記複数の油保持溝の各々と前記シール部材の内周面との間に位置する側壁部を含み、前記側壁部には、前記複数の油保持溝にそれぞれ連通する複数の供給路が形成され、前記板バネは、前記複数の油保持溝にそれぞれ対応する複数のバネ部を含み、前記複数のバネ部の各々の先端は、当該バネ部に対応する油保持溝に連通する前記供給路に重なる。 In a preferred embodiment of the present invention, a plurality of oil holding grooves including the oil holding groove are formed in the contact region, and the plurality of oil holding grooves are arranged along the inner peripheral edge of the sealing member. In a more preferred embodiment, the sealing member includes a side wall portion located between each of the plurality of oil holding grooves and an inner peripheral surface of the sealing member, and the side wall portion includes the plurality of oil holding grooves. A plurality of supply paths communicating with each other are formed, and the leaf spring includes a plurality of spring portions corresponding to the plurality of oil holding grooves, and each tip of the plurality of spring portions corresponds to the spring portion. It overlaps with the supply path communicating with the oil holding groove.

本発明によれば、軸部材が高速で回転する環境において当該軸部材との間の摩擦を低減できる。 According to the present invention, friction with the shaft member can be reduced in an environment where the shaft member rotates at high speed.

使用状態における第1実施形態の密封装置の断面図である。It is sectional drawing of the sealing apparatus of 1st Embodiment in a use state. 密封装置の平面図である。It is a top view of the sealing device. 密封装置の底面図である。It is a bottom view of a sealing device. 図2におけるa−a線の断面図である。FIG. 2 is a cross-sectional view taken along the line aa in FIG. 板バネの平面図である。It is a top view of a leaf spring. 板バネの各バネ部とシール部材の各溝部との関係を示す平面図である。It is a top view which shows the relationship between each spring part of a leaf spring, and each groove part of a seal member. 図1におけるb−b線の断面図である。It is sectional drawing of bb line in FIG. 第2実施形態における油保持溝の断面図である。It is sectional drawing of the oil holding groove in 2nd Embodiment. 第3実施形態における油保持溝の断面図である。It is sectional drawing of the oil holding groove in 3rd Embodiment. 第4実施形態における溝部の平面図である。It is a top view of the groove part in 4th Embodiment. 変形例におけるシール部材の平面図である。It is a top view of the seal member in the modification. 変形例における油保持溝の平面図である。It is a top view of the oil holding groove in the modification. 変形例における油保持溝の平面図である。It is a top view of the oil holding groove in the modification. 変形例における油保持溝の断面図である。It is sectional drawing of the oil holding groove in the modification.

本発明の好適な形態について図面を参照しながら以下に説明する。なお、各図面における各要素の寸法および縮尺は実際の製品とは適宜に相違する。 A preferred embodiment of the present invention will be described below with reference to the drawings. The dimensions and scale of each element in each drawing are appropriately different from the actual product.

A:第1実施形態
図1は、本発明の第1実施形態に係る密封装置100の断面図である。密封装置100が使用される状態が図1には図示されている。密封装置100は、例えばEGR(Exhaust Gas Recirculation)等の排気ガス系統において軸部材11とハウジング12との隙間Gを封止するために使用される。
A: First Embodiment FIG. 1 is a cross-sectional view of a sealing device 100 according to the first embodiment of the present invention. The state in which the sealing device 100 is used is illustrated in FIG. The sealing device 100 is used to seal the gap G between the shaft member 11 and the housing 12 in an exhaust gas system such as EGR (Exhaust Gas Recirculation).

図1に例示される通り、軸部材11は円柱状の構造体である。軸部材11が挿通される軸孔Hがハウジング12に形成される。密封装置100は、軸部材11の外周面F1と軸孔Hの内周面F2との間に形成される環状の隙間Gを封止するための環状の構造体である。 As illustrated in FIG. 1, the shaft member 11 is a columnar structure. A shaft hole H through which the shaft member 11 is inserted is formed in the housing 12. The sealing device 100 is an annular structure for sealing an annular gap G formed between the outer peripheral surface F1 of the shaft member 11 and the inner peripheral surface F2 of the shaft hole H.

軸部材11はハウジング12に対して相対的に移動する。軸部材11の相対的な移動の典型例は、軸部材11の回転である。ただし、軸方向に沿う軸部材11の往復または軸部材11の揺動も、軸部材11の相対的な移動の概念に包含される。 The shaft member 11 moves relative to the housing 12. A typical example of the relative movement of the shaft member 11 is the rotation of the shaft member 11. However, the reciprocation of the shaft member 11 or the swing of the shaft member 11 along the axial direction is also included in the concept of the relative movement of the shaft member 11.

以下の説明においては、密封装置100の中心軸Cを中心とする任意の半径の仮想円における円周の方向を「周方向」と表記し、当該仮想円の半径の方向を「径方向」と表記する。また、中心軸Cに沿う一方向を「X1方向」と表記し、X1とは反対の方向を「X2方向」と表記する。図1において密封装置100からみてX2方向に位置する空間Rは、密封装置100により密封されるべき流体(気体または液体)が存在する空間である。密封装置100を挟んでX2方向に位置する空間Rは、密封装置100を挟んでX1方向に位置する空間と比較して高圧である。使用状態において密封装置100からみて高圧側がX2方向に相当し、密封装置100からみて低圧側がX1方向に相当すると表現してもよい。 In the following description, the circumferential direction of a virtual circle having an arbitrary radius centered on the central axis C of the sealing device 100 is referred to as "circumferential direction", and the radial direction of the virtual circle is referred to as "diameter direction". write. Further, one direction along the central axis C is described as "X1 direction", and the direction opposite to X1 is described as "X2 direction". In FIG. 1, the space R located in the X2 direction with respect to the sealing device 100 is a space in which a fluid (gas or liquid) to be sealed by the sealing device 100 exists. The space R located in the X2 direction across the sealing device 100 has a higher pressure than the space located in the X1 direction across the sealing device 100. It may be expressed that the high pressure side corresponds to the X2 direction when viewed from the sealing device 100 and the low pressure side corresponds to the X1 direction when viewed from the sealing device 100 in the used state.

図2は、密封装置100の平面図であり、図3は、密封装置100の底面図である。図2は、X2方向に位置する視点から密封装置100をみた平面図であり、図3は、X1方向に位置する視点から密封装置100をみた平面図である。また、図4は、図2におけるa−a線の断面図である。図2から図4には、隙間Gに設置されていない状態(以下「非使用状態」という)の密封装置100が図示されている。図2から図4に例示される通り、密封装置100は、シール部材20と板バネ30と支持体40とを具備する。 FIG. 2 is a plan view of the sealing device 100, and FIG. 3 is a bottom view of the sealing device 100. FIG. 2 is a plan view of the sealing device 100 from a viewpoint located in the X2 direction, and FIG. 3 is a plan view of the sealing device 100 from a viewpoint located in the X1 direction. Further, FIG. 4 is a cross-sectional view taken along the line aa in FIG. 2 to 4 show a sealing device 100 that is not installed in the gap G (hereinafter referred to as “non-used state”). As illustrated in FIGS. 2 to 4, the sealing device 100 includes a sealing member 20, a leaf spring 30, and a support 40.

