JP2021159861A - Manufacturing method of catalyst - Google Patents

Manufacturing method of catalyst Download PDF

Info

Publication number
JP2021159861A
JP2021159861A JP2020064319A JP2020064319A JP2021159861A JP 2021159861 A JP2021159861 A JP 2021159861A JP 2020064319 A JP2020064319 A JP 2020064319A JP 2020064319 A JP2020064319 A JP 2020064319A JP 2021159861 A JP2021159861 A JP 2021159861A
Authority
JP
Japan
Prior art keywords
catalyst
ceramic support
calcium aluminate
12cao
aqueous slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020064319A
Other languages
Japanese (ja)
Other versions
JP7442935B2 (en
Inventor
俊幸 山中
Toshiyuki Yamanaka
浩志 林
Hiroshi Hayashi
有平 白鳥
Yuhei Shiratori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2020064319A priority Critical patent/JP7442935B2/en
Publication of JP2021159861A publication Critical patent/JP2021159861A/en
Application granted granted Critical
Publication of JP7442935B2 publication Critical patent/JP7442935B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a manufacturing method of a catalyst excellent in catalytic activity, by immobilizing efficiently 12CaO-7Al2O3 compound on a ceramic support.SOLUTION: A manufacturing method of a catalyst includes steps of: (A) producing aqueous slurry containing calcium aluminate and a transition metal; (B) coating a ceramic support surface with the aqueous slurry; and (C) generating and immobilizing 12CaO-7Al2O3 compound particles on a ceramic support by heat-treating the ceramic support at the temperature of 400-600°C.SELECTED DRAWING: None

Description

本発明は、12CaO・7Al23化合物を含む触媒の製造方法に関する。 The present invention relates to a method for producing a catalyst containing a 12CaO / 7Al 2 O 3 compound.

12CaO・7Al23化合物構造を有するカルシウムアルミネートは、格子中にフリー酸素を有するため、酸化触媒、イオン伝導体、助触媒として有用であることが知られている(特許文献1、2)。また、この12CaO・7Al23化合物は、その表面にNiやPt等の遷移金属を担持することにより、エンジン排ガス浄化用触媒、メタン等の炭化水素ガスから水素製造用触媒等が得られることも知られている(特許文献3、4、5)。 Calcium aluminate having a 12CaO / 7Al 2 O 3 compound structure has free oxygen in the lattice, and is known to be useful as an oxidation catalyst, an ionic conductor, and a co-catalyst (Patent Documents 1 and 2). .. Further, in this 12CaO / 7Al 2 O 3 compound, by supporting a transition metal such as Ni or Pt on the surface thereof, a catalyst for purifying engine exhaust gas, a catalyst for hydrogen production, etc. can be obtained from a hydrocarbon gas such as methane. Is also known (Patent Documents 3, 4, 5).

特開2002−3128号公報JP-A-2002-3128 特開2006−96571号公報Japanese Unexamined Patent Publication No. 2006-96571 特開2018−143940号公報JP-A-2018-143940 特開2018−143941号公報Japanese Unexamined Patent Publication No. 2018-143941 特開2003−190787号公報Japanese Unexamined Patent Publication No. 2003-190787

ところが、環境浄化作用や自動車用も含め、現在産業界で実用化されている触媒のほとんどが粉体では用いず、種々の支持体に担持されて使用される。その理由は、粉体では目詰まりを起こしてガスの流通が困難になることや飛散による環境への影響が懸念されるからである。従って、本発明の触媒も支持体に担持して使用することが望まれる。しかしながら、12CaO・7Al23化合物を支持体に担持させる手法については十分検討がなされていない。さらに、12CaO・7Al23化合物粒子表面には、高い触媒活性を付与するため遷移金属を担持することが有効であるが、その手法についても十分な検討がなされていない。従って、本発明の課題は、12CaO・7Al23化合物を効率良くセラミック支持体上に固定化し、かつ触媒活性に優れる触媒の製造方法を提供することにある。 However, most of the catalysts currently in practical use in the industrial world, including those for environmental purification and automobiles, are not used as powders, but are supported and used on various supports. The reason is that powder causes clogging, which makes it difficult to distribute gas, and there is a concern about the environmental impact of scattering. Therefore, it is desired that the catalyst of the present invention is also supported on a support for use. However, a method for supporting a 12CaO / 7Al 2 O 3 compound on a support has not been sufficiently studied. Further, it is effective to support a transition metal on the surface of the 12CaO / 7Al 2 O 3 compound particles in order to impart high catalytic activity, but the method has not been sufficiently studied. Therefore, an object of the present invention is to provide a method for efficiently immobilizing a 12CaO / 7Al 2 O 3 compound on a ceramic support and producing a catalyst having excellent catalytic activity.

本発明者らは、12CaO・7Al23化合物を用いた触媒について、製造方法を鋭意検討した結果、カルシウムアルミネートと遷移金属を含む水性スラリーを用い、セラミックス支持体上に固定化する方法によって、触媒活性に優れる触媒が得られることを見出し、本発明を完成した。 As a result of diligent studies on the production method of the catalyst using the 12CaO / 7Al 2 O 3 compound, the present inventors used an aqueous slurry containing calcium aluminate and a transition metal and immobilized the catalyst on the ceramic support. , And found that a catalyst having excellent catalytic activity can be obtained, and completed the present invention.

