JP2012040550A - Catalyst precursor dispersion, catalyst, and cleaning method of exhaust gas - Google Patents

Catalyst precursor dispersion, catalyst, and cleaning method of exhaust gas Download PDF

Info

Publication number
JP2012040550A
JP2012040550A JP2011158783A JP2011158783A JP2012040550A JP 2012040550 A JP2012040550 A JP 2012040550A JP 2011158783 A JP2011158783 A JP 2011158783A JP 2011158783 A JP2011158783 A JP 2011158783A JP 2012040550 A JP2012040550 A JP 2012040550A
Authority
JP
Japan
Prior art keywords
catalyst
noble metal
exhaust gas
alumina
precursor dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011158783A
Other languages
Japanese (ja)
Other versions
JP5806536B2 (en
Inventor
Kazuhisa Ito
和久 伊藤
Toyofumi Ito
豊文 伊藤
Shoichi Muraoka
正一 村岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawaken Fine Chemicals Co Ltd
Original Assignee
Kawaken Fine Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawaken Fine Chemicals Co Ltd filed Critical Kawaken Fine Chemicals Co Ltd
Priority to JP2011158783A priority Critical patent/JP5806536B2/en
Publication of JP2012040550A publication Critical patent/JP2012040550A/en
Application granted granted Critical
Publication of JP5806536B2 publication Critical patent/JP5806536B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst which can be industrially executed when manufacturing, which has proper sized micropores suitable for cleaning exhaust gas, and in which noble metal fine particles are carried only in the proper sized micropores of the carrier.SOLUTION: The catalyst is characterized by drying and sintering catalyst precursor dispersion characterized by including (A) carbon nanotubes carrying at least one noble metal particle or a noble metal oxide particle selected from the group comprising Ag, Ru, Rh, Pd, In, Os, Ir, and Pt and (B) a hydrated inorganic oxide.

Description

本発明は、排気ガスの浄化に適した触媒前駆体分散液、触媒及び排気ガスの浄化方法に関するものである。   The present invention relates to a catalyst precursor dispersion suitable for exhaust gas purification, a catalyst, and an exhaust gas purification method.

従来、排気ガス中に含まれる一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NO)等の有害物質を浄化する排気ガス浄化用触媒には、少ない貴金属量で効率的に排気ガスを浄化するために、触媒と排気ガスとの接触面積を大きくすることが求められる。カーボンナノチューブ、カーボンナノホーンまたはカーボンファイバーを使用して、細孔を有する担体に担持された触媒の製法として下記の特許文献1〜3の方法が報告されている。 Conventionally, exhaust gas purification catalysts that purify harmful substances such as carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NO x ) contained in exhaust gas have been efficiently used with a small amount of noble metal. In order to purify the exhaust gas, it is required to increase the contact area between the catalyst and the exhaust gas. The following Patent Documents 1 to 3 have been reported as methods for producing a catalyst supported on a carrier having pores using carbon nanotubes, carbon nanohorns or carbon fibers.

特許文献1に記載された発明では、カーボンナノチューブに複合酸化物を担持させた後カーボンナノチューブを燃焼消失させ1〜10nm程度の細孔を有する触媒担持用基材(担体)を作り、その後、触媒担持用基剤と触媒成分溶液を混合、高圧をかけることで、細孔の深部まで触媒成分が担持された触媒を得ている。しかし、特許文献1に記載された発明は、細孔径が小さすぎるため排ガス処理触媒としては好ましいとは言えない。また、工程も複雑で触媒金属を担持させるために高圧で担持処理せねばならず、工業的実施が困難である。   In the invention described in Patent Document 1, after a composite oxide is supported on carbon nanotubes, the carbon nanotubes are burned off to form a catalyst-supporting base material (support) having pores of about 1 to 10 nm. By mixing the supporting base and the catalyst component solution and applying high pressure, a catalyst in which the catalyst component is supported up to the deep part of the pores is obtained. However, the invention described in Patent Document 1 is not preferable as an exhaust gas treatment catalyst because the pore diameter is too small. In addition, the process is complicated, and in order to support the catalyst metal, it must be supported at a high pressure, and industrial implementation is difficult.