シール部材20は、中心軸Cを中心とする円形状の開口が形成された環状の構造体である。シール部材20の内径は、軸部材11の外径よりも小さい。図4に例示される通り、シール部材20は、第1面S1と第2面S2とを含む板状の弾性部材である。第1面S1と第2面S2とは相互に反対側の板面である。シール部材20は、例えばPTFE(ポリテトラフルオロエチレン)等の樹脂材料により、例えば0.3以上かつ0.6mm以下の板厚に形成される。PTFEは、例えばゴム等の弾性材料と比較して、耐熱性および耐圧性に優れ、かつ、摺動磨耗が少ないという優位性がある。 The seal member 20 is an annular structure in which a circular opening centered on the central axis C is formed. The inner diameter of the seal member 20 is smaller than the outer diameter of the shaft member 11. As illustrated in FIG. 4, the seal member 20 is a plate-shaped elastic member including the first surface S1 and the second surface S2. The first surface S1 and the second surface S2 are plate surfaces on opposite sides to each other. The seal member 20 is formed of a resin material such as PTFE (polytetrafluoroethylene) to a plate thickness of, for example, 0.3 or more and 0.6 mm or less. Compared with elastic materials such as rubber, PTFE has the advantages of being excellent in heat resistance and pressure resistance and having less sliding wear.

板バネ30は、環状に形成された板状の構造体である。板バネ30は、例えばステンレス鋼(SUS)等の金属材料で形成された弾性部材である。板バネ30の板厚は、例えば0.05mm以上かつ0.1mm以下である。すなわち、板バネ30はシール部材20よりも薄い。図4に例示される通り、板バネ30は、第2面S2に対向する状態でシール部材20と同心に設置される。具体的には、板バネ30はシール部材20の第2面S2に密着する。板バネ30の内径は、シール部材20の内径よりも大きい。 The leaf spring 30 is a plate-shaped structure formed in an annular shape. The leaf spring 30 is an elastic member made of a metal material such as stainless steel (SUS). The plate thickness of the leaf spring 30 is, for example, 0.05 mm or more and 0.1 mm or less. That is, the leaf spring 30 is thinner than the seal member 20. As illustrated in FIG. 4, the leaf spring 30 is installed concentrically with the seal member 20 in a state of facing the second surface S2. Specifically, the leaf spring 30 is in close contact with the second surface S2 of the seal member 20. The inner diameter of the leaf spring 30 is larger than the inner diameter of the sealing member 20.

図5は、板バネ30の平面図である。第1実施形態の板バネ30は、図5に例示される通り、相互に間隔をあけて周方向に配列される複数のバネ部31を含む。複数のバネ部31は、板バネ30の外周側において相互に連結される。 FIG. 5 is a plan view of the leaf spring 30. As illustrated in FIG. 5, the leaf spring 30 of the first embodiment includes a plurality of spring portions 31 arranged in the circumferential direction at intervals from each other. The plurality of spring portions 31 are connected to each other on the outer peripheral side of the leaf spring 30.

板バネ30は、複数の内側スリット32と複数の外側スリット33とが形成された環状の板状部材とも換言される。各内側スリット32は、板バネ30の内周縁から外周縁に向けて径方向に延在する直線状の切欠である。各外側スリット33は、板バネ30の外周縁から内周縁に向けて径方向に延在する直線状の切欠である。内側スリット32と外側スリット33とは周方向に交互に配列する。相互に隣合う2個の内側スリット32の間の部分が1個のバネ部31である。各バネ部31には外側スリット33が形成される。 The leaf spring 30 is also referred to as an annular plate-shaped member in which a plurality of inner slits 32 and a plurality of outer slits 33 are formed. Each inner slit 32 is a linear notch extending in the radial direction from the inner peripheral edge to the outer peripheral edge of the leaf spring 30. Each outer slit 33 is a linear notch extending in the radial direction from the outer peripheral edge to the inner peripheral edge of the leaf spring 30. The inner slit 32 and the outer slit 33 are arranged alternately in the circumferential direction. The portion between the two inner slits 32 adjacent to each other is one spring portion 31. An outer slit 33 is formed in each spring portion 31.

図4の支持体40は、シール部材20および板バネ30を支持する環状の構造体である。第1実施形態の支持体40は、支持環50と固定環60とを具備する。シール部材20および板バネ30は、支持環50と固定環60とにより挟持される。 The support 40 of FIG. 4 is an annular structure that supports the seal member 20 and the leaf spring 30. The support 40 of the first embodiment includes a support ring 50 and a fixed ring 60. The seal member 20 and the leaf spring 30 are sandwiched between the support ring 50 and the fixed ring 60.

支持環50は、筒状部51と第1鍔状部52と第2鍔状部53とを含む。筒状部51は、円筒状の部分である。筒状部51の内径は、シール部材20の外径および板バネ30の外径と同等である。第1鍔状部52は、筒状部51のうちX1方向の端部から径方向の内側(中心軸C側)に向けて突出する円環状の板状部分である。第1鍔状部52の内径は、シール部材20の外径および板バネ30の外径よりも小さい。第2鍔状部53は、筒状部51のうちX2方向の端部から径方向の内側に向けて突出する円環状の板状部分である。第2鍔状部53の内径は、シール部材20の外径および板バネ30の外径よりも小さい。 The support ring 50 includes a tubular portion 51, a first flange-shaped portion 52, and a second flange-shaped portion 53. The tubular portion 51 is a cylindrical portion. The inner diameter of the tubular portion 51 is equivalent to the outer diameter of the seal member 20 and the outer diameter of the leaf spring 30. The first flange-shaped portion 52 is an annular plate-shaped portion of the tubular portion 51 that protrudes inward in the radial direction (center axis C side) from the end portion in the X1 direction. The inner diameter of the first flange-shaped portion 52 is smaller than the outer diameter of the seal member 20 and the outer diameter of the leaf spring 30. The second flange-shaped portion 53 is an annular plate-shaped portion of the tubular portion 51 that protrudes inward in the radial direction from the end portion in the X2 direction. The inner diameter of the second flange-shaped portion 53 is smaller than the outer diameter of the seal member 20 and the outer diameter of the leaf spring 30.