すなわち、本発明は、次の〔1〕〜〔4〕を提供するものである。
〔1〕(A)カルシウムアルミネートと遷移金属を含む水性スラリーを作製する工程と、(B)前記水性スラリーをセラミックス支持体表面にコーティングする工程と、(C)前記セラミックス支持体を400〜600℃の温度で熱処理して、12CaO・7Al23化合物粒子を前記セラミックス支持体上に生成させ、固定化する工程とを含む触媒の製造方法。
〔2〕さらに、(D)前記遷移金属を還元処理して触媒活性を付与する工程を含む〔1〕の触媒の製造方法。
〔3〕前記セラミックス支持体が、ハニカム構造を有するセラミックス支持体である〔1〕または〔2〕の触媒の製造方法。
〔4〕セラミック支持体と、該セラミック支持体表面上に12CaO・7Al23化合物粒子を含むカルシウムアルミネート層を有し、該カルシウムアルミネート層全体に触媒活性を有する遷移金属が広く分散してなり、かつ該カルシウムアルミネート層内部にガス流通可能な間隙を含むことを特徴とする触媒。
That is, the present invention provides the following [1] to [4].
[1] (A) A step of preparing an aqueous slurry containing calcium aluminate and a transition metal, (B) a step of coating the aqueous slurry on the surface of a ceramic support, and (C) 400 to 600 of the ceramic support. A method for producing a catalyst, which comprises a step of heat-treating at a temperature of ° C. to generate and immobilize 12CaO / 7Al 2 O 3 compound particles on the ceramic support.
[2] Further, (D) the method for producing a catalyst according to [1], which comprises a step of reducing the transition metal to impart catalytic activity.
[3] The method for producing a catalyst according to [1] or [2], wherein the ceramic support is a ceramic support having a honeycomb structure.
[4] A transition metal having a ceramic support and a calcium aluminate layer containing 12CaO / 7Al 2 O 3 compound particles on the surface of the ceramic support, and having catalytic activity is widely dispersed in the entire calcium aluminate layer. A catalyst characterized in that it contains a gap through which gas can flow inside the calcium aluminate layer.

本発明方法によれば、触媒活性に優れる12CaO・7Al23化合物を含む触媒が得られる。本触媒は、工業的に有用な酸化触媒、還元触媒として利用でき、特に炭化水素の直接分解による水素製造用触媒として有用である。 According to the method of the present invention, a catalyst containing a 12CaO / 7Al 2 O 3 compound having excellent catalytic activity can be obtained. This catalyst can be used as an industrially useful oxidation catalyst and reduction catalyst, and is particularly useful as a catalyst for hydrogen production by direct decomposition of hydrocarbons.

触媒断面の走査電子顕微鏡画像を示す。A scanning electron microscope image of the catalyst cross section is shown. 走査電子顕微鏡観察時の触媒断面の観察方向を示す。The observation direction of the catalyst cross section at the time of observation with a scanning electron microscope is shown. 触媒断面のカルシウムの元素マッピング画像を示す。The element mapping image of calcium of the catalyst cross section is shown. 触媒断面のニッケルの元素マッピング画像を示す。The element mapping image of nickel of the catalyst cross section is shown.

本発明の触媒の製造方法は、(A)カルシウムアルミネートと遷移金属を含む水性スラリーを作製する工程と、(B)前記水性スラリーをセラミックス支持体表面にコーティングする工程と、(C)前記セラミックス支持体を400〜600℃の温度で熱処理して、12CaO・7Al23化合物粒子を前記セラミックス支持体上に生成させ、固定化する工程とを含む。以下、詳しく説明する。 The method for producing a catalyst of the present invention includes (A) a step of producing an aqueous slurry containing calcium aluminate and a transition metal, (B) a step of coating the aqueous slurry on the surface of a ceramic support, and (C) the ceramics. The process includes a step of heat-treating the support at a temperature of 400 to 600 ° C. to generate and immobilize 12CaO / 7Al 2 O 3 compound particles on the ceramic support. The details will be described below.

<工程(A)>
工程(A)に用いるカルシウムアルミネートとしては、各種カルシウムアルミネート化合物、非晶質カルシウムアルミネート、カルシウムアルミネート水和物が挙げられ、これら1種または2種以上でもよい。カルシウムアルミネート化合物としては、3CaO・Al23 、12CaO・7Al23 、CaO・Al23 等が挙げられる。また、カルシウムアルミネート水和物としては、3CaO・Al23・xH2O、2CaO・Al23・xH2O、4CaO・Al23・xH2Oなどが挙げられる。これらは1種または2種以上の混合物であってもよいが、熱処理後において、できるだけ12CaO・7Al23化合物を含むことが好ましい。その点から、カルシウムアルミネートとしては、CaO/Al23モル比で、1.4〜2.0が好ましく、1.5〜1.9がより好ましく、1.6〜1.8がさらに好ましい。
<Process (A)>
Examples of the calcium aluminate used in the step (A) include various calcium aluminate compounds, amorphous calcium aluminate, and calcium aluminate hydrate, and one or more of these may be used. Examples of the calcium aluminate compound include 3CaO / Al 2 O 3 , 12 CaO / 7 Al 2 O 3 , CaO / Al 2 O 3 and the like. As the calcium aluminate hydrate, 3CaO · Al 2 O 3 · xH 2 O, 2CaO · Al 2 O 3 · xH 2 O, etc. 4CaO · Al 2 O 3 · xH 2 O and the like. These may be one or a mixture of two or more, but after the heat treatment, it is preferred to include as much as possible 12CaO · 7Al 2 O 3 compound. From that point, the calcium aluminate, with CaO / Al 2 O 3 molar ratio is preferably from 1.4 to 2.0, more preferably 1.5 to 1.9, 1.6 to 1.8 and more preferable.

