JP7350449B2 - mechanical seal - Google Patents

mechanical seal Download PDF

Info

Publication number
JP7350449B2
JP7350449B2 JP2019222537A JP2019222537A JP7350449B2 JP 7350449 B2 JP7350449 B2 JP 7350449B2 JP 2019222537 A JP2019222537 A JP 2019222537A JP 2019222537 A JP2019222537 A JP 2019222537A JP 7350449 B2 JP7350449 B2 JP 7350449B2
Authority
JP
Japan
Prior art keywords
sealing ring
plate portion
side plate
sealed
stationary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019222537A
Other languages
Japanese (ja)
Other versions
JP2021092260A (en
Inventor
典寛 名護
義博 村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eagle Industry Co Ltd
Original Assignee
Eagle Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eagle Industry Co Ltd filed Critical Eagle Industry Co Ltd
Priority to JP2019222537A priority Critical patent/JP7350449B2/en
Publication of JP2021092260A publication Critical patent/JP2021092260A/en
Application granted granted Critical
Publication of JP7350449B2 publication Critical patent/JP7350449B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、メカニカルシールに関する。 The present invention relates to mechanical seals.

被密封流体の漏れを防止するためにメカニカルシールが用いられている。メカニカルシールは、相対回転して摺動面同士が摺動する一対の密封環を備えている。このようなメカニカルシールにおいては、近年、摺動により失われるエネルギーの低減が望まれており、摺動面間の潤滑性向上を図るメカニカルシールが開発されている。 Mechanical seals are used to prevent leakage of sealed fluids. A mechanical seal includes a pair of sealing rings whose sliding surfaces slide against each other as they rotate relative to each other. In such mechanical seals, in recent years, it has been desired to reduce the energy lost due to sliding, and mechanical seals that improve the lubricity between sliding surfaces have been developed.

例えば、特許文献1に示されるメカニカルシールは、回転軸とともに回転する第1の密封環と、ハウジングに固定される第2の密封環と、を備え、これら密封環の摺動面同士を摺動させることで外径側の空間に密封される被密封流体が内径側の空間へ漏れることを防止している。また、第2の密封環には、内径側に開口するように切欠き形成された歪制御用凹部が周方向に複数配置されている。被密封流体の圧力が第2の密封環に作用したときには、歪制御用凹部を基点として第2の密封環を変形させ、歪みを生じさせることにより、第2の密封環の摺動面に凹凸が形成されるようになっている。 For example, the mechanical seal shown in Patent Document 1 includes a first sealing ring that rotates together with a rotating shaft and a second sealing ring that is fixed to a housing, and slides on the sliding surfaces of these sealing rings. This prevents the sealed fluid sealed in the space on the outer diameter side from leaking into the space on the inner diameter side. Further, a plurality of strain control recesses each having a notch and opening on the inner diameter side are arranged in the second sealing ring in the circumferential direction. When the pressure of the fluid to be sealed acts on the second sealing ring, the second sealing ring is deformed using the strain control recess as a starting point, causing distortion, thereby causing unevenness on the sliding surface of the second sealing ring. is starting to form.

特開2009-79634号公報(第7頁、第3図)Japanese Patent Application Publication No. 2009-79634 (Page 7, Figure 3)

特許文献1のメカニカルシールによれば、第1の密封環及び第2の密封環の相対回転時には、第2の密封環の摺動面に形成される凸部が第1の密封環の摺動面に摺動する実質的な摺動面として機能し、第2の密封環の摺動面に形成される凹部に被密封流体を導入し且つ摺動面間に排出することで摺動面間に動圧を発生させ、その動圧により摺動面同士を離間させ、該摺動面間に被密封流体を介在させることで潤滑性が向上し、低摩擦化を実現している。しかしながら、特許文献1のメカニカルシールにあっては、歪制御用凹部が大気側である内径側に開口しているため、内径側の空間に存在する塵埃等のコンタミが歪制御用凹部内に侵入して堆積することがあり、コンタミの堆積により歪制御用凹部の変形代が小さくなり、第2の密封環の変形が阻害され、摺動面に有効に凹凸を形成することができない虞があった。 According to the mechanical seal disclosed in Patent Document 1, when the first sealing ring and the second sealing ring rotate relative to each other, the convex portion formed on the sliding surface of the second sealing ring moves against the sliding surface of the first sealing ring. It functions as a substantial sliding surface that slides on the sliding surface, and the fluid to be sealed is introduced into the recess formed in the sliding surface of the second sealing ring and discharged between the sliding surfaces. Dynamic pressure is generated, the sliding surfaces are separated by the dynamic pressure, and the fluid to be sealed is interposed between the sliding surfaces, thereby improving lubricity and achieving low friction. However, in the mechanical seal of Patent Document 1, since the strain control recess is open on the inner diameter side, which is the atmosphere side, contaminants such as dust existing in the inner diameter space enter the strain control recess. The accumulation of contaminants may reduce the amount of deformation of the strain control concave portion, inhibit the deformation of the second sealing ring, and there is a risk that it may not be possible to effectively form irregularities on the sliding surface. Ta.

本発明は、このような問題点に着目してなされたもので、歪み制御用の凹部にコンタミが侵入することを抑制できるメカニカルシールを提供することを目的とする。 The present invention has been made with attention to such problems, and an object of the present invention is to provide a mechanical seal that can suppress the entry of contaminants into the concave portion for strain control .

前記課題を解決するために、本発明のメカニカルシールは、
互いに相対摺動する摺動面を備える一対の密封環を有し、被密封流体を封止するメカニカルシールであって、
一方の密封環は、軸方向において前記摺動面とは反対側に周方向に離間しかつ背面側に開口する複数の切欠溝が配置されており、
前記切欠溝は、前記被密封流体側に配置される第1の側板部と、前記第1の側板部から径方向に離間する第2の側板部によって区画されており、
前記第1の側板部と前記被密封流体側の空間との間には、環状の二次シール部材が配置されている。
これによれば、切欠溝を有するため、被密封流体の圧力により一方の密封環が変形するようになっており、摺動面に凹凸を形成することができる。さらに、切欠溝の被密封流体側とは反対側には第2の側板部が設けられているため、被密封流体側とは反対側の空間から切欠溝内にコンタミが侵入することを抑制することができ、切欠溝による一方の密封環の変形代を確保できる
In order to solve the above problems, the mechanical seal of the present invention has the following features:
A mechanical seal having a pair of sealing rings having sliding surfaces that slide relative to each other and sealing a fluid to be sealed,
One of the sealing rings has a plurality of cut grooves spaced apart in the circumferential direction on the side opposite to the sliding surface in the axial direction and opening on the back side,
The notch groove is defined by a first side plate portion disposed on the sealed fluid side and a second side plate portion spaced apart from the first side plate portion in the radial direction,
An annular secondary seal member is disposed between the first side plate portion and the space on the sealed fluid side.
According to this, since the notched groove is provided, one of the sealing rings is deformed by the pressure of the fluid to be sealed, and it is possible to form irregularities on the sliding surface. Furthermore, since the second side plate portion is provided on the side of the cutout groove opposite to the sealed fluid side, it is possible to suppress contamination from entering the cutout groove from the space on the opposite side to the sealed fluid side. This makes it possible to secure the deformation allowance for one of the sealing rings due to the notched groove .

前記切欠溝の開口は、カバー部材によって覆われていてもよい。
これによれば、切欠溝の開口がカバー部材により閉塞されるので切欠溝内へのコンタミの侵入を確実に防ぐことができる。
The opening of the notch groove may be covered by a cover member.
According to this, since the opening of the notch groove is closed by the cover member, it is possible to reliably prevent contaminants from entering the notch groove.

前記第2の側板部は、前記第1の側板部よりも薄く形成されていてもよい。
これによれば、第2の側板部が第1の側板部よりも構造強度が低いので、径方向において一方の密封環の被密封流体側とは反対側の部位を縮径、或いは、拡径させやすい。
The second side plate portion may be formed thinner than the first side plate portion.
According to this, since the second side plate part has lower structural strength than the first side plate part, the diameter of the portion of one sealing ring on the opposite side to the sealed fluid side is reduced or expanded in the radial direction. Easy to do.

前記切欠溝は、前記一方の密封環の径方向断面における仮想重心よりも前記摺動面側まで延びる形状であるもよい。
これによれば、一方の密封環は、切欠溝が深く形成されることで、切欠溝を区画する摺動面側の部位の軸方向長さが短いので、変形により生じる内部応力を一方の密封環における摺動面に伝達させやすい。
The cutout groove may have a shape extending to the sliding surface side from a virtual center of gravity in a radial cross section of the one sealing ring.
According to this, one sealing ring has a deep notch groove, and the axial length of the part on the sliding surface side that partitions the notch groove is short, so the internal stress caused by deformation is absorbed by the one sealing ring. Easy to transmit to the sliding surface of the ring.