固定環60は、筒状部61と鍔状部62とを含む。筒状部61は、円筒状の部分である。筒状部61の外径は、筒状部51の内径と同等である。鍔状部62は、筒状部61のうちX1方向の端部から径方向の内側に向けて突出する円環状の板状部分である。鍔状部62の内径は、シール部材20の外径および板バネ30の外径よりも小さい。 The fixed ring 60 includes a cylindrical portion 61 and a flange-shaped portion 62. The tubular portion 61 is a cylindrical portion. The outer diameter of the tubular portion 61 is equivalent to the inner diameter of the tubular portion 51. The flange-shaped portion 62 is an annular plate-shaped portion of the tubular portion 61 that protrudes inward in the radial direction from the end portion in the X1 direction. The inner diameter of the flange-shaped portion 62 is smaller than the outer diameter of the seal member 20 and the outer diameter of the leaf spring 30.

固定環60は支持環50に嵌合される。具体的には、固定環60は、筒状部61の外周面が筒状部51の内周面に接触した状態で、第1鍔状部52と第2鍔状部53との間に収容される。以上の状態において、支持環50の第1鍔状部52と固定環60の鍔状部62との間に、シール部材20および板バネ30の各々における外周側の部分が挟持される。 The fixed ring 60 is fitted to the support ring 50. Specifically, the fixed ring 60 is housed between the first flange-shaped portion 52 and the second flange-shaped portion 53 in a state where the outer peripheral surface of the tubular portion 61 is in contact with the inner peripheral surface of the tubular portion 51. Will be done. In the above state, the outer peripheral side portions of the seal member 20 and the leaf spring 30 are sandwiched between the first flange-shaped portion 52 of the support ring 50 and the flange-shaped portion 62 of the fixed ring 60.

図1に例示される通り、使用状態においては、支持環50における筒状部51の外周面が軸孔Hの内周面F2に接触する。また、軸部材11は、X2方向に沿ってシール部材20の開口に挿入される。前述の通り、シール部材20の内径は軸部材11の外径よりも小さいから、使用状態においては、シール部材20のうち内周側の部分がX2方向に向けて湾曲した状態となる。具体的には、シール部材20のうち第1面S1が伸張するとともに第2面S2が収縮するようにシール部材20は湾曲する。以上のようにシール部材20が湾曲することで、使用状態においては、シール部材20の第1面S1のうち内周側の領域(以下「接触領域」という)Qが軸部材11の外周面F1に接触する。図1および図3に例示される通り、接触領域Qは、第1面S1のうちシール部材20の内周縁から径方向の一部にわたる環状の領域である。 As illustrated in FIG. 1, in the used state, the outer peripheral surface of the cylindrical portion 51 of the support ring 50 comes into contact with the inner peripheral surface F2 of the shaft hole H. Further, the shaft member 11 is inserted into the opening of the seal member 20 along the X2 direction. As described above, since the inner diameter of the seal member 20 is smaller than the outer diameter of the shaft member 11, the inner peripheral side portion of the seal member 20 is curved in the X2 direction in the used state. Specifically, the seal member 20 is curved so that the first surface S1 of the seal member 20 expands and the second surface S2 contracts. When the seal member 20 is curved as described above, in the used state, the inner peripheral side region (hereinafter referred to as “contact region”) Q of the first surface S1 of the seal member 20 is the outer peripheral surface F1 of the shaft member 11. Contact. As illustrated in FIGS. 1 and 3, the contact region Q is an annular region of the first surface S1 extending from the inner peripheral edge of the seal member 20 to a part in the radial direction.

図1に例示される通り、使用状態において、板バネ30の各バネ部31は、シール部材20の第2面S2に沿って湾曲する。使用状態において、各バネ部31は、弾性的な復元力により、シール部材20のうち内周側の部分を軸部材11の外周面F1に対して押圧する。以上の構成により、シール部材20の内周側の部分が軸部材11を締付ける。軸部材11の外周面F1にシール部材20の接触領域Qが密着した状態で、当該軸部材11はハウジング12に対して回転可能である。すなわち、シール部材20は軸部材11に対して摺動する。 As illustrated in FIG. 1, in the used state, each spring portion 31 of the leaf spring 30 is curved along the second surface S2 of the seal member 20. In the used state, each spring portion 31 presses the inner peripheral side portion of the seal member 20 against the outer peripheral surface F1 of the shaft member 11 by an elastic restoring force. With the above configuration, the inner peripheral side portion of the seal member 20 tightens the shaft member 11. The shaft member 11 is rotatable with respect to the housing 12 in a state where the contact region Q of the seal member 20 is in close contact with the outer peripheral surface F1 of the shaft member 11. That is, the seal member 20 slides with respect to the shaft member 11.

図1には、シール部材20の接触領域Qの拡大図が併記されている。図1および図3に例示される通り、第1面S1の接触領域Qには、相互に間隔をあけて複数の溝部21が形成される。複数の溝部21の各々は、第1面S1に対して窪んだ凹部である。図3に例示される通り、複数の溝部21は、接触領域Q内においてシール部材20の内周縁に沿って周方向に配列される。各溝部21は、例えば切削等の加工技術、またはプレス成形等の成形技術により第1面S1に形成される。 FIG. 1 also shows an enlarged view of the contact region Q of the seal member 20. As illustrated in FIGS. 1 and 3, a plurality of groove portions 21 are formed in the contact region Q of the first surface S1 at intervals from each other. Each of the plurality of groove portions 21 is a recess recessed with respect to the first surface S1. As illustrated in FIG. 3, the plurality of groove portions 21 are arranged in the circumferential direction along the inner peripheral edge of the seal member 20 in the contact region Q. Each groove 21 is formed on the first surface S1 by, for example, a processing technique such as cutting or a forming technique such as press molding.

図1に例示される通り、第1実施形態の各溝部21は、油保持溝22と供給路23とを含む平面形状に形成される。油保持溝22は、潤滑油を保持するための流路である。供給路23は、油保持溝22に潤滑油を供給するための流路である。 As illustrated in FIG. 1, each groove portion 21 of the first embodiment is formed in a planar shape including an oil holding groove 22 and a supply path 23. The oil holding groove 22 is a flow path for holding the lubricating oil. The supply path 23 is a flow path for supplying lubricating oil to the oil holding groove 22.