特許文献2に記載された発明では、カーボンナノホーンの中にクラスターサイズの貴金属を導入し、それをγ−アルミナなどと混合、乾燥・焼却してカーボンナノホーンを燃焼除去し、担持触媒を製造している。しかし、特許文献2に記載された発明は、カーボンナノホーン等の細孔の中に金属を導入させるため、真空中でかなりの高温にする必要があり、やはり工業的実施が困難である。また、この方法では、排ガス処理触媒として適した細孔容積、細孔径を有しているとは言えない。   In the invention described in Patent Document 2, a cluster-sized noble metal is introduced into carbon nanohorn, mixed with γ-alumina, etc., dried and incinerated to burn and remove carbon nanohorn to produce a supported catalyst. Yes. However, since the invention described in Patent Document 2 introduces metal into pores such as carbon nanohorns, it is necessary to raise the temperature considerably in a vacuum, which is also difficult to implement industrially. Further, this method cannot be said to have a pore volume and a pore diameter suitable as an exhaust gas treatment catalyst.

特許文献3に記載された触媒は、カーボンファイバーと無機材料を混合してスラリ化したものをハニカム担体に付着させて焼成して調製されている。焼成の際にカーボンファイバーが焼却され、微小で連続的な細長い空洞が形成された触媒担体が作成される。しかし、カーボンファイバーは比較的に径が太く、排ガス処理触媒に適した細孔を有するハニカム担体とは言えない。また、その後このハニカム担体に含浸法で貴金属を担持して排ガス処理触媒としているが、この方法ではカーボンファイバーの消失した細孔表面だけではなく無機材料が元々有する微細細孔にも触媒が担持され、燃焼に有効な適度の細孔にのみ貴金属を担持したとは言えない。   The catalyst described in Patent Document 3 is prepared by adhering a slurry obtained by mixing carbon fibers and an inorganic material to a honeycomb carrier and firing the mixture. During the firing, the carbon fiber is incinerated, and a catalyst carrier in which minute continuous elongated cavities are formed. However, carbon fibers have a relatively large diameter and cannot be said to be a honeycomb carrier having pores suitable for an exhaust gas treatment catalyst. In addition, after that, noble metal is supported on this honeycomb carrier by impregnation method to make an exhaust gas treatment catalyst. In this method, the catalyst is supported not only on the pore surface where the carbon fiber disappeared but also on the fine pores originally possessed by the inorganic material. It cannot be said that noble metals are supported only in appropriate pores effective for combustion.

排気ガス浄化用の触媒には、白金(Pt)やパラジウム(Pd)などの貴金属が用いられるため、高価な触媒貴金属量を低減させるために反応に効率良く寄与する貴金属の比率を上げる必要がある。そのためには、種々の未燃成分を含む排気ガスの燃焼に適した細孔を多く形成し、その細孔内表面にのみ触媒貴金属を配置させる必要がある。   Since a noble metal such as platinum (Pt) or palladium (Pd) is used as the exhaust gas purifying catalyst, it is necessary to increase the ratio of the noble metal that contributes efficiently to the reaction in order to reduce the amount of expensive catalyst noble metal. . For that purpose, it is necessary to form many pores suitable for combustion of exhaust gas containing various unburned components, and to dispose the catalyst noble metal only on the inner surface of the pores.

特開2005−46669公報JP 2005-46669 A 特開2003−181288公報JP 2003-181288 A 特開昭63−205143号公報JP 63-205143 A

触媒金属の表面積を大きくする、すなわち触媒金属粒子のサイズを小さくするには担体の細孔を利用することが考えられるが、担体の細孔が小さすぎると、排気ガスの中に含まれる粒子などが担体の細孔を塞ぎ、触媒が機能しなくなるという弊害があった。   In order to increase the surface area of the catalyst metal, that is, to reduce the size of the catalyst metal particles, it is conceivable to use the pores of the carrier, but if the pores of the carrier are too small, particles contained in the exhaust gas, etc. Clogged the pores of the carrier, and the catalyst was not able to function.

そこで、本発明が解決しようとする課題は、製造に際して工業的実施が容易であり、排気ガス浄化に適した適度な大きさの細孔を有し、且つ担体の適度な大きさの細孔にのみ貴金属微細粒子が担持された触媒を提供することである。   Therefore, the problem to be solved by the present invention is that industrial implementation is easy at the time of production, has pores of an appropriate size suitable for exhaust gas purification, and has an appropriate size of pores of the carrier. It is only to provide a catalyst on which noble metal fine particles are supported.

