JP2021161974A - 燃料噴射制御装置 - Google Patents

燃料噴射制御装置 Download PDF

Info

Publication number
JP2021161974A
JP2021161974A JP2020065398A JP2020065398A JP2021161974A JP 2021161974 A JP2021161974 A JP 2021161974A JP 2020065398 A JP2020065398 A JP 2020065398A JP 2020065398 A JP2020065398 A JP 2020065398A JP 2021161974 A JP2021161974 A JP 2021161974A
Authority
JP
Japan
Prior art keywords
injection
fuel
mode
target value
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020065398A
Other languages
English (en)
Inventor
昌俊 中島
Masatoshi Nakajima
雅大 武内
Masahiro Takeuchi
秀一 廣信
Shuichi Hironobu
大樹 山▲崎▼
Daiki Yamazaki
信彰 伊東
Nobuaki Ito
隆一 畑
Ryuichi Hata
泰規 新見
Yasuki Niimi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2020065398A priority Critical patent/JP2021161974A/ja
Priority to CN202110328614.2A priority patent/CN113464294B/zh
Priority to US17/215,269 priority patent/US11306677B2/en
Publication of JP2021161974A publication Critical patent/JP2021161974A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • F02D41/126Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off transitional corrections at the end of the cut-off period
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3076Controlling fuel injection according to or using specific or several modes of combustion with special conditions for selecting a mode of combustion, e.g. for starting, for diagnosing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/12Timing of calculation, i.e. specific timing aspects when calculation or updating of engine parameter is performed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/025Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/027Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using knock sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3064Controlling fuel injection according to or using specific or several modes of combustion with special control during transition between modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

【課題】演算遅れに拘わらず、燃料カットからの復帰条件が成立した場合に燃料カットからの復帰を早期に実現する。
【解決手段】燃料噴射制御装置100は、モード切換指令部312により燃料カットからの復帰が指令されたとき、目標値演算部311により演算された噴射目標値に応じた燃料の噴射が噴射可能領域内に可能であるか否かを判定する噴射可否判定部313と、目標値演算部311により演算された噴射目標値に含まれる目標噴射回数が複数回であるとき、噴射可否判定部313により噴射目標値に応じた燃料の噴射が不可能と判定されると、目標噴射回数を減少して噴射目標値を修正する目標値修正部314と、目標値修正部314により噴射目標値が修正されると、修正後の噴射目標値に応じてインジェクタ12が燃料を噴射するようにインジェクタ12を制御するインジェクタ制御部305を備える。
【選択図】図10