油保持溝22は、第1端E1と第2端E2とにわたり周方向に延在する流路である。具体的には、油保持溝22は、第1端E1と第2端E2とにわたり流路幅が一定に維持される長方形状に形成される。供給路23は、油保持溝22とシール部材20の内周面Faとを連結する流路である。供給路23の一方の端部は、油保持溝22の中央部Mに連結される。中央部Mは、油保持溝22のうち第1端E1と第2端E2との間の中央に位置する部分である。供給路23の他方の端部は、シール部材20の内周面Faに開口する。シール部材20の内周面Faから供給路23に進入した潤滑油が、当該供給路23を介して油保持溝22に供給されたうえで当該油保持溝22に保持される。油保持溝22は、シール部材20の内周縁に沿う側壁部24により仕切られた空間とも換言される。側壁部24は、油保持溝22とシール部材20の内周縁との間に位置する円弧状の壁部である。供給路23は、側壁部24に形成された切欠である。 The oil holding groove 22 is a flow path extending in the circumferential direction over the first end E1 and the second end E2. Specifically, the oil holding groove 22 is formed in a rectangular shape in which the flow path width is kept constant over the first end E1 and the second end E2. The supply path 23 is a flow path that connects the oil holding groove 22 and the inner peripheral surface Fa of the seal member 20. One end of the supply path 23 is connected to the central portion M of the oil holding groove 22. The central portion M is a portion of the oil holding groove 22 located at the center between the first end E1 and the second end E2. The other end of the supply path 23 opens into the inner peripheral surface Fa of the seal member 20. The lubricating oil that has entered the supply path 23 from the inner peripheral surface Fa of the seal member 20 is supplied to the oil holding groove 22 via the supply path 23 and then held in the oil holding groove 22. The oil holding groove 22 is also referred to as a space partitioned by a side wall portion 24 along the inner peripheral edge of the seal member 20. The side wall portion 24 is an arc-shaped wall portion located between the oil holding groove 22 and the inner peripheral edge of the seal member 20. The supply path 23 is a notch formed in the side wall portion 24.

図6は、シール部材20の各溝部21と板バネ30の各バネ部31との関係を例示する平面図である。図6に例示される通り、複数の溝部21の各々と複数のバネ部31の各々とは1対1に対応する。周方向における複数の溝部21の周期と周方向における複数のバネ部31の周期とは相等しい。図6に例示される通り、非使用状態において、複数の溝部21の各々と複数のバネ部31の各々とは、中心軸Cの方向に沿う平面視で相互に重なる。具体的には、各バネ部31の先端が、当該バネ部31に対応する1個の溝部21のうち供給路23に平面視で重なる。各バネ部31の先端は溝部21のうち油保持溝22には重ならない。ただし、各溝部21と各バネ部31との対応関係は以上の例示に限定されない。例えば、複数の溝部21の周期が複数のバネ部31の周期の整数倍である構成、または、複数のバネ部31の周期が複数の溝部21の周期の整数倍である構成も想定される。また、複数の溝部21と複数のバネ部31とが相異なる周期で周方向に配列されてもよい。 FIG. 6 is a plan view illustrating the relationship between each groove portion 21 of the seal member 20 and each spring portion 31 of the leaf spring 30. As illustrated in FIG. 6, each of the plurality of groove portions 21 and each of the plurality of spring portions 31 have a one-to-one correspondence. The period of the plurality of groove portions 21 in the circumferential direction and the period of the plurality of spring portions 31 in the circumferential direction are equal to each other. As illustrated in FIG. 6, in the non-use state, each of the plurality of groove portions 21 and each of the plurality of spring portions 31 overlap each other in a plan view along the direction of the central axis C. Specifically, the tip of each spring portion 31 overlaps the supply path 23 of the one groove portion 21 corresponding to the spring portion 31 in a plan view. The tip of each spring portion 31 does not overlap the oil holding groove 22 of the groove portions 21. However, the correspondence relationship between each groove portion 21 and each spring portion 31 is not limited to the above examples. For example, a configuration in which the period of the plurality of groove portions 21 is an integral multiple of the period of the plurality of spring portions 31 or a configuration in which the period of the plurality of spring portions 31 is an integral multiple of the period of the plurality of groove portions 21 is also assumed. Further, the plurality of groove portions 21 and the plurality of spring portions 31 may be arranged in the circumferential direction at different cycles.

図7は、図1におけるb−b線の断面図である。すなわち、油保持溝22の長手方向に沿う断面が図7には図示されている。図7に例示される通り、油保持溝22の深さは、周方向の位置に応じて変化する。具体的には、油保持溝22のうち中央部Mと第1端E1との間の第1部分P1の底面は、中央部Mの近傍の地点が第1端E1の近傍の地点よりも深くなるように第1面S1に対して傾斜する平面である。軸部材11の回転により外周面F1が第1面S1に対してY1方向に進行する場合を想定すると、第1部分P1は、Y1方向の下流側の地点ほど深さが減少する流路とも換言される。 FIG. 7 is a cross-sectional view taken along the line bb in FIG. That is, a cross section of the oil holding groove 22 along the longitudinal direction is shown in FIG. As illustrated in FIG. 7, the depth of the oil holding groove 22 changes depending on the position in the circumferential direction. Specifically, the bottom surface of the first portion P1 between the central portion M and the first end E1 of the oil holding groove 22 is deeper at a point near the central portion M than at a point near the first end E1. It is a plane that is inclined with respect to the first surface S1 so as to be. Assuming that the outer peripheral surface F1 advances in the Y1 direction with respect to the first surface S1 due to the rotation of the shaft member 11, the first portion P1 is also referred to as a flow path whose depth decreases toward a point downstream in the Y1 direction. Will be done.

他方、油保持溝22のうち中央部Mと第2端E2との間の第2部分P2の底面は、中央部Mの近傍の地点が第2端E2の近傍の地点よりも深くなるように第1面S1に対して傾斜する平面である。軸部材11の回転により外周面F1が第1面S1に対してY1方向とは反対のY2方向に進行する場合を想定すると、第2部分P2は、Y2方向の下流側の地点ほど深さが減少する流路とも換言される。以上の説明から理解される通り、第1実施形態における油保持溝22の底面は、第1端E1および第2端E2の各々から中央部Mにかけて直線的に深さが増加するテーパー面である。 On the other hand, the bottom surface of the second portion P2 between the central portion M and the second end E2 of the oil holding groove 22 is such that the point near the central portion M is deeper than the point near the second end E2. It is a plane inclined with respect to the first surface S1. Assuming that the outer peripheral surface F1 travels in the Y2 direction opposite to the Y1 direction with respect to the first surface S1 due to the rotation of the shaft member 11, the depth of the second portion P2 becomes deeper toward a point downstream in the Y2 direction. It is also called a decreasing flow path. As understood from the above description, the bottom surface of the oil holding groove 22 in the first embodiment is a tapered surface whose depth increases linearly from each of the first end E1 and the second end E2 to the central portion M. ..

以上に説明した通り、第1実施形態においては、シール部材20の第1面S1のうち軸部材11の外周面F1に接触する接触領域Qに、周方向に沿う油保持溝22が形成される。油保持溝22内の潤滑油に発生する動圧が軸部材11に作用することで、シール部材20の第1面S1と軸部材11の外周面F1との間の摩擦が低減される。したがって、軸部材11が高速に回転する高圧の環境にも密封装置100を好適に利用できる。第1実施形態においては特に、接触領域Q内に周方向に沿う複数の油保持溝22が形成されるから、軸部材11とシール部材20との間の摩擦が低減されるという効果は格別に顕著である。 As described above, in the first embodiment, the oil holding groove 22 along the circumferential direction is formed in the contact region Q of the first surface S1 of the seal member 20 in contact with the outer peripheral surface F1 of the shaft member 11. .. The dynamic pressure generated in the lubricating oil in the oil holding groove 22 acts on the shaft member 11, so that the friction between the first surface S1 of the seal member 20 and the outer peripheral surface F1 of the shaft member 11 is reduced. Therefore, the sealing device 100 can be suitably used even in a high-pressure environment in which the shaft member 11 rotates at high speed. In the first embodiment, in particular, since a plurality of oil holding grooves 22 along the circumferential direction are formed in the contact region Q, the effect of reducing the friction between the shaft member 11 and the seal member 20 is exceptional. It is remarkable.