各前記切欠溝は、前記一方の密封環の中心から放射状に延びる基準面を基準として周方向に面対称を成していてもよい。
これによれば、一方の密封環が被密封流体の圧力を受けたときに、基準面を中心として切欠溝の周方向に対称に変形が生じるので、切欠溝の周方向中央部に位置する摺動面を大きく膨出させることができる。
Each of the notched grooves may be symmetrical in the circumferential direction with respect to a reference plane extending radially from the center of the one sealing ring.
According to this, when one sealing ring receives pressure from the fluid to be sealed, deformation occurs symmetrically in the circumferential direction of the notched groove with the reference plane as the center, so that the sliding ring located at the circumferential center of the notched groove The moving surface can be expanded greatly.

前記一方の密封環は一体形成されていてもよい。
これによれば、一方の密封環は一体形成されており、一方の密封環の単位体積当たりの強度が一定であるため、一方の密封環を確実に変形させることができ、且つ加工しやすい。
The one sealing ring may be integrally formed.
According to this, one of the sealing rings is integrally formed, and the strength per unit volume of the one of the sealing rings is constant, so that the one of the sealing rings can be reliably deformed and can be easily processed.

本発明の実施例1におけるメカニカルシールの一例を示す側断面図である。1 is a side sectional view showing an example of a mechanical seal in Example 1 of the present invention. FIG. 静止密封環の摺動面を軸方向から見た図である。FIG. 3 is a diagram of the sliding surface of the stationary sealing ring viewed from the axial direction. 静止密封環の背面を軸方向から見た図である。FIG. 3 is a view of the back surface of the stationary sealing ring viewed from the axial direction. (a)は図3のA-A断面図、(b)は図3のB矢視図である。(a) is a sectional view taken along line AA in FIG. 3, and (b) is a view taken along arrow B in FIG. 静止密封環がハウジング及びシールカバーに取付けられた状態を示す側断面図である。FIG. 3 is a side cross-sectional view showing the stationary seal ring attached to the housing and the seal cover. (a)は静止密封環に被密封流体の圧力が作用する受圧部を示す概略図、(b)は(a)の状態から被密封流体の圧力により静止密封環が縮径した状態を示す概略図である。(a) is a schematic diagram showing a pressure receiving part where the pressure of the fluid to be sealed acts on the static sealing ring, and (b) is a schematic diagram showing the state in which the diameter of the static sealing ring is reduced from the state of (a) due to the pressure of the fluid to be sealed. It is a diagram. 静止密封環の薄板部の膨出量を示す概略図である。FIG. 3 is a schematic diagram showing the amount of bulge of the thin plate portion of the stationary sealing ring. 図6のC矢視図である。7 is a view taken along arrow C in FIG. 6. FIG. 本発明の実施例2における静止密封環を示す図である。It is a figure which shows the stationary sealing ring in Example 2 of this invention.

本発明に係るメカニカルシールを実施するための形態を実施例に基づいて以下に説明する。 EMBODIMENT OF THE INVENTION The form for implementing the mechanical seal based on this invention is demonstrated below based on an Example.

実施例1に係る摺動部品につき、図1から図8を参照して説明する。尚、本実施例においては、メカニカルシールを構成する密封環の外径側を被密封液体側(高圧側)、内径側を漏れ側としての大気側(低圧側)として説明する。さらに尚、静止密封環の摺動面側を正面側として説明する。 A sliding component according to Example 1 will be described with reference to FIGS. 1 to 8. In this embodiment, the outer diameter side of the sealing ring constituting the mechanical seal will be described as the sealed liquid side (high pressure side), and the inner diameter side will be explained as the leak side, which is the atmosphere side (low pressure side). Furthermore, the sliding surface side of the stationary sealing ring will be described as the front side.

図1に示される一般産業機械用のメカニカルシール1は、互いに対向する摺動面11,21の外径側から内径側(すなわち大気A側)に向かって漏れようとする被密封液体Fを密封するインサイド型のものであって、被取付機器を構成するハウジング4に固定されたシールカバー5に、回転が規制された状態で設けられた円環状の一方の密封環としての静止密封環10と、回転軸3に固定スリーブ2を介して回転軸3と一体的に回転可能な状態で設けられた円環状の他方の密封環としての回転密封環20と、から主に構成されている。回転密封環20は、固定スリーブ2に対して軸方向に移動可能な状態で取付けられており、図示しないスプリングによって回転密封環20が静止密封環10に向けて軸方向に付勢された状態で、回転軸3に伴い回転することにより、静止密封環10の摺動面11と回転密封環20の摺動面21とが互いに密接摺動するようになっている。尚、後述するが、静止密封環10の摺動面11は、回転密封環20側(以下、正面側ということもある)の端面10aよりも軸方向に突出して形成されるノーズ部12の端面であり、この摺動面11は、後述する被密封液体Fによる圧力が負荷される前の自然状態では、その全面にわたり軸方向に対して直交する平坦面である。また回転密封環20の摺動面21は、全面にわたり軸方向に対して直交する平坦面である。 A mechanical seal 1 for general industrial machinery shown in FIG. 1 seals a sealed liquid F that tends to leak from the outer diameter side of mutually opposing sliding surfaces 11 and 21 toward the inner diameter side (that is, toward the atmosphere A side). It is an inside type seal cover 5 fixed to a housing 4 constituting an attached device, and a stationary seal ring 10 as one of the annular seal rings provided in a state where rotation is regulated. , and a rotary sealing ring 20 as the other annular sealing ring provided on the rotating shaft 3 via a fixed sleeve 2 so as to be rotatable integrally with the rotating shaft 3. The rotary seal ring 20 is attached to the stationary sleeve 2 so as to be movable in the axial direction, and the rotary seal ring 20 is biased in the axial direction toward the stationary seal ring 10 by a spring (not shown). By rotating along with the rotating shaft 3, the sliding surface 11 of the stationary sealing ring 10 and the sliding surface 21 of the rotating sealing ring 20 closely slide against each other. As will be described later, the sliding surface 11 of the stationary sealing ring 10 is the end surface of the nose portion 12 that is formed to protrude in the axial direction from the end surface 10a on the rotating sealing ring 20 side (hereinafter also referred to as the front side). The sliding surface 11 is a flat surface extending perpendicularly to the axial direction over its entire surface in a natural state before pressure is applied by a sealed liquid F to be described later. Further, the sliding surface 21 of the rotary sealing ring 20 is a flat surface extending perpendicularly to the axial direction over the entire surface.

静止密封環10及び回転密封環20は、代表的にはSiC(すなわち硬質材料)同士またはSiC(すなわち硬質材料)とカーボン(すなわち軟質材料)の組み合わせで形成されるが、これに限らず、摺動材料はメカニカルシール用摺動材料として使用されているものであれば適用可能である。尚、SiCとしては、ボロン、アルミニウム、カーボン等を焼結助剤とした焼結体をはじめ、成分、組成の異なる2種類以上の相からなる材料、例えば、黒鉛粒子の分散したSiC、SiCとSiからなる反応焼結SiC、SiC-TiC、SiC-TiN等があり、カーボンとしては、炭素質と黒鉛質の混合したカーボンをはじめ、樹脂成形カーボン、焼結カーボン等が利用できる。また、上記摺動材料以外では、金属材料、樹脂材料、表面改質材料(例えばコーティング材料)、複合材料等も適用可能である。 The stationary sealing ring 10 and the rotating sealing ring 20 are typically formed of a combination of SiC (i.e., hard materials) or a combination of SiC (i.e., hard material) and carbon (i.e., soft material), but are not limited to this. Any material that is used as a sliding material for mechanical seals can be used. Note that SiC includes sintered bodies using boron, aluminum, carbon, etc. as sintering aids, as well as materials consisting of two or more phases with different components and compositions, such as SiC in which graphite particles are dispersed, and SiC. There are reactive sintered SiC, SiC-TiC, SiC-TiN, etc. made of Si, and as carbon, carbon that is a mixture of carbonaceous and graphite, resin-molded carbon, sintered carbon, etc. can be used. In addition to the above-mentioned sliding materials, metal materials, resin materials, surface-modified materials (for example, coating materials), composite materials, etc. can also be used.

図2及び図3に示されるように、静止密封環10は、軸方向視で円環状を成す短筒状に形成されており、該静止密封環10における正面側の端面10aには、回転密封環20側に径方向の一部が突出するノーズ部12が環状に形成されている。また、静止密封環10における摺動面11の背面側(すなわち回転密封環20とは反対側)には、該背面側に開口して軸方向に延びる切欠溝13が周方向に複数等配に形成されている。なお本実施例では切欠溝13が周方向に8箇所形成されているが、切欠溝13の数は本実施例に限らない。 As shown in FIGS. 2 and 3, the stationary seal ring 10 is formed in a short cylindrical shape that is annular when viewed in the axial direction. The nose portion 12 is formed in an annular shape, and a portion of the nose portion 12 in the radial direction protrudes toward the ring 20 side. Furthermore, on the back side of the sliding surface 11 of the stationary sealing ring 10 (that is, the side opposite to the rotating sealing ring 20), a plurality of notch grooves 13 that are open on the back side and extend in the axial direction are arranged at equal intervals in the circumferential direction. It is formed. In this embodiment, eight cutout grooves 13 are formed in the circumferential direction, but the number of cutout grooves 13 is not limited to this embodiment.