Description

本発明は、直噴式内燃機関の燃料噴射を制御する燃料噴射制御装置に関する。
この種の装置として、従来、吸気行程で燃料を噴射する場合に、噴射に係る演算処理の負荷を考慮して、吸気行程で燃料噴射時間を演算するだけでなく、予め排気行程で燃料の噴射時間の演算を行って、燃料噴射を開始するようにした装置が知られている(例えば特許文献1参照)。
特開2019−152144号公報
しかしながら、車両走行中に所定の燃料カット条件が成立すると燃料の噴射を停止する機能を有する装置において、例えば吸気行程で燃料カットからの復帰条件が成立して燃料噴射が再開される場合に、吸気行程で噴射を行うことが困難な場合があり、その結果、燃料カットからの復帰のタイミングが遅れる。
本発明の一態様は、シリンダの内部を往復動するピストンと、ピストンに面したシリンダ内の燃焼室に燃料を噴射する燃料噴射部と、を有する内燃機関における燃料噴射制御装置であって、内燃機関の運転状態に基づいて、クランク角の噴射可能領域内における1燃焼サイクル当たりの目標噴射量と目標噴射時期と目標噴射回数とを含む噴射目標値を演算する目標値演算部と、目標値演算部により演算された噴射目標値に応じて燃料噴射部が燃料を噴射するように燃料噴射部を制御する噴射制御部と、燃焼室に燃料が噴射される第1モードから燃焼室への燃料の噴射が停止される第2モードへの切換、および第2モードから第1モードへの切換を指令するモード切換指令部と、モード切換指令部により第2モードから第1モードへの切換が指令されたとき、目標値演算部により演算された噴射目標値に応じた燃料の噴射が前記噴射可能領域内に可能であるか否かを判定する噴射可否判定部と、目標値演算部により演算された噴射目標値に含まれる目標噴射回数が複数回であるとき、噴射可否判定部により噴射目標値に応じた燃料の噴射が不可能と判定されると、目標噴射回数を減少して噴射目標値を修正する目標値修正部と、を備える。噴射制御部は、目標値修正部により噴射目標値が修正されると、修正後の噴射目標値に応じて燃料噴射部が燃料を噴射するように燃料噴射部を制御する。
本発明によれば、燃料カットからの復帰条件が成立した場合に燃料カットからの復帰を早期に実現することができる。
本発明の実施形態に係る燃料噴射制御装置が適用されるエンジンが搭載されたハイブリッド車両の走行駆動部の構成を概略的に示す図。 図1のエンジンの要部構成を概略的に示す図。 本発明の実施形態に係る燃料噴射制御装置が適用される内燃機関の制御装置の要部構成を示すブロック図。 図3の内燃機関の制御装置による噴射モードの遷移の一例を示す図。 図4の付着低減モードに対応した噴射マップの一例を示す図。 図3の状態判定部の機能的構成を示すブロック図。 図3のコントローラで実行される処理の一例を示すフローチャート。 吸気行程で燃料を噴射する場合の目標噴射量の演算時期の一例を示す図。 吸気行程で燃料を噴射する場合の目標噴射量の演算時期の他の例を示す図。 燃料カットからの復帰後に吸気行程で燃料を噴射する場合の目標噴射量の演算時期の一例を示す図。 本発明の実施形態に係る燃料噴射制御装置の要部構成を示すブロック図。 図10のコントローラで実行される処理の一例を示すフローチャート。 本実施形態に係る燃料噴射制御装置による動作の一例を示す図。
以下、図1〜図12を参照して本発明の一実施形態について説明する。本発明の実施形態に係る燃料噴射制御装置は、内燃機関としての直噴式のガソリンエンジンに適用される。このエンジンは、車両、すなわち、エンジンのみを駆動源として走行するエンジン車およびエンジンとモータとを駆動源として走行するハイブリッド車両に搭載される。以下では、特に、燃料噴射制御装置を有するエンジンがハイブリッド車両に搭載される例を説明する。
図1は、本発明の実施形態に係る燃料噴射制御装置を有するエンジンが搭載されるハイブリッド車両の走行駆動部の構成を概略的に示す図である。図1に示すように、エンジン(ENG)1の出力軸1aには第1モータジェネレータ(MG1)2が接続され、駆動輪4の回転軸4aには第2モータジェネレータ(MG2)3が接続される。第1モータジェネレータ2は、主に、エンジン1により駆動されて電力を発生する発電機として機能し、第1モータジェネレータ2から発生した電力は、図示しないインバータを介してバッテリ(BAT)5に蓄電される。第2モータジェネレータ3は、主に、図示しないインバータを介してバッテリ5から供給される電力によって駆動する走行用モータとして機能する。
エンジン1の出力軸1aと駆動輪4の回転軸4aとの間にはクラッチ6が介装され、出力軸1aと回転軸4aとは、クラッチ6を介して連結または遮断される。出力軸1aと回転軸4aとが遮断されると、車両は第2モータジェネレータ3の動力のみによって走行する(EV走行)。出力軸1aと回転軸4aとがクラッチ6を介して連結されると、車両はエンジン1の動力のみによって走行(エンジン走行)またはエンジン1と第2モータジェネレータ3の動力によって走行する(ハイブリッド走行)。すなわち、車両は、EV走行を行うEVモード、エンジン走行を行うエンジンモード、およびハイブリッド走行を行うハイブリッドモードに、走行モードを変更することができる。
図2は、エンジン1の要部構成を概略的に示す図である。エンジン1は、車両の減速走行時等に複数の気筒への燃料供給を停止する燃料カット機能を有する火花点火式の内燃機関であり、動作周期の間に吸気、圧縮、膨張および排気の4つの行程を経る4ストロークエンジンである。4つの行程全体を、便宜上、燃焼行程の1サイクルまたは単に1サイクルと称する。例えば吸気行程の開始から排気行程の終了まで、あるいは排気行程の開始から膨張行程の終了までを、1サイクルと称する。エンジン1は4気筒、6気筒、8気筒等、複数の気筒を有するが、図2には、単一の気筒の構成を示す。なお、各気筒の構成は互いに同一である。
図2に示すように、エンジン1は、シリンダブロック101に形成されたシリンダ102と、シリンダ102の内部に摺動可能に配置されたピストン103と、ピストン103の冠面(ピストン冠面)103aとシリンダヘッド104との間に形成された燃焼室105と、を有する。ピストン冠面103aには、例えばシリンダ内のタンブル流に沿うように凹部103bが形成される。ピストン103は、コンロッド106を介してクランクシャフト107に連結され、シリンダ102の内壁に沿ってピストン103が往復動することにより、クランクシャフト107(図1の出力軸1a)が回転する。
シリンダヘッド104には、吸気ポート111と排気ポート112とが設けられる。燃焼室105には、吸気ポート111を介して吸気通路113が連通する一方、排気ポート112を介して排気通路114が連通する。吸気ポート111は吸気バルブ115により開閉され、排気ポート112は排気バルブ116により開閉される。吸気バルブ115の上流側の吸気通路113には、スロットルバルブ119が設けられる。スロットルバルブ119は、例えばバタフライ弁により構成され、スロットルバルブ119により燃焼室105への吸入空気量が調整される。吸気バルブ115と排気バルブ116とは動弁機構120により開閉駆動される。
シリンダヘッド104には、それぞれ燃焼室105に臨むように点火プラグ11および直噴式のインジェクタ12が装着される。点火プラグ11は、吸気ポート111と排気ポート112との間に配置され、電気エネルギーにより火花を発生し、燃焼室105内の燃料と空気との混合気を点火する。
インジェクタ12は、吸気バルブ115の近傍に配置される。インジェクタ12は、電磁アクチュエータやピエゾアクチュエータ等の駆動部を有し、電気エネルギーにより駆動されて燃料を噴射する。より詳しくは、インジェクタ12には、燃料ポンプを介して燃料タンクから高圧の燃料が供給される。インジェクタ12は、燃料を高微粒子化して、燃焼室105内に所定のタイミングで斜め下方に向けて燃料を噴射する。なお、インジェクタ12の配置はこれに限らず、例えば点火プラグ11の近傍に配置することもできる。
動弁機構120は、吸気カムシャフト121と排気カムシャフト122とを有する。吸気カムシャフト121は、各気筒(シリンダ102)にそれぞれ対応した吸気カム121aを一体に有し、排気カムシャフト122は、各気筒にそれぞれ対応した排気カム122aを一体に有する。吸気カムシャフト121と排気カムシャフト122とは、不図示のタイミングベルトを介してクランクシャフト107に連結され、クランクシャフト107が2回転する度にそれぞれ1回転する。
吸気バルブ115は、吸気カムシャフト121の回転により、不図示の吸気ロッカーアームを介して、吸気カム121aのプロファイルに応じた所定のタイミングで開閉する。排気バルブ116は、排気カムシャフト122の回転により、不図示の排気ロッカーアームを介して、排気カム122aのプロファイルに応じた所定のタイミングで開閉する。
排気通路114には、排気ガスを浄化するための触媒装置13が介装される。触媒装置13は、排ガス中に含まれるHC、CO、NOxを酸化・還元作用によって除去・浄化する機能を有する三元触媒である。なお、排ガス中のCO、HCの酸化を行う酸化触媒等、他の触媒装置を用いることもできる。触媒装置13に含まれる触媒の温度が高くなると触媒が活性化し、触媒装置13による排ガスの浄化作用が高まる。
エンジン1は、燃費の向上を目的として、エンジン走行時に所定の燃料カット条件が成立するとインジェクタ12からの燃料噴射を停止する燃料カット機能(フューエルカット機能)を有する。すなわち、燃料カット条件が成立すると、燃料カットモード(F/Cモードと呼ぶ)に移行して燃料噴射が停止される。燃料カット条件は、例えばアクセルペダルの操作量(アクセル開度)が所定値以下で、かつ、クランクシャフト107の回転数(エンジン回転数)が所定値以上で、かつ、車速が所定値以上の状態が検出されると、成立する。例えば減速走行時に燃料カット条件が成立する。F/Cモードでは、燃焼室105内への吸気が継続される。
さらにエンジン1は、燃費の向上を目的として、所定のアイドリングストップ条件が成立するとインジェクタ12からの燃料噴射を停止するアイドリングストップ機能を有する。すなわち、アイドリングストップ条件が成立するアイドリングストップモード(I/Sモードと呼ぶ)に移行して燃料噴射が停止される。アイドリングストップ条件は、例えば停車時等、車速が所定車速以下で、かつ、アクセルペダルが非操作で、かつ、ブレーキペダルの操作が検出されると成立する。I/Sモードではエンジン1の稼働が停止しており、EV走行のときと同様、燃焼室105内への吸気が停止する。
図示は省略するが、エンジン1は、排気ガスの一部を吸気系に還流する排気ガス再循環装置、ブローバイガスを吸気系に戻して再燃焼させるブローバイガス還元装置、および燃料タンク内で蒸発した燃料ガスの吸気系への供給を制御するパージ制御装置などを有する。排気ガス再循環装置には、動弁機構120の制御によって排気ガスを燃焼室105で再循環させる内部EGRと、排気通路114からの排気ガスの一部を、EGR通路およびEGRバルブを介して吸気系に導く外部EGRとが含まれる。パージ制御装置は、燃料タンク内で蒸発した燃料ガスを吸気系に導くパージ通路、パージ通路の途中に設けられ、パージ通路を通過するガスの流れを制御するパージバルブと、を有する。なお、エンジン1は、過給機を備えることもできる。