また、油保持溝22における周方向の位置に応じて当該油保持溝22の深さが異なるから、油保持溝22に保持される潤滑油のくさび効果により動圧が発生する。したがって、軸部材11とシール部材20との間の摩擦が低減されるという前述の効果は格別に顕著である。第1実施形態においては特に、中央部Mを中心とした周方向の両端(第1端E1および第2端E2)にかけて油保持溝22の深さが減少するから、軸部材11がY1方向およびY2方向の何れに回転する場合でも、くさび効果による動圧を利用できるという利点がある。 Further, since the depth of the oil holding groove 22 differs depending on the position in the circumferential direction of the oil holding groove 22, dynamic pressure is generated due to the wedge effect of the lubricating oil held in the oil holding groove 22. Therefore, the above-mentioned effect of reducing the friction between the shaft member 11 and the seal member 20 is particularly remarkable. In the first embodiment, in particular, since the depth of the oil holding groove 22 decreases toward both ends (first end E1 and second end E2) in the circumferential direction centered on the central portion M, the shaft member 11 is in the Y1 direction and There is an advantage that the dynamic pressure due to the wedge effect can be used regardless of the rotation in the Y2 direction.

ところで、前述の通り、シール部材20の内周側の部分は各バネ部31により押圧される。バネ部31からシール部材20に作用する押圧力は、バネ部31の先端において局所的に増大するという傾向がある。したがって、例えば非使用状態においてバネ部31の先端が油保持溝22に重なる構成では、使用状態において油保持溝22がバネ部31により押圧されることで変形し(例えば油保持溝22が潰れ)、油保持溝22内に充分な動圧が発生しない可能性がある。以上の事情を考慮して、第1実施形態においては、前述の通り、非使用状態においてバネ部31の先端が溝部21のうち供給路23に重なる。以上の構成によれば、バネ部31の先端は油保持溝22に重ならないから、使用状態において各油保持溝22がバネ部31からの押圧により変形することが抑制される。したがって、使用状態において油保持溝22内に充分な動圧を発生させることが可能である。また、第1実施形態においては、図7から理解される通り、供給路23の深さが、油保持溝22の深さの最大値(具体的には中央部Mにおける深さ)よりも大きい。したがって、バネ部31からの押圧により供給路23が変形したとしても、当該供給路23が完全に閉塞されることはない。すなわち、油保持溝22に潤滑油を供給する供給路23の機能は維持される。 By the way, as described above, the inner peripheral side portion of the seal member 20 is pressed by each spring portion 31. The pressing force acting on the seal member 20 from the spring portion 31 tends to increase locally at the tip of the spring portion 31. Therefore, for example, in a configuration in which the tip of the spring portion 31 overlaps the oil holding groove 22 in the non-used state, the oil holding groove 22 is deformed by being pressed by the spring portion 31 in the used state (for example, the oil holding groove 22 is crushed). , There is a possibility that sufficient dynamic pressure is not generated in the oil holding groove 22. In consideration of the above circumstances, in the first embodiment, as described above, the tip of the spring portion 31 overlaps the supply path 23 of the groove portion 21 in the non-used state. According to the above configuration, since the tip of the spring portion 31 does not overlap the oil holding groove 22, it is suppressed that each oil holding groove 22 is deformed by the pressure from the spring portion 31 in the used state. Therefore, it is possible to generate a sufficient dynamic pressure in the oil holding groove 22 in the used state. Further, in the first embodiment, as understood from FIG. 7, the depth of the supply path 23 is larger than the maximum value of the depth of the oil holding groove 22 (specifically, the depth in the central portion M). .. Therefore, even if the supply path 23 is deformed by the pressing from the spring portion 31, the supply path 23 is not completely blocked. That is, the function of the supply path 23 for supplying the lubricating oil to the oil holding groove 22 is maintained.

B:第2実施形態
図8は、第2実施形態における油保持溝22の断面図(図7に対応する断面)である。第1実施形態の油保持溝22の底面は、前述の通り、第1面S1に対して傾斜する平面である。第2実施形態における油保持溝22の底面は、図8に例示される通り、当該油保持溝22の深さが周方向に沿って連続的に変化する曲面で構成される。なお、油保持溝22の平面形状は第1実施形態と同様である。
B: Second Embodiment FIG. 8 is a cross-sectional view (cross section corresponding to FIG. 7) of the oil holding groove 22 in the second embodiment. As described above, the bottom surface of the oil holding groove 22 of the first embodiment is a flat surface inclined with respect to the first surface S1. As illustrated in FIG. 8, the bottom surface of the oil holding groove 22 in the second embodiment is composed of a curved surface in which the depth of the oil holding groove 22 continuously changes along the circumferential direction. The planar shape of the oil holding groove 22 is the same as that of the first embodiment.

具体的には、油保持溝22のうち第1部分P1の底面は、中央部Mの近傍の地点が第1端E1の近傍の地点よりも深くなるように湾曲した曲面である。同様に、油保持溝22のうち第2部分P2の底面は、中央部Mの近傍の地点が第2端E2の近傍よりも深くなるように湾曲した曲面である。第2実施形態においても第1実施形態と同様の効果が実現される。 Specifically, the bottom surface of the first portion P1 of the oil holding groove 22 is a curved surface curved so that the point near the central portion M is deeper than the point near the first end E1. Similarly, the bottom surface of the second portion P2 of the oil holding groove 22 is a curved surface curved so that the point near the central portion M is deeper than the vicinity of the second end E2. In the second embodiment, the same effect as in the first embodiment is realized.

C:第3実施形態
図9は、第3実施形態における油保持溝22の断面図(図7に対応する断面)である。第1実施形態および第2実施形態における油保持溝22の底面は、周方向に沿って深さが連続的に変化する面(平面または曲面)である。第3実施形態における油保持溝22の底面は、当該油保持溝22の深さが周方向に沿って段階的に変化する階段面である。すなわち、油保持溝22の底面には複数の段差が形成される。
C: Third embodiment
FIG. 9 is a cross-sectional view (cross section corresponding to FIG. 7) of the oil holding groove 22 according to the third embodiment. The bottom surface of the oil holding groove 22 in the first embodiment and the second embodiment is a surface (plane or curved surface) whose depth continuously changes along the circumferential direction. The bottom surface of the oil holding groove 22 in the third embodiment is a staircase surface in which the depth of the oil holding groove 22 changes stepwise along the circumferential direction. That is, a plurality of steps are formed on the bottom surface of the oil holding groove 22.