言い換えれば、静止密封環10には、周方向に離間して複数配設される切欠溝13の間に、離間して複数配設される肉厚部としての厚板部14と、隣り合う厚板部14同士の正面側の部位を連結し、厚板部14よりも軸方向に肉薄の薄板部15と、薄板部15から軸方向に延び隣り合う厚板部14同士の高圧側の部位を連結し、厚板部14よりも径方向に肉薄の側板部16と、薄板部15から軸方向に延び隣り合う厚板部14同士の低圧側の部位を連結し、厚板部14よりも径方向に肉薄の側板部18と、が形成されている。すなわち、側板部16は、被密封液体F側の空間と切欠溝13とを区画する第1の側板部として機能しており、側板部18は、大気A側の空間と切欠溝13とを区画する第2の側板部として機能している。また側板部16の薄板部15側には、径方向に段差を成す段差部16aが形成されており、この段差部16aとシールカバー5の前面部に縮径された縮径部5a(図1参照。)とが軸方向に係合することで、静止密封環10が抜け止めされている。尚、厚板部14における回転密封環20側の面である正面、及び薄板部15における回転密封環20側の面である正面が面一に形成されており、静止密封環10の端面10aを構成している。また、厚板部14における外周面、及び側板部16における外周面が面一に形成されており、静止密封環10の外周面を構成しているとともに、厚板部14における内周面、及び側板部18における内周面が面一に形成されており、静止密封環10の内周面を構成している。段差部16a、縮径部5aは、静止密封環10が他の手段で抜け止めされていれば、無くてもよく、その場合、静止密封環10は一様の周面でもよく、また、他の凹凸形状となっていてもよい。 In other words, the stationary sealing ring 10 has a plurality of thick plate portions 14 as thick wall portions spaced apart between a plurality of notch grooves 13 spaced apart in the circumferential direction, and an adjacent thick plate portion 14 as a thick wall portion spaced apart from each other. The front side portions of the plate portions 14 are connected to each other, and a thin plate portion 15 that is thinner in the axial direction than the thick plate portion 14 and a high pressure side portion of the adjacent thick plate portions 14 extending in the axial direction from the thin plate portion 15 are connected. A side plate part 16 that is thinner in the radial direction than the thick plate part 14 and a low pressure side part of the adjacent thick plate parts 14 extending in the axial direction from the thin plate part 15 are connected, and the side plate part 16 is thinner in the radial direction than the thick plate part 14. A side plate portion 18 that is thin in the direction is formed. That is, the side plate part 16 functions as a first side plate part that partitions the notch groove 13 from the space on the side of the sealed liquid F, and the side plate part 18 functions as a first side plate part that partitions the space on the side of the atmosphere A and the notch groove 13. It functions as a second side plate section. Further, a stepped portion 16a that forms a step in the radial direction is formed on the thin plate portion 15 side of the side plate portion 16, and a reduced diameter portion 5a (FIG. 1 ) are engaged in the axial direction to prevent the stationary sealing ring 10 from coming off. Note that the front surface of the thick plate portion 14 on the rotary seal ring 20 side and the front surface of the thin plate portion 15 on the rotary seal ring 20 side are formed flush with each other, and the end surface 10a of the stationary seal ring 10 is It consists of Further, the outer circumferential surface of the thick plate portion 14 and the outer circumferential surface of the side plate portion 16 are formed flush with each other, and constitute the outer circumferential surface of the stationary sealing ring 10, and the inner circumferential surface of the thick plate portion 14 and The inner circumferential surface of the side plate portion 18 is formed flush with the inner circumferential surface of the stationary sealing ring 10 . The stepped portion 16a and the reduced diameter portion 5a may be omitted if the stationary sealing ring 10 is prevented from coming off by other means. In that case, the stationary sealing ring 10 may have a uniform circumferential surface, or It may have an uneven shape.

図3及び図4に示されるように、切欠溝13は、背面から軸方向に見て矩形状を成している。詳しくは、切欠溝13は、周方向に対向して平行に延びる一対の面13cと、これらの面13cにそれぞれ直交し該面13cの外径側の部位を繋ぐように延びる面13b(すなわち切欠溝13の外径面13b)と、一対の面13cの内径側を繋ぐように円弧状に延びる面13d(すなわち切欠溝13の内径面13d)と、各面13c、面13b及び面13dの前端側の部位を直交して繋ぐように延びる面13e(すなわち切欠溝13の摺動面11側の端面13e、すなわち薄板部15の背面)と、で構成されている。側板部18の被密封液体F(図5参照)とは径方向反対側かつ背面側の端部13a(すなわち側板部18の内径側かつ背面側の端部13a)の周方向の寸法L1は、隣り合う切欠溝13同士の被密封液体F(図5参照)とは径方向反対側かつ背面側の端部14aの周方向の離間寸法L2、言い換えれば厚板部14の内径側かつ背面側端部の周方向に延びる円弧線の寸法L2よりも短くなっている(L1<L2)。尚、側板部18の外径側かつ背面側の端部の周方向の寸法L10(すなわち、面13dの背面側の端部の周方向の寸法L10)は、側板部18の内径側の端部13aの周方向の寸法L1よりも僅かに長くなっている(L1<L10)。さらに尚、側板部18の外径側かつ背面側の端部の周方向の寸法L10は、切欠溝13の内径側かつ背面側の端部の周方向の寸法と同一であるため、以下、単に切欠溝13の周方向の寸法L10とも表す。 As shown in FIGS. 3 and 4, the notch groove 13 has a rectangular shape when viewed from the back in the axial direction. Specifically, the notch groove 13 includes a pair of surfaces 13c that face each other in the circumferential direction and extend in parallel, and a surface 13b that extends perpendicularly to these surfaces 13c and connects the outer diameter side portions of the surfaces 13c (i.e., a notch). The outer diameter surface 13b of the groove 13, the surface 13d extending in an arc shape so as to connect the inner diameter sides of the pair of surfaces 13c (that is, the inner diameter surface 13d of the notched groove 13), and the front end of each surface 13c, surface 13b, and surface 13d. It is composed of a surface 13e extending so as to orthogonally connect the side parts (that is, the end surface 13e of the notched groove 13 on the sliding surface 11 side, that is, the back surface of the thin plate part 15). The circumferential dimension L1 of the end 13a of the side plate 18 on the radially opposite side to the sealed liquid F (see FIG. 5) and on the back side (that is, the end 13a on the inner diameter side and the back side of the side plate 18) is: The distance L2 in the circumferential direction between the end portions 14a of adjacent notch grooves 13 on the radially opposite side and the back side of the sealed liquid F (see FIG. 5), in other words, the inner diameter side and the back side end of the thick plate portion 14 It is shorter than the dimension L2 of the circular arc wire extending in the circumferential direction of the section (L1<L2). Note that the circumferential dimension L10 of the outer diameter side and rear side end of the side plate portion 18 (that is, the circumferential direction dimension L10 of the rear side end of the surface 13d) is the inner diameter end of the side plate portion 18. It is slightly longer than the circumferential dimension L1 of 13a (L1<L10). Furthermore, since the circumferential dimension L10 of the outer diameter side and rear side end of the side plate portion 18 is the same as the circumferential direction dimension of the inner diameter side and rear side end of the notch groove 13, hereinafter, simply It is also expressed as the circumferential dimension L10 of the notch groove 13.

また、切欠溝13の軸方向の寸法L3は、厚板部14の軸方向長さの半分よりも長く、且つ切欠溝13の周方向の寸法L10よりも長くなっている(L10<L3)。尚、切欠溝13の形状は切欠溝13の周方向中央部を通るように静止密封環10の中心から放射状に延びる面S(以下単に基準面Sという。図4(b)の二点破線を参照。)を基準として面対称に形成されていればよく、これにより、後述のように、静止密封環10が被密封液体Fの圧力を受けたときに、変形が基準面Sを中心に対称に生じ、切欠溝13を区画する薄板部15の周方向中央部にその変形応力が集中し、また、その変形の向きは摺動面11側に向かうため、変形応力は摺動面11に伝達され、後述する摺動面11の膨出が効率よく生じる。 Further, the axial dimension L3 of the notched groove 13 is longer than half the axial length of the thick plate portion 14, and longer than the circumferential dimension L10 of the notched groove 13 (L10<L3). The shape of the notch groove 13 is defined by a plane S (hereinafter simply referred to as reference plane S) extending radially from the center of the stationary sealing ring 10 so as to pass through the circumferential center of the notch groove 13. ), and as a result, when the stationary sealing ring 10 receives the pressure of the sealed liquid F, the deformation will be symmetrical about the reference plane S, as described later. The deformation stress is concentrated in the circumferential center of the thin plate portion 15 that partitions the notched groove 13, and the direction of the deformation is toward the sliding surface 11, so the deformation stress is transmitted to the sliding surface 11. As a result, the sliding surface 11, which will be described later, bulges out efficiently.