本発明におけるカルシウムアルミネートは粉体状で使用されるが、BET比表面積が1m2/g以上の微粉末であることが水性スラリー中での分散の点で望ましい。 Although the calcium aluminate in the present invention is used in the form of a powder, it is desirable that the calcium aluminate is a fine powder having a BET specific surface area of 1 m 2 / g or more in terms of dispersion in an aqueous slurry.

ここで、カルシウムアルミネートの粉末粒子を水に分散させて水性スラリーとすることにより、カルシウムアルミネート粒子の表面にカルシウムアルミネート水和物が生成する。カルシウムアルミネート粒子の表面に、カルシウムアルミネート水和物層が生成すると、それ以上カルシウムアルミネート粒子の水和は進まなくなる。カルシウムアルミネート粒子は表面にカルシウムアルミネート水和物層を有した状態で、水性スラリー中に分散した状態で存在する。水和物はセラミック支持体表面との親和性が良く、カルシウムアルミネート粒子表面にカルシウムアルミネート水和物が配することによって、セラミック支持体表面上に良好なコーティング層を生成することができる。 Here, by dispersing the powder particles of calcium aluminate in water to form an aqueous slurry, calcium aluminate hydrate is formed on the surface of the calcium aluminate particles. When a calcium aluminate hydrate layer is formed on the surface of the calcium aluminate particles, the hydration of the calcium aluminate particles does not proceed any further. The calcium aluminate particles exist in a state of being dispersed in an aqueous slurry with a calcium aluminate hydrate layer on the surface. The hydrate has a good affinity with the surface of the ceramic support, and by arranging the calcium aluminate hydrate on the surface of the calcium aluminate particles, a good coating layer can be formed on the surface of the ceramic support.

水性スラリー中のカルシウムアルミネートの含有量は、水100質量部に対し、0.1〜30質量部が好ましく、0.5〜20質量部がより好ましく、1〜10質量部がさらに好ましい。 The content of calcium aluminate in the aqueous slurry is preferably 0.1 to 30 parts by mass, more preferably 0.5 to 20 parts by mass, still more preferably 1 to 10 parts by mass with respect to 100 parts by mass of water.

工程(A)に用いる遷移金属としては、Ni、Pt、Pd、Ru、Rh、Co等の8族、9族及び10族から選ばれる元素の1種又は2種以上が挙げられる。例えば、二元系、三元系等の不均一触媒でもよい。これらの遷移金属は、目的とする触媒活性により選択することができ、例えば水素製造用触媒の場合には、Ni、Pt、Pd、Ru、Rhがより好ましく、Niが特に好ましい。 Examples of the transition metal used in the step (A) include one or more elements selected from Group 8, Group 9, and Group 10 such as Ni, Pt, Pd, Ru, Rh, and Co. For example, a heterogeneous catalyst such as a binary system or a ternary system may be used. These transition metals can be selected according to the desired catalytic activity. For example, in the case of a catalyst for hydrogen production, Ni, Pt, Pd, Ru, Rh are more preferable, and Ni is particularly preferable.

遷移金属は水性スラリー中に分散した状態であれば特に形態は限定されないが、安定した分散状態を確保するため、また、より粒子径の小さい遷移金属を12CaO・7Al23化合物に担持させることが望ましいため、水溶性の塩を用いるのが好ましい。例えば、硝酸塩、酢酸塩、硫酸塩、炭酸塩、クロム酸塩が挙げられ、特に水に対する溶解度の高いものが多い硝酸塩や酢酸塩が好ましい。具体的には、硝酸ニッケル六水和物もしくは酢酸ニッケル四水和物が好ましい。 The form of the transition metal is not particularly limited as long as it is dispersed in the aqueous slurry, but in order to secure a stable dispersed state, and to support the transition metal having a smaller particle size on the 12CaO / 7Al 2 O 3 compound. Therefore, it is preferable to use a water-soluble salt. Examples thereof include nitrates, acetates, sulfates, carbonates and chromates, and nitrates and acetates, which are often highly soluble in water, are particularly preferable. Specifically, nickel nitrate hexahydrate or nickel acetate tetrahydrate is preferable.

遷移金属は遷移金属塩で添加される場合、水に対する飽和溶解度で添加することが好ましい。水性スラリー中の遷移金属の含有量は、化合物種によって異なるため特に限定されるものではないが水100質量部に対して、0.1〜30質量部が好ましく、1〜20質量部がより好ましい。 When the transition metal is added as a transition metal salt, it is preferably added with a saturated solubility in water. The content of the transition metal in the aqueous slurry is not particularly limited because it varies depending on the compound type, but is preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts by mass with respect to 100 parts by mass of water. ..

