JP7269562B2 - Catalyst carrier and catalyst manufacturing method - Google Patents

Catalyst carrier and catalyst manufacturing method Download PDF

Info

Publication number
JP7269562B2
JP7269562B2 JP2019041412A JP2019041412A JP7269562B2 JP 7269562 B2 JP7269562 B2 JP 7269562B2 JP 2019041412 A JP2019041412 A JP 2019041412A JP 2019041412 A JP2019041412 A JP 2019041412A JP 7269562 B2 JP7269562 B2 JP 7269562B2
Authority
JP
Japan
Prior art keywords
12cao
compound
catalyst
ceramic support
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019041412A
Other languages
Japanese (ja)
Other versions
JP2020142202A (en
Inventor
正一 染川
捷凡 柳
俊幸 山中
浩志 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Taiheiyo Materials Corp
Original Assignee
Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Industrial Technology Research Instititute (TIRI), Taiheiyo Materials Corp filed Critical Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Priority to JP2019041412A priority Critical patent/JP7269562B2/en
Publication of JP2020142202A publication Critical patent/JP2020142202A/en
Application granted granted Critical
Publication of JP7269562B2 publication Critical patent/JP7269562B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明は、12CaO・7Al23化合物が支持体上に固定化された触媒担体を用いた活性の高い触媒の製造方法に関する。 TECHNICAL FIELD The present invention relates to a method for producing a highly active catalyst using a catalyst carrier on which a 12CaO.7Al 2 O 3 compound is immobilized.

12CaO・7Al23構造を有するカルシウムアルミネートは、格子中にフリー酸素を有するため、酸化触媒、イオン伝導体、助触媒として有用であることが知られている(特許文献1、2)。また、この12CaO・7Al23化合物は、その表面にNiやPt等の遷移金属を担持することにより、アンモニア合成触媒、メタン等の炭化水素ガスから水素製造用触媒等が得られることも知られている(特許文献3、4、5)。 Calcium aluminate having a 12CaO.7Al 2 O 3 structure is known to be useful as an oxidation catalyst, an ion conductor, and a co-catalyst because it has free oxygen in the lattice (Patent Documents 1 and 2). It is also known that this 12CaO.7Al 2 O 3 compound supports a transition metal such as Ni or Pt on its surface to obtain a catalyst for synthesizing ammonia, a catalyst for producing hydrogen from a hydrocarbon gas such as methane, and the like. (Patent Documents 3, 4, 5).

特開2002-3218号公報JP-A-2002-3218 特開2006-96571号公報JP-A-2006-96571 国際公開第2012/077658号WO2012/077658 特開2018-143940号公報JP 2018-143940 A 特開2018-143941号公報JP 2018-143941 A

ところが、環境浄化作用や自動車用も含め、現在産業界で実用化されている触媒のほとんどが粉体では用いず、種々の支持体に担持されて使用される。その理由は、粉体では目詰まりを起こしてガスの流通が困難になることや飛散による環境への影響が懸念されるからである。従って、本発明の触媒も支持体等に担持して使用することが望まれる。しかしながら、12CaO・7Al23化合物微粒子を支持体に担持させる手法については十分な検討がなされていない。従って、本発明の課題は、比表面積の大きい12CaO・7Al23化合物を効率良くセラミックス支持体上に固定化した触媒担体の製造方法を提供することにある。 However, most of the catalysts currently in practical use in industry, including those for environmental purification and automobile use, are not used in the form of powder, but are carried on various supports. The reason for this is that the powder causes clogging, which makes it difficult for the gas to flow, and there is concern about the environmental impact due to scattering. Therefore, it is desired that the catalyst of the present invention is also supported on a support or the like before use. However, a sufficient study has not been made on a technique for supporting fine particles of 12CaO.7Al 2 O 3 compound on a support. Accordingly, an object of the present invention is to provide a method for producing a catalyst carrier in which a 12CaO.7Al 2 O 3 compound having a large specific surface area is efficiently immobilized on a ceramics carrier.

12CaO・7Al23化合物をセラミックス支持体上に担持する際、12CaO・7Al23化合物の水和反応を防止するため、12CaO・7Al23化合物粒子を有機溶媒に分散させてセラミックス支持体上にコーティングすることを試みた。しかし、この方法ではセラミックス支持体と有機溶媒との相性が悪く、12CaO・7Al23化合物粒子が付着せず、大部分が容易に剥離してしまう状況が生じた(図1参照)。その解決手段として、12CaO・7Al23化合物の表層だけを水和させた水性スラリーをセラミックス支持体表面にコーティングした後、当該支持体を400~1000℃に加熱処理すれば、セラミックス支持体上に付着したカルシウムアルミネート水和物が12CaO・7Al23化合物に再生され、かつ比表面積の高い12CaO・7Al23化合物が支持体上に固定化された触媒担体が得られ、遷移金属を担持することで触媒活性に優れる触媒が得られることを見出し、本発明を完成した。 When the 12CaO.7Al 2 O 3 compound is supported on the ceramic support, the 12CaO.7Al 2 O 3 compound particles are dispersed in an organic solvent to prevent the hydration reaction of the 12CaO.7Al 2 O 3 compound. I tried coating it on my body. However, in this method, the compatibility between the ceramic support and the organic solvent was poor, and the 12CaO.7Al 2 O 3 compound particles did not adhere and most of the particles were easily peeled off (see FIG. 1). As a solution to this problem, after coating the surface of a ceramic support with an aqueous slurry in which only the surface layer of the 12CaO·7Al 2 O 3 compound is hydrated, the support is heated to 400 to 1000°C. Calcium aluminate hydrate adhering to the transition metal is regenerated into a 12CaO.7Al 2 O 3 compound, and a catalyst carrier in which the 12CaO.7Al 2 O 3 compound having a high specific surface area is immobilized on the support is obtained. The present inventors have completed the present invention by finding that a catalyst having excellent catalytic activity can be obtained by supporting

すなわち、本発明は、次の〔1〕~〔7〕を提供するものである。 That is, the present invention provides the following [1] to [7].