また、図4(a)に示されるように、静止密封環10には、背面側に開口する切欠溝13が形成されているため、静止密封環10の正面側である摺動面11側に偏った形状となっており、径方向の断面における静止密封環10の仮想重心Gは、静止密封環10の軸方向中央部Cよりも摺動面11側に位置している。尚、仮想重心Gは、径方向に断面における平面における重心を意味し、仮想を付して称している。また、図4(b)に示されるように、切欠溝13の軸方向の寸法L3は、静止密封環10の背面から仮想重心Gまでの軸方向の寸法L9よりも長く形成されている。言い換えると、切欠溝13は背面側の開口Mから仮想重心Gを越えて摺動面11側まで延びる形状となっている。 Furthermore, as shown in FIG. 4(a), the stationary sealing ring 10 is formed with a cutout groove 13 that opens on the back side. It has a biased shape, and the virtual center of gravity G of the stationary seal ring 10 in the radial cross section is located closer to the sliding surface 11 than the axial center C of the stationary seal ring 10 . Note that the virtual center of gravity G means the center of gravity in a plane in a cross section in the radial direction, and is referred to with the imaginary suffix. Further, as shown in FIG. 4(b), the axial dimension L3 of the notched groove 13 is longer than the axial dimension L9 from the back surface of the stationary sealing ring 10 to the virtual center of gravity G. In other words, the cutout groove 13 has a shape extending from the opening M on the back side beyond the virtual center of gravity G to the sliding surface 11 side.

後述のように、静止密封環10が被密封液体Fの圧力を受けた際には、薄板部15と側板部16との角部近傍を変形起点T(図4(a)参照)として側板部16の背面側の部位が内径方向に移動し、静止密封環10の背面側の部位が縮径するようになっている。このように、切欠溝13は背面側の開口Mから仮想重心Gを越えて摺動面11側まで延びる形状となっており、切欠溝13の軸方向の寸法L3、言い換えれば、側板部16の背面から変形起点Tまでの寸法を長く確保できるので、静止密封環10の背面側の部位を大きく縮径させることができるとともに、薄板部15の軸方向の厚みが薄く形成されているので、静止密封環10の縮径時に生じる内部応力が薄板部15に伝わりやすい構造となっている。 As will be described later, when the stationary sealing ring 10 receives the pressure of the liquid to be sealed F, the side plate deforms with the vicinity of the corner of the thin plate part 15 and the side plate part 16 as a deformation starting point T (see FIG. 4(a)). The portion on the back side of the stationary sealing ring 16 moves in the inner diameter direction, and the portion on the back side of the stationary sealing ring 10 contracts in diameter. In this way, the notch groove 13 has a shape that extends from the opening M on the back side beyond the virtual center of gravity G to the sliding surface 11 side, and the axial dimension L3 of the notch groove 13, in other words, the side plate part 16. Since the dimension from the back surface to the deformation starting point T can be secured long, the diameter of the portion on the back side of the stationary seal ring 10 can be greatly reduced, and since the thickness of the thin plate portion 15 in the axial direction is formed thin, the stationary seal ring 10 can be The structure is such that internal stress generated when the diameter of the sealing ring 10 is reduced is easily transmitted to the thin plate portion 15.

薄板部15の軸方向の厚み寸法L4は、厚板部14の軸方向の厚み寸法L5よりも短い(L4<L5)。 The axial thickness L4 of the thin plate portion 15 is shorter than the axial thickness L5 of the thick plate portion 14 (L4<L5).

側板部16の厚み寸法L6は、厚板部14の径方向の厚み寸法L7よりも短い(L6<L7)。また、側板部18の厚み寸法L8は、厚板部14の径方向の厚み寸法L7よりも短い(L8<L7)。さらに、側板部18の厚み寸法L8は、側板部16の厚み寸法L6よりも短い(L8<L6)。 The thickness L6 of the side plate portion 16 is shorter than the radial thickness L7 of the thick plate portion 14 (L6<L7). Further, the thickness L8 of the side plate portion 18 is shorter than the radial thickness L7 of the thick plate portion 14 (L8<L7). Further, the thickness L8 of the side plate portion 18 is shorter than the thickness L6 of the side plate portion 16 (L8<L6).

また、特に図4(a)に示されるように、ノーズ部12は、静止密封環10の端面10aの径方向中央部に配置されている。具体的には、静止密封環10の摺動面11の内径端11aが側板部18の外径面である切欠溝13の内径面13dよりも外径側に配置され、静止密封環10の摺動面11の外径端11bが側板部16の内径面である切欠溝13の外径面13bよりも内径側に配置されている。詳細には、ノーズ部12は、側板部16及び側板部18と軸方向に重畳せず、かつ側板部18側に若干寄せるように配置されており、言い換えれば、ノーズ部12は、静止密封環10の端面10aの径方向中央部における内径側に配置されている。尚、本実施例では、ノーズ部12が側板部16及び側板部18と軸方向に重畳しないようになっている形態を例示したが、ノーズ部12の外径端、或いは内径端が側板部16、或いは側板部18と軸方向に一部重畳していてもよい。 Further, as particularly shown in FIG. 4(a), the nose portion 12 is disposed at the radially central portion of the end surface 10a of the stationary sealing ring 10. Specifically, the inner diameter end 11a of the sliding surface 11 of the stationary sealing ring 10 is disposed on the outer diameter side of the inner diameter surface 13d of the notch groove 13, which is the outer diameter surface of the side plate portion 18, so that the sliding surface 11 of the stationary sealing ring 10 The outer diameter end 11b of the dynamic surface 11 is arranged on the inner diameter side of the outer diameter surface 13b of the notched groove 13, which is the inner diameter surface of the side plate portion 16. Specifically, the nose portion 12 is arranged so as not to overlap the side plate portions 16 and 18 in the axial direction, and to be slightly closer to the side plate portion 18. In other words, the nose portion 12 is arranged so as not to overlap the side plate portions 16 and 18 in the axial direction. It is arranged on the inner radial side of the radially central portion of the end surface 10a of 10. In this embodiment, the nose portion 12 does not overlap the side plate portions 16 and 18 in the axial direction. , or may partially overlap with the side plate portion 18 in the axial direction.

次に、メカニカルシール1の使用時の静止密封環10の形態について図5~図8に基づいて説明する。 Next, the form of the stationary sealing ring 10 when the mechanical seal 1 is used will be explained based on FIGS. 5 to 8.

図5に示されるように、静止密封環10がハウジング4及びシールカバー5に取付けられた状態にあっては、ハウジング4の正面に環状に凹溝4aが形成され、凹溝4aに配置された無端状の二次シール6例えばOリングが、周方向一様(すなわち周方向に同じような形状)に設けられ、静止密封環10の背面側(すなわち回転密封環20とは反対側)における外径側の端面に圧接されており、被密封液体Fは、二次シール6よりも外径側の静止密封環10とシールカバー5との間に浸入し、二次シール6よりも内径側の切欠溝13(すなわち大気A側)への浸入は防止されている。すなわち、静止密封環10の外周面、具体的には厚板部14、薄板部15、側板部16、及びノーズ部12の外周面は、外径から内径に向けて被密封液体Fの圧力を受ける受圧部17として構成されている。つまり、二次シール6は静止密封環10の周囲で切欠溝13よりも被密封液体F側に配置され、切欠溝13に被密封液体Fが流入しない配置であればよい。尚、被密封液体Fによる力は、受圧部17以外にも薄板部15の前面(すなわち端面10a)や段差部16aの前面に背面側に向けて軸方向に作用するが、静止密封環10の外周面、特に厚板部14の外周面に支配的に作用し、後述のように静止密封環10が縮径するようになる。また、静止密封環10の内周面、具体的には厚板部14、薄板部15、側板部18、及びノーズ部12の内周面は、被密封液体Fよりも低圧の大気A側に面している。 As shown in FIG. 5, when the stationary sealing ring 10 is attached to the housing 4 and the seal cover 5, an annular groove 4a is formed on the front surface of the housing 4, and a groove 4a is arranged in the groove 4a. An endless secondary seal 6, for example, an O-ring, is provided uniformly in the circumferential direction (that is, has the same shape in the circumferential direction), and is provided on the outer side of the back side of the stationary sealing ring 10 (that is, the side opposite to the rotating sealing ring 20). The sealed liquid F enters between the stationary seal ring 10 on the outer diameter side of the secondary seal 6 and the seal cover 5, and the sealed liquid F enters between the stationary seal ring 10 on the outer diameter side of the secondary seal 6 and the seal cover 5, and Intrusion into the notch groove 13 (ie, the atmosphere A side) is prevented. That is, the outer circumferential surface of the stationary sealing ring 10, specifically the outer circumferential surfaces of the thick plate part 14, thin plate part 15, side plate part 16, and nose part 12, absorb the pressure of the sealed liquid F from the outer diameter toward the inner diameter. It is configured as a pressure receiving section 17 that receives the pressure. That is, the secondary seal 6 may be disposed around the stationary sealing ring 10 closer to the liquid to be sealed F than the notch groove 13 and the liquid to be sealed F will not flow into the notch groove 13 . Note that the force from the liquid to be sealed F acts on the front surface of the thin plate section 15 (that is, the end surface 10a) and the front surface of the stepped section 16a in the axial direction toward the rear side in addition to the pressure receiving section 17. It acts dominantly on the outer circumferential surface, particularly on the outer circumferential surface of the thick plate portion 14, causing the stationary sealing ring 10 to contract in diameter as will be described later. In addition, the inner circumferential surface of the stationary sealing ring 10, specifically, the inner circumferential surfaces of the thick plate part 14, thin plate part 15, side plate part 18, and nose part 12, are placed on the atmosphere A side having a lower pressure than the liquid F to be sealed. facing.