具体的には、油保持溝22のうち第1部分P1の底面は、中央部Mの近傍の地点が第1端E1の近傍の地点よりも深くなるように複数の段差が周方向に配列された階段面である。同様に、油保持溝22のうち第2部分P2の底面は、中央部Mの近傍の地点が第2端E2の近傍よりも深くなるように複数の段差が周方向に配列された階段面である。第3実施形態においても第1実施形態と同様の効果が実現される。 Specifically, on the bottom surface of the first portion P1 of the oil holding groove 22, a plurality of steps are arranged in the circumferential direction so that the point near the central portion M is deeper than the point near the first end E1. It is a staircase surface. Similarly, the bottom surface of the second portion P2 of the oil holding groove 22 is a staircase surface in which a plurality of steps are arranged in the circumferential direction so that the point near the central portion M is deeper than the vicinity of the second end E2. be. The same effect as that of the first embodiment is realized in the third embodiment.

D:第4実施形態
図10は、第4実施形態における溝部21の平面図である。第1実施形態における油保持溝22の平面形状は、第1端E1と第2端E2とにわたり流路幅が一定に維持される長方形状である。第4実施形態における油保持溝22は、流路幅が周方向に沿って変化する平面形状に形成される。油保持溝22の流路幅は、第1面S1に垂直な方向からの平面視において当該油保持溝22の長手方向に直交する方向における当該油保持溝22の寸法である。
D: Fourth Embodiment FIG. 10 is a plan view of the groove portion 21 in the fourth embodiment. The planar shape of the oil holding groove 22 in the first embodiment is a rectangular shape in which the flow path width is kept constant over the first end E1 and the second end E2. The oil holding groove 22 in the fourth embodiment is formed in a planar shape in which the flow path width changes along the circumferential direction. The flow path width of the oil holding groove 22 is the dimension of the oil holding groove 22 in the direction orthogonal to the longitudinal direction of the oil holding groove 22 in a plan view from the direction perpendicular to the first surface S1.

図10に例示される通り、油保持溝22の流路幅は、中央部Mから第1端E1にかけて連続的に減少し、かつ、中央部Mから第2端E2にかけて連続的に減少する。すなわち、中央部Mにおける流路幅Wmは、第1端E1における流路幅We1および第2端E2における流路幅We2よりも大きい(Wm>We1,Wm>We2)。 As illustrated in FIG. 10, the flow path width of the oil holding groove 22 continuously decreases from the central portion M to the first end E1 and continuously decreases from the central portion M to the second end E2. That is, the flow path width Wm at the central portion M is larger than the flow path width We1 at the first end E1 and the flow path width We2 at the second end E2 (Wm> We1, Wm> We2).

第4実施形態においても第1実施形態と同様の効果が実現される。また、第4実施形態においては、油保持溝22の流路幅が中央部Mから第1端E1または第2端E2にかけて減少するから、流路幅が一定である第1実施形態と比較して、油保持溝22に保持される潤滑油のくさび効果が大きい。したがって、軸部材11とシール部材20との間の摩擦が低減されるという前述の効果は格別に顕著である。 The same effect as that of the first embodiment is realized in the fourth embodiment. Further, in the fourth embodiment, since the flow path width of the oil holding groove 22 decreases from the central portion M to the first end E1 or the second end E2, it is compared with the first embodiment in which the flow path width is constant. Therefore, the wedge effect of the lubricating oil held in the oil holding groove 22 is large. Therefore, the above-mentioned effect of reducing the friction between the shaft member 11 and the seal member 20 is particularly remarkable.

なお、油保持溝22の底面が曲面で構成される第2実施形態の構成、および、油保持溝22の底面が階段面で構成される第3実施形態の構成は、第4実施形態にも同様に適用される。 The configuration of the second embodiment in which the bottom surface of the oil holding groove 22 is formed of a curved surface and the configuration of the third embodiment in which the bottom surface of the oil holding groove 22 is formed of a staircase surface are also included in the fourth embodiment. It applies in the same way.

E:変形例
以上に例示した各態様に付加される具体的な変形の態様を以下に例示する。以下の例示から任意に選択された2以上の態様を、相互に矛盾しない範囲で適宜に併合してもよい。
E: Deformation example Specific deformation modes added to each of the above-exemplified modes are illustrated below. Two or more embodiments arbitrarily selected from the following examples may be appropriately merged to the extent that they do not contradict each other.

(1)前述の各形態においては、シール部材20の内周縁に沿う側壁部24により油保持溝22が仕切られた構成を例示したが、側壁部24および供給路23は省略されてもよい。例えば、図11に例示される通り、シール部材20の内周面Faに連続するように複数の油保持溝22が形成されてもよい。ただし、側壁部24が省略された構成においては、油保持溝22内の潤滑油に発生した動圧が散逸し易い。前述の各形態のように側壁部24を具備する構成によれば、油保持溝22内に潤滑油が保持され易いから、当該油保持溝22内に発生する動圧の散逸が抑制される。したがって、シール部材20と軸部材11との間の摩擦を低減する観点からは、前述の各形態の例示のように側壁部24が形成された構成が、図11の構成よりも有利である。 (1) In each of the above-described embodiments, the configuration in which the oil holding groove 22 is partitioned by the side wall portion 24 along the inner peripheral edge of the seal member 20 is illustrated, but the side wall portion 24 and the supply path 23 may be omitted. For example, as illustrated in FIG. 11, a plurality of oil holding grooves 22 may be formed so as to be continuous with the inner peripheral surface Fa of the seal member 20. However, in the configuration in which the side wall portion 24 is omitted, the dynamic pressure generated in the lubricating oil in the oil holding groove 22 is likely to dissipate. According to the configuration including the side wall portion 24 as in each of the above-described embodiments, the lubricating oil is easily held in the oil holding groove 22, so that the dissipation of the dynamic pressure generated in the oil holding groove 22 is suppressed. Therefore, from the viewpoint of reducing the friction between the seal member 20 and the shaft member 11, the configuration in which the side wall portion 24 is formed as illustrated in each of the above-described embodiments is more advantageous than the configuration of FIG.

(2)前述の各形態においては、供給路23が連通する中央部Mから第1端E1までの第1部分P1と、第1端E1とは反対側の第2端E2までの第2部分P2とを、油保持溝22が含む構成を例示したが、油保持溝22の形状は以上の例示に限定されない。 (2) In each of the above-described embodiments, the first portion P1 from the central portion M to the first end E1 through which the supply path 23 communicates, and the second portion up to the second end E2 on the opposite side of the first end E1. Although the configuration in which the oil holding groove 22 includes P2 is illustrated, the shape of the oil holding groove 22 is not limited to the above examples.