〔1〕(A)カルシウムアルミネート水和物を含む粒子が分散した水性スラリーをセラミックス支持体表面にコーティングする工程と、
(B)前記セラミックス支持体を400~1000℃の温度で熱処理して12CaO・7Al23化合物粒子を前記セラミックス支持体上に生成させ、固定化する工程とを含む触媒担体の製造方法。
〔2〕前記カルシウムアルミネート水和物を含む粒子が、12CaO・7Al23化合物粒子表面上にカルシウムアルミネート水和物が生成している粒子である〔1〕記載の触媒担体の製造方法。
〔3〕前記カルシウムアルミネート水和物を含む粒子が分散した水性スラリーが、12CaO・7Al23化合物粒子を水に分散させて得られた水性スラリーである〔1〕又は〔2〕記載の触媒担体の製造方法。
〔4〕前記12CaO・7Al23化合物粒子のBET比表面積が3m2/g以上である〔2〕又は〔3〕記載の触媒担体の製造方法。
〔5〕前記セラミックス支持体が、ハニカム構造を有するセラミックス支持体である〔1〕~〔4〕のいずれかに記載の触媒担体の製造方法。
〔6〕さらに、(C)〔1〕~〔5〕のいずれかに記載の触媒担体の前記セラミックス支持体上の12CaO・7Al23化合物粒子に遷移金属を担持する工程を含む触媒の製造方法。
〔7〕工程(C)が、前記セラミックス支持体上の12CaO・7Al23化合物粒子を、遷移金属の0.001μm以上1μm以下の微粒子の分散液又は遷移金属塩の溶液で処理する工程である〔6〕記載の触媒の製造方法。
[1] (A) a step of coating the surface of a ceramic support with an aqueous slurry in which particles containing calcium aluminate hydrate are dispersed;
(B) A method for producing a catalyst carrier, comprising the step of heat-treating the ceramic support at a temperature of 400 to 1000° C. to generate 12CaO.7Al 2 O 3 compound particles on the ceramic support and immobilizing them.
[2] The method for producing a catalyst carrier according to [1], wherein the particles containing calcium aluminate hydrate are particles in which calcium aluminate hydrate is formed on the surface of 12CaO·7Al 2 O 3 compound particles. .
[3] The aqueous slurry in which the particles containing calcium aluminate hydrate are dispersed is an aqueous slurry obtained by dispersing 12CaO.7Al 2 O 3 compound particles in water [1] or [2]. A method for producing a catalyst carrier.
[4] The method for producing a catalyst carrier according to [2] or [3], wherein the 12CaO.7Al 2 O 3 compound particles have a BET specific surface area of 3 m 2 /g or more.
[5] The method for producing a catalyst carrier according to any one of [1] to [4], wherein the ceramic support has a honeycomb structure.
[6] Further, (C) a step of supporting a transition metal on the 12CaO.7Al 2 O 3 compound particles on the ceramic support of the catalyst carrier according to any one of [1] to [5]. Method.
[7] In the step (C), the 12CaO.7Al 2 O 3 compound particles on the ceramic support are treated with a dispersion of transition metal fine particles of 0.001 μm or more and 1 μm or less or a transition metal salt solution. A method for producing a catalyst according to [6].

本発明方法によれば、セラミックス支持体への12CaO・7Al23化合物の付着性が良好であり、かつ比表面積の大きい12CaO・7Al23化合物が支持体上に固定化された触媒担体が得られるため、得られた触媒担体の助触媒性能も高くなる。また、担持された12CaO・7Al23化合物層表面上に遷移金属を担持させることにより、工業的に有用な酸化触媒、還元触媒、炭化水素分解用触媒が得られる。 According to the method of the present invention, the 12CaO.7Al 2 O 3 compound adheres well to the ceramic support, and a catalyst carrier in which the 12CaO.7Al 2 O 3 compound having a large specific surface area is immobilized on the support is obtained. is obtained, the co-catalyst performance of the obtained catalyst carrier is also enhanced. By supporting a transition metal on the surface of the supported 12CaO.7Al 2 O 3 compound layer, industrially useful oxidation catalysts, reduction catalysts and catalysts for cracking hydrocarbons can be obtained.

コージェライトセラミックス支持体表面への付着性と走査電子顕微鏡画像を示す。The adhesion to the cordierite ceramic support surface and scanning electron microscope images are shown. 12CaO・7Al23化合物微粒子を水に分散した際の水との接触時間による結晶構造の変化を示す。12 shows changes in crystal structure depending on contact time with water when fine particles of 12CaO.7Al 2 O 3 compound are dispersed in water. 水性スラリーを用いたコーティング処理と熱処理温度による結晶構造の変化を示す。It shows the change of crystal structure due to coating treatment using aqueous slurry and heat treatment temperature. 水性スラリーを用いたコーティング処理と熱処理による支持体への付着性向上の概念図を示す。FIG. 2 shows a conceptual diagram of improving adhesion to a support by coating treatment using an aqueous slurry and heat treatment. 水中への分散処理および熱処理による12CaO・7Al23化合物の昇温反応法を用いた助触媒効果の評価結果を示す。The results of evaluation of the promoter effect of 12CaO.7Al 2 O 3 compound by dispersion treatment in water and heat treatment using temperature-rising reaction method are shown.

本発明の触媒の製造方法は、(A)カルシウムアルミネート水和物を含む粒子が分散した水性スラリーをセラミックス支持体表面にコーティングする工程と、
(B)前記セラミックス支持体を400~1000℃の温度で熱処理して12CaO・7Al23化合物粒子を前記セラミックス支持体上に生成させ、固定化する工程とを含む。
The method for producing the catalyst of the present invention comprises (A) the step of coating the surface of a ceramic support with an aqueous slurry in which particles containing calcium aluminate hydrate are dispersed;
(B) heat-treating the ceramic support at a temperature of 400 to 1000° C. to generate 12CaO.7Al 2 O 3 compound particles on the ceramic support and immobilizing them.

工程(A)に用いるカルシウムアルミネート水和物を含む粒子は、粒子表面上にカルシウムアルミネート水和物が存在するカルシウムアルミネート粒子であればよいが、12CaO・7Al化合物粒子表面上にカルシウムアルミネート水和物が生成している粒子が好ましい。ここで、カルシウムアルミネート水和物は熱処理により12CaO・7Al23化合物が再生成する水和物を含むことが望ましく、例えばCa3Al26・xH2OやCa2Al25・xH2O、Ca4Al27・xH2Oなどが挙げられる。 Particles containing calcium aluminate hydrate used in step ( A) may be calcium aluminate particles in which calcium aluminate hydrate is present on the particle surface. Particles in which calcium aluminate hydrate is formed are preferred. Here, the calcium aluminate hydrate preferably contains a hydrate that regenerates a 12CaO.7Al 2 O 3 compound by heat treatment, such as Ca 3 Al 2 O 6 .xH 2 O and Ca 2 Al 2 O 5 . * xH2O , Ca4Al2O7 * xH2O etc. are mentioned .

ここで、12CaO・7Al23化合物は、12CaO・7Al23構造を有するカルシウムアルミネートであり、例えば、カルシウム化合物及びアルミニウム化合物の混合物を加熱することにより製造することができる。 Here, the 12CaO.7Al 2 O 3 compound is calcium aluminate having a 12CaO.7Al 2 O 3 structure, and can be produced, for example, by heating a mixture of a calcium compound and an aluminum compound.

原料として用いるカルシウム化合物としては、酸化カルシウム、炭酸カルシウム等が挙げられる。また、アルミニウム化合物としては、酸化アルミニウムが挙げられるが、酸化アルミニウムの結晶構造はα型、γ型のいずれでもよい。また、これらのカルシウム化合物及びアルミニウム化合物は、粉末、固体焼結物、固体単結晶など形状を問わない。原料の混合比率は、酸化物換算のモル比〔(CaO)/(Al23)〕で、1.5以上1.9以下が好ましく、1.6以上1.8以下がより好ましい。 Calcium oxide, calcium carbonate, etc. are mentioned as a calcium compound used as a raw material. The aluminum compound includes aluminum oxide, and the crystal structure of aluminum oxide may be either α-type or γ-type. Further, these calcium compounds and aluminum compounds may be in any form, such as powder, solid sintered product, solid single crystal, and the like. The mixing ratio of the raw materials is preferably 1.5 or more and 1.9 or less, more preferably 1.6 or more and 1.8 or less, in terms of oxide equivalent molar ratio [(CaO)/(Al 2 O 3 )].