本発明者らは鋭意研究を重ねた結果、カーボンナノチューブと特定の無機酸化物を用いて触媒を調製することにより上記課題が解決しうることを見出し、本発明を完成するに到った。本発明の要点は、下記のとおりである。   As a result of intensive studies, the present inventors have found that the above problem can be solved by preparing a catalyst using carbon nanotubes and a specific inorganic oxide, and have completed the present invention. The main points of the present invention are as follows.

(1) (A)Ag、Ru、Rh、Pd、In、Os、Ir及びPtからなる群より選ばれる少なくとも1種の貴金属粒子又は貴金属酸化物粒子を担持させたカーボンナノチューブ及び(B)無機酸化物水和物を含むことを特徴とする触媒前駆体分散液。
(2) (A)Ag、Ru、Rh、Pd、In、Os、Ir及びPtからなる群より選ばれる少なくとも1種の貴金属粒子又は貴金属酸化物粒子を担持させたカーボンナノチューブ、(B)無機酸化物水和物及び(C)アルミナ、シリカ、チタニア、ジルコニア及びセリア−ジルコニアからなる群より選ばれる少なくとも1種の無機化合物粒子を含むことを特徴とする触媒前駆体分散液。
(3) (1)または(2)に記載の触媒前駆体分散液を乾燥・焼成したことを特徴とする触媒。
(4) (1)または(2)に記載の触媒前駆体分散液を担体にコーティングした後、焼成してカーボンナノチューブを焼失させたことを特徴とする触媒。
(5) 前記の担体が金属製であることを特徴とする(4)に記載の触媒。
(6) 前記の金属製担体が表面に無機酸化物を有することを特徴とする(5)に記載の触媒。
(7) 前記の金属製担体がアルミニウムを含有するステンレス鋼であることを特徴とする(5)または(6)に記載の触媒。
(8) 担体の形状が金網であることを特徴とする(5)〜(7)のいずれか1項に記載の触媒。
(9) (3)〜(8)のいずれか1項に記載の触媒を用いることを特徴とする排気ガスの浄化方法。
(1) (A) Carbon nanotube carrying at least one kind of noble metal particles or noble metal oxide particles selected from the group consisting of Ag, Ru, Rh, Pd, In, Os, Ir and Pt, and (B) inorganic oxidation A catalyst precursor dispersion comprising a hydrate.
(2) (A) Carbon nanotube carrying at least one noble metal particle or noble metal oxide particle selected from the group consisting of Ag, Ru, Rh, Pd, In, Os, Ir and Pt, (B) inorganic oxidation A catalyst precursor dispersion liquid comprising a hydrate of hydrate and (C) at least one inorganic compound particle selected from the group consisting of alumina, silica, titania, zirconia and ceria-zirconia.
(3) A catalyst obtained by drying and calcining the catalyst precursor dispersion liquid according to (1) or (2).
(4) A catalyst characterized in that the catalyst precursor dispersion according to (1) or (2) is coated on a carrier and then baked to burn out carbon nanotubes.
(5) The catalyst according to (4), wherein the carrier is made of metal.
(6) The catalyst according to (5), wherein the metal carrier has an inorganic oxide on the surface.
(7) The catalyst according to (5) or (6), wherein the metal carrier is stainless steel containing aluminum.
(8) The catalyst according to any one of (5) to (7), wherein the support has a wire mesh shape.
(9) A method for purifying exhaust gas, characterized in that the catalyst according to any one of (3) to (8) is used.

本発明により、触媒の調製に際して、工業的実施が容易であり、排気ガス浄化に適した適度な大きさの細孔を有する担体に貴金属が担持された触媒を得ることができ、また本発明の触媒は触媒活性が高いので、高価な貴金属量を低減させることができる。   According to the present invention, when preparing a catalyst, industrial implementation is easy, and a catalyst in which a noble metal is supported on a support having moderately-sized pores suitable for exhaust gas purification can be obtained. Since the catalyst has high catalytic activity, the amount of expensive noble metal can be reduced.