以上のように構成されたエンジン1は、内燃機関の制御装置により制御される。図3は、内燃機関の制御装置の要部構成を示すブロック図である。図3に示すように、内燃機関の制御装置は、エンジン制御用のコントローラ30を中心として構成され、コントローラ30に接続された各種のセンサやアクチュエータなどを有する。具体的には、コントローラ30には、クランク角センサ31と、アクセル開度センサ32と、水温センサ33と、吸気量センサ34と、AFセンサ35と、点火プラグ11と、インジェクタ12とが接続される。
クランク角センサ31は、クランクシャフト107に設けられ、クランクシャフト107が所定回転角度(例えば30°)回転する度にパルス信号を出力するように構成される。コントローラ30は、クランク角センサ31からのパルス信号に基づいて、ピストン103の吸気行程開始時の上死点TDCの位置を基準としたクランクシャフト107の回転角度(クランク角)を特定するとともに、エンジン回転数を算出する。
アクセル開度センサ32は、車両の図示しないアクセルペダルに設けられ、アクセルペダルの操作量(アクセル開度)を検出する。アクセル開度センサ32の検出値に応じてエンジン1の目標トルクが指令される。水温センサ33は、エンジン1を冷却するためのエンジン冷却水が流れる経路に設けられ、エンジン冷却水の温度(冷却水温)を検出する。吸気量センサ34は、吸入空気量を検出するセンサであり、例えば吸気通路113(より具体的にはスロットルバルブの上流)に配置されたエアフロメータにより構成される。AFセンサ35は、触媒装置13の上流の排気通路114に設けられ、排気通路114における排気ガスの空燃比を検出する。なお、図示は省略するが、コントローラ30には、吸気圧センサ、大気圧センサ、吸気温センサ等、上述した以外に種々のセンサが接続される。
コントローラ30は、電子制御ユニット(ECU)により構成され、CPU等の演算部と、ROM,RAM等の記憶部と、その他の周辺回路とを有するコンピュータを含んで構成される。コントローラ30は、機能的構成として、噴射モード切換部301と、温度情報取得部302と、状態判定部303と、点火制御部304と、インジェクタ制御部305とを有する。
噴射モード切換部301は、エンジン1の運転状態に応じて噴射モードを切り換える。図4は、例えばイグニッションスイッチのオンによりエンジン1の稼働が開始(スタート)されてから、イグニッションスイッチのオフによりエンジン1の稼働が停止(エンド)されるまでの間における、噴射モードの遷移の一例を示す図である。図4に示すように、噴射モードは、始動モードM1と、触媒暖機モードM2と、付着低減モードM3と、均質向上モードM4と、ノック抑制モードM5と、燃料停止モードM6とを含む。均質向上モードM4とノック抑制モードM5とは、ピストン温度(筒内温度)が高い高筒内温度状態であり、均質向上モードM4とノック抑制モードM5とをまとめて高筒内温度モードM7と呼ぶ。
図中の燃料停止モード以外の各モードM1〜M5には、吸気行程の開始(吸気上死点TDC)から圧縮行程の終了(圧縮上死点TDC)までの区間のクランク角を、吸気上死点TDCを起点とした時計周りの円の角度によって示すとともに、燃料噴射のタイミングを、円の中心から放射状に延びる扇形のハッチングによって示す。吸気行程は、クランク角が0°以上180°以下の範囲であり、圧縮行程は、クランク角が180°以上360以下の範囲である。なお、クランク角が0°以上90°以下の範囲を吸気行程前半、90°以上180°以下の範囲を吸気行程後半、180°以上270°以下の範囲を圧縮行程前半、270°以上360°以下の範囲を圧縮行程後半と呼ぶことがある。
始動モードM1は、エンジン1を始動するためのモードであり、イグニッションスイッチのオン直後またはEVモードやI/Sモードからの復帰時に実行される。始動モードM1では、エンジン1のクランキング後に、図示のように圧縮行程前半で2回に分けて、すなわち圧縮2段で燃料が噴射されて混合気が生成される。この場合の1回当たりの噴射量は互いに等しい。圧縮行程で燃料を噴射することで、エンジン1の始動性を向上することができる。また、圧縮行程前半で燃料を多段噴射することで、1回当たりの燃料噴射量が抑えられる。その結果、ピストン冠面103aやシリンダ102の壁面への燃料の付着を抑えることができ、煤の発生を抑制することができる。
なお、始動性の向上と煤の抑制とを両立することができるのであれば、始動モードM1は、圧縮2段に限らず圧縮行程で1回の噴射(圧縮1段)、または吸気行程と圧縮行程とでそれぞれ噴射(吸圧多段)、吸気行程で1回または複数回の噴射等、他の噴射パターンの噴射であってもよい。始動モードM1が完了すると、触媒暖機モードM2、付着低減モードM3および高筒内温度モードM7(例えば均質向上モードM4)のいずれかの噴射モードに移行する。
触媒暖機モードM2は、触媒装置13の暖機を促進して触媒の早期活性化を実現するモードである。触媒暖機モードM2では、図示のように吸気行程で2回に分けて、すなわち吸気2段で燃料が噴射されて、混合気が生成される。この場合の1回当たりの噴射量は互いに等しい。さらに、触媒暖機モードM2では、点火プラグ11による点火時期が、最大トルクが得られる最適点火時期MBTよりもリタード(遅角)される。点火時期のリタードによって混合気を後燃えさせることで、目標トルクを発生するための燃焼室105への空気供給量が増加して燃料噴射量が増加し、これにより混合気の燃焼によって生じる熱量が増加して、触媒装置13を早期に暖機することができる。触媒暖機モードM2では、予めメモリに記憶された、エンジン回転数や吸入空気量に応じて変化することのない所定のタイミングで噴射が噴射される。
触媒暖機モードM2において吸気2段で燃料を噴射することで、混合気を均質化することができ、燃焼効率が高まり、エミッションの悪化を抑制することができる。なお、エミッションの悪化を抑制することができるのであれば、触媒暖機モードM2は、吸気2段に限らず吸気行程で1回の噴射(吸気1段)、または吸圧多段等、他の噴射パターンでの噴射であってもよい。触媒暖機モードM2が完了すると、付着低減モードM3または高筒内温度モードM7(例えば均質向上モードM4)に移行する。
付着低減モードM3は、ピストン温度が低温度のときに煤の低減を目的として実行される。付着低減モードM3では、吸気行程開始時の吸気上死点TDCおよび圧縮行程終了時の圧縮上死点TDCの近傍の所定の噴射禁止領域以外の領域、すなわちピストン冠面103aがインジェクタ12から離れる領域(噴射可能領域)で、燃料が噴射される。噴射禁止領域は、例えば吸気行程前半の一部またはほぼ全域と、圧縮行程後半の一部あるいはほぼ全域とに設定される。
より詳しくは、噴射禁止領域はエンジン回転数に応じて設定される。エンジン回転数が高いほど、吸気行程でピストン冠面103aがインジェクタ12から退避する速度および圧縮行程でピストン冠面103aがインジェクタ12に接近する速度が速い。このため、エンジン回転数が高いほど、吸気行程における噴射禁止領域が狭くなり(噴射禁止領域の終了が進角側に移動)、圧縮行程における噴射禁止領域が広くなる(噴射禁止領域の開始が遅角側に移動)。
噴射可能領域における燃料の噴射回数と噴射タイミングとは、予めメモリに記憶されたマップ、例えば図5に示すマップにより決定される。すなわち、図5に示すように、エンジン回転数Neと目標噴射量Qとに応じた最大出力トルクの特性f1に対応付けて、予め定められたマップにより決定され、1回〜4回の範囲で噴射回数が定められる。噴射回数が複数回であるときの1回当たりの噴射量は互いに等しい。なお、目標噴射量Qは、実空燃比が目標空燃比となるような値として算出され、吸入空気量に応じて定まる。このため、図5のマップを、図4の均質向上モードM4のマップと同様、エンジン回転数Neと吸入空気量Gのマップに書き換えることもできる。
ピストン冠面103aへの燃料の付着を抑えるためには、噴射回数を多くして1回当たりの噴射量を低減することが好ましい。しかし、インジェクタ12の仕様によってインジェクタ12の1回当たりの最小噴射量Qminが規定され、インジェクタ12は最小噴射量Qminを下回る量の噴射を行うことはできない(MinQ制約)。したがって、目標噴射量が少ない領域では、噴射回数は1回となり、目標噴射量Qの増加に伴い、噴射回数が2回、3回および4回へと徐々に増加する。
一方、噴射回数を増加するためには、インジェクタ12を高速で駆動する必要がある。そのため、例えばコントローラ30のインジェクタ駆動用の電気回路におけるコンデンサの充放電を短時間で繰り返す必要がある。この場合、エンジン回転数Neが高いほど、インジェクタ12の駆動速度を速める必要があり、コントローラ30の電気的な負荷が増大して、コントローラ30の発熱量が増大する。その結果、コントローラ30の熱的な制約(ECU熱制約)により、噴射回数が制限される。すなわち、エンジン回転数Neが小さい領域では、噴射回数が4回であるが、エンジン回転数Neの増加に伴い、噴射回数が3回、2回および1回と徐々に制限される。
以上より、例えばエンジン回転数Neが所定値N1未満かつ目標噴射量Qが所定値Q3以上の領域AR1で、噴射回数は4回(4段噴射)に設定される。エンジン回転数Neが所定値N2未満かつ目標噴射量Qが所定値Q2以上で、領域AR1を除く領域AR2で噴射回数は3回(3段噴射)に設定される。エンジン回転数Neが所定値N3未満かつ目標噴射量Qが所定値Q1以上で、領域AR1,AR2を除く領域AR3で噴射回数は2回(2段噴射)に設定される。エンジン回転数Neが所定値N3以上または目標噴射量Qが所定値Q1未満の領域AR4で、噴射回数は1回(単発噴射)に設定される。
なお、所定値N1〜N3には、N1<N2<N3の関係があり、所定値Q1〜Q3には、Q1<Q2<Q3の関係がある。所定値N1〜N3,Q1〜Q3は予め実験によって定められ、メモリに記憶される。付着低減モードM3での最大噴射回数は、インジェクタ12やコントローラ30等の仕様、およびインジェクタ12の取付位置などにより定まり、4回より少ない、または4回より多い場合がある。付着低減モードが完了すると、高筒内温度モードM7(例えば均質向上モードM4)または燃料停止モードM6に移行する。
均質向上モードM4は、燃費が最適となる噴射モードである。均質向上モードでは、予めメモリに記憶されたエンジン回転数Neと吸入空気量Gとに応じた制御マップに従い、吸気1段または吸気2段の燃料噴射が行われる。すなわち、図4に示すように、エンジン回転数Neが低く、かつ、吸入空気量Gが多い高負荷低回転の領域では、吸気2段で燃料が噴射され、エンジン回転数Neが高いまたは吸入空気量Gが低い領域では、吸気1段で燃料が噴射される。この場合の制御マップは、冷却水温に応じて変化する。なお、吸気2段の1回当たりの噴射量は互いに等しい。均質向上モードにおいて、吸気1段または吸気2段で燃料を噴射することで、燃焼室105内の混合気がタンブル流れによって均質化され、燃焼効率を高めることができる。
さらに均質向上モードM4では、主にエンジン回転数Neと吸入空気量Gとに応じて点火プラグ11の点火時期が制御される。具体的には、ノッキングが生じないまたは生じにくい領域では、圧縮上死点TDCよりも進角側の予めメモリに記憶された最適点火時期MBTに点火時期が制御される。一方、ノッキングが生じるまたは生じやすい領域、例えばエンジン回転数が低くかつ吸入空気量が多い高負荷低回転の領域では、ノッキングの発生を抑制するために、予めメモリに記憶された特性に従い点火時期が最適点火時期MBTよりもリタードされる。なお、ノッキングの発生を検出するノックセンサを設け、ノックセンサによりノッキングの発生が検出されると、点火時期をリタードするようにしてもよい。均質向上モードM4は、所定のノック抑制条件が成立すると、ノック抑制モードM5に切り換わる。