カルシウム化合物及びアルミニウム化合物の混合物の加熱は、真空中、不活性ガス雰囲気中、水素雰囲気中、酸素雰囲気中等で行なうことができる。但し、水蒸気を含む雰囲気は好ましくない。酸素濃度21%程度の乾燥空気中でも行うことができる。なお、酸素雰囲気中で加熱製造する場合は、原料の混合比率をモル比〔(CaO)/(Al23)〕で1.5以上1.7以下の範囲にすることが、高純度の12CaO・7Al23化合物を得る観点から好ましい。
加熱条件は、最高温度を原料化合物が反応してカルシウムアルミネートが生成する温度以上とすることが好ましく、1250℃以上2500℃以下とするのがより好ましく、1300℃以上1800℃以下とするのがさらに好ましい。原料化合物を溶融させて12CaO・7Al23化合物を製造する場合は、1400℃以上とすることが好ましい。
The mixture of the calcium compound and the aluminum compound can be heated in a vacuum, an inert gas atmosphere, a hydrogen atmosphere, an oxygen atmosphere, or the like. However, an atmosphere containing water vapor is not preferable. It can also be carried out in dry air with an oxygen concentration of about 21%. In the case of heating and manufacturing in an oxygen atmosphere, it is preferable to set the mixing ratio of the raw materials to a molar ratio [(CaO)/(Al 2 O 3 )] in the range of 1.5 or more and 1.7 or less. It is preferable from the viewpoint of obtaining a 12CaO.7Al 2 O 3 compound.
As for the heating conditions, the maximum temperature is preferably the temperature at which the raw material compounds react to form calcium aluminate or higher, more preferably 1250° C. or higher and 2500° C. or lower, and 1300° C. or higher and 1800° C. or lower. More preferred. When the raw material compound is melted to produce the 12CaO.7Al 2 O 3 compound, the temperature is preferably 1400° C. or higher.

前記温度に加熱することにより、原料化合物が反応して12CaO・7Al23化合物が生成するので、必要に応じて粉砕し12CaO・7Al23化合物微粒子を得る。溶融した場合は冷却して固化物とし、得られた固化物を粉砕すれば12CaO・7Al23化合物微粒子が得られる。
冷却条件は、特に制限されないが、溶融した場合は溶融後の温度が1200℃以下となるまでは降温速度50℃/時間以上600℃/時間以下が好ましい。
生成した12CaO・7Al23化合物は、結晶質およびガラス質のいずれでもよい。12CaO・7Al23化合物の純度は50%以上でその他のカルシウムアルミネート化合物を含んでもよいが、触媒担体として効果的に性能を発揮するためには、12CaO・7Al23化合物の純度が80%以上であることが好ましく、90%以上がより好ましい。
12CaO・7Al23化合物の固化物の粉砕工程は、乾式粉砕ならびに12CaO・7Al23化合物の水和を防ぐため有機溶媒を用いた湿式粉砕のいずれかの微粉砕方法を用いることができる。得られる微粒子は、BET比表面積が2m2/g以上の微粉末であることが水性スラリー中での分散の点で好ましい。
By heating to the above temperature, the raw material compound reacts to form a 12CaO.7Al 2 O 3 compound, which is pulverized as necessary to obtain fine particles of the 12CaO.7Al 2 O 3 compound. When it is melted, it is cooled to form a solidified product, and the obtained solidified product is pulverized to obtain 12CaO.7Al 2 O 3 compound fine particles.
The cooling conditions are not particularly limited, but in the case of melting, the temperature drop rate is preferably 50° C./hour or more and 600° C./hour or less until the temperature after melting reaches 1200° C. or less.
The 12CaO.7Al 2 O 3 compound produced may be either crystalline or vitreous. The 12CaO.7Al 2 O 3 compound has a purity of 50% or more and may contain other calcium aluminate compounds. It is preferably 80% or more, more preferably 90% or more.
For the pulverization step of the solidified 12CaO.7Al 2 O 3 compound, either dry pulverization or wet pulverization using an organic solvent to prevent hydration of the 12CaO.7Al 2 O 3 compound can be used. . The fine particles to be obtained are preferably fine powder having a BET specific surface area of 2 m 2 /g or more from the viewpoint of dispersion in aqueous slurry.

工程(A)のカルシウムアネミネート水和物を含む粒子が分散した水性スラリーは、前記の如くして得られる12CaO・7Al23化合物粒子を水に分散させて得られた水性スラリーであるのが好ましい。当該スラリーは、水100質量部に対し、好ましくは0.1~30質量部、さらに好ましくは1~10質量部の12CaO・7Al23化合物を添加して混合することにより得るのが好ましい。ここで水性スラリーの調製温度は、0.1℃~30℃であればよい。
12CaO・7Al23化合物粒子を水に分散させて水性スラリーとすることにより、12CaO・7Al23化合物粒子の表面にカルシウムアルミネート水和物が生成する。ここで水に分散させる方法としては、撹拌羽根を用いる撹拌機、スターラー等を用いて弱い力でゆっくり撹拌することが好ましい。12CaO・7Al23化合物粒子の表面が水和して、12CaO・7Al23化合物粒子の表面にカルシウムアルミネート水和物の層が生成すれば十分であることから、必要以上に強い力で撹拌、混合する必要はなく、ましてや、湿式粉砕して水性スラリーを作製することは好ましくない。水との接触時間(撹拌時間)は特に限定されるものではないが、1~120分が好ましく、5~90分がより好ましい。
得られるカルシウムアルミネート水和物を含む粒子のBET比表面積は、5m2/g以上が好ましく、10m2/g以上がより好ましく、100m2/g以上がさらに好ましい。
前記の水性スラリーをセラミックス支持体表面にコーティングする。ここで、セラミックス支持体としては、セラミックペレット、セラミックフォーム、セラミックハニカム、目封じタイプのセラミックハニカム、等が挙げられるが、多量の12CaO・7Al23化合物粒子を固定化できることからハニカム構造を有するセラミックス支持体がより好ましい。ここで、セラミックスとしては、炭化珪素、コージェライト、ムライト、アルミナ、ジルコニア、チタニア、リン酸チタン、アルミニウムチタネート、アルミノシリケート等が挙げられる。また、本発明におけるセラミック支持体は、支持体表面がセラミックスとしての性状を有するものも含まれる。例えば、鉄、アルミニウム、クロム、チタンやその合金などの表面に金属酸化物等のセラミックスの不動態膜が形成された金属等も使用可能である。
The aqueous slurry in which particles containing calcium aneminate hydrate in step (A) are dispersed is an aqueous slurry obtained by dispersing the 12CaO.7Al 2 O 3 compound particles obtained as described above in water. is preferred. The slurry is preferably obtained by adding and mixing 12CaO.7Al 2 O 3 compound in an amount of preferably 0.1 to 30 parts by mass, more preferably 1 to 10 parts by mass, with respect to 100 parts by mass of water. Here, the preparation temperature of the aqueous slurry may be 0.1°C to 30°C.
By dispersing the 12CaO·7Al 2 O 3 compound particles in water to form an aqueous slurry, calcium aluminate hydrate is formed on the surfaces of the 12CaO·7Al 2 O 3 compound particles. Here, as a method for dispersing in water, it is preferable to slowly stir with a weak force using a stirrer using a stirring blade, a stirrer, or the like. Since it is sufficient if the surface of the 12CaO.7Al 2 O 3 compound particles is hydrated and a layer of calcium aluminate hydrate is formed on the surface of the 12CaO.7Al 2 O 3 compound particles, an unnecessarily strong force is applied. It is not necessary to stir and mix with , and it is not preferable to prepare an aqueous slurry by wet pulverization. The contact time with water (stirring time) is not particularly limited, but is preferably 1 to 120 minutes, more preferably 5 to 90 minutes.
The BET specific surface area of the obtained particles containing calcium aluminate hydrate is preferably 5 m 2 /g or more, more preferably 10 m 2 /g or more, and even more preferably 100 m 2 /g or more.
The aqueous slurry is coated on the surface of the ceramic support. Here, ceramic supports include ceramic pellets, ceramic foams, ceramic honeycombs, plugging type ceramic honeycombs, and the like. A ceramic support is more preferred. Examples of ceramics include silicon carbide, cordierite, mullite, alumina, zirconia, titania, titanium phosphate, aluminum titanate, and aluminosilicate. In addition, the ceramic support in the present invention includes those whose surfaces have the properties of ceramics. For example, it is possible to use metals such as iron, aluminum, chromium, titanium, and alloys thereof, on which a passivated film of ceramics such as metal oxides is formed.