また、静止密封環10がハウジング4及びシールカバー5に取付けられた状態にあっては、切欠溝13の背面側の開口Mはカバー部材としてのハウジング4により閉塞されている。すなわち、切欠溝13は、被密封液体F側の空間とは連通しておらず、且つ大気A側の空間とは側板部18とハウジング4との僅かな隙間を介して連通している。尚、大気A側の空間と側板部18との間にOリングを配置して切欠溝13が密封状に閉塞されるようにしてもよい。 Further, when the stationary seal ring 10 is attached to the housing 4 and the seal cover 5, the opening M on the back side of the notch groove 13 is closed by the housing 4 as a cover member. That is, the cutout groove 13 does not communicate with the space on the side of the liquid to be sealed F, and communicates with the space on the side of the atmosphere A through a small gap between the side plate portion 18 and the housing 4. Note that an O-ring may be disposed between the space on the side of the atmosphere A and the side plate portion 18 so that the notch groove 13 is closed in a sealed manner.

図6(a)(b)に示されるように、静止密封環10の受圧部17が被密封液体Fの圧力を受けると、切欠溝13があるため、他の箇所と比較して強度的に弱い静止密封環10の軸方向背面側の部位が圧力により縮径するようになる。具体的には、特に図6(b)に示されるように、静止密封環10の受圧部17が被密封液体Fの圧力を受けると、隣り合う厚板部14における背面側の部位の径方向中央部は互いに接続されておらず、言うなれば自由端であるとともに、外径側の側板部16に比べ内径側の側板部18が強度的に弱いので厚板部14の背面側の部位且つ内径側の部位が周方向に互いに近づくように押圧されて静止密封環10が縮径する。また、薄板部15およびノーズ部12には切欠溝13が無く無端環状であり、構造的強度が高いため、軸方向において摺動面11に近いほど変形しにくい。そのため、静止密封環10は背面側の部位が大きく縮径し、摺動面11側の部位が小さく縮径する。これにより、図6(b)の右図で示すように、この押圧により生じた内部応力により厚板部14よりも薄い薄板部15を軸方向に回転密封環20側に膨出させることができるようになっている。また、薄板部15が回転密封環20側に膨出されると、薄板部15に沿ってノーズ部12も膨出するように変形する。尚、図6では、説明の便宜上、側板部16の変形量や薄板部15の膨出量を実際よりも大きく図示している。 As shown in FIGS. 6(a) and 6(b), when the pressure receiving part 17 of the stationary sealing ring 10 receives the pressure of the liquid to be sealed, the strength is reduced compared to other parts because of the notch groove 13. The weaker portion of the stationary sealing ring 10 on the back side in the axial direction becomes smaller in diameter due to the pressure. Specifically, as particularly shown in FIG. 6(b), when the pressure receiving part 17 of the stationary sealing ring 10 receives the pressure of the sealed liquid F, the portion on the back side of the adjacent thick plate part 14 in the radial direction The central portions are not connected to each other and are free ends, and the inner diameter side plate portion 18 is weaker in strength than the outer diameter side side plate portion 16, so the back side portion of the thick plate portion 14 and The inner diameter side portions are pressed toward each other in the circumferential direction, and the stationary sealing ring 10 is reduced in diameter. Further, the thin plate portion 15 and the nose portion 12 have an endless annular shape without the cutout groove 13 and have high structural strength, so that the closer they are to the sliding surface 11 in the axial direction, the less deformation occurs. Therefore, the diameter of the stationary sealing ring 10 is greatly reduced on the back side, and the diameter is reduced small on the sliding surface 11 side. As a result, as shown in the right diagram of FIG. 6(b), the thin plate part 15, which is thinner than the thick plate part 14, can be bulged toward the rotary sealing ring 20 in the axial direction due to the internal stress generated by this pressing. It looks like this. Further, when the thin plate portion 15 is bulged toward the rotary sealing ring 20 side, the nose portion 12 is also deformed so as to bulge along the thin plate portion 15 . In addition, in FIG. 6, for convenience of explanation, the amount of deformation of the side plate portion 16 and the amount of bulge of the thin plate portion 15 are shown larger than they actually are.

また、図6(b)に示されるように、切欠溝13は外径側に側板部16が存在し、内径側に側板部18が存在するので、薄板部15は、径方向中央部が変形しやすい。また、側板部16に比べ側板部18が薄く形成され、構造強度が弱いので、薄板部15は、径方向中央部における外径側の部位に比べて内径側の部位が変形しやすく、薄板部15における回転密封環20側への膨出量は径方向中央部における内径側の部位が大きくなっている。また、ノーズ部12は、静止密封環10の端面10aの径方向中央部における内径側に配設されているので、薄板部15の大きな膨出を受けて変形するようになっている。また、薄板部15は、その周方向両端よりも周方向中央部の方が回転密封環20側への膨出量が大きくなっている。薄板部15の膨出態様について、より詳しくは、薄板部15を回転密封環20側から軸方向に見た図である図7に示されるように、薄板部15の周方向中央部かつ径方向中央部における若干内径側の箇所が最も膨出し、当該箇所から周囲に末広がり状に膨出している。尚、図7においては、薄板部15の膨出量を網点で概略的に図示しており、網点の濃度が高いほど軸方向への膨出量が大きいことを示している。さらに尚、図7では、説明の便宜上、ノーズ部12の図示を省略している。 Furthermore, as shown in FIG. 6(b), the notch groove 13 has a side plate part 16 on the outer diameter side and a side plate part 18 on the inner diameter side, so that the thin plate part 15 is deformed at the radial center part. It's easy to do. In addition, since the side plate part 18 is formed thinner than the side plate part 16 and has weaker structural strength, the inner diameter side part of the thin plate part 15 is more likely to deform than the outer diameter side part in the radial center part. The amount of bulge toward the rotary sealing ring 20 at 15 is larger on the inner diameter side in the radial center. Furthermore, since the nose portion 12 is disposed on the inner diameter side of the radially central portion of the end surface 10a of the stationary sealing ring 10, it is deformed by the large expansion of the thin plate portion 15. Further, the thin plate portion 15 has a larger amount of bulge toward the rotary sealing ring 20 at the center in the circumferential direction than at both ends in the circumferential direction. More specifically, regarding the bulging aspect of the thin plate portion 15, as shown in FIG. A portion slightly on the inner diameter side of the central portion bulges out the most, and bulges out from this portion toward the periphery. In FIG. 7, the amount of bulge of the thin plate portion 15 is schematically illustrated by halftone dots, and the higher the density of the halftone dot, the larger the amount of bulge in the axial direction. Furthermore, in FIG. 7, illustration of the nose portion 12 is omitted for convenience of explanation.

図8に示されるように、薄板部15が回転密封環20側に膨出されることで、摺動面11において、薄板部15の周方向中央部に対応する部分は凸部8として形成され、微視的には該凸部8は回転密封環20の摺動面21と接触する部分となるとともに、薄板部15の周方向両端部に対応する部分および厚板部14は凹部7として形成され、微視的には回転密封環20の摺動面21と接触しない部分となる。これら、静止密封環10の摺動面11と回転密封環20の摺動面21との間に互いに接触する部分と軸方向に離間する部分とが周方向に交互に等間隔で生じる、すなわち周方向において、凸部8同士の間に凹部7が周方向に規則的に形成される。尚、被密封液体Fは気体と比べ粘度が高いため、メカニカルシール1の停止時に凹部7から低圧側の空間に漏れ出すことはなく、若しくは漏れ出す量は微量である。 As shown in FIG. 8, the thin plate portion 15 is bulged toward the rotary sealing ring 20, so that a portion of the sliding surface 11 corresponding to the circumferential center of the thin plate portion 15 is formed as a convex portion 8. Microscopically, the convex portion 8 becomes a portion that comes into contact with the sliding surface 21 of the rotary sealing ring 20, and the portions corresponding to both ends of the thin plate portion 15 in the circumferential direction and the thick plate portion 14 are formed as the recessed portion 7. Microscopically, this is a portion that does not come into contact with the sliding surface 21 of the rotary sealing ring 20. Between the sliding surface 11 of the stationary sealing ring 10 and the sliding surface 21 of the rotating sealing ring 20, portions that contact each other and portions that are spaced apart in the axial direction occur alternately at equal intervals in the circumferential direction. In this direction, concave portions 7 are regularly formed between convex portions 8 in the circumferential direction. Note that since the sealed liquid F has a higher viscosity than gas, it does not leak from the recess 7 into the low-pressure side space when the mechanical seal 1 is stopped, or the amount that leaks is very small.