ノック抑制モードM5は、ノッキングの発生を抑制する噴射モードである。ノック抑制モードM5に移行すると、リタードされた点火時期がMBT側に戻される(進角される)とともに、吸気行程(例えば吸気行程前半)で1回かつ圧縮行程(例えば圧縮行程前半)で1回、燃料が噴射される(吸圧多段)。この場合、圧縮行程での噴射量は最小噴射量Qminであり、目標噴射量Qから最小噴射量Qminを減算した量が吸気行程で噴射される。圧縮行程で燃料を噴射することで、気化潜熱により燃焼室105内のエンドガス温度が低減される。
これにより、点火時期のリタード量を抑えつつ、ノッキングの発生を抑制することができる。したがって、点火時期をリタードさせて吸気行程のみで燃料噴射を行う場合に比べて、燃焼効率を高めることができる。ノック抑制モードが完了すると、すなわちノック抑制条件が不成立となると、均質向上モードに切り換わる。つまり、高筒内温度状態(高筒内温度モードM7)であるときには、ノック抑制条件の成否に応じて噴射モードが均質向上モードM4とノック抑制モードM5との間で切り換わる。
燃料停止モードM6は、燃料噴射が停止して燃焼室105内で燃焼が停止したときのモードであり、EVモード時、F/Cモード時およびI/Sモード時のいずれかにおいて、燃料停止モードM6に切り換わる。例えば付着低減モードM3で燃焼が停止すると、または高筒内温度モードM7で燃焼が停止すると、燃料停止モードM6に切り換わる。燃料停止モードM6が完了すると、噴射モードが始動モードM1、付着低減モードM3および高筒内温度モードM7のいずれかに切り換わる。
図3の温度情報取得部302は、シリンダ102内の温度情報を取得する。この温度情報は、シリンダ102内での燃料の付着に影響を及ぼす筒内温度の情報であり、ピストン冠面103aの温度に対応する。したがって、ピストン冠面103aの温度を精度よく検出可能なセンサを設けることができれば、温度情報取得部302は、そのセンサからの情報を取得すればよい。しかし、ピストン冠面103aは高温の燃焼室105に面してシリンダ102内を往復動するため、ピストン冠面103aの温度をセンサによって直接的に精度よく検出することは困難である。
一方、ピストン冠面103aの温度は、燃焼室105での燃焼のために燃焼室105内に供給された吸入空気量Gと相関関係を有する。すなわち、吸入空気量Gの積算量が多いほど、燃焼室105内で発生する熱量が増加するため、筒内温度に対応するピストン冠面103aの温度が上昇する。そこで、温度情報取得部302は、吸気量センサ34からの信号を取得するとともに、取得した信号に基づいて吸入空気量Gの積算量を算出する。
状態判定部303は、噴射モードの切換に関わるエンジン1の運転状態を判定する。図6は、状態判定部303の機能的構成を示すブロック図である。図6に示すように、状態判定部303は、始動判定部303Aと、触媒暖機判定部303Bと、筒内温度判定部303Cと、ノック判定部303Dと、燃料カット判定部303Eとを有する。
始動判定部303Aは、図4の始動モードM1で、エンジン1が始動を完了したか否かを判定する。具体的には、クランク角センサ31からの信号に基づいて算出されたクランキング後のエンジン回転数が、自力で回転を維持できる完爆回転数まで上昇した後、所定カウント値がカウントされたか否かにより、始動が完了したか否かを判定する。始動判定部303Aによりエンジン1の始動が完了したと判定されると、噴射モード切換部301は、始動モードM1から触媒暖機モードM2、付着低減モードM3または高筒内温度モードM7(例えば均質向上モードM4)に噴射モードを切り換える。
始動判定部303Aは、エンジン1の始動完了だけでなく、エンジン1の始動の要否も判定する。すなわち、図4の燃料停止モードM6で、EVモードからエンジンモードまたはハイブリッドモードへ走行モードを切り換える必要があるか否か、およびI/Sモードから復帰する必要があるか否かを判定する。始動判定部303Aによりエンジンモードへ切り換える必要がある、またはI/Sモードから復帰する必要があると判定されると、噴射モード切換部301は、噴射モードを燃料停止モードM6から始動モードM1に切り換える。
触媒暖機判定部303Bは、図4の触媒暖機モードM2で、触媒装置13の暖機(触媒暖機)が完了したか否かを判定する。この判定は、エンジン1の総仕事量が、触媒暖機に要する目標総仕事量に到達したか否かの判定である。目標総仕事量は、予め記憶された関係式や特性あるいはマップを用いて、エンジン1の始動時に水温センサ33により検出される冷却水温に応じて設定される。例えば冷却水温が低いと、エンジン1が暖機されていないため、触媒暖機に時間を要する。この点を考慮し、冷却水温が低いほど目標総仕事量が大きい値に設定される。
触媒暖機判定部303Bは、まず、水温センサ33からの信号に基づいて、冷却水温に対応したエンジン1の総仕事量を算出する。そして、総仕事量が目標総仕事量に達すると、触媒暖機が完了したと判定する。触媒暖機判定部303Bにより触媒暖機が完了したと判定されると、噴射モード切換部301は、触媒暖機モードM2から付着低減モードM3または高筒内温度モードM7(例えば均質向上モードM4)に噴射モードを切り換える。
触媒暖機判定部303Bは、図4の始動モードM1において、触媒暖機の要否も判定する。例えばEV走行からの復帰等で、冷却水温が高い場合には、目標総仕事量が0に設定され、触媒暖機が不要と判定する。この場合、噴射モード切換部301は、始動モードM1から付着低減モードM3または高筒内温度モードM7(例えば均質向上モードM4)に噴射モードを切り換える。一方、始動モードM1で目標総仕事量が0より大きい値に設定され、触媒暖機が必要と判定されると、噴射モード切換部301は、噴射モードを始動モードM1から触媒暖機モードM2に切り換える。
筒内温度判定部303Cは、温度情報取得部302により取得された吸入空気量Gの積算量に基づいて、筒内温度が所定値(例えば100℃)以上であるか否かを判定する。すなわち、筒内温度が所定値以上の高筒内温度であるか、それとも所定値未満の低筒内温度であるかを判定する。筒内温度判定部303Cは、図4の始動モードM1と、触媒暖機モードM2と、燃料停止モードM6とで、それぞれ筒内温度が高筒内温度であるか否かを判定する。
ノック判定部303Dは、図4の均質向上モードM4において、ノック抑制条件の成否を判定する。この判定は、ノッキングの発生を抑制するための点火時期のリタード量が所定値以上になったか否かの判定であり、ノッキングの発生を抑制する噴射モードへの切換の要否の判定である。ノッキングは、エンジン回転が高いときおよび冷却水温が低いときには生じにくい。この点を考慮し、ノック抑制条件は、最適点火時期MBTからの点火時期のリタード量が所定値以上、かつ、冷却水温が所定値以上、かつ、エンジン回転数が所定値以下のときに成立する。ノック判定部303Dによりノック抑制条件が成立したと判定されると、噴射モード切換部301は、噴射モードを均質向上モードM4からノック抑制モードM5に切り換える。
一方、ノック抑制モードM5において、ノック判定部303Dによりノック抑制条件が不成立と判定されると、噴射モード切換部301は、噴射モードをノック抑制モードM5から均質向上モードM4に切り換える。なお、均質向上モードM4を経ずに付着低減モードM3からノック抑制モードM5に噴射モードが切り換わることもある。すなわち、付着低減モードM3において、筒内温度判定部303Cにより高筒内温度と判定されると、ノック抑制モードM5に切り換わることもある。
燃料カット判定部303Eは、図4の触媒暖機モードM2、付着低減モードM3および高筒内温度モードM7において、燃料カットの要否を判定する。すなわち、EVモード、F/CモードまたはI/Sモードへの切換が必要か否かを判定する。燃料カット判定部303Eにより燃料カットが必要と判定されると、噴射モード切換部301は、触媒暖機モードM2、付着低減モードM3または高筒内温度モードM7から燃料停止モードM6に噴射モードを切り換える。
図3の点火制御部304は、点火時期が、予めメモリに記憶された、運転状態に応じたマップや特性に従った目標点火時期となるように、点火プラグ11に制御信号を出力する。例えば、触媒暖機モードM2では、点火時期が最適点火時期MBTよりもリタードするように点火プラグ11に制御信号を出力する。均質向上モードM4では、点火時期が最適点火時期MBTとなるように、またはノッキングの発生を抑制するためにリタードするように、点火プラグ11に制御信号を出力する。ノック抑制モードM5では、点火時期がリタードからMBT側に復帰(進角)するように点火プラグ11に制御信号を出力する。
インジェクタ制御部305は、AFセンサ35により検出された実空燃比が目標空燃比(例えば理論空燃比)となるようなフィードバック制御を行いながら、吸気量センサ34により検出された吸入空気量に応じて1サイクル当たりの目標噴射量を算出する。そして、図4の噴射モードに応じて1回当たりの目標噴射量(単位目標噴射量)を算出し、この単位目標噴射量をインジェクタ12が所定のタイミングで噴射するようにインジェクタ12に制御信号を出力する。
図7は、予めメモリに記憶されたプログラムに従いコントローラ30で実行される処理の一例、特に噴射モードの切換に係る処理の一例を示すフローチャートである。このフローチャートに示す処理は、例えばイグニッションスイッチのオンによりエンジン1の稼働開始が指令されると開始され、所定周期で繰り返される。なお、図7では、図4の燃料停止モードM6から他の噴射モードへの切換、および他の噴射モードから燃料停止モードM6への切換に係る処理についての記載を省略する。
図7に示すように、まず、ステップS1で、始動完了フラグが1であるか否かを判定する。始動完了フラグは初期時点では0であり、始動モードM1でエンジン1の始動が完了すると1に設定される。ステップS1で否定されるとステップS2に進み、肯定されるとステップS2〜ステップS4をパスしてステップS5に進む。ステップS2では、噴射モードを始動モードに切り換える。
次いで、ステップS3で、クランク角センサ31からの信号に基づいて、エンジン1の始動が完了したか否か、すなわちエンジン回転数が完爆回転数に到達したか否かを判定する。ステップS3で肯定されるとステップS4に進み、否定されるとステップS2に戻る。ステップS4では、始動完了フラグを1にセットする。
次いで、ステップS5で、水温センサ33からの信号に基づいて設定された目標総仕事量が0であるか否かにより、触媒装置13の暖機運転が必要か否かを判定する。ステップS5で肯定されるとステップS6に進み、否定されるとステップS6、ステップS7をパスしてステップS8に進む。ステップS6では、噴射モードを触媒暖機モードM2に切り換える。ステップS7では、吸気量センサ34からの信号に基づいてエンジン1の総仕事量を算出するとともに、総仕事量が目標総仕事量に達したか否かにより、触媒暖機が完了したか否かを判定する。ステップS7で肯定されるとステップS8に進み、否定されるとステップS6に戻る。
ステップS8では、温度情報取得部302により取得された吸入空気量Gの積算量に基づいて、筒内温度が所定値以上であるか否か、すなわち高筒内温度であるか否かを判定する。ステップS8で肯定されるとステップS9に進み、噴射モードを高筒内温度モードM7に切り換える。