セラミックス支持体表面上に前記水性スラリーをコーティングするには、セラミックス支持体表面に前記水性スラリーを接触させればよい。具体的には、前記水性スラリーをセラミック支持体に塗布又は噴霧する方法、あるいは水性スラリー中にセラミックス支持体を浸漬する方法が挙げられる。浸漬する場合の時間は、10秒程度で十分である。浸漬温度は0.1~30℃が好ましい。浸漬する回数は、複数回とすることが望ましいが、1回を含めていずれの浸漬回数の場合でも工程(B)の熱処理後に12CaO・7Al23化合物粒子が支持体表面上に存在していればよい。 In order to coat the aqueous slurry on the surface of the ceramic support, the aqueous slurry may be brought into contact with the surface of the ceramic support. Specific examples include a method of coating or spraying the aqueous slurry onto the ceramic support, or a method of immersing the ceramic support in the aqueous slurry. About 10 seconds is sufficient for the immersion. The immersion temperature is preferably 0.1 to 30°C. The number of times of immersion is preferably multiple times, but regardless of the number of times of immersion including once, the 12CaO.7Al 2 O 3 compound particles are present on the surface of the support after the heat treatment in step (B). All you have to do is

このような工程(A)によれば、セラミックス支持体へのカルシウムアルミネートの付着率が極めて高くなる。 According to such step (A), the adhesion rate of calcium aluminate to the ceramic support becomes extremely high.

次いで、表面が水性スラリーでコーティングされたセラミックス支持体を400~1000℃の温度で熱処理して12CaO・7Al23化合物粒子をセラミックス支持体上に生成させ、固定化する(工程(B))。 Next, the ceramic support whose surface is coated with the aqueous slurry is heat-treated at a temperature of 400 to 1000° C. to generate and immobilize 12CaO.7Al 2 O 3 compound particles on the ceramic support (step (B)). .

セラミックス支持体の熱処理は、前記カルシウムアルミネート水和物を12CaO・7Al23化合物に変化させる点、及び得られる12CaO・7Al23化合物粒子の比表面積を向上させる点から、400~1000℃であるのが必要であり、400~900℃が好ましく、450~800℃がより好ましく、450~700℃がさらに好ましく、450~600℃がよりさらに好ましい。熱処理時間は、カルシウムアルミネート水和物が12CaO・7Al23化合物に変化すればよく、特に限定されないが、60分程度で十分である。
当該熱処理により、セラミックス支持体上に新たな12CaO・7Al23化合物粒子が生成し、固定化される。ここで、新しく生成した12CaO・7Al23化合物粒子は、12CaO・7Al23化合物コア部の表層に、新たに微細な12CaO・7Al23集合体層が形成された形態となっているのが好ましい。12CaO・7Al23化合物粒子のBET比表面積は3m2/g以上が好ましく、5m2/g以上がより好ましい。また、12CaO・7Al23化合物粒子のBET比表面積の上限は、50m2/g以下が好ましい。
The heat treatment of the ceramic support converts the calcium aluminate hydrate into a 12CaO.7Al.sub.2O.sub.3 compound and improves the specific surface area of the obtained 12CaO.7Al.sub.2O.sub.3 compound particles. °C, preferably 400 to 900°C, more preferably 450 to 800°C, even more preferably 450 to 700°C, even more preferably 450 to 600°C. The heat treatment time is not particularly limited as long as the calcium aluminate hydrate is changed to the 12CaO.7Al 2 O 3 compound, but about 60 minutes is sufficient.
By the heat treatment, new 12CaO.7Al 2 O 3 compound particles are generated and immobilized on the ceramic support. Here, the newly generated 12CaO.7Al 2 O 3 compound particles have a form in which a new fine 12CaO.7Al 2 O 3 aggregate layer is formed on the surface layer of the 12CaO.7Al 2 O 3 compound core portion. It is preferable to be The BET specific surface area of the 12CaO.7Al 2 O 3 compound particles is preferably 3 m 2 /g or more, more preferably 5 m 2 /g or more. Moreover, the upper limit of the BET specific surface area of the 12CaO.7Al 2 O 3 compound particles is preferably 50 m 2 /g or less.

かかる工程(B)によれば、セラミックス支持体上への12CaO・7Al23化合物粒子の固定化率が高く、容易に剥離せず、触媒担体(助触媒性能を有す)として特に優れている。 According to the step (B), the 12CaO.7Al 2 O 3 compound particles are fixed on the ceramic support at a high rate, are not easily peeled off, and are particularly excellent as a catalyst support (having co-catalyst performance). there is

得られたセラミックス支持体上に固定化された12CaO・7Al23化合物粒子には、さらに、各種の触媒活性を有する遷移金属を担持させることができる。
遷移金属としては、Ni、Pt、Pd、Ru、Rh、Co等の8族、9族及び10族から選ばれる元素の1種又は2種以上が挙げられる。例えば、二元系、三元系等の不均一触媒でもよい。これらの遷移金属は、目的とする触媒活性により選択することができ、例えば水素製造用触媒の場合には、Ni、Pt、Pd、Ru、Rhがより好ましく、Ptが特に好ましい。
遷移金属の粒子径は、触媒活性の点、触媒担体表面への高い分散度を確保する点から、小さいことが好ましく、メジアン径として0.001μm以上1μm以下が好ましく、0.001μm以上0.1μm以下がより好ましく、0.001μm以上0.01μm以下がさらに好ましい。ここで、メジアン径は、動的光散乱法による累積頻度が50%となる粒径値である。
The resulting 12CaO.7Al 2 O 3 compound particles immobilized on the ceramic support can further support transition metals having various catalytic activities.
Examples of transition metals include one or more elements selected from Groups 8, 9 and 10 such as Ni, Pt, Pd, Ru, Rh and Co. For example, a heterogeneous catalyst such as a binary system or a ternary system may be used. These transition metals can be selected according to the desired catalytic activity. For example, in the case of hydrogen production catalysts, Ni, Pt, Pd, Ru and Rh are more preferable, and Pt is particularly preferable.
The particle size of the transition metal is preferably small from the viewpoint of catalytic activity and securing a high degree of dispersion on the surface of the catalyst support. The following are more preferable, and 0.001 μm or more and 0.01 μm or less are even more preferable. Here, the median diameter is the particle size value at which the cumulative frequency by the dynamic light scattering method is 50%.