ここで、カルシウムアルミネートと遷移金属を含む水性スラリーが、安定した分散した状態を保つことが必要であることから、少量の分散剤あるいは遅延剤を添加することは有効である。分散剤としては、一般的に使用されるものであれば特に限定されないが、例えば、セメント組成物に用いられるセメント用減水剤が挙げられる。また、遅延剤としては、クエン酸、酒石酸等のオキシカルボン酸等を用いることができる。 Here, since it is necessary for the aqueous slurry containing calcium aluminate and the transition metal to maintain a stable dispersed state, it is effective to add a small amount of a dispersant or a retarding agent. The dispersant is not particularly limited as long as it is generally used, and examples thereof include a water reducing agent for cement used in a cement composition. Further, as the retarder, oxycarboxylic acid such as citric acid and tartaric acid can be used.

水性スラリーを作製する方法としては、カルシウムアルミネート及び遷移金属(遷移金属塩)を水に添加後、撹拌羽根を用いる撹拌機、スターラ―等を用いて弱い力でゆっくり撹拌することが好ましい。カルシウムアルミネート粒子の表面が水和して、粒子表面にカルシウムアルミネート水和物の層が生成すれば十分であることから、必要以上に強い力で撹拌、混合する必要はない。撹拌時間は特に限定されるものではないが、1〜120分が好ましく、5〜90分がより好ましい。ここで水性スラリーの調製温度は、カルシウムアルミネートと遷移金属塩を添加した後の温度で0.1〜30℃であればよい。 As a method for producing an aqueous slurry, it is preferable to add calcium aluminate and a transition metal (transition metal salt) to water, and then slowly stir with a weak force using a stirrer using a stirring blade, a stirrer or the like. Since it is sufficient that the surface of the calcium aluminate particles is hydrated to form a layer of calcium aluminate hydrate on the particle surface, it is not necessary to stir and mix with an unnecessarily strong force. The stirring time is not particularly limited, but is preferably 1 to 120 minutes, more preferably 5 to 90 minutes. Here, the preparation temperature of the aqueous slurry may be 0.1 to 30 ° C., which is the temperature after the addition of calcium aluminate and the transition metal salt.

<工程(B)>
前記水性スラリーをセラミックス支持体表面にコーティングする。ここで、セラミックス支持体としては、セラミックペレット、セラミックフォーム、セラミックハニカム、目封じタイプのセラミックハニカム等が挙げられるが、多量のカルシウムアルミネート粒子をコーティングできることからハニカム構造を有するセラミックス支持体がより好ましい。ここで、セラミックスとしては、炭化珪素、コージェライト、ムライト、アルミナ、ジルコニア、チタニア、リン酸チタン、アルミニウムチタネート、アルミノシリケート等が挙げられる。また、本発明におけるセラミック支持体は、支持体表面がセラミックスとしての性状を有するものも含まれる。例えば、鉄、アルミニウム、クロム、チタンやその合金などの表面に金属酸化物等のセラミックスの不動態の形成された金属等も使用可能である。
<Process (B)>
The aqueous slurry is coated on the surface of the ceramic support. Here, examples of the ceramic support include ceramic pellets, ceramic foam, ceramic honeycomb, and a sealing type ceramic honeycomb, and a ceramic support having a honeycomb structure is more preferable because a large amount of calcium aluminate particles can be coated. .. Here, examples of the ceramics include silicon carbide, cordierite, mullite, alumina, zirconia, titania, titanium phosphate, aluminum titanate, aluminosilicate and the like. Further, the ceramic support in the present invention includes a ceramic support whose surface has properties as ceramics. For example, a metal having a passivation of ceramics such as a metal oxide on the surface of iron, aluminum, chromium, titanium or an alloy thereof can also be used.

セラミックス支持体表面上に前記水性スラリーをコーティングする方法としては、セラミックス支持体表面に塗布又は噴霧する方法、あるいは水性スラリー中にセラミックス支持体を浸漬する方法が挙げられる。浸漬時間は、10秒程度で十分であるが、浸漬温度は0.1〜30℃が好ましい。 Examples of the method of coating the aqueous slurry on the surface of the ceramic support include a method of coating or spraying on the surface of the ceramic support, and a method of immersing the ceramic support in the aqueous slurry. The immersion time of about 10 seconds is sufficient, but the immersion temperature is preferably 0.1 to 30 ° C.

水性スラリーをコーティング後、大気雰囲気にて乾燥させる。100℃で1時間程度乾燥させることが好ましい。さらに、必要に応じて、コーティングと乾燥を複数回繰り返し行い、コーティング層を厚くすることができる。本発明方法においては、遷移金属がカルシウムアルミネート中に分散した状態でコーティングされることから、コーティング層が厚くなっても、効率良く触媒活性を発現できる。コーティング層の厚さは特に限定されないが、1〜200μmが好ましく、5〜150μmがより好ましく、10〜100μmがさらに好ましい。 After coating the aqueous slurry, it is dried in the air atmosphere. It is preferable to dry at 100 ° C. for about 1 hour. Further, if necessary, coating and drying can be repeated a plurality of times to thicken the coating layer. In the method of the present invention, since the transition metal is coated in a state of being dispersed in calcium aluminate, the catalytic activity can be efficiently exhibited even if the coating layer becomes thick. The thickness of the coating layer is not particularly limited, but is preferably 1 to 200 μm, more preferably 5 to 150 μm, and even more preferably 10 to 100 μm.