次いで、ステップS10で、点火時期の最適点火時期MBTからのリタード量と、水温センサ33により検出された冷却水温と、クランク角センサ31により検出されたエンジン回転数とに基づいて、ノック抑制条件が成立したか否かを判定する。ステップS10で肯定されるとステップS11に進み、否定されるとステップS12に進む。ステップS11では、噴射モードをノック抑制モードM5に切り換え、ステップS12では、噴射モードを均質向上モードM4に切り換える。一方、ステップS8で否定されるとステップS13に進み、噴射モードを付着低減モードM3に切り換える。
以上の内燃機関の制御装置による主たる動作をより具体的に説明する。イグニッションスイッチがオンされると、圧縮2段で燃料が噴射され、エンジン1が始動される(ステップS2)。エンジン1の初回始動時等で、冷却水温が低い状態では、触媒装置13の暖機運転が必要となり、吸気2段で燃料が噴射される(ステップS6)。このとき、点火時期が最適点火時期MBTよりもリタードされて混合気が後燃えされ、触媒装置13を早期に暖機することができる。
触媒装置13の暖機完了後(例えばエンジン1の初回始動後の暖機完了直後)に、筒内温度が、ピストン冠面103aへの煤の付着を低減するために必要な所定温度(例えば100℃)まで上昇していないことがある。この場合、煤の付着低減を優先するため、例えば吸気後半から圧縮前半の範囲内で、図5のマップに従い燃料が噴射される(ステップS13)。したがって、例えば高負荷低回転の領域AR1において、噴射回数は4回となる。これにより、インジェクタ12の1回当たりの燃料噴射量が減少し、燃料の付着を効果的に抑えることができる。
一方、触媒装置13の暖機完了後の筒内温度が所定温度以上であるとき、仮にピストン冠面103aに燃料が付着しても燃料は即座に蒸発するため、煤が発生しにくい。この場合、吸気行程(吸気2段または吸気単発)で燃料が噴射される(ステップS12)。これにより燃焼室105内の混合気が均質化され、燃焼効率を高めることができる。なお、触媒暖機運転においても吸気2段で燃料が噴射されるが、触媒暖機運転とは、吸気行程での燃料の噴射タイミングが異なる。
筒内温度が高い状態において、吸気行程で燃料を噴射しているとき、ノッキング抑制条件が成立すると、吸気行程に加え、圧縮行程で最小噴射量Qminの燃料が噴射される(ステップS12)。これにより混合気の温度を低下させることができ、ノッキングの発生を抑制することができる。その結果、ノッキング抑制を目的とした点火時期のリタードの量を低減することができ、点火時期が最適点火時期MBTに近づくため、燃焼効率を高めることができる。
EVモードやI/Sモードからの復帰時等でエンジン1が始動されたときには、冷却水温が十分に高いことがある。この場合には、エンジン始動後に触媒装置13の暖機運転を行うことなく、高筒内温度モードM7(例えば均質向上モードM4)または付着低減モードM3に移行する(ステップS5→ステップS8→ステップS9、ステップS5→ステップS8→ステップS13)。これにより、ピストン冠面103aへの煤の付着を抑えながら、エンジン始動後に効率的な燃焼を行うことができる。
以上の構成を前提として、本発明の実施形態に係る燃料噴射制御装置について説明する。インジェクタ12から燃料を噴射する場合には、上述したように、噴射モード切換部301により切り換えられた噴射モードに応じて、噴射パターンが決定される。さらに、吸入空気量等に応じて定まる目標噴射量を噴射するために必要な目標噴射時間が算出される。そして、噴射パターンに応じて定まる所定の目標クランク角(目標噴射開始時期)から目標噴射時間だけ燃料を噴射するように、インジェクタ12(より厳密にはインジェクタ12の駆動回路)に制御信号が出力される。
ところで、例えば吸気行程で燃料を噴射する場合、コントローラ30(図3)は、吸気量センサ34により検出された吸入空気量、すなわち燃料噴射されるシリンダ102の吸気行程の開始時に得られた吸入空気量等の情報から目標噴射量を演算する。しかし、コントローラ30での処理負荷の増大等に起因して、吸気行程での目標噴射量の演算完了時点が遅延するおそれがある。その結果、目標噴射量の演算完了時点が燃料の目標噴射開始時期よりも遅れ、所定のタイミングで燃料を噴射できないおそれがある。これを回避するため、本実施形態では、吸気行程だけでなく排気行程においても、目標噴射量等の演算を行う。
図8A,8Bは、それぞれ吸気行程で燃料を噴射する場合の目標噴射量の演算時期を示す図である。図8Aに示すように、クランク角センサ31により吸気上死点TDCが検出されると、コントローラ30は、吸気行程の開始時に得られた各種パラメータに基づいて、予め記憶されたマップ等を参照して、目標噴射量と噴射開始の目標クランク角とを演算する。この場合の演算時間は、クランク角範囲Δθ1で示される。
そして、吸気行程でクランク角θが30°変化する度に、クランク角センサ31により検出されたエンジン回転数に基づいて噴射開始時期を演算し、目標噴射量に応じた目標噴射時間だけ燃料を噴射する。図8Aでは、クランク角θ11、θ12、θ13、θ14でそれぞれ噴射開始時期が演算され、クランク角θ14を基準とした噴射開始時期(目標クランク角)で目標噴射量Qaの燃料が噴射される。
このとき、コントローラ30は、吸気行程の1つ前の行程、すなわち排気行程でも、目標噴射量の演算を行う。具体的には、コントローラ30は、排気行程の開始時に得られた各種パラメータに基づいて、予め記憶されたマップ等を参照して、目標噴射量と噴射開始の目標クランク角とを演算する。この場合の演算時間はクランク角範囲Δθ2で示される。
そして、吸気上死点TDCの30°手前のクランク角θ21を起点として吸気行程での目標噴射量の演算が完了するまで、クランク角が30°変化する度に、クランク角センサ31により検出されたエンジン回転数に基づいて噴射開始時期を演算する。図8Aでは、クランク角θ21、θ22でそれぞれ噴射開始時期が演算される。なお、排気行程での演算により求められた目標噴射量はQbであり、吸気行程での演算により求められるQaとの間には、噴射開始時期に関し誤差が生じる。
図8Aは、吸気行程での目標噴射量の演算が早期に完了した場合、すなわちクランク角範囲Δθ1が小さい場合の例である。これに対し、吸気行程での目標噴射量の演算完了が遅延し、クランク角範囲Δθ1が大きい場合の例が図8Bである。図8Bでは、排気行程で演算された目標噴射量に基づいてクランク角θ21、θ22、θ23、θ24およびθ25でそれぞれ噴射開始時期が演算される。吸気行程で演算された目標噴射量に基づいて噴射開始時期が演算されるクランク角はθ14であり、噴射開始の目標クランク角はθ25とθ14の間である。したがって、排気行程で演算された目標噴射量に基づく噴射開始時期に目標噴射量Qbの燃料が噴射される。
このように排気行程でも目標噴射量を演算し、所定クランク角θ21からクランク角が30°変化する度に噴射開始時期を演算することで、吸気行程での演算完了が遅延した場合でも、目標クランク角で目標噴射量Qbの燃料を噴射することができる。しかし、F/Cモードからの復帰時に多段噴射(分割噴射)する場合、各噴射間に所定のインターバルが必要になるため、1サイクルの噴射時間が長くなり、目標噴射量Qbの燃料を噴射できないおそれがある。この点を、図9を参照して説明する。
図9は、F/Cモードで走行中に燃料カットからの復帰条件が成立して、例えばクランク角θaで噴射モードがF/Cモード(F/Cオン)から燃料噴射が開始される他のモード、例えば付着低減モードM3(F/Cオフ)に切り換えられる場合の例である。燃料カットからの復帰条件は、例えばエンジン回転数が所定値以下に低下またはアクセルペダルの踏み込み操作開始により成立する。なお、燃料カットからの復帰時には、均質向上モードM4等、他の噴射モードに切り換えられることもある。図9では、燃料カットからの復帰時に、吸気行程で2回かつ圧縮行程で2回それぞれ目標噴射量Qcが噴射される(点線の三角形)。圧縮行程後半(クランク角θb以降)は噴射禁止領域であり、この領域での燃料噴射は禁止される。
このとき、吸気行程での目標噴射量の演算完了が遅延し、演算時間に対応するクランク角範囲Δθ1が大きくなると、クランク角θ21、θ22、・・・、θ27で、それぞれ排気行程のクランク角範囲Δθ2で演算された目標噴射量に基づいて噴射開始時期が演算される。但し、F/Cモード時には目標噴射量が0であるため、クランク角θ21、θ22、・・・、θ27での目標噴射量は0となる。したがって、クランク角θ25とθ26の間の目標クランク角における目標噴射量Qcは0となる。また、クランク角θaで噴射モードがF/Cモードから切り換えられても、吸気行程での目標噴射量の演算が完了していなければ、目標噴射量は0のままである。
F/Cモードの終了後に、吸気行程での目標噴射量の演算が完了すると、目標噴射量に基づいてクランク角θ15で噴射開始時期が演算される。この場合、クランク角θ15の直後から多段噴射で目標噴射量Qaを噴射することは(実線の三角形)、噴射時期が噴射禁止領域と重なるため、禁止される。このため、燃料噴射の開始を1サイクル分だけ遅らせる必要があり、燃料カット復帰のタイミングが遅れて商品性が低下する。このような問題を解決するため、本実施形態は以下のように燃料噴射制御装置を構成する。
図10は、本実施形態に係る燃料噴射制御装置100の要部構成を示すブロック図である。この燃料噴射制御装置100は、図3の制御装置と一部の構成が共通であり、図3と同一の箇所には同一の符号を付す。図10に示すように、燃料噴射制御装置100は、コントローラ30と、コントローラ30にそれぞれ接続されたクランク角センサ31と、アクセル開度センサ32と、吸気量センサ34と、インジェクタ12とを有する。
コントローラ30は、機能的構成として、目標値演算部311と、モード切換指令部312と、噴射可否判定部313と、目標値修正部314と、インジェクタ制御部305と、記憶部315とを有する。記憶部315には、エンジン回転数と吸入空気量ないし目標噴射量とに応じた噴射パターンを示すマップが記憶される。例えばF/Cモード(燃料停止モードM6)から付着低減モードM3や均質向上モードM4に切り換わるとき、各モードでの噴射パターンを示すマップが記憶される。記憶されたマップには、目標噴射回数と目標噴射開始時期と噴射禁止領域の情報が含まれる。
目標値演算部311は、クランク角センサ31や吸気量センサ34等、エンジン1の運転状態を表す各種センサからの信号に基づいて、記憶部315に記憶されたマップ等を参照して、所定のタイミングで、噴射可能領域内における1燃焼サイクル当たりの噴射目標値を演算する。より具体的には、排気行程の開始後のクランク角範囲Δθ2で目標噴射量と目標クランク角とを演算するとともに、吸気行程の開始後のクランク角範囲Δθ1で目標噴射量と目標クランク角とを演算する。噴射目標値には、目標噴射回数も含まれ、目標値演算部311は、噴射モードに応じて目標噴射回数も決定する。
さらに目標値演算部311は、吸気上死点TDCよりも所定クランク角30°手前のクランク角θ21を起点として、クランク角が30°変化する度に、目標噴射開始時期と目標噴射時間とを演算する。すなわち、排気行程のクランク角範囲Δθ2で目標噴射量の演算が完了すると、吸気行程のクランク角範囲Δθ1で目標噴射量の演算が完了するまで、排気行程での演算値を用いて目標噴射開始時期と目標噴射時間とを演算する。吸気行程のクランク角範囲Δθ1で目標噴射量の演算が完了すると、以降、吸気行程での演算値を用いて目標噴射開始時期と目標噴射時間とを演算する。