セラミックス支持体上に12CaO・7Al23化合物粒子を固定化した触媒担体への遷移金属の担持は、例えば有機溶媒を用いた含浸法で行うことができる。具体的には、遷移金属のヘキサン等の有機溶媒分散液中に前記触媒担体を投入後、撹拌し、溶媒を蒸発させればよい。ここで、遷移金属の担持量は、触媒担体に対して、0.1~40質量%が好ましく、1~20質量%がより好ましい。 A transition metal can be supported on a catalyst carrier in which 12CaO.7Al 2 O 3 compound particles are immobilized on a ceramic support, for example, by an impregnation method using an organic solvent. Specifically, after the catalyst carrier is put into a dispersion of the transition metal in an organic solvent such as hexane, the mixture is stirred to evaporate the solvent. Here, the supported amount of the transition metal is preferably 0.1 to 40% by mass, more preferably 1 to 20% by mass, relative to the catalyst carrier.

本発明方法によれば、セラミックス支持体上の12CaO・7Al23化合物粒子の付着性が向上しており、さらに比表面積も高くなっているとともに、剥離せず固定化性も向上している。従って、12CaO・7Al23化合物の助触媒性能の増大を全て同時に実現するものであって、実用的に重要である。コーティングした膜の表面上にNi、Pt等の目的に応じた金属触媒を担持させることで、12CaO・7Al23化合物の助触媒作用を有したペレット型やハニカム型の機能性触媒が作製でき、工業的な実用現場で使用できるようになることで、応用範囲の拡大が期待できる。応用例としては、メタン直接分解による水素製造が挙げられ、この方法はCO2を出さず、カーボンが生成されるが、ハニカム型支持体を使用することで、析出したカーボンがハニカムの通気口に溜まり、振動やエアブロー等で除去しやすい。 According to the method of the present invention, the adhesion of the 12CaO.7Al 2 O 3 compound particles on the ceramic support is improved, the specific surface area is increased, and the fixation property is improved without peeling off. . Therefore, it is practically important to simultaneously realize an increase in the co-catalyst performance of the 12CaO.7Al 2 O 3 compound. By supporting a metal catalyst such as Ni or Pt according to the purpose on the surface of the coated film, pellet-type or honeycomb-type functional catalysts having the co-catalytic action of the 12CaO 7Al 2 O 3 compound can be produced. , the expansion of the application range can be expected by being able to be used in industrial practical sites. An example of its application is the direct decomposition of methane to produce hydrogen. This method does not emit CO2 and produces carbon. Accumulation, easy to remove by vibration, air blow, etc.

次に実施例を挙げて本発明を更に詳細に説明するが、本発明は、これら実施例に何ら限定されない。 EXAMPLES Next, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

実施例1
(12CaO・7Al23化合物微粒子の作製)
酸化カルシウムとα型酸化アルミニウムがモル比〔(CaO)/(Al23)〕=1.63となる混合粉末を酸化マグネシウム坩堝に入れ、酸素濃度21%の乾燥空気中で昇温速度400℃/時間で1440℃まで昇温し、溶融させた状態で3時間保持した後、降温速度150℃/時間で室温まで徐冷して12CaO・7Al23化合物を作製した。微粉砕処理にはジェットミル粉砕法を用い、ナノジェットマイザーNJ-50-C型((株)アイシンナノテクノロジーズ製)を使用した。この時、得られた12CaO・7Al23化合物微粒子の比表面積は2.1m2/gであった。比表面積測定にはN2ガス吸着測定装置(マイクロトラックベル(株)製BELsorp MAX)を用いBET比表面積として算出した。
Example 1
(Preparation of 12CaO.7Al 2 O 3 compound fine particles)
A mixed powder in which the molar ratio of calcium oxide and α-type aluminum oxide is [(CaO)/(Al 2 O 3 )]=1.63 is placed in a magnesium oxide crucible, and heated at a rate of 400 in dry air having an oxygen concentration of 21%. C./hr to 1440.degree. C., held in a molten state for 3 hours, and slowly cooled to room temperature at a cooling rate of 150.degree . A jet mill pulverization method was used for fine pulverization, and Nano Jet Mizer NJ-50-C type (manufactured by Aisin Nano Technologies Co., Ltd.) was used. At this time, the specific surface area of the obtained 12CaO.7Al 2 O 3 compound fine particles was 2.1 m 2 /g. The specific surface area was calculated as a BET specific surface area using an N 2 gas adsorption measuring device (BELsorp MAX manufactured by Microtrack Bell Co., Ltd.).

(水性スラリーによるコーティング処理)
得られた12CaO・7Al23化合物微粒子を蒸留水100質量部に対して2質量部添加し、1時間撹拌して水性スラリーを作製した。支持体として、1平方インチ当たり目の数が400のハニカム型コージェライトを用い、ハニカム面の鉛直方向に3cm×3cmで水平方向に5cmに切り出して使用した。このハニカム支持体(□3cm×5cmH)を水性スラリーに10秒間浸漬させ、大気雰囲気にて100℃で1時間乾燥させた後再度水性スラリーに10秒間浸漬し、大気雰囲気にて500℃で1時間熱処理を行いハニカム支持体に12CaO・7Al23化合物微粒子を担持した触媒担体を作製した。なお、得られた触媒担体を蒸留水の入った超音波洗浄機に浸漬させ周波数40kHzの出力で1分間超音波振動を与えた後、担持した12CaO・7Al23化合物微粒子の重量減少を確認したところ5%以下であった。
(Coating treatment with aqueous slurry)
2 parts by mass of the resulting 12CaO.7Al 2 O 3 compound fine particles were added to 100 parts by mass of distilled water, and the mixture was stirred for 1 hour to prepare an aqueous slurry. A honeycomb type cordierite having a mesh size of 400 per square inch was used as the support, and a honeycomb surface of 3 cm×3 cm in the vertical direction and 5 cm in the horizontal direction was cut out and used. This honeycomb support (3 cm×5 cmH) was immersed in the aqueous slurry for 10 seconds, dried at 100° C. for 1 hour in the air, then immersed again in the aqueous slurry for 10 seconds, and heated at 500° C. for 1 hour in the air. A catalyst carrier was prepared by carrying 12CaO.7Al 2 O 3 compound fine particles on a honeycomb support after heat treatment. The obtained catalyst carrier was immersed in an ultrasonic cleaner containing distilled water and subjected to ultrasonic vibration at a frequency of 40 kHz for 1 minute . As a result, it was 5% or less.