例えば、外周面F1が第1面S1に対してY1方向に進行する片方向のみに軸部材11が回転する構成では、図12に例示される通り、油保持溝22から第2部分P2が省略されてもよい。すなわち、油保持溝22は、供給路23に連通する端部Eaと当該端部EaのY1方向に位置する第1端E1とにわたる平面形状に形成される。油保持溝22の深さは、第1端E1から端部Eaにかけて連続的または段階的に増加する。 For example, in a configuration in which the shaft member 11 rotates only in one direction in which the outer peripheral surface F1 travels in the Y1 direction with respect to the first surface S1, the oil holding groove 22 to the second portion P2 are omitted as illustrated in FIG. May be done. That is, the oil holding groove 22 is formed in a planar shape extending over the end portion Ea communicating with the supply path 23 and the first end E1 located in the Y1 direction of the end portion Ea. The depth of the oil holding groove 22 increases continuously or stepwise from the first end E1 to the end Ea.

また、例えば、外周面F1が第1面S1に対してY2方向に進行する片方向のみに軸部材11が回転する構成では、図13に例示される通り、油保持溝22から第1部分P1が省略されてもよい。すなわち、油保持溝22は、供給路23に連通する端部Eaと当該端部EaのY2方向に位置する第2端E2とにわたる平面形状に形成される。油保持溝22の深さは、第2端E2から端部Eaにかけて連続的または段階的に増加する。 Further, for example, in a configuration in which the shaft member 11 rotates only in one direction in which the outer peripheral surface F1 advances in the Y2 direction with respect to the first surface S1, as illustrated in FIG. 13, the oil holding groove 22 to the first portion P1 May be omitted. That is, the oil holding groove 22 is formed in a planar shape extending over the end portion Ea communicating with the supply path 23 and the second end E2 located in the Y2 direction of the end portion Ea. The depth of the oil holding groove 22 increases continuously or stepwise from the second end E2 to the end Ea.

図12および図13の何れの構成においても、油保持溝22の深さは、外周面F1が第1面S1に対して進行する方向(Y1,Y2)の下流側の地点ほど減少するように、周方向に沿って連続的または段階的に変化する。 In any of the configurations of FIGS. 12 and 13, the depth of the oil holding groove 22 decreases toward a point downstream in the direction (Y1, Y2) in which the outer peripheral surface F1 advances with respect to the first surface S1. , Changes continuously or stepwise along the circumferential direction.

(3)前述の各形態においては、油保持溝22の深さが周方向に沿って変化する構成を例示したが、図14に例示される通り、周方向の全体にわたり深さが一定に維持される形状の油保持溝22を第1面S1に形成してもよい。図14の油保持溝22の底面は、第1面S1に平行な平面である。以上のように底面が平坦な油保持溝22でも、深さが充分に小さい構成によれば、潤滑油に動圧を発生させることが可能である。ただし、潤滑油のくさび効果により動圧を発生させる観点からは、前述の各形態の例示の通り、油保持溝22の深さが周方向に沿って変化する構成が好適である。なお、油保持溝22の底面が平面および曲面の双方を含む構成、または、第1面S1に対する傾斜面と第1面S1に平行な平面との双方を含む構成も想定される。 (3) In each of the above-described embodiments, the configuration in which the depth of the oil holding groove 22 changes along the circumferential direction is illustrated, but as illustrated in FIG. 14, the depth is maintained constant throughout the circumferential direction. An oil holding groove 22 having a shape to be formed may be formed on the first surface S1. The bottom surface of the oil holding groove 22 in FIG. 14 is a plane parallel to the first surface S1. Even in the oil holding groove 22 having a flat bottom surface as described above, it is possible to generate dynamic pressure in the lubricating oil according to the configuration in which the depth is sufficiently small. However, from the viewpoint of generating dynamic pressure by the wedge effect of the lubricating oil, a configuration in which the depth of the oil holding groove 22 changes along the circumferential direction is preferable as illustrated in each of the above-described forms. It is also assumed that the bottom surface of the oil holding groove 22 includes both a flat surface and a curved surface, or a configuration including both an inclined surface with respect to the first surface S1 and a plane parallel to the first surface S1.

(4)前述の各形態においては、接触領域Q内に複数の溝部21が形成された構成を例示したが、接触領域Qに形成される溝部21の個数は任意である。例えば、接触領域Qに1個の溝部21のみが形成された構成も想定される。ただし、動圧の発生により軸部材11とシール部材20との間の摩擦を低減する観点からは、軸部材11の周方向に沿う複数の溝部21が接触領域Qに形成された構成が好適である。 (4) In each of the above-described embodiments, a configuration in which a plurality of groove portions 21 are formed in the contact region Q is illustrated, but the number of groove portions 21 formed in the contact region Q is arbitrary. For example, it is assumed that only one groove 21 is formed in the contact region Q. However, from the viewpoint of reducing the friction between the shaft member 11 and the seal member 20 due to the generation of dynamic pressure, a configuration in which a plurality of groove portions 21 along the circumferential direction of the shaft member 11 are formed in the contact region Q is preferable. be.

100…密封装置、11…軸部材、12…ハウジング、H…軸孔、G…隙間、20…シール部材、21…溝部、22…油保持溝、23…供給路、24…側壁部、30…板バネ、31…バネ部、32…内側スリット、33…外側スリット、40…支持体、50…支持環、51…筒状部、52…第1鍔状部、53…第2鍔状部、60…固定環、61…筒状部、62…鍔状部。 100 ... Sealing device, 11 ... Shaft member, 12 ... Housing, H ... Shaft hole, G ... Gap, 20 ... Seal member, 21 ... Groove, 22 ... Oil holding groove, 23 ... Supply path, 24 ... Side wall, 30 ... Leaf spring, 31 ... Spring part, 32 ... Inner slit, 33 ... Outer slit, 40 ... Support, 50 ... Support ring, 51 ... Cylindrical part, 52 ... First flange-shaped part, 53 ... Second flange-shaped part, 60 ... fixed ring, 61 ... tubular part, 62 ... flange-shaped part.