本発明の触媒の模式図。The schematic diagram of the catalyst of this invention. 本発明の触媒の拡大模式図。The expansion schematic diagram of the catalyst of this invention. 実施例2の触媒の断面TEM写真像(倍率40000倍)。Sectional TEM photographic image of the catalyst of Example 2 (magnification 40000 times). 実施例4の触媒の細孔分布曲線を示すグラフ。6 is a graph showing a pore distribution curve of the catalyst of Example 4. 触媒活性試験に用いた反応容器。Reaction vessel used for the catalytic activity test. 触媒活性試験(一酸化炭素酸化反応)の結果を示すグラフ。The graph which shows the result of a catalyst activity test (carbon monoxide oxidation reaction). 触媒活性試験(プロピレン酸化反応)の結果を示すグラフ。The graph which shows the result of a catalyst activity test (propylene oxidation reaction).

<触媒前駆体分散液>
本発明における触媒前駆体分散液とは、本発明の(排気ガス浄化用)触媒原料となる成分を含有する分散液であって、成分(A)Ag、Ru、Rh、Pd、In、Os、Ir及びPtから選ばれる少なくとも1種の貴金属原子を担持させたカーボンナノチューブ(以下、CNTと略称する)及び成分(B)無機酸化物水和物からなる。なお、本発明の触媒前駆体分散液には、静置時に沈降、分離する成分があったとしても攪拌により均一になるものも含まれる。
<Catalyst precursor dispersion>
The catalyst precursor dispersion in the present invention is a dispersion containing a component that is a catalyst raw material (for exhaust gas purification) of the present invention, and includes components (A) Ag, Ru, Rh, Pd, In, Os, It consists of a carbon nanotube (hereinafter abbreviated as CNT) carrying at least one kind of noble metal atom selected from Ir and Pt and a component (B) inorganic oxide hydrate. The catalyst precursor dispersion of the present invention includes those that become uniform by stirring even if there are components that settle and separate upon standing.

成分(A)のCNTには、さらに、活性向上のためやシンタリング防止の用途などで通常使われる助触媒成分、Ni、Co、Mg、Fe、Hf、W、V、Mo、Ti、Re、Ta、Nb、アルカリ金属・アルカリ土類金属などが担持されていてもよい。   The CNT of component (A) further includes a promoter component commonly used for improving activity and preventing sintering, etc., Ni, Co, Mg, Fe, Hf, W, V, Mo, Ti, Re, Ta, Nb, alkali metal / alkaline earth metal or the like may be supported.

貴金属を担持するCNTはSWCNT(単層)、DWCNT(二層)、MWCNT(多層)のいずれも使用できる。形状にも限定されないが、貴金属粒子を担持させること、焼成処理を行い、サブマイクロからマイクロメートルサイズの空孔を形成させるという特徴を引き出すには、径が2nm以上で、長さが100nm〜10μmくらいのものが好ましい。また、CNTの製造方法はCVD法、アーク放電法など様々な方法があり、いずれの方法も選択することができるが、例えばCarbon Vol.35 No10-11,pp1495-1501,1997 に記載の方法で作成することができる。   As the CNT carrying the noble metal, any of SWCNT (single layer), DWCNT (double layer), and MWCNT (multilayer) can be used. Although it is not limited to the shape, in order to bring out the characteristics of carrying precious metal particles, performing a baking process, and forming pores of submicron to micrometer size, the diameter is 2 nm or more and the length is 100 nm to 10 μm. Something like that is preferable. In addition, there are various methods for producing CNT, such as a CVD method and an arc discharge method, and any method can be selected. For example, the method described in Carbon Vol.35 No10-11, pp1495-1501,1997 Can be created.

CNTに担持する貴金属としては、通常排ガス浄化用触媒として用いられるAg、Ru、Rh、Pd、In、Os、Ir及びPtから選ばれる少なくとも1種の貴金属が用いられる。CNTに担持したときの貴金属の大きさは小さい方が触媒の表面積が大きくなり好ましいが、粒子径が1〜100nm、特に1〜50nm程度が望ましく、100nmを超える貴金属粒子になると、単位重量あたりの比表面積が非常に小さく、触媒の活性を高めることが難しくなる。   As the noble metal supported on the CNT, at least one kind of noble metal selected from Ag, Ru, Rh, Pd, In, Os, Ir, and Pt, which is usually used as an exhaust gas purification catalyst, is used. The smaller the size of the noble metal supported on the CNTs, the greater the surface area of the catalyst, which is preferable, but the particle size is preferably 1 to 100 nm, particularly about 1 to 50 nm. The specific surface area is very small, making it difficult to increase the activity of the catalyst.