(Ni触媒の作製)
得られた触媒担体をヘキサン中にNiを5質量%分散させた液に10秒間浸漬させ、大気雰囲気にて400℃で1時間熱処理を行った後、水素雰囲気にて400℃で1時間熱処理を行いNi触媒を作製した。
(Preparation of Ni catalyst)
The obtained catalyst carrier was immersed in a liquid in which 5% by mass of Ni was dispersed in hexane for 10 seconds, heat-treated at 400°C for 1 hour in an air atmosphere, and then heat-treated at 400°C for 1 hour in a hydrogen atmosphere. A Ni catalyst was produced.

(メタン直接分解反応による触媒性能評価)
Ni触媒を流通式反応管内で700℃に加熱した状態でメタンガスを4.5L/hrで流通させ、その時の水素生成特性をガスクロマトグラフィーにて計測した。その結果、メタン流通初期のメタン転化率が37.4%、水素濃度が53.6%であった。
(Evaluation of catalyst performance by direct methane decomposition reaction)
Methane gas was flowed at 4.5 L/hr while the Ni catalyst was heated to 700° C. in a flow-type reaction tube, and the hydrogen generation characteristics at that time were measured by gas chromatography. As a result, the methane conversion rate was 37.4% and the hydrogen concentration was 53.6% at the initial stage of methane flow.

実施例2
(水性スラリーによるコーティング処理)
実施例1と同様の方法で作製したハニカム支持体(□3cm×5cmH)を水性スラリーに10秒間浸漬させ、大気雰囲気にて100℃で1時間乾燥させた後再度水性スラリーに10秒間浸漬し、大気雰囲気にて800℃で1時間熱処理を行いハニカム支持体に12CaO・7Al23化合物微粒子を担持した触媒担体を作製した。
Example 2
(Coating treatment with aqueous slurry)
A honeycomb support (3 cm×5 cmH) prepared in the same manner as in Example 1 was immersed in an aqueous slurry for 10 seconds, dried at 100° C. for 1 hour in an air atmosphere, and then immersed again in the aqueous slurry for 10 seconds. A catalyst carrier was prepared by carrying out a heat treatment at 800° C. for 1 hour in an air atmosphere to carry 12CaO.7Al 2 O 3 compound fine particles on a honeycomb support.

(Ni触媒の作製)
得られた触媒担体をヘキサン中にNiを5質量%分散させた液に10秒間浸漬させ、大気雰囲気にて400℃で1時間熱処理を行った後、水素雰囲気にて400℃で1時間熱処理を行いNi触媒を作製した。
(Preparation of Ni catalyst)
The obtained catalyst carrier was immersed in a liquid in which 5% by mass of Ni was dispersed in hexane for 10 seconds, heat-treated at 400°C for 1 hour in an air atmosphere, and then heat-treated at 400°C for 1 hour in a hydrogen atmosphere. A Ni catalyst was produced.

(メタン直接分解反応による触媒性能評価)
Ni触媒を流通式反応管内で700℃に加熱した状態でメタンガスを4.5L/hrで流通させ、その時の水素生成特性をガスクロマトグラフィーにて計測した。その結果、メタン流通初期のメタン転化率が31.1%、水素濃度が46.0%であった。
(Evaluation of catalyst performance by direct methane decomposition reaction)
Methane gas was flowed at 4.5 L/hr while the Ni catalyst was heated to 700° C. in a flow-type reaction tube, and the hydrogen generation characteristics at that time were measured by gas chromatography. As a result, the methane conversion rate was 31.1% and the hydrogen concentration was 46.0% at the initial stage of methane flow.

比較例1
実施例1と同様の方法で得られた12CaO・7Al23化合物微粒子をヘキサン中に2質量%添加し、5分間撹拌させスラリーを作製した。このスラリーにハニカム支持体(□3cm×5cmH)を10秒間浸漬させ、大気雰囲気にて100℃で1時間乾燥させた後再度スラリーに10秒間浸漬し、大気雰囲気にて500℃で1時間熱処理を行いハニカム支持体に12CaO・7Al23化合物微粒子を担持した触媒担体を作製した。なお、得られた触媒担体を蒸留水の入った超音波洗浄機に浸漬させ周波数40kHzの出力で1分間超音波振動を与えた後、担持した12CaO・7Al23化合物微粒子の重量減少を確認したところ90%以上であり、12CaO・7Al23化合物微粒子の安定したコーティングが困難であった。
Comparative example 1
2% by mass of 12CaO.7Al 2 O 3 compound fine particles obtained in the same manner as in Example 1 were added to hexane, and the mixture was stirred for 5 minutes to prepare a slurry. A honeycomb support (3 cm×5 cmH) was immersed in this slurry for 10 seconds, dried at 100° C. for 1 hour in an air atmosphere, then immersed in the slurry again for 10 seconds, and heat-treated at 500° C. for 1 hour in an air atmosphere. A catalyst carrier was prepared by carrying 12CaO.7Al 2 O 3 compound fine particles on a honeycomb support. The obtained catalyst carrier was immersed in an ultrasonic cleaner containing distilled water and subjected to ultrasonic vibration at a frequency of 40 kHz for 1 minute . As a result, it was 90% or more, and it was difficult to stably coat the fine particles of the 12CaO.7Al 2 O 3 compound.

比較例2
(Ni触媒の作製)
実施例1と同様の方法で得られた12CaO・7Al23化合微粒子を、ヘキサン中にNiを5質量%分散させた液中にて撹拌し溶媒揮発後に、大気雰囲気にて400℃で1時間熱処理を行った後、水素雰囲気にて400℃で1時間熱処理を行い粉末状のNi触媒を作製した。
Comparative example 2
(Preparation of Ni catalyst)
12CaO.7Al 2 O 3 compound fine particles obtained in the same manner as in Example 1 were stirred in a liquid in which 5% by mass of Ni was dispersed in hexane, and the solvent was volatilized. After the time heat treatment, heat treatment was performed in a hydrogen atmosphere at 400° C. for 1 hour to prepare a powdered Ni catalyst.

(メタン直接分解反応による触媒性能評価)
Ni触媒を流通式反応管内で700℃に加熱した状態でメタンガスを4.5L/hrで流通させ、その時の水素生成特性をガスクロマトグラフィーにて計測した。その結果、メタン流通初期のメタン転化率が26.2%、水素濃度が25.3%であった。
(Evaluation of catalyst performance by direct methane decomposition reaction)
Methane gas was flowed at 4.5 L/hr while the Ni catalyst was heated to 700° C. in a flow-type reaction tube, and the hydrogen generation characteristics at that time were measured by gas chromatography. As a result, the methane conversion rate was 26.2% and the hydrogen concentration was 25.3% at the initial stage of methane circulation.

参考例1
水性スラリーを用いたコーティング処理と熱処理による12CaO・7Al23化合物の物性変化を明確にするため、結晶構造や比表面積をそれぞれX線回折装置((株)リガク製SmartLab)やN2ガス吸着測定装置(マイクロトラックベル(株)製BELsorp MAX)を用いて解析した。
Reference example 1
In order to clarify the changes in the physical properties of the 12CaO 7Al 2 O 3 compound due to the coating treatment using an aqueous slurry and the heat treatment, the crystal structure and specific surface area were analyzed using an X-ray diffractometer (SmartLab manufactured by Rigaku Co., Ltd.) and N 2 gas adsorption. Analysis was performed using a measurement device (BELsorp MAX manufactured by Microtrack Bell Co., Ltd.).