Claims (9)

軸部材の外周面と前記軸部材が挿入される軸孔の内周面との間の環状の隙間を封止する密封装置であって、
第1面と前記第1面の反対側の第2面とを含む板状かつ環状のシール部材であって、使用状態において前記第1面のうち内周側の接触領域が前記軸部材の外周面に接触するように湾曲するシール部材と、
前記シール部材の前記第2面に対向する板状かつ環状の板バネであって、前記使用状態において前記シール部材のうち内周側の部分を前記軸部材の外周面に押圧する板バネと、
前記シール部材および前記板バネにおける外周側の部分を支持する環状の支持体とを具備し、
前記接触領域には、前記シール部材の周方向に沿う油保持溝が形成される
密封装置。
A sealing device that seals an annular gap between the outer peripheral surface of the shaft member and the inner peripheral surface of the shaft hole into which the shaft member is inserted.
A plate-shaped and annular sealing member including a first surface and a second surface opposite to the first surface, and in a used state, the contact region on the inner peripheral side of the first surface is the outer periphery of the shaft member. A sealing member that curves to contact the surface,
A leaf spring which is a plate-shaped and annular leaf spring facing the second surface of the seal member and presses the inner peripheral side portion of the seal member against the outer peripheral surface of the shaft member in the used state.
The seal member and the annular support for supporting the outer peripheral side portion of the leaf spring are provided.
A sealing device in which an oil holding groove is formed in the contact region along the circumferential direction of the sealing member.
周方向の位置に応じて当該油保持溝の深さが異なる
請求項1の密封装置。
The sealing device according to claim 1, wherein the depth of the oil holding groove differs depending on the position in the circumferential direction.
前記油保持溝は、第1端と第2端とにわたり周方向に延在し、
前記油保持溝の深さは、周方向における中央部から前記第1端にかけて減少し、かつ、前記中央部から前記第2端にかけて減少する
請求項2の密封装置。
The oil holding groove extends in the circumferential direction over the first end and the second end.
The sealing device according to claim 2, wherein the depth of the oil holding groove decreases from the central portion in the circumferential direction to the first end, and decreases from the central portion to the second end.
前記油保持溝の幅は、前記中央部から前記第1端にかけて減少し、かつ、前記中央部から前記第2端にかけて減少する
請求項3の密封装置。
The sealing device according to claim 3, wherein the width of the oil holding groove decreases from the central portion to the first end, and decreases from the central portion to the second end.
前記油保持溝の底面は、当該油保持溝の深さが周方向に沿って連続的に変化する平面または曲面である
請求項2から請求項4の何れかの密封装置。
The sealing device according to any one of claims 2 to 4, wherein the bottom surface of the oil holding groove is a flat surface or a curved surface in which the depth of the oil holding groove continuously changes along the circumferential direction.
前記油保持溝の底面は、当該油保持溝の深さが周方向に沿って段階的に変化する階段面である
請求項2から請求項4の何れかの密封装置。
The sealing device according to any one of claims 2 to 4, wherein the bottom surface of the oil holding groove is a staircase surface in which the depth of the oil holding groove changes stepwise along the circumferential direction.
前記シール部材は、前記油保持溝と前記シール部材の内周縁との間に位置する側壁部を含み、
前記側壁部には、前記油保持溝に連通する供給路が形成される
請求項1から請求項6の何れかの密封装置。
The sealing member includes a side wall portion located between the oil holding groove and the inner peripheral edge of the sealing member.
The sealing device according to any one of claims 1 to 6, wherein a supply path communicating with the oil holding groove is formed on the side wall portion.
前記接触領域には、前記油保持溝を含む複数の油保持溝が形成され、
前記複数の油保持溝は、前記シール部材の内周縁に沿って配列される
請求項1から請求項6の何れかの密封装置。
A plurality of oil holding grooves including the oil holding groove are formed in the contact region.
The sealing device according to any one of claims 1 to 6, wherein the plurality of oil holding grooves are arranged along the inner peripheral edge of the sealing member.
前記シール部材は、前記複数の油保持溝の各々と前記シール部材の内周縁との間に位置する側壁部を含み、
前記側壁部には、前記複数の油保持溝にそれぞれ連通する複数の供給路が形成され、
前記板バネは、前記複数の油保持溝にそれぞれ対応する複数のバネ部を含み、
前記複数のバネ部の各々の先端は、当該バネ部に対応する油保持溝に連通する前記供給路に重なる
請求項8の密封装置。
The sealing member includes a side wall portion located between each of the plurality of oil holding grooves and the inner peripheral edge of the sealing member.
A plurality of supply paths communicating with the plurality of oil holding grooves are formed in the side wall portion.
The leaf spring includes a plurality of spring portions corresponding to the plurality of oil holding grooves, respectively.
The sealing device according to claim 8, wherein the tip of each of the plurality of spring portions overlaps with the supply path communicating with the oil holding groove corresponding to the spring portion.
JP2020067213A 2020-04-03 2020-04-03 Sealing device Active JP7506511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020067213A JP7506511B2 (en) 2020-04-03 2020-04-03 Sealing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020067213A JP7506511B2 (en) 2020-04-03 2020-04-03 Sealing device

Publications (2)

Publication Number Publication Date
JP2021162135A true JP2021162135A (en) 2021-10-11
JP7506511B2 JP7506511B2 (en) 2024-06-26

Family

ID=78004657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020067213A Active JP7506511B2 (en) 2020-04-03 2020-04-03 Sealing device

Country Status (1)

Country Link
JP (1) JP7506511B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004257473A (en) * 2003-02-26 2004-09-16 Nok Corp Sealing device
JP2016008685A (en) * 2014-06-25 2016-01-18 Nok株式会社 Sealing device
US20160146351A1 (en) * 2014-06-23 2016-05-26 Robert Janian Rosette lipseal
JP2017180482A (en) * 2016-03-28 2017-10-05 Nok株式会社 Sealing device
JP2018159471A (en) * 2015-12-03 2018-10-11 Nok株式会社 Shaft and sealing structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6663630B2 (en) 2014-04-16 2020-03-13 Nok株式会社 Sealing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004257473A (en) * 2003-02-26 2004-09-16 Nok Corp Sealing device
US20160146351A1 (en) * 2014-06-23 2016-05-26 Robert Janian Rosette lipseal
JP2016008685A (en) * 2014-06-25 2016-01-18 Nok株式会社 Sealing device
JP2018159471A (en) * 2015-12-03 2018-10-11 Nok株式会社 Shaft and sealing structure
JP2017180482A (en) * 2016-03-28 2017-10-05 Nok株式会社 Sealing device

Also Published As

Publication number Publication date
JP7506511B2 (en) 2024-06-26

Similar Documents

Publication Publication Date Title
US11293553B2 (en) Seal ring
WO2019221228A1 (en) Seal ring
JP6268847B2 (en) Thrust bearing
US9903411B2 (en) Thrust bearing
US20210164571A1 (en) Seal ring
CN112088268B (en) Sealing ring
US11530749B2 (en) Seal ring
JPWO2010146797A1 (en) Shaft seal device
JPWO2020166589A1 (en) Sliding parts
JPWO2019013271A1 (en) Sliding parts
JP2010121683A (en) Shaft seal device
JP2021162135A (en) Sealing device
WO2018180307A1 (en) Arrangement structure for seal material
JP5056968B1 (en) Sealing device
JP2010084802A (en) Rotary seal
JP2004036790A (en) Thrust dynamic pressure gas bearing
JP2021156314A (en) Sealing device
KR20180102631A (en) Brush seal
US20210277998A1 (en) Device for Sealing an Object
JP7350449B2 (en) mechanical seal
WO2022264255A1 (en) Sealing device
JP7130863B2 (en) sealing device
WO2016098753A1 (en) Shaft sealing mechanism
JP2006132636A (en) Shaft seal and rotary machine
JP2017166597A (en) Sealing structure and sealing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240614