<工程(C)>
次いで、表面が水性スラリーでコーティングされたセラミックス支持体を400〜600℃の温度で熱処理する。これによって、カルシウムアルミネート粒子表面のカルシウムアルミネート水和物は分解し、12CaO・7Al23化合物等のカルシウムアルミネートが生成する。これによって、遷移金属を含むカルシウムアルミネート粒子のコーティング層はセラミックス支持体上にしっかりと固定化する。また、水和物の分解によって12CaO・7Al23化合物を含むカルシウムアルミネート層内にガスが流通可能な間隙が生成することも好ましい。
<Process (C)>
Next, the ceramic support whose surface is coated with the aqueous slurry is heat-treated at a temperature of 400 to 600 ° C. As a result, the calcium aluminate hydrate on the surface of the calcium aluminate particles is decomposed to produce calcium aluminate such as a 12CaO / 7Al 2 O 3 compound. As a result, the coating layer of the calcium aluminate particles containing the transition metal is firmly immobilized on the ceramic support. It is also preferable that the decomposition of the hydrate creates a gap through which gas can flow in the calcium aluminate layer containing the 12CaO / 7Al 2 O 3 compound.

セラミックス支持体の熱処理は、前記カルシウムアルミネート水和物を12CaO・7Al23化合物に変化させ、かつ遷移金属の過度の凝集を防ぐ点から、400〜600℃であるのが好ましく、400〜500℃がより好ましい。熱処理時間は、同じく前記の要因を考慮し60分程度で十分である。 The heat treatment of the ceramic support is preferably 400 to 600 ° C. from the viewpoint of changing the calcium aluminate hydrate into a 12CaO / 7Al 2 O 3 compound and preventing excessive agglutination of the transition metal. 500 ° C. is more preferable. The heat treatment time of about 60 minutes is sufficient in consideration of the above factors.

<工程(D)>
熱処理の雰囲気は特に限定されないが、通常、大気中で実施することができる。なお、水素雰囲気とすることで、遷移金属の活性化処理を同時に行うこともできる。大気中で熱処理が行われた場合は、別途、水素雰囲気にて遷移金属の活性化処理を行うことが好ましい。
<Process (D)>
The atmosphere of the heat treatment is not particularly limited, but it can usually be carried out in the atmosphere. By creating a hydrogen atmosphere, the transition metal activation treatment can be performed at the same time. When the heat treatment is performed in the atmosphere, it is preferable to separately activate the transition metal in a hydrogen atmosphere.

<触媒>
本発明の製造方法によれば、セラミック支持体と、該セラミック支持体表面上に12CaO・7Al23化合物粒子を含むカルシウムアルミネート層を有し、当該カルシウムアルミネート層全体に触媒活性を有する遷移金属が広く分散してなり、かつ当該カルシウムアルミネート層内部にガス流通可能な間隙を含む触媒が得られる。本触媒は、触媒反応の際の遷移金属と反応対象物(炭化水素等)の接触において、コーティング層表面だけでなく、層内部の遷移金属とも反応対象物が接触しやすく、高い触媒活性を有する。
<Catalyst>
According to the production method of the present invention, a ceramic support and a calcium aluminate layer containing 12CaO / 7Al 2 O 3 compound particles are provided on the surface of the ceramic support, and the entire calcium aluminate layer has catalytic activity. A catalyst in which the transition metal is widely dispersed and contains a gap through which gas can flow is obtained inside the calcium aluminate layer. In this catalyst, when the transition metal and the reaction target (hydrocarbon, etc.) come into contact with each other during the catalytic reaction, the reaction target easily comes into contact with not only the surface of the coating layer but also the transition metal inside the layer, and has high catalytic activity. ..

次に実施例を挙げて本発明を更に詳細に説明するが、本発明は、これら実施例に何ら限定されない。 Next, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

<実施例1>
(12CaO・7Al23化合物粒子の作製)
酸化カルシウムとα型酸化アルミニウムがモル比〔(CaO)/(Al23)〕=1.63となる混合粉末を溶融炉にて溶融させた。溶融時の表面温度は最高で1800℃であり、40分間経過後全量溶融したことを確認し型枠に流し出した。その後自然冷却させ12CaO・7Al23化合物を得た。粉砕処理にはピンミルで粉砕後シングルトラックジェットミル(セイシン企業(株)製)を用いて粉砕を行った。この時得られた12CaO・7Al23化合物粉末の比表面積は1.8m2/gであった。比表面積測定には窒素ガス吸着測定装置(マイクロトラックベル(株)製BELsorp MAX)を用いBET比表面積として算出した。
<Example 1>
(Preparation of 12CaO / 7Al 2 O 3 compound particles)
A mixed powder having a molar ratio of calcium oxide and α-type aluminum oxide [(CaO) / (Al 2 O 3 )] = 1.63 was melted in a melting furnace. The maximum surface temperature at the time of melting was 1800 ° C., and after 40 minutes had passed, it was confirmed that the entire amount had melted, and the mixture was poured into a mold. Then, it was naturally cooled to obtain a 12CaO · 7Al 2 O 3 compound. For the crushing treatment, after crushing with a pin mill, crushing was performed using a single track jet mill (manufactured by Seishin Enterprise Co., Ltd.). The specific surface area of the 12CaO / 7Al 2 O 3 compound powder obtained at this time was 1.8 m 2 / g. The specific surface area was calculated as the BET specific surface area using a nitrogen gas adsorption measuring device (BELsorb MAX manufactured by Microtrac Bell Co., Ltd.).