各実施例および比較例で用いたジェットミル粉砕処理後の12CaO・7Al23化合物微粒子を蒸留水中で撹拌した際の水との接触時間による結晶構造の変化を図2に、比表面積の変化を表1に示す。接触時間5分の時点で結晶構造が変化し、12CaO・7Al23化合物以外にカルシウムアルミネート水和物のスペクトルが確認されたが、接触時間を延ばしてもそれ以上の大きな変化は見られなかった。比表面積は水との接触時間が長くなるにつれ増加した。 FIG. 2 shows the change in the crystal structure according to the contact time with water when the 12CaO.7Al 2 O 3 compound fine particles after the jet mill pulverization treatment used in each example and comparative example were stirred in distilled water. are shown in Table 1. The crystal structure changed at the point of contact time of 5 minutes, and the spectrum of calcium aluminate hydrate was confirmed in addition to the 12CaO.7Al 2 O 3 compound. I didn't. The specific surface area increased with increasing contact time with water.

12CaO・7Al23化合物微粒子を蒸留水中で1時間撹拌した後の熱処理温度による結晶構造の変化を図3に、比表面積の変化を表2に示す。図3より500℃および800℃で熱処理することでカルシウムアルミネート水和物のスペクトルが消失し12CaO・7Al23化合物のスペクトルが成長したことが確認できる。また、表2に示すように水中での撹拌後熱処理により比表面積は低下したが、水性スラリーによるコーティング処理を行うことでジェットミル粉砕処理のみ(水接触なし)と比較して比表面積が大きい結果となった。 FIG. 3 shows changes in the crystal structure of the 12CaO.7Al 2 O 3 compound fine particles according to the heat treatment temperature after stirring them in distilled water for 1 hour, and Table 2 shows changes in the specific surface area. It can be confirmed from FIG. 3 that the spectrum of the calcium aluminate hydrate disappeared and the spectrum of the 12CaO.7Al 2 O 3 compound grew by heat treatment at 500° C. and 800° C. FIG. In addition, as shown in Table 2, the specific surface area decreased due to the heat treatment after stirring in water, but the coating treatment with the aqueous slurry resulted in a larger specific surface area than the jet mill pulverization treatment alone (no contact with water). became.

図4に水性スラリーを用いたコーティング処理と熱処理による支持体への付着性向上の概念図を示す。参考例1に示した通り、水性スラリー作製時にカルシウムアルミネート水和物が生成することで、支持体と水酸基を介した結合状態を形成すると推察される。これにより、その後の熱処理を行うことで支持体上に固定化されるものと考えられる。 FIG. 4 shows a conceptual diagram of coating treatment using an aqueous slurry and improvement of adhesion to a support by heat treatment. As shown in Reference Example 1, it is presumed that calcium aluminate hydrate is produced during preparation of the aqueous slurry, forming a bond with the support via hydroxyl groups. Therefore, it is considered that the subsequent heat treatment results in immobilization on the support.

参考例2
水中への分散処理および熱処理による12CaO・7Al23化合物微粒子の助触媒効果の変化を明確にするため、有機化合物ガス(エタノール)を完全燃焼する際の反応温度を昇温反応法により測定することで間接的に評価した。具体的には流通式反応管にサンプル(0.2g)を詰め、約500ppmのエタノールを含む乾燥空気(100mL/min)を流しながら温度を少しずつ上昇させ(3℃/min)、残留している有機物とエタノール燃焼で発生した二酸化炭素を出口側に設置したガスクロマトグラフにて計測した。
Reference example 2
In order to clarify the change in the promoter effect of 12CaO.7Al 2 O 3 compound fine particles due to dispersion treatment in water and heat treatment, the reaction temperature at the time of complete combustion of organic compound gas (ethanol) is measured by the temperature programmed reaction method. It was indirectly evaluated by Specifically, a sample (0.2 g) is packed in a flow reaction tube, and the temperature is gradually increased (3 ° C./min) while flowing dry air (100 mL / min) containing about 500 ppm ethanol, and the residual The gas chromatograph installed on the outlet side was used to measure the organic substances present and the carbon dioxide generated by the combustion of ethanol.

図5に水中への分散処理および熱処理による12CaO・7Al23化合物の昇温反応法を用いた助触媒効果の評価結果を示す。横軸を反応温度で、縦軸を二酸化炭素濃度とした。通常メタノールの分解温度は800℃程度だが、ジェットミル粉砕処理後の12CaO・7Al23化合物微粒子を触媒として用いることでメタノールの分解開始温度は約350℃まで低下した。また、この12CaO・7Al23化合物微粒子を水中で30分撹拌し、800℃で熱処理した場合、さらに分解開始温度が約300℃まで低下した。このことから、水中への分散処理および熱処理により12CaO・7Al23化合物微粒子の助触媒効果が向上することが確認された。 FIG. 5 shows the evaluation results of the co-catalyst effect of the 12CaO.7Al 2 O 3 compound by dispersion treatment in water and heat treatment using the temperature-rising reaction method. The horizontal axis is the reaction temperature, and the vertical axis is the carbon dioxide concentration. Normally, the decomposition temperature of methanol is about 800°C, but the decomposition initiation temperature of methanol was lowered to about 350°C by using the fine particles of 12CaO.7Al 2 O 3 compound after pulverization by a jet mill as a catalyst. Further, when the 12CaO.7Al 2 O 3 compound fine particles were stirred in water for 30 minutes and heat-treated at 800°C, the decomposition initiation temperature further decreased to about 300°C. From this, it was confirmed that the co-catalyst effect of the 12CaO.7Al 2 O 3 compound fine particles is improved by dispersion treatment in water and heat treatment.

Figure 0007269562000001
Figure 0007269562000001

Figure 0007269562000002
Figure 0007269562000002

Claims (5)