静止密封環10と回転密封環20とが相対回転したときには、凹部7の周方向終端には凸部8が形成されているため、凹部7内に流入した被密封液体Fが回転密封環20の回転方向に追随移動し、凹部7において被密封液体Fの圧力が高められ、圧力の高められた被密封液体Fは凹部7の終端である凸部8近傍からその周辺に流出する。これにより、静止密封環10の摺動面11と回転密封環20の摺動面21とは僅かに離間されるとともに、摺動面11,21間に存在する被密封液体Fにより、良好な潤滑状態を成すようになっている。特に、上記した厚板部14同士が周方向に近づくように押圧されることで、薄板部15には、膨出した凸部8が、周方向に離間して複数形成されるため、これらの凸部8の間に形成される凹部7内に被密封液体Fを保持し易く、また回転密封環20の回転により動圧を発生させることができる。 When the stationary seal ring 10 and the rotating seal ring 20 rotate relative to each other, since the convex portion 8 is formed at the circumferential end of the recess 7, the liquid F to be sealed that has flowed into the recess 7 is transferred to the rotary seal ring 20. It follows the rotational direction, and the pressure of the sealed liquid F is increased in the recess 7, and the increased pressure flows out from the vicinity of the convex part 8, which is the end of the recess 7, to its surroundings. As a result, the sliding surface 11 of the stationary sealing ring 10 and the sliding surface 21 of the rotating sealing ring 20 are slightly separated, and the sealed liquid F existing between the sliding surfaces 11 and 21 provides good lubrication. It has come to form a state. In particular, when the thick plate portions 14 described above are pressed closer to each other in the circumferential direction, a plurality of bulging convex portions 8 are formed in the thin plate portion 15 spaced apart in the circumferential direction. The sealed liquid F can be easily held in the concave portion 7 formed between the convex portions 8, and dynamic pressure can be generated by the rotation of the rotary sealing ring 20.

以上説明したように、静止密封環10には、切欠溝13が設けられているので、厚板部14及び側板部16が内径方向に被密封液体Fの圧力を受けたときには、厚板部14同士を近づけることができるとともに、厚板部14同士の近接により生じる内部応力を薄板部15まで有効に伝達させ、摺動面11を局所的に大きく膨出させて摺動面11に凹凸を形成することができる構造となっている。そして、切欠溝13の被密封液体F側とは反対側である大気A側には第2の側板部である側板部18が設けられているため、大気A側の空間から切欠溝13内に塵埃等のコンタミが侵入することを抑制することができる。これによれば、切欠溝13内にコンタミが堆積することが抑制されるので、切欠溝13による静止密封環10の変形代を確保でき、摺動面11に確実に凹凸を形成することができる。 As explained above, since the stationary sealing ring 10 is provided with the cutout groove 13, when the thick plate part 14 and the side plate part 16 receive pressure from the sealed liquid F in the inner diameter direction, the thick plate part 14 In addition to being able to bring the thick plate parts 14 closer to each other, the internal stress caused by the proximity of the thick plate parts 14 to the thin plate part 15 is effectively transmitted to the thin plate part 15, and the sliding surface 11 is locally bulged out to form unevenness on the sliding surface 11. It is structured so that it can be Since the side plate part 18, which is a second side plate part, is provided on the atmosphere A side, which is the opposite side of the sealed liquid F side of the notch groove 13, the side plate part 18 is provided as a second side plate part. It is possible to suppress the intrusion of contaminants such as dust. According to this, since the accumulation of contaminants in the notched groove 13 is suppressed, the amount of deformation of the stationary sealing ring 10 due to the notched groove 13 can be secured, and unevenness can be reliably formed on the sliding surface 11. .

また、静止密封環10がハウジング4及びシールカバー5に取付けられた状態にあっては、切欠溝13の背面側の開口Mがハウジング4により閉塞されているので、切欠溝13内への侵入を確実に防ぐことができる。尚、切欠溝13の開口Mを覆うカバー部材はハウジング4に限られず、例えば、ハウジング4とは別の板部材やキャップなどであってもよい。 Furthermore, when the stationary sealing ring 10 is attached to the housing 4 and the seal cover 5, the opening M on the back side of the notch groove 13 is closed by the housing 4, so that entry into the notch groove 13 is prevented. It can definitely be prevented. Note that the cover member that covers the opening M of the notch groove 13 is not limited to the housing 4, and may be, for example, a plate member different from the housing 4, a cap, or the like.

また、切欠溝13は軸方向の寸法L3が周方向の寸法L10よりも大きい。そのため、L3が大きいほど摺動面11近くまで切欠溝13を形成して、薄板部15を膨出させ易くすることが可能であり、また、L10が小さいほど静止密封環10が切り欠かれる箇所である切欠溝13の占有容積が小さく済み、静止密封環10の強度を維持することができる。また、二次シール6が静止密封環10の背面側(すなわち回転密封環20とは反対側)の端面に圧接されているので、受圧面積を大きく取ることができ、静止密封環10を縮径させやすい。これにより、静止密封環10の摺動面11と回転密封環20の摺動面21との間に確実に凹部7を形成することができ、凹部7内に被密封液体Fを保持できるとともに、凹部7で生じる動圧により摺動面11,21間を僅かに離間させ、摺動性を向上させることができる。 Moreover, the notch groove 13 has an axial dimension L3 larger than a circumferential dimension L10. Therefore, the larger L3 is, the closer the notch groove 13 can be formed to the sliding surface 11, making it easier to bulge out the thin plate part 15, and the smaller L10 is, the closer the stationary sealing ring 10 is cut out. The volume occupied by the cutout groove 13 is small, and the strength of the stationary sealing ring 10 can be maintained. In addition, since the secondary seal 6 is pressed against the end surface of the back side of the stationary seal ring 10 (that is, the side opposite to the rotating seal ring 20), a large pressure receiving area can be obtained, and the stationary seal ring 10 can be reduced in diameter. Easy to do. Thereby, the recess 7 can be reliably formed between the sliding surface 11 of the stationary sealing ring 10 and the sliding surface 21 of the rotating sealing ring 20, and the liquid to be sealed F can be held within the recess 7. The dynamic pressure generated in the recess 7 allows the sliding surfaces 11 and 21 to be slightly spaced apart, thereby improving sliding performance.

また、大気A側に設けられる側板部18は、被密封液体F側に設けられる側板部16よりも薄く形成されている。具体的には、側板部18の厚み寸法L8は、側板部16の厚み寸法L6よりも短く形成されており、側板部18が側板部16よりも構造強度が低いので、径方向において静止密封環10を大気A側に向けて縮径させやすい。 Further, the side plate portion 18 provided on the atmosphere A side is formed thinner than the side plate portion 16 provided on the sealed liquid F side. Specifically, the thickness L8 of the side plate portion 18 is formed shorter than the thickness L6 of the side plate portion 16, and since the side plate portion 18 has lower structural strength than the side plate portion 16, the stationary seal ring is formed in the radial direction. 10 can be easily reduced in diameter toward the atmosphere A side.

また、切欠溝13における摺動面11側の端面13eは、軸方向において静止密封環10の仮想重心Gよりも摺動面11側に配置されていている。このように、切欠溝13における摺動面11側の端面13eは、静止密封環10の仮想重心Gよりも摺動面11側に配設されているので、切欠溝13における摺動面11側の端面13eを摺動面11側に近付けて、薄板部15を軸方向に薄く形成することができるとともに、側板部16の背面から変形起点Tまでの寸法を長く確保して静止密封環10の背面側の部位を大きく縮径させることができるので、変形により生じる内部応力を静止密封環10における摺動面11側にまで伝達させやすい。 Further, an end surface 13e of the notched groove 13 on the sliding surface 11 side is arranged closer to the sliding surface 11 than the virtual center of gravity G of the stationary sealing ring 10 in the axial direction. In this way, the end face 13e of the notched groove 13 on the sliding surface 11 side is disposed closer to the sliding surface 11 than the virtual center of gravity G of the stationary sealing ring 10, so that the end face 13e of the notched groove 13 on the sliding surface 11 side By bringing the end face 13e of the side plate closer to the sliding surface 11 side, the thin plate part 15 can be formed thinner in the axial direction, and by ensuring a long dimension from the back surface of the side plate part 16 to the deformation starting point T, the static sealing ring 10 can be made thinner. Since the diameter of the portion on the back side can be greatly reduced, internal stress caused by deformation can be easily transmitted to the sliding surface 11 side of the stationary sealing ring 10.