CNT上に貴金属粒子又は貴金属酸化物粒子(1〜100nmサイズの貴金属酸化物の集合体で複数の貴金属元素及び複数の原子価構造を有する)を担持させる方法としては、
(1)CNTを溶媒中に分散し、そこに貴金属塩を溶解した後アルカリで中和することでCNT上に貴金属水酸化物として固定化し、その後還元処理又は熱処理による酸化処理によって行う方法、
(2)CNTと貴金属水酸化物又は貴金属酸化物を溶媒中で混合後、濃縮、乾燥、熱処理することで貴金属酸化物をCNT上に担持する方法
(3)CNTと貴金属塩を溶液中で混合後、濃縮、乾燥することで貴金属塩をCNTに担持し、続いてCNTが酸化されない条件下で熱処理し、貴金属塩を金属又は金属酸化物、金属複合酸化物微粒子とする方法
等があるが、これらの方法に限定されるものではない。
As a method for supporting noble metal particles or noble metal oxide particles (having a plurality of noble metal elements and a plurality of valence structures in an aggregate of 1 to 100 nm size noble metal oxide) on CNT,
(1) A method in which CNT is dispersed in a solvent, a noble metal salt is dissolved therein, and then neutralized with an alkali to be fixed as a noble metal hydroxide on the CNT, followed by reduction treatment or oxidation treatment by heat treatment,
(2) Method of supporting noble metal oxide on CNT by mixing CNT and noble metal hydroxide or noble metal oxide in a solvent, then concentrating, drying and heat treatment (3) Mixing CNT and noble metal salt in solution After that, the noble metal salt is supported on the CNTs by concentration and drying, followed by heat treatment under conditions where the CNTs are not oxidized, and there is a method of making the noble metal salt a metal or metal oxide, metal composite oxide fine particles, etc. It is not limited to these methods.

CNTへの貴金属の担持量については、特に制限はないが、CNTに対して、0.1〜20wt%で、好ましくは1〜10wt%が良い。0.1wt%より少ない場合では、貴金属が少なすぎるため、触媒としての効果が充分に発揮できない。一方、20wt%を越える場合には、貴金属がCNTに担持しにくく、担持できても貴金属粒子がはずれやすく、貴金属粒子のシンタリングが起こりやすくなる恐れがある。   The amount of the noble metal supported on the CNT is not particularly limited, but is 0.1 to 20 wt%, preferably 1 to 10 wt% with respect to the CNT. When the amount is less than 0.1 wt%, the amount of noble metal is too small, so that the effect as a catalyst cannot be sufficiently exhibited. On the other hand, when it exceeds 20 wt%, the noble metal is difficult to be supported on the CNT, and even if it can be supported, the noble metal particles are likely to come off, and the noble metal particles may be easily sintered.

成分(B)としては、アルミナ水和物、アルミナシリカ水和物、シリカ水和物、チタニア水和物、ジルコニア水和物、ハフニア水和物及びセリアジルコニア水和物から選ばれる少なくとも1種の無機酸化物水和物が好ましい。   As the component (B), at least one selected from alumina hydrate, alumina silica hydrate, silica hydrate, titania hydrate, zirconia hydrate, hafnia hydrate and ceria zirconia hydrate. Inorganic oxide hydrates are preferred.

成分(B)は無機酸化物水和物ゾルのような、適当な分散媒に分散した状態で加えることが好ましく、分散媒としては、効率的に乾燥、除去できる水や、メタノール、エタノールなどの水溶性アルコールが好ましく、特に水が好ましい。   The component (B) is preferably added in a state of being dispersed in a suitable dispersion medium such as an inorganic oxide hydrate sol. As the dispersion medium, water that can be efficiently dried and removed, methanol, ethanol, and the like can be used. Water-soluble alcohols are preferred, and water is particularly preferred.

成分(B)は焼成した際に無機酸化物となり、担体としての役割や、他の成分を結着させるバインダーとしての役割を果たす。   The component (B) becomes an inorganic oxide when baked, and serves as a carrier and as a binder for binding other components.