(触媒の作製)
得られた12CaO・7Al23化合物粉末と硝酸ニッケル六水和物(富士フィルム和光純薬(株))を蒸留水100質量部に対しそれぞれ2質量部および100質量部添加し、1時間撹拌して水性スラリーを得た。支持体として、1平方インチ当たり目の数が400のハニカム型コージエライトを用い、ハニカム面の鉛直方向に3cm×3cm×で水平方向に5cmに切り出して使用した。このハニカム支持体を水性スラリーに10秒間浸漬し、大気雰囲気にて100℃で1時間乾燥させた。同様の浸漬と乾燥の処理を合計4回繰り返し行った。その後大気雰囲気にて400℃で1時間熱処理を行い、触媒を得た。
(Catalyst preparation)
2 parts by mass and 100 parts by mass of the obtained 12CaO / 7Al 2 O 3 compound powder and nickel nitrate hexahydrate (Fuji Film Wako Pure Chemical Industries, Ltd.) were added to 100 parts by mass of distilled water, respectively, and stirred for 1 hour. To obtain an aqueous slurry. As a support, a honeycomb type cordierite having a number of stitches per square inch of 400 was used, and the honeycomb surface was cut into 3 cm × 3 cm × in the vertical direction and 5 cm in the horizontal direction. The honeycomb support was immersed in an aqueous slurry for 10 seconds and dried in an air atmosphere at 100 ° C. for 1 hour. The same dipping and drying treatments were repeated a total of 4 times. Then, heat treatment was performed at 400 ° C. for 1 hour in an atmospheric atmosphere to obtain a catalyst.

(メタン直接分解反応による触媒性能評価)
触媒を流通式反応管内に設置し400℃で1時間水素雰囲気で還元処理を行った後、700℃にてメタンガスを4.5L/hrで流通させ、その際の水素生成特性をガスクロマトグラフィーにて計測した。その結果、メタン流通初期のメタン転化率が56.1%、水素濃度が70.8%であった。
(Evaluation of catalyst performance by direct decomposition reaction of methane)
After the catalyst was placed in a flow-type reaction tube and reduced at 400 ° C. for 1 hour in a hydrogen atmosphere, methane gas was circulated at 700 ° C. at 4.5 L / hr, and the hydrogen production characteristics at that time were subjected to gas chromatography. Was measured. As a result, the methane conversion rate at the initial stage of methane distribution was 56.1%, and the hydrogen concentration was 70.8%.

<実施例2>
(触媒の作製)
実施例1と同様の手順で得られた12CaO・7Al23化合物粉末と硝酸ニッケル六水和物、さらにクエン酸粉末を蒸留水100質量部に対しそれぞれ2質量部、100質量部、0.01質量部添加し、1時間撹拌して水性スラリーを得た。実施例1と同様のハニカム支持体を用い、水性スラリーに10秒間浸漬し、大気雰囲気にて100℃で1時間乾燥させた。同様の浸漬と乾燥の処理を合計4回繰り返し行った。その後大気雰囲気にて400℃で1時間熱処理を行い、触媒を得た。
<Example 2>
(Catalyst preparation)
The 12CaO / 7Al 2 O 3 compound powder, nickel nitrate hexahydrate, and citric acid powder obtained in the same procedure as in Example 1 were added to 100 parts by mass of distilled water, 2 parts by mass, 100 parts by mass, and 0. 01 parts by mass was added and stirred for 1 hour to obtain an aqueous slurry. Using the same honeycomb support as in Example 1, the mixture was immersed in an aqueous slurry for 10 seconds and dried at 100 ° C. for 1 hour in an air atmosphere. The same dipping and drying treatments were repeated a total of 4 times. Then, heat treatment was performed at 400 ° C. for 1 hour in an atmospheric atmosphere to obtain a catalyst.

(メタン直接分解反応による触媒性能評価)
触媒を流通式反応管内に設置し400℃で1時間水素雰囲気で還元処理を行った後、700℃にてメタンガスを4.5L/hrで流通させ、その際の水素生成特性をガスクロマトグラフィーにて計測した。その結果、メタン流通初期のメタン転化率が69.4%、水素濃度が81.6%であった。
(Evaluation of catalyst performance by direct decomposition reaction of methane)
After the catalyst was placed in a flow-type reaction tube and reduced at 400 ° C. for 1 hour in a hydrogen atmosphere, methane gas was circulated at 700 ° C. at 4.5 L / hr, and the hydrogen production characteristics at that time were subjected to gas chromatography. Was measured. As a result, the methane conversion rate at the initial stage of methane distribution was 69.4%, and the hydrogen concentration was 81.6%.