モード切換指令部312は、F/Cモードから燃料噴射が行われる他の噴射モード(例えば付着低減モードM3や均質向上モードM4)への切換およびこれら他の噴射モードからF/Cモードへの切換を指令する。具体的には、モード切換指令部312は、燃料カット判定部303E(図6)により、燃料カット条件の成立により燃料カットが必要と判定されると、F/Cモードへの切換を指令する。一方、F/Cモードにおいて、アクセル開度センサ32によりアクセルペダルの所定の踏み込み操作が検出されると、あるいはクランク角センサ31により検出されたエンジン回転数が所定値以下に低下すると、燃料カット復帰条件が成立したと判定し、F/Cモードから他の噴射モードへの切換を指令する。なお、他の噴射モードとしてどの噴射モードへの切換を指令するかは、筒内温度等により決定される。
噴射可否判定部313は、目標値演算部311で演算された噴射目標値に含まれる目標噴射量を、噴射禁止領域を除いた噴射可能領域内で噴射可能であるか否かを判定する。目標噴射量を噴射するための噴射パターンが多段噴射(分割噴射)である場合、インジェクタ12の駆動回路の昇圧時間を確保する等の理由で、各回の噴射毎に所定長さのインターバルが必要である。例えば図9に示す4段噴射の場合、噴射毎に所定長さΔt2のインターバルが必要であり、1回の噴射に要する時間をΔt1とすると、4段噴射の場合の1サイクルの噴射時間Δt0は全体で4・Δt1+3・Δt2となる。
目標値演算部311は、目標噴射量に応じた1サイクルの噴射時間Δt0(目標噴射時間)を算出し、噴射開始時期に目標噴射時間Δt0を加算して噴射終了時期を算出する。噴射可否判定部313は、この噴射終了時期のクランク角が噴射可能領域内であるか否かを判定し、これにより目標噴射量を噴射可能領域内で噴射可能であるか否かを判定する。
目標値修正部314は、噴射可否判定部313により目標噴射量を噴射禁止領域内で噴射可能でないと判定されると、多段噴射の目標噴射回数を1回に減少する。すなわち、目標値演算部311で演算された噴射目標値に含まれる目標噴射回数(例えば4回)を1回に変更することにより、噴射目標値を修正する。これにより噴射毎のインターバルが不要となるため、目標噴射時間がΔt0からΔt0aに短縮される。例えば4段噴射の場合の目標噴射時間Δt0aは4・Δt1となる。
目標値演算部311は、噴射開始時期に目標噴射時間Δt0aを加算して噴射終了時期を再度算出する。噴射可否判定部313は、この噴射終了時期のクランク角が噴射可能領域内であるか否か、すなわち単発噴射により、噴射領域(クランク角)が噴射可能領域内に収まるか否かを再度判定する。
インジェクタ制御部305は、噴射可否判定部313により、噴射可能領域内での目標噴射時間Δt0の噴射が可能と判定されると、目標値演算部311で演算された噴射開始時期から目標噴射回数(例えば4回)だけ燃料を噴射するようにインジェクタ12に制御信号を出力する。この場合、1回当たりの噴射量(単位目標噴射量)は、1サイクルの目標噴射量を噴射回数で除算した値に相当する。一方、噴射可否判定部313により、多段噴射での噴射は不可能であるが、単発噴射での噴射は可能と判定されると、目標値演算部311で演算された噴射開始時期から1回だけ燃料を噴射するようにインジェクタ12に制御信号を出力する。この場合、1回当たりの噴射量が、1サイクルの目標噴射量に相当する。
図11は、コントローラ30で実行される燃料噴射に係る処理の一例、特に目標値演算部311以外での処理の一例を示すフローチャートである。このフローチャートに示す処理は、例えばF/Cモードで開始され、所定周期で繰り返される。なお、目標値演算部311での処理は、上述したように所定のタイミングで別途行われる。以下では、目標値演算部311で演算された噴射目標値に含まれる初期の目標噴射回数が複数回(例えば4回)であるとして、フローチャートを説明する。
まず、ステップS21で、センサ31,32,34や目標値演算部311からの信号を読み込む。次いで、ステップS22で、クランク角センサ31とアクセル開度センサ32とからの信号に基づいて、燃料カット復帰条件が成立したか否かを判定する。ステップS22で肯定されるとステップS23に進み、否定されると処理を終了する。ステップS23では、F/Cモードからの復帰後に多段噴射が可能か否か、すなわち多段噴射を行う場合の噴射終了時期のクランク角が噴射可能領域内であるか否かを判定する。
ステップS23で肯定されるとステップS24に進み、目標値演算部311により演算された噴射目標値に含まれる目標噴射回数(複数回)を、そのまま目標噴射回数として設定する。次いで、ステップS25で、噴射開始時期から目標噴射回数分だけ所定インターバルを空けてそれぞれ単位目標噴射量の燃料を噴射するように、インジェクタ12に制御信号を出力する。
一方、ステップS23で否定されるとステップS26に進み、F/Cモードからの復帰後に単発噴射が可能か否か、すなわち単発噴射を行う場合の噴射終了時期のクランク角が噴射可能領域内であるか否かを判定する。ステップS26で肯定されるとステップS27に進み、否定されると処理を終了する。ステップS27では、目標値演算部311により演算された噴射目標値に含まれる目標噴射回数を1回(単発)に変更する。次いで、ステップS25で、噴射開始時期から1回だけ目標噴射量の燃料を噴射するように、インジェクタ12に制御信号を出力する。
図11は、F/Cモードからの復帰直後の処理を示すフローチャートである。したがって、ステップS25の処理が終了すると、図11の処理は終了する。
本実施形態に係る燃料噴射制御装置による動作をより具体的に説明する。F/Cモードで走行中に、例えばアクセルペダルが操作されて燃料カット復帰条件が成立すると、コントローラ30は、吸入空気量やエンジン回転数などに応じて目標噴射量や噴射開始時期を演算するとともに、噴射モードに応じて目標噴射回数(例えば4回)を決定する。このとき、噴射終了時期のクランク角が噴射可能領域内であれば、噴射目標値に応じて多段噴射が行われる(ステップS24→ステップS25)。
一方、吸気行程での演算の遅れにより、図9に示すように多段噴射が不可能な場合(図9の実線の三角形)、目標噴射回数が1回に変更される。これにより、図12に示すように目標噴射時間がΔt0からΔt0aに短縮され、単発噴射で目標噴射量Qaの燃料が噴射される(ステップS27→ステップS25)。その結果、燃料カット復帰のタイミングが1サイクル分遅れることを防止でき、商品性を高めることができる。なお、F/Cモードから復帰するときは、ショックを低減するために点火時期がリタードされるが、この点についての説明は省略する。
本実施形態によれば以下のような作用効果を奏することができる。
(1)燃料噴射制御装置100は、シリンダ102の内部を往復動するピストン103と、ピストン103に面したシリンダ102内の燃焼室105に燃料を噴射するインジェクタ12と、を有するエンジン1に適用される。この燃料噴射制御装置100は、エンジン1の運転状態に基づいて、クランク角の噴射可能領域内における1燃焼サイクル当たりの目標噴射量と目標噴射時期と目標噴射回数とを含む噴射目標値を演算する目標値演算部311と、目標値演算部311により演算された噴射目標値に応じてインジェクタ12が燃料を噴射するようにインジェクタ12を制御するインジェクタ制御部305と、燃焼室105に燃料が噴射される付着低減モードM3や均質向上モードM4等の第1モードから燃焼室105への燃料の噴射が停止されるF/Cモード(第2モード)への切換、および第2モードから第1モードへの切換を指令するモード切換指令部312と、モード切換指令部312により第2モードから第1モードへの切換が指令されたとき、目標値演算部311により演算された噴射目標値に応じた燃料の噴射が噴射可能領域内に可能であるか否かを判定する噴射可否判定部313と、目標値演算部311により演算された噴射目標値に含まれる目標噴射回数が複数回(例えば4回)であるとき、噴射可否判定部313により噴射目標値に応じた燃料の噴射が不可能と判定されると、目標噴射回数を1回に減少して噴射目標値を修正する目標値修正部314と、を備える(図10)。インジェクタ制御部305は、目標値修正部314により噴射目標値が修正されると、修正後の噴射目標値(目標噴射回数1回)に応じてインジェクタ12が燃料を噴射するようにインジェクタ12を制御する。
この構成により、F/Cモードからの復帰時に、噴射可能領域の制限により分割噴射が行えない場合に単発噴射が行われるようになるため、F/Cモードからの復帰のタイミングが早まる。その結果、エンジン1はドライバのアクセルペダルの操作に応じて即座にトルクを出力することができ、ドライバは車両の挙動に違和感を抱くことがなく、車両の商品性が高まる。
(2)1燃焼サイクルに含まれる排気行程、吸気行程、圧縮行程および膨張行程のうち、吸気行程で燃料噴射を開始するとき、目標値演算部311は、吸気行程で燃料が噴射されるときの噴射目標値を、排気行程と吸気行程とでそれぞれ演算する(図12)。インジェクタ制御部305は、目標値演算部311により吸気行程での噴射目標値の演算が完了する前は、排気行程で演算された噴射目標値に応じてインジェクタ12が燃料を噴射し、目標値演算部311により吸気行程での噴射目標値の演算が完了すると、吸気行程で演算された噴射目標値に応じてインジェクタ12が燃料を噴射するようにインジェクタ12を制御する(図)。これにより、処理負荷の増大等により吸気行程での演算完了時点が遅延する場合においても、目標噴射量を算出して目標噴射量に相当する燃料をインジェクタ12から噴射することができる。
なお、上記実施形態では、目標値演算部311により演算された噴射目標値に含まれる目標噴射回数が複数回であるとき、噴射可否判定部313により噴射目標値に応じた燃料の噴射が不可能と判定されると、目標噴射回数を1回にして目標値を修正するようにしたが、修正後の目標噴射回数は1回より多い回数であってもよい。例えば目標噴射回数が4回である場合、修正後の目標噴射回数が3回または2回であってもよい。すなわち、目標噴射回数を減少して噴射目標値を修正するのであれば、目標値修正部の構成はいかなるものでもよい。したがって、噴射制御部としてのインジェクタ制御部305の構成も上述したものに限らない。
上記実施形態では、モード切換指令部312が、燃焼室105への燃料供給が停止されるF/Cモードと燃焼室105へ燃料が噴射される噴射モード(付着低減モードM3や均質向上モードM4)との間で噴射モードを切り換えるようにしたが、燃焼室105に燃料が噴射される第1モードと燃料噴射が停止される第2モードとは、上述した以外の噴射モードであってもよい。上記実施形態では、吸気行程を噴射開始行程として吸気行程で燃料噴射を開始するとともに、吸気行程の1行程前の排気行程を噴射前行程として吸気行程での噴射目標値の演算を排気行程で行うようにしたが、噴射開始行程と噴射前行程は上述した以外の行程であってもよい。上記実施形態では、燃料噴射部としてのインジェクタ12を燃焼室105の斜め下方に向けて配置するようにしたが、ピストンに面したシリンダ内の燃焼室に燃料を噴射するのであれば、燃料噴射部の構成は上述したものに限らない。
以上の説明はあくまで一例であり、本発明の特徴を損なわない限り、上述した実施形態および変形例により本発明が限定されるものではない。上記実施形態と変形例の1つまたは複数を任意に組み合わせることも可能であり、変形例同士を組み合わせることも可能である。
1 エンジン、12 インジェクタ、100 燃料噴射制御装置、102 シリンダ、103 ピストン、105 燃焼室、305 インジェクタ制御部、311 目標値演算部、312 モード切換指令部、313 噴射可否判定部、314 目標値修正部