(A)12CaO・7Al 2 3 化合物粒子を、1~120分、水に分散させて水性スラリーとすることにより、12CaO・7Al 2 3 化合物粒子の表面にカルシウムアルミネート水和物を生成させた後、該カルシウムアルミネート水和物を含む粒子が分散した水性スラリーをセラミックス支持体表面にコーティングする工程と、
(B)前記セラミックス支持体を500~800℃の温度で熱処理して12CaO・7Al23化合物粒子を前記セラミックス支持体上に生成させ、固定化する工程とを含む炭化水素分解用触媒担体の製造方法。
(A) 12CaO·7Al 2 O 3 compound particles are dispersed in water for 1 to 120 minutes to form an aqueous slurry, thereby forming calcium aluminate hydrate on the surface of the 12CaO·7Al 2 O 3 compound particles. After that, a step of coating the surface of the ceramic support with an aqueous slurry in which particles containing the calcium aluminate hydrate are dispersed;
(B) heat-treating the ceramic support at a temperature of 500 to 800° C. to form 12CaO.7Al 2 O 3 compound particles on the ceramic support and immobilizing them. Production method.
前記加熱処理後の12CaO・7Al23化合物粒子のBET比表面積が3m2/g以上である請求項記載の炭化水素分解用触媒担体の製造方法。 2. The method for producing a hydrocarbon cracking catalyst carrier according to claim 1 , wherein the 12CaO.7Al 2 O 3 compound particles after the heat treatment have a BET specific surface area of 3 m 2 /g or more. 前記セラミックス支持体が、ハニカム構造を有するセラミックス支持体である請求項1又は2記載の炭化水素分解用触媒担体の製造方法。 3. The method for producing a hydrocarbon cracking catalyst carrier according to claim 1 , wherein the ceramic support has a honeycomb structure. さらに、(C)請求項1~のいずれか1項記載の触媒担体の前記セラミックス支持体上の12CaO・7Al23化合物粒子に遷移金属を担持する工程を含む炭化水素分解用触媒の製造方法。 Further, (C) production of a hydrocarbon cracking catalyst comprising the step of supporting a transition metal on the 12CaO.7Al 2 O 3 compound particles on the ceramic support of the catalyst carrier according to any one of claims 1 to 3 . Method. 前記工程(C)が、前記セラミックス支持体上の12CaO・7Al23化合物粒子を、遷移金属の0.001μm以上1μm以下の微粒子の分散液又は遷移金属塩の溶液で処理する工程である請求項記載の炭化水素分解用触媒の製造方法。 The step (C) is a step of treating the 12CaO.7Al 2 O 3 compound particles on the ceramic support with a dispersion of transition metal fine particles of 0.001 μm or more and 1 μm or less or a transition metal salt solution. Item 5. A method for producing a hydrocarbon cracking catalyst according to item 4 .
JP2019041412A 2019-03-07 2019-03-07 Catalyst carrier and catalyst manufacturing method Active JP7269562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019041412A JP7269562B2 (en) 2019-03-07 2019-03-07 Catalyst carrier and catalyst manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019041412A JP7269562B2 (en) 2019-03-07 2019-03-07 Catalyst carrier and catalyst manufacturing method

Publications (2)

Publication Number Publication Date
JP2020142202A JP2020142202A (en) 2020-09-10
JP7269562B2 true JP7269562B2 (en) 2023-05-09

Family

ID=72355272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019041412A Active JP7269562B2 (en) 2019-03-07 2019-03-07 Catalyst carrier and catalyst manufacturing method

Country Status (1)

Country Link
JP (1) JP7269562B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003190787A (en) 2001-12-28 2003-07-08 Japan Science & Technology Corp Catalyst for purifying engine exhaust gas
JP2004263636A (en) 2003-03-03 2004-09-24 Toyota Motor Corp Exhaust emission control device
JP2005008429A (en) 2003-06-16 2005-01-13 Denki Kagaku Kogyo Kk Synthetic method of active oxygen species-including clathrate substance
JP2005522318A (en) 2002-04-12 2005-07-28 コーニング インコーポレイテッド Monolithic catalyst support coated with in situ theta alumina
JP2006122793A (en) 2004-10-28 2006-05-18 Toda Kogyo Corp Catalyst and its manufacturing method, catalyst for shift reaction of water gas, method for producing water gas, and catalyst and method for cleaning exhaust gas
JP2007117852A (en) 2005-10-26 2007-05-17 Mitsui Mining & Smelting Co Ltd Catalyst for purification of exhaust gas and its manufacturing method
JP2016164114A (en) 2015-02-26 2016-09-08 日本特殊陶業株式会社 Mayenite type compound, multi-functional agent, and method for producing mayenite type compound-containing product

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3389851B2 (en) * 1997-01-21 2003-03-24 トヨタ自動車株式会社 Exhaust gas purification catalyst

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003190787A (en) 2001-12-28 2003-07-08 Japan Science & Technology Corp Catalyst for purifying engine exhaust gas
JP2005522318A (en) 2002-04-12 2005-07-28 コーニング インコーポレイテッド Monolithic catalyst support coated with in situ theta alumina
JP2004263636A (en) 2003-03-03 2004-09-24 Toyota Motor Corp Exhaust emission control device
JP2005008429A (en) 2003-06-16 2005-01-13 Denki Kagaku Kogyo Kk Synthetic method of active oxygen species-including clathrate substance
JP2006122793A (en) 2004-10-28 2006-05-18 Toda Kogyo Corp Catalyst and its manufacturing method, catalyst for shift reaction of water gas, method for producing water gas, and catalyst and method for cleaning exhaust gas
JP2007117852A (en) 2005-10-26 2007-05-17 Mitsui Mining & Smelting Co Ltd Catalyst for purification of exhaust gas and its manufacturing method
JP2016164114A (en) 2015-02-26 2016-09-08 日本特殊陶業株式会社 Mayenite type compound, multi-functional agent, and method for producing mayenite type compound-containing product

Also Published As

Publication number Publication date
JP2020142202A (en) 2020-09-10

Similar Documents

Publication Publication Date Title
JP6651362B2 (en) Zeolite containing metal particles
KR101197837B1 (en) Composite particle-loaded article, method for producing the composite particle-loaded article, and method for producing compound using the composite particle-loaded article as chemical synthesis catalyst
EP0558346B1 (en) Silver catalyst for production of ethylene oxide
EP3061525B1 (en) Method to prepare a cobalt-based catalyst based on metal structure for fischer-tropsch reaction for selective synthetic oil production
KR101431919B1 (en) Composition comprising cerium oxide and zirconium oxide having a specific porosity, preparation method thereof and use of same in catalysis
US9539567B2 (en) Catalysts
JP6301923B2 (en) catalyst
EP3496856B1 (en) A cobalt-containing catalyst composition
JP5806536B2 (en) Catalyst precursor dispersion, catalyst, and exhaust gas purification method
JP5335505B2 (en) Noble metal support and method for producing carboxylic acid ester using the same as catalyst
RU2592271C2 (en) Catalysts
JP5956562B2 (en) Method for preparing cobalt-containing hydrocarbon synthesis catalyst precursor
JP2018508351A (en) Catalyst containing dispersed gold and palladium and its use in selective hydrogenation
JP7269562B2 (en) Catalyst carrier and catalyst manufacturing method
JP7269563B2 (en) Support immobilized catalyst carrier
JP6721601B2 (en) Hydrocarbon synthesis catalyst, its preparation method and its use
CN107185525B (en) Octahedral Pt nanoparticle loaded gamma-Al2O3Process for preparing form catalyst
JPH0824843B2 (en) Heat resistant catalyst and method of using the same
JP7442935B2 (en) Catalyst manufacturing method
Liu et al. The oxidative dehydrogenation of methanol over a novel low‐loading Ag/SiO 2–TiO 2 catalyst
JP2013188703A (en) Exhaust gas-purifying catalyst support, and exhaust gas-purifying catalyst
JPH06134305A (en) Heat resistant catalyst and method for using the same
RU2796695C2 (en) Method for producing cobalt-containing catalyst precursor and method for hydrocarbon synthesis
JP7418461B2 (en) Methods for preparing cobalt-containing catalyst precursors and methods for hydrocarbon synthesis
JP2010036140A (en) Catalyst and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230410

R150 Certificate of patent or registration of utility model

Ref document number: 7269562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150