<比較例1>
(触媒の作製)
実施例1と同様の手順で得られた12CaO・7Al23化合物粉末を蒸留水100質量部に対しそれぞれ2質量部添加し、1時間撹拌して水性スラリーを得た。実施例1と同様のハニカム支持体を用い、水性スラリーに10秒間浸漬し、大気雰囲気にて100℃で1時間乾燥させた。同様の浸漬と乾燥の処理を合計4回繰り返し行った。その後、硝酸ニッケル六水和物を蒸留水100質量部に対し100質量部添加し、1時間撹拌して得た水溶液にハニカム支持体を10秒間浸漬し、大気雰囲気にて400℃で1時間熱処理を行い、触媒を得た。
<Comparative example 1>
(Catalyst preparation)
Example 1 Each 2 parts by mass of against distilled water 100 parts by weight of 12CaO · 7Al 2 O 3 compound powder obtained by the same procedure as to give an aqueous slurry was stirred for 1 hour. Using the same honeycomb support as in Example 1, the mixture was immersed in an aqueous slurry for 10 seconds and dried at 100 ° C. for 1 hour in an air atmosphere. The same dipping and drying treatments were repeated a total of 4 times. Then, 100 parts by mass of nickel nitrate hexahydrate was added to 100 parts by mass of distilled water, the honeycomb support was immersed in the aqueous solution obtained by stirring for 1 hour for 10 seconds, and heat-treated at 400 ° C. for 1 hour in an air atmosphere. To obtain a catalyst.

(メタン直接分解反応による触媒性能評価)
触媒を流通式反応管内に設置し400℃で1時間水素雰囲気で還元処理を行った後、700℃にてメタンガスを4.5L/hrで流通させ、その際の水素生成特性をガスクロマトグラフィーにて計測した。その結果、メタン流通初期のメタン転化率が36.2%、水素濃度が52.3%であった。
(Evaluation of catalyst performance by direct decomposition reaction of methane)
After the catalyst was placed in a flow-type reaction tube and reduced at 400 ° C. for 1 hour in a hydrogen atmosphere, methane gas was circulated at 700 ° C. at 4.5 L / hr, and the hydrogen production characteristics at that time were subjected to gas chromatography. Was measured. As a result, the methane conversion rate at the initial stage of methane distribution was 36.2%, and the hydrogen concentration was 52.3%.

<比較例2>
(触媒の作製)
実施例1と同様の手順で得られた12CaO・7Al23化合物粉末を蒸留水100質量部に対しそれぞれ2質量部添加し、1時間撹拌して水性スラリーを得た。実施例1と同様のハニカム支持体を用い、水性スラリーに10秒間浸漬し、大気雰囲気にて100℃で1時間乾燥させた。同様の浸漬と乾燥の処理を合計4回繰り返し行った。その後硝酸ニッケル六水和物を蒸留水100質量部に対し100質量部添加し1時間撹拌して得た水溶液にハニカム支持体を10秒間浸漬し、大気雰囲気にて100℃で1時間乾燥させた。同様の浸漬と乾燥の処理を合計4回繰り返し行った。その後、大気雰囲気にて400℃で1時間熱処理を行い、触媒を得た。
<Comparative example 2>
(Catalyst preparation)
Example 1 Each 2 parts by mass of against distilled water 100 parts by weight of 12CaO · 7Al 2 O 3 compound powder obtained by the same procedure as to give an aqueous slurry was stirred for 1 hour. Using the same honeycomb support as in Example 1, the mixture was immersed in an aqueous slurry for 10 seconds and dried at 100 ° C. for 1 hour in an air atmosphere. The same dipping and drying treatments were repeated a total of 4 times. Then, 100 parts by mass of nickel nitrate hexahydrate was added to 100 parts by mass of distilled water, and the honeycomb support was immersed in an aqueous solution obtained by stirring for 1 hour for 10 seconds and dried at 100 ° C. for 1 hour in an air atmosphere. .. The same dipping and drying treatments were repeated a total of 4 times. Then, the heat treatment was performed at 400 ° C. for 1 hour in the atmospheric atmosphere to obtain a catalyst.

(メタン直接分解反応による触媒性能評価)
触媒を流通式反応管内に設置し400℃で1時間水素雰囲気で還元処理を行った後、700℃にてメタンガスを4.5L/hrで流通させ、その際の水素生成特性をガスクロマトグラフィーにて計測した。その結果、メタン流通初期のメタン転化率が43.8%、水素濃度が60.6%であった。
(Evaluation of catalyst performance by direct decomposition reaction of methane)
After the catalyst was placed in a flow-type reaction tube and reduced at 400 ° C. for 1 hour in a hydrogen atmosphere, methane gas was circulated at 700 ° C. at 4.5 L / hr, and the hydrogen production characteristics at that time were subjected to gas chromatography. Was measured. As a result, the methane conversion rate at the initial stage of methane distribution was 43.8%, and the hydrogen concentration was 60.6%.