また、側板部16は、隣り合う厚板部14同士の外径側の部位を連結しており、隣り合う厚板部14同士の間の空間である切欠溝13が被密封液体F側の空間に連通しないので、切欠溝13と被密封液体Fとの圧力差を大きく確保することができ、薄板部15の回転密封環20側への膨出を確実に行うことができる。 Further, the side plate portion 16 connects the outer diameter side portions of the adjacent thick plate portions 14, and the notch groove 13, which is the space between the adjacent thick plate portions 14, is the space on the side of the liquid to be sealed F. Since the notched groove 13 and the sealed liquid F do not communicate with each other, a large pressure difference between the notch groove 13 and the sealed liquid F can be ensured, and the expansion of the thin plate portion 15 toward the rotary sealing ring 20 can be performed reliably.

また、薄板部15の軸方向の厚み寸法L4は、厚板部14の軸方向の厚み寸法L5に比べて薄いため、静止密封環10の縮径に追従して薄板部15を応答性高く膨出させることができる。 Further, since the axial thickness L4 of the thin plate portion 15 is thinner than the axial thickness L5 of the thick plate portion 14, the thin plate portion 15 expands with high responsiveness following the diameter reduction of the stationary sealing ring 10. You can make it come out.

また、側板部16の厚み寸法L6及び側板部18の厚み寸法L8は、厚板部14の径方向の厚み寸法L7に比べて薄いため、静止密封環10の縮径に追従して側板部16及び側板部18を応答性高く変形させることができる。 Furthermore, since the thickness L6 of the side plate 16 and the thickness L8 of the side plate 18 are thinner than the radial thickness L7 of the thick plate 14, the side plate 16 follows the diameter reduction of the stationary sealing ring 10. And the side plate portion 18 can be deformed with high responsiveness.

また、薄板部15よりも構造強度の高い厚板部14の周方向内径側の部位の寸法L2が、切欠溝13の周方向の寸法L10よりも長いので、静止密封環10の強度を確保できるとともに、薄板部15の周方向の長さが短いため、静止密封環10が縮径したときに変形する箇所が局所的となり、集中するため、回転密封環20への膨出量を大きくとることができる。 Further, since the dimension L2 of the circumferential inner diameter side portion of the thick plate portion 14, which has higher structural strength than the thin plate portion 15, is longer than the circumferential dimension L10 of the notch groove 13, the strength of the stationary sealing ring 10 can be ensured. In addition, since the length of the thin plate portion 15 in the circumferential direction is short, when the stationary sealing ring 10 contracts in diameter, the deformation occurs locally and concentrates, so the amount of bulge toward the rotating sealing ring 20 must be large. I can do it.

また、薄板部15において、厚板部14と薄板部15とが周方向に等配されており、摺動面11に等配して凹凸を形成することができるので、静止密封環10と回転密封環20との摺動性をより向上させることができる。 Further, in the thin plate part 15, the thick plate part 14 and the thin plate part 15 are equally distributed in the circumferential direction, and can form unevenness evenly on the sliding surface 11, so that the static sealing ring 10 and the rotating The slidability with the sealing ring 20 can be further improved.

また、薄板部15および厚板部14の摺動面11側には軸方向に突出したノーズ部12が周方向に亘って環状に設けられている。これによると、ノーズ部12により静止密封環10の強度が向上するので、薄板部15を薄く形成することができる。 Further, on the sliding surface 11 side of the thin plate portion 15 and the thick plate portion 14, a nose portion 12 protruding in the axial direction is provided in an annular shape over the circumferential direction. According to this, the strength of the stationary sealing ring 10 is improved by the nose portion 12, so that the thin plate portion 15 can be formed thin.

また、ノーズ部12は、側板部16よりも内径側に寄せて配置されており、薄板部15の軸方向への膨出をノーズ部12に好適に伝達できる。 Further, the nose portion 12 is disposed closer to the inner diameter side than the side plate portion 16, and the bulge of the thin plate portion 15 in the axial direction can be suitably transmitted to the nose portion 12.

また、静止密封環10は、厚板部14、薄板部15、側板部16、側板部18、ノーズ部12が一体形成されているので、各部位が別素材や別部材で形成されている静止密封環に比べて、薄板部15及び側板部16を確実に変形させることができる。また、環状の部材に切欠溝13を切欠き形成すればよいので、静止密封環10を加工しやすい。 In addition, the stationary sealing ring 10 has a thick plate part 14, a thin plate part 15, a side plate part 16, a side plate part 18, and a nose part 12 that are integrally formed. Compared to a sealing ring, the thin plate part 15 and the side plate part 16 can be deformed more reliably. Moreover, since the notch groove 13 can be formed by cutting out the annular member, the stationary sealing ring 10 can be easily processed.

次に、実施例2に係るメカニカルシールにつき、図9を参照して説明する。尚、前記実施例と同一構成で重複する構成の説明を省略する。 Next, a mechanical seal according to Example 2 will be described with reference to FIG. 9. Note that explanations of the same and overlapping configurations as those of the previous embodiment will be omitted.

図9に示されるように、実施例2における静止密封環100は、薄板部151の内径側から第1の側板部としての側板部161が軸方向に延びて隣り合う厚板部141同士の内径側の部位を連結するように形成されており、薄板部151の外径側から第2の側板部としての側板部181が軸方向に延びて隣り合う厚板部141同士の外径側の部位を連結するように形成されている。また、静止密封環100がハウジング4及びシールカバー5に取付けられた状態にあっては、ハウジング4に形成された凹溝4a’に配置された二次シール6が静止密封環100の背面側における内径側の端面に圧接されており、被密封液体Fは、摺動面111の内径側に配置されている。すなわち、静止密封環100の内周面、具体的には厚板部141、薄板部151、側板部161、及びノーズ部121の内周面は、内径から外径に向けて被密封液体Fの圧力を受ける受圧部171となっている。 As shown in FIG. 9, in the stationary sealing ring 100 according to the second embodiment, a side plate part 161 as a first side plate part extends in the axial direction from the inner diameter side of the thin plate part 151, and the inner diameter of the adjacent thick plate parts 141 is The side plate portion 181 as a second side plate portion extends in the axial direction from the outer diameter side of the thin plate portion 151 to connect the outer diameter side portions of the adjacent thick plate portions 141. It is formed to connect. Further, when the stationary seal ring 100 is attached to the housing 4 and the seal cover 5, the secondary seal 6 disposed in the groove 4a' formed in the housing 4 is attached to the back side of the stationary seal ring 100. It is in pressure contact with the end face on the inner diameter side, and the liquid to be sealed F is arranged on the inner diameter side of the sliding surface 111. That is, the inner circumferential surface of the stationary sealing ring 100, specifically the inner circumferential surfaces of the thick plate part 141, thin plate part 151, side plate part 161, and nose part 121, are arranged so that the sealed liquid F flows from the inner diameter toward the outer diameter. It serves as a pressure receiving part 171 that receives pressure.

図9(b)(c)に示されるように、静止密封環100の受圧部171が被密封液体Fの圧力を受けると、静止密封環100が外径側に変形して、各厚板部141が互いに遠ざかるように外径方向に移動し、これにより厚板部141よりも薄い薄板部151を背面側に収縮させることができるようになっている。 As shown in FIGS. 9(b) and 9(c), when the pressure receiving part 171 of the stationary seal ring 100 receives the pressure of the liquid to be sealed F, the stationary seal ring 100 deforms toward the outer diameter side, and each thick plate part 141 move in the outer radial direction so as to move away from each other, thereby making it possible to contract the thin plate part 151, which is thinner than the thick plate part 141, toward the back side.

以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。 Although the embodiments of the present invention have been described above with reference to the drawings, the specific configuration is not limited to these embodiments, and any changes or additions that do not depart from the gist of the present invention are included in the present invention. It will be done.

前記実施例では、切欠溝13の周方向の寸法L10が厚板部14の周方向内径側の部位の寸法L2よりも短く形成されている形態を例示したが、切欠溝は厚板部の周方向よりも長く形成されていてもよい。この場合、静止密封環が縮径されたときに摺動面間に生じる凹部の周方向の寸法を大きく取ることができる。 In the embodiment described above, the circumferential dimension L10 of the notch groove 13 is shorter than the dimension L2 of the circumferential inner diameter side of the thick plate part 14. It may be formed longer than the direction. In this case, the circumferential dimension of the recess formed between the sliding surfaces when the stationary sealing ring is reduced in diameter can be increased.

また、前記実施例では、厚板部14が周方向に等配されている形態を例示されたが、厚板部の周方向の長さや数量は自由に変更することができる。 Further, in the above embodiment, the thick plate portions 14 are arranged equally in the circumferential direction, but the circumferential length and number of the thick plate portions can be freely changed.

また、前記実施例では、静止密封環10に切欠溝13が形成されている形態を例示したが、回転密封環20に切欠溝13が形成されていてもよいし、両方に切欠溝13が形成されていてもよい。 Further, in the above embodiment, the notch groove 13 is formed in the stationary sealing ring 10, but the notch groove 13 may be formed in the rotating sealing ring 20, or the notch groove 13 is formed in both. may have been done.