Claims (3)

  1. シリンダの内部を往復動するピストンと、前記ピストンに面した前記シリンダ内の燃焼室に燃料を噴射する燃料噴射部と、を有する内燃機関における燃料噴射制御装置であって、
    前記内燃機関の運転状態に基づいて、クランク角の噴射可能領域内における1燃焼サイクル当たりの目標噴射量と目標噴射時期と目標噴射回数とを含む噴射目標値を演算する目標値演算部と、
    前記目標値演算部により演算された前記噴射目標値に応じて前記燃料噴射部が燃料を噴射するように前記燃料噴射部を制御する噴射制御部と、
    前記燃焼室に燃料が噴射される第1モードから前記燃焼室への燃料の噴射が停止される第2モードへの切換、および前記第2モードから前記第1モードへの切換を指令するモード切換指令部と、
    前記モード切換指令部により前記第2モードから前記第1モードへの切換が指令されたとき、前記目標値演算部により演算された前記噴射目標値に応じた燃料の噴射が前記噴射可能領域内に可能であるか否かを判定する噴射可否判定部と、
    前記目標値演算部により演算された前記噴射目標値に含まれる前記目標噴射回数が複数回であるとき、前記噴射可否判定部により前記噴射目標値に応じた燃料の噴射が不可能と判定されると、前記目標噴射回数を減少して前記噴射目標値を修正する目標値修正部と、を備え、
    前記噴射制御部は、前記目標値修正部により前記噴射目標値が修正されると、修正後の噴射目標値に応じて前記燃料噴射部が燃料を噴射するように前記燃料噴射部を制御することを特徴とする燃料噴射制御装置。
  2. 請求項1に記載の燃料噴射制御装置において、
    前記目標値修正部は、前記噴射目標値に含まれる前記目標噴射回数を1回に減少することを特徴とする燃料噴射制御装置。
  3. 請求項1または2に記載の燃料噴射制御装置において、
    前記1燃焼サイクルに含まれる排気行程、吸気行程、圧縮行程および膨張行程のうち、燃料噴射を開始する行程を噴射開始行程とし、前記噴射開始行程の1行程前の行程を噴射前行程とするとき、
    前記目標値演算部は、前記噴射開始行程で燃料が噴射されるときの前記噴射目標値を、前記噴射前行程と前記噴射開始行程とでそれぞれ演算し、
    前記噴射制御部は、前記目標値演算部により前記噴射開始行程での噴射目標値の演算が完了する前は、前記噴射前行程で演算された噴射目標値に応じて前記燃料噴射部が燃料を噴射し、前記目標値演算部により前記噴射開始行程での噴射目標値の演算が完了すると、前記噴射開始行程で演算された噴射目標値に応じて前記燃料噴射部が燃料を噴射するように前記燃料噴射部を制御することを特徴とする燃料噴射制御装置。
JP2020065398A 2020-03-31 2020-03-31 燃料噴射制御装置 Pending JP2021161974A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020065398A JP2021161974A (ja) 2020-03-31 2020-03-31 燃料噴射制御装置
CN202110328614.2A CN113464294B (zh) 2020-03-31 2021-03-26 燃料喷射控制装置
US17/215,269 US11306677B2 (en) 2020-03-31 2021-03-29 Fuel injection control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020065398A JP2021161974A (ja) 2020-03-31 2020-03-31 燃料噴射制御装置