さらに、本発明の触媒前駆体分散液には、成分(C)として無機化合物粒子を含んでいてもよい。成分(C)としては、アルミナ、シリカ、ジルコニア、チタニア及びセリア粒子から選ばれる少なくとも1種の無機化合物粒子が好ましい。また、その粒子径としては10nm〜100μmが好ましい。   Furthermore, the catalyst precursor dispersion of the present invention may contain inorganic compound particles as the component (C). The component (C) is preferably at least one inorganic compound particle selected from alumina, silica, zirconia, titania and ceria particles. The particle diameter is preferably 10 nm to 100 μm.

触媒前駆体分散液中に含まれる固体分、すなわち、触媒貴金属を担持させたCNT、無機酸化物水和物、無機化合物粒子などが、触媒前駆体分散液量に対して5〜25重量%になるように調製する。触媒前駆体分散液中に含まれる固体分が5重量%より低くなると、触媒前駆体分散液中の固形物成分の分散性が悪くなり、均一化しにくくなる。25重量%を超えると触媒前駆体分散液の粘度が高くなりすぎて、コーティングの際の操作性が悪くなる。   The solid content in the catalyst precursor dispersion, that is, the CNT supporting the catalyst noble metal, the inorganic oxide hydrate, the inorganic compound particles, etc. is 5 to 25% by weight with respect to the amount of the catalyst precursor dispersion. Prepare as follows. If the solid content contained in the catalyst precursor dispersion is lower than 5% by weight, the dispersibility of the solid component in the catalyst precursor dispersion is deteriorated and it is difficult to make it uniform. If it exceeds 25% by weight, the viscosity of the catalyst precursor dispersion becomes too high, and the operability during coating becomes poor.

<触媒>
触媒の製造方法
触媒前駆体分散液を乾燥・焼成した触媒とは
(1)触媒前駆体分散液を乾燥し、(2)CNTが消失しない程度の温度で焼成することで、無機化合物粒子、無機化合物水和物を固定化した後、(3)CNTを消失させることで、CNTに担持されていた貴金属粒子が、CNTの消失によって作成された空孔のふちに配置されたものである。
<Catalyst>
Catalyst production method
What is a catalyst obtained by drying and calcining a catalyst precursor dispersion?
(1) The catalyst precursor dispersion is dried, (2) the inorganic compound particles and the inorganic compound hydrate are immobilized by firing at a temperature at which the CNT does not disappear, and (3) the CNT is lost. Thus, the noble metal particles carried on the CNTs are arranged on the edge of the holes created by the disappearance of the CNTs.

(1)触媒前駆体分散液の溶媒を乾燥する際は、50℃〜200℃くらいで1時間〜24時間程度乾燥することが好ましい。その際、減圧下で乾燥することが可能である。また、凍結乾燥法を用いることもできる。200℃以上に加熱すると、媒質の均一性が保たれず、アルミナ層とCNT層に分離してしまい好ましくない。   (1) When drying the solvent of the catalyst precursor dispersion, it is preferably dried at about 50 to 200 ° C. for about 1 to 24 hours. In that case, it is possible to dry under reduced pressure. A freeze-drying method can also be used. Heating to 200 ° C. or higher is not preferable because the uniformity of the medium is not maintained and the alumina layer and the CNT layer are separated.

(2)CNTが消失しない程度の温度で焼成することで、無機化合物粒子、無機化合物水和物を固定化する際は、300℃〜400℃で1時間〜3時間程度焼成することが好ましい。焼成温度が400℃より高い場合には、貴金属が酸化触媒として機能し、CNTを燃焼してしまうおそれがある。一方、焼成温度が300℃より低い場合には、担体への固定化が不充分となり、触媒を調製した際に貴金属粒子の脱離や適度な細孔が得られなくなる。   (2) When immobilizing inorganic compound particles and inorganic compound hydrate by firing at a temperature at which CNT does not disappear, it is preferably fired at 300 ° C. to 400 ° C. for about 1 hour to 3 hours. When the calcination temperature is higher than 400 ° C., the noble metal functions as an oxidation catalyst and there is a possibility that CNTs are burned. On the other hand, when the calcination temperature is lower than 300 ° C., the immobilization on the carrier becomes insufficient, and when the catalyst is prepared, noble metal particles can be detached and appropriate pores cannot be obtained.