また、前記実施例では、被密封流体が液体である形態を例示したが、被密封流体は、気体であってもよいし、液体と気体が混合したミスト状であってもよい。 Furthermore, in the above embodiments, the fluid to be sealed is a liquid, but the fluid to be sealed may be a gas, or may be a mist mixture of a liquid and a gas.

また、前記実施例では、二次シール部材が静止密封環の背面側に配設される形態を例示したが、これに限られず、例えば、静止密封環の外径側に配置されていてもよい。つまり、側板部の被密封流体側の面、例えば実施例1では側板部16の外周面に高い圧力がかかる状態であればよい。 Further, in the above embodiment, the secondary seal member is arranged on the back side of the stationary sealing ring, but the secondary sealing member is not limited to this, and may be arranged on the outer diameter side of the stationary sealing ring, for example. . That is, it is sufficient if high pressure is applied to the surface of the side plate portion on the sealed fluid side, for example, the outer peripheral surface of the side plate portion 16 in the first embodiment.

また、前記実施例では、大気A側に設けられる第2の側板部は、被密封液体F側に設けられる第1の側板部よりも薄く形成されている形態を例示したが、これに限られない。また、第1の側板部よりも第2の側板部の構造強度が低くなっていることが好ましい。例えば、第2の側板部を第1の側板部よりも構造強度の低い部材で構成すれば、第2の側板部の厚みが第1の側板部の厚みと同等以上であってもよい。 Further, in the above embodiment, the second side plate provided on the atmosphere A side is thinner than the first side plate provided on the sealed liquid F side, but the present invention is not limited to this. do not have. Moreover, it is preferable that the structural strength of the second side plate part is lower than that of the first side plate part. For example, if the second side plate is made of a member having lower structural strength than the first side plate, the thickness of the second side plate may be equal to or greater than the thickness of the first side plate.

1 メカニカルシール
3 回転軸
4 ハウジング(カバー部材)
6 二次シール(二次シール部材)
7 凹部
8 凸部
10 静止密封環(一方の密封環)
11 摺動面
12 ノーズ部
13 切欠溝(溝部)
14 厚板部(肉厚部)
15 薄板部
17 受圧部
20 回転密封環(他方の密封環)
21 摺動面
100 静止密封環
121 ノーズ部
200 静止密封環
215 薄板部
231 切欠溝
241 厚板部(肉厚部)
300 静止密封環
315 薄板部
331 切欠溝
341 厚板部(肉厚部)
400 静止密封環
415 薄板部
431 切欠溝
441 厚板部(肉厚部)
A 大気
F 被密封液体(被密封流体)
1 Mechanical seal 3 Rotating shaft 4 Housing (cover member)
6 Secondary seal (secondary seal member)
7 Concave portion 8 Convex portion 10 Stationary sealing ring (one sealing ring)
11 Sliding surface 12 Nose part 13 Notch groove (groove part)
14 Thick plate part (thick part)
15 Thin plate part 17 Pressure receiving part 20 Rotating sealing ring (other sealing ring)
21 Sliding surface 100 Stationary sealing ring 121 Nose section 200 Stationary sealing ring 215 Thin plate section 231 Notch groove 241 Thick plate section (thick wall section)
300 Stationary sealing ring 315 Thin plate part 331 Notch groove 341 Thick plate part (thick part)
400 Stationary sealing ring 415 Thin plate part 431 Notch groove 441 Thick plate part (thick part)
A Atmosphere F Sealed liquid (sealed fluid)

Claims (6)

互いに相対摺動する摺動面を備える一対の密封環を有し、被密封流体を封止するメカニカルシールであって、
前記一対の密封環の外径側及び内径側のうち一方が被密封流体側であり、他方が漏れ側であり、
一方の密封環は、径方向漏れ側周方向に離間しかつ少なくとも背面側に開口する複数の切欠溝が配置されており、
前記切欠溝は、径方向被密封流体側に配置される第1の側板部と、前記第1の側板部から径方向漏れ側に離間する第2の側板部によって区画されており、
前記切欠溝と前記被密封流体側の空間との間には、環状の二次シール部材が配置されており、
前記二次シール部材は、前記第1の側板部の背面側端面に配置されているメカニカルシール。
A mechanical seal having a pair of sealing rings having sliding surfaces that slide relative to each other and sealing a fluid to be sealed,
One of the outer diameter side and inner diameter side of the pair of sealing rings is a sealed fluid side, and the other is a leakage side,
One of the sealing rings has a plurality of notched grooves arranged on the radial leakage side and spaced apart in the circumferential direction and opening at least on the back side,
The notch groove is defined by a first side plate portion disposed on the sealed fluid side in the radial direction , and a second side plate portion spaced apart from the first side plate portion on the leakage side in the radial direction ,
An annular secondary seal member is disposed between the notch groove and the space on the sealed fluid side ,
The secondary seal member is a mechanical seal disposed on the rear end surface of the first side plate portion .
前記切欠溝の開口は、カバー部材によって覆われている請求項1に記載のメカニカルシール。 The mechanical seal according to claim 1, wherein the opening of the notch groove is covered with a cover member. 前記第2の側板部は、前記第1の側板部よりも薄く形成されている請求項1または2に記載のメカニカルシール。 The mechanical seal according to claim 1 or 2, wherein the second side plate portion is formed thinner than the first side plate portion. 前記切欠溝は、前記一方の密封環の径方向断面における仮想重心よりも前記摺動面側まで延びる形状である請求項1ないし3のいずれかに記載のメカニカルシール。 The mechanical seal according to any one of claims 1 to 3, wherein the notched groove has a shape extending to the sliding surface side from a virtual center of gravity in a radial cross section of the one sealing ring. 各前記切欠溝は、前記一方の密封環の中心から放射状に延びる基準面を基準として周方向に面対称を成している請求項1ないし4のいずれかに記載のメカニカルシール。 5. The mechanical seal according to claim 1, wherein each of the notch grooves is symmetrical in the circumferential direction with respect to a reference plane extending radially from the center of the one sealing ring. 前記一方の密封環は一体形成されていている請求項1ないし5のいずれかに記載のメカニカルシール。 6. The mechanical seal according to claim 1, wherein said one sealing ring is integrally formed.
JP2019222537A 2019-12-09 2019-12-09 mechanical seal Active JP7350449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019222537A JP7350449B2 (en) 2019-12-09 2019-12-09 mechanical seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019222537A JP7350449B2 (en) 2019-12-09 2019-12-09 mechanical seal

Publications (2)

Publication Number Publication Date
JP2021092260A JP2021092260A (en) 2021-06-17
JP7350449B2 true JP7350449B2 (en) 2023-09-26

Family

ID=76312066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019222537A Active JP7350449B2 (en) 2019-12-09 2019-12-09 mechanical seal

Country Status (1)

Country Link
JP (1) JP7350449B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079634A (en) 2007-09-25 2009-04-16 Nippon Pillar Packing Co Ltd Non-contact type mechanical seal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3213378C2 (en) * 1982-04-10 1984-10-11 Pacific Wietz Gmbh + Co Kg, 4600 Dortmund Multi-layer sliding body and process for its manufacture
JPH0231636Y2 (en) * 1986-10-09 1990-08-27
JP3188156B2 (en) * 1995-08-31 2001-07-16 三菱重工業株式会社 Shaft sealing device for rotating machinery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079634A (en) 2007-09-25 2009-04-16 Nippon Pillar Packing Co Ltd Non-contact type mechanical seal

Also Published As

Publication number Publication date
JP2021092260A (en) 2021-06-17

Similar Documents

Publication Publication Date Title
JP7179430B2 (en) sliding parts
JP6861730B2 (en) Sliding parts
JP7242658B2 (en) Seal ring
KR102420417B1 (en) sliding parts
JP7210565B2 (en) Seal ring
JPWO2016148006A1 (en) Seal ring
JP2007107547A (en) Seal ring
JP6795586B2 (en) mechanical seal
JP2020046077A (en) Seal ring
JP7350449B2 (en) mechanical seal
CN114321389B (en) Balance type piston ring sealing device
JP7350446B2 (en) mechanical seal
JP7350447B2 (en) mechanical seal
JP2010084802A (en) Rotary seal
WO2020166590A1 (en) Sliding component
JP7353721B2 (en) Secondary seal for mechanical seals
JP7350448B2 (en) mechanical seal
CN210178928U (en) Floating sealing pair
JP2009097607A (en) Oil seal
WO2018155315A1 (en) Seal device
JP6170271B2 (en) Seal ring
WO2023286590A1 (en) Sliding components
JP7353726B2 (en) sliding parts
JP2015007433A (en) Sealing device and sealing structure
GB2477141A (en) A gas turbine including multiple sealing ring packs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230601

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230912

R150 Certificate of patent or registration of utility model

Ref document number: 7350449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150