Publications (1)

Publication Number Publication Date
JP2021161974A true JP2021161974A (ja) 2021-10-11

Family

ID=77855696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020065398A Pending JP2021161974A (ja) 2020-03-31 2020-03-31 燃料噴射制御装置

Country Status (3)

Country Link
US (1) US11306677B2 (ja)
JP (1) JP2021161974A (ja)
CN (1) CN113464294B (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000328985A (ja) * 1999-05-18 2000-11-28 Daihatsu Motor Co Ltd 筒内噴射型内燃機関の噴射制御方法
JP2002161790A (ja) * 2000-11-27 2002-06-07 Nissan Motor Co Ltd 直噴火花点火式内燃機関の燃焼制御装置
JP2007107405A (ja) * 2005-10-11 2007-04-26 Toyota Motor Corp 内燃機関の燃料噴射制御装置
JP2011106350A (ja) * 2009-11-18 2011-06-02 Denso Corp 燃料噴射制御装置
JP2012241654A (ja) * 2011-05-23 2012-12-10 Hitachi Automotive Systems Ltd 筒内噴射式内燃機関の制御装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3783285B2 (ja) * 1995-07-03 2006-06-07 マツダ株式会社 エンジンの制御装置
JP3307306B2 (ja) * 1996-12-19 2002-07-24 トヨタ自動車株式会社 内燃機関の燃焼方式制御装置
JP4275289B2 (ja) * 2000-04-07 2009-06-10 本田技研工業株式会社 内燃機関の点火時期制御装置
JP4254021B2 (ja) * 2000-06-29 2009-04-15 株式会社デンソー 筒内噴射式内燃機関の触媒早期暖機制御装置
JP3966096B2 (ja) * 2002-06-20 2007-08-29 株式会社デンソー 内燃機関用噴射量制御装置
JP4103774B2 (ja) * 2003-10-31 2008-06-18 株式会社デンソー 内燃機関の燃料噴射制御装置
JP5675466B2 (ja) * 2011-03-31 2015-02-25 三菱重工業株式会社 エンジンの燃焼診断信号異常時のパイロット噴射タイミング制御方法および装置
US9587577B2 (en) * 2011-10-26 2017-03-07 Toyota Jidosha Kabushiki Kaisha Fuel injection control device for internal combustion engine
JP6013722B2 (ja) * 2011-11-18 2016-10-25 三菱自動車工業株式会社 内燃機関の制御装置
US9441570B2 (en) * 2012-12-07 2016-09-13 Ethanol Boosting Systems, Llc Gasoline particulate reduction using optimized port and direct injection
CN107605635B (zh) * 2013-07-29 2022-11-18 日立安斯泰莫株式会社 燃料喷射装置的驱动装置
JP5949819B2 (ja) * 2014-03-25 2016-07-13 トヨタ自動車株式会社 内燃機関の燃料噴射制御装置
US9677525B2 (en) * 2014-05-09 2017-06-13 Magneti Marelll S.p.A Method of determining the injection pattern in the compression stroke of the combustion cycle of the cylinders of a direct-injection internal combustion engine
JP6397437B2 (ja) * 2016-02-24 2018-09-26 本田技研工業株式会社 直噴式内燃機関
WO2018058015A1 (en) * 2016-09-26 2018-03-29 Ethanol Boosting Systems, Llc Gasoline particulate reduction using optimized port fuel injection plus direct injection
US10202898B2 (en) * 2017-04-25 2019-02-12 Ford Global Technologies, Llc Method and system for fuel injection control
JP7172063B2 (ja) 2018-03-02 2022-11-16 株式会社デンソー 噴射制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000328985A (ja) * 1999-05-18 2000-11-28 Daihatsu Motor Co Ltd 筒内噴射型内燃機関の噴射制御方法
JP2002161790A (ja) * 2000-11-27 2002-06-07 Nissan Motor Co Ltd 直噴火花点火式内燃機関の燃焼制御装置
JP2007107405A (ja) * 2005-10-11 2007-04-26 Toyota Motor Corp 内燃機関の燃料噴射制御装置
JP2011106350A (ja) * 2009-11-18 2011-06-02 Denso Corp 燃料噴射制御装置
JP2012241654A (ja) * 2011-05-23 2012-12-10 Hitachi Automotive Systems Ltd 筒内噴射式内燃機関の制御装置

Also Published As

Publication number Publication date
CN113464294B (zh) 2023-04-25
US11306677B2 (en) 2022-04-19
US20210301756A1 (en) 2021-09-30
CN113464294A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
JP7094317B2 (ja) 燃料噴射制御装置
US11236693B2 (en) Fuel injection control apparatus
US11162446B2 (en) Fuel injection control apparatus
CN113464298B (zh) 内燃机的控制装置
JP7119019B2 (ja) 内燃機関の制御装置
JP7252170B2 (ja) 内燃機関の制御装置
JP7116756B2 (ja) 内燃機関の制御装置
JP2021161974A (ja) 燃料噴射制御装置
JP7196131B2 (ja) 内燃機関の制御装置
JP7068372B2 (ja) 内燃機関の温度取得装置
US11352970B2 (en) Control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220719