Claims (4)

(A)カルシウムアルミネートと遷移金属を含む水性スラリーを作製する工程と、
(B)前記水性スラリーをセラミックス支持体表面にコーティングする工程と、
(C)前記セラミックス支持体を400〜600℃の温度で熱処理して、12CaO・7Al23化合物粒子を前記セラミックス支持体上に生成させ、固定化する工程とを含む触媒の製造方法。
(A) A step of preparing an aqueous slurry containing calcium aluminate and a transition metal, and
(B) A step of coating the surface of the ceramic support with the aqueous slurry and
(C) A method for producing a catalyst, which comprises a step of heat-treating the ceramic support at a temperature of 400 to 600 ° C. to generate and immobilize 12CaO / 7Al 2 O 3 compound particles on the ceramic support.
さらに、(D)前記遷移金属を還元処理して触媒活性を付与する工程を含む請求項1に記載の触媒の製造方法。 The method for producing a catalyst according to claim 1, further comprising (D) a step of reducing the transition metal to impart catalytic activity. 前記セラミックス支持体が、ハニカム構造を有するセラミックス支持体である請求項1または2に記載の触媒の製造方法。 The method for producing a catalyst according to claim 1 or 2, wherein the ceramic support is a ceramic support having a honeycomb structure. セラミック支持体と、該セラミック支持体表面上に12CaO・7Al23化合物粒子を含むカルシウムアルミネート層を有し、該カルシウムアルミネート層全体に触媒活性を有する遷移金属が広く分散してなり、かつ該カルシウムアルミネート層内部にガス流通可能な間隙を含むことを特徴とする触媒。

A transition metal having a ceramic support and a calcium aluminate layer containing 12CaO / 7Al 2 O 3 compound particles on the surface of the ceramic support and having catalytic activity is widely dispersed throughout the calcium aluminate layer. Moreover, the catalyst is characterized by including a gap through which gas can flow inside the calcium aluminate layer.

JP2020064319A 2020-03-31 2020-03-31 Catalyst manufacturing method Active JP7442935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020064319A JP7442935B2 (en) 2020-03-31 2020-03-31 Catalyst manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020064319A JP7442935B2 (en) 2020-03-31 2020-03-31 Catalyst manufacturing method

Publications (2)

Publication Number Publication Date
JP2021159861A true JP2021159861A (en) 2021-10-11
JP7442935B2 JP7442935B2 (en) 2024-03-05

Family

ID=78004185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020064319A Active JP7442935B2 (en) 2020-03-31 2020-03-31 Catalyst manufacturing method

Country Status (1)

Country Link
JP (1) JP7442935B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004263636A (en) 2003-03-03 2004-09-24 Toyota Motor Corp Exhaust emission control device
JP3970208B2 (en) 2003-06-16 2007-09-05 電気化学工業株式会社 Method for synthesizing reactive oxygen species inclusion materials
JP4525909B2 (en) 2004-10-28 2010-08-18 戸田工業株式会社 Water gas shift reaction catalyst, method for producing the same, and method for producing water gas
JP5024917B2 (en) 2005-10-26 2012-09-12 三井金属鉱業株式会社 Exhaust gas purification catalyst for gasoline engine and method for producing the same
MY161990A (en) 2009-05-20 2017-05-31 Basf Se Monolith catalyst and use thereof

Also Published As

Publication number Publication date
JP7442935B2 (en) 2024-03-05

Similar Documents

Publication Publication Date Title
JP6480053B2 (en) Chabazite zeolite catalyst with low silica / alumina ratio
EP0130835B1 (en) High temperature stable catalyst, process for preparing same and process for conducting chemical reaction using same
US8404611B2 (en) Exhaust gas purifying catalyst and production method thereof
KR910004071B1 (en) Catalyst for purifying exhaust gas
JP2021183333A (en) Platinum group metal (pgm) catalysts for automotive emissions treatment
KR101431919B1 (en) Composition comprising cerium oxide and zirconium oxide having a specific porosity, preparation method thereof and use of same in catalysis
JPS5810137B2 (en) Oxidation catalyst composition
JP5335505B2 (en) Noble metal support and method for producing carboxylic acid ester using the same as catalyst
JP2012040550A (en) Catalyst precursor dispersion, catalyst, and cleaning method of exhaust gas
JP2022061979A (en) Exhaust gas purification catalyst composition and exhaust gas purification catalyst for automobile
JP7442935B2 (en) Catalyst manufacturing method
US20060099421A1 (en) High specific surface area composite alumina powder with thermal resistance and method for producing the same
JP7211709B2 (en) Exhaust gas purifying three-way catalyst, manufacturing method thereof, and integral structure type exhaust gas purifying catalyst
JPWO2014024312A1 (en) Exhaust gas purification catalyst and method for producing the same
PL165614B1 (en) Triple action catalyst for car exhaust afterburner and a method for its manufacturing
JPH0729055B2 (en) Catalyst for oxidizing carbon-containing compound and method for producing the same
JPH0398644A (en) Preparation of catalyst for purifying exhaust gas
JP2533703B2 (en) Catalyst for high temperature steam reforming reaction of hydrocarbon and method of using the same
JP7269562B2 (en) Catalyst carrier and catalyst manufacturing method
JP7269563B2 (en) Support immobilized catalyst carrier
JP6769839B2 (en) Three-way catalyst for exhaust gas purification, its manufacturing method, and catalyst converter for exhaust gas purification
WO2018088201A1 (en) Exhaust gas purifying three-way catalyst, method for manufacturing same, and exhaust gas purifying catalyst converter
JPH1176819A (en) Catalyst for cleaning of exhaust gas
JP7470740B2 (en) Catalytic precious metal particles
JP2003275588A (en) Co shift reaction catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240220

R150 Certificate of patent or registration of utility model

Ref document number: 7442935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150