(3)CNTを消失させる際は、600℃〜900℃で1時間〜10時間程度焼成することが好ましい。焼成温度が600℃以上で、CNTの消失が顕著に見られるようになり、それ以下では触媒中にCNTが残留する恐れがある。一方、900℃以上になると、担持した金属粒子のシンタリングや触媒表面からの脱落が起こりやすくなる。   (3) When CNTs disappear, it is preferable to fire at 600 ° C. to 900 ° C. for about 1 hour to 10 hours. When the calcination temperature is 600 ° C. or higher, the disappearance of CNTs is noticeable, and below that, CNTs may remain in the catalyst. On the other hand, when the temperature is 900 ° C. or higher, the supported metal particles are likely to be sintered or detached from the catalyst surface.

触媒前駆体分散液を担体に担持させた後、乾燥・焼成した触媒とは
(1)担体に触媒前駆体分散液をコーティングし、(2)触媒前駆体分散液の溶媒を乾燥し、(3)CNTが消失しない程度の温度で焼成することで、無機化合物粒子、無機化合物水和物を固定化した後、(4)CNTを消失させることでCNTに担持されていた貴金属粒子が、CNTの消失によって作成された空孔のふちに配置されたものである。
After the catalyst precursor dispersion is supported on a carrier, the dried and calcined catalyst is
(1) The carrier is coated with the catalyst precursor dispersion, (2) the solvent of the catalyst precursor dispersion is dried, and (3) the inorganic compound particles and the inorganic compound are baked at a temperature at which CNT does not disappear. After fixing the hydrate, (4) the noble metal particles supported on the CNTs by annihilating the CNTs are arranged at the edges of the pores created by the disappearance of the CNTs.

(1)触媒前駆体分散液をコーティングする担体の材質としては、金属製担体があげられる。金属製担体の中では、ステンレス系の材質が耐熱性が優れ、強度があるため好ましい。また担体の表面が無機酸化物で覆われていると、触媒前駆体分散液に含まれている無機酸化物水和物との接着性が優れる。表面が無機酸化物に覆われた材質を作成する方法として、例えば特開2005−095846号公報に記載の方法ようにアルミニウムを含有するステンレスを熱処理することで表面にアルミナ層を形成する方法が挙げられる。   (1) Examples of the material for the carrier on which the catalyst precursor dispersion is coated include a metal carrier. Among metal carriers, stainless steel materials are preferred because of their excellent heat resistance and strength. Further, when the surface of the support is covered with an inorganic oxide, the adhesion with the inorganic oxide hydrate contained in the catalyst precursor dispersion is excellent. As a method of creating a material whose surface is covered with an inorganic oxide, for example, a method of forming an alumina layer on the surface by heat-treating stainless steel containing aluminum as described in JP-A-2005-095846 is exemplified. It is done.

担体の形状としては、排気ガスとの接触面積を大きくし、且つ、ガスの流れを著しく妨げないような形状が良く、0.1mm〜10mm程度の径を有する球状、円柱状、単一若しくは多段の網目構造が好ましい。   As the shape of the carrier, a shape that increases the contact area with the exhaust gas and does not significantly impede the flow of the gas is good, and is spherical, cylindrical, single or multistage having a diameter of about 0.1 mm to 10 mm. The network structure is preferable.

担体に触媒前駆体分散液をコーティングする方法としては、通常行われる方法であればいずれの方法でもいいが、たとえば、ディップ法、ローラー法、はけ法、スプレー法、スピン法などが挙げられる。コーティングの厚さは100nm〜500μmくらいが好ましい。100nm未満であるとコーティング液中に含まれる無機化合物粒子の大きさよりも薄いため、平坦な触媒前駆体の膜が形成できず、500μmを超えると担体から触媒前駆体の膜が剥がれやすくなってしまうため好ましくない。   As a method for coating the carrier with the catalyst precursor dispersion, any method can be used as long as it is a usual method, and examples thereof include a dipping method, a roller method, a brush method, a spray method, and a spin method. The thickness of the coating is preferably about 100 nm to 500 μm. If it is less than 100 nm, it is thinner than the size of the inorganic compound particles contained in the coating solution, so that a flat catalyst precursor film cannot be formed, and if it exceeds 500 μm, the catalyst precursor film tends to peel off from the carrier. Therefore, it is not preferable.

本発明の触媒の構造を図1、図2により模式的に示す。   The structure of the catalyst of the present invention is schematically shown in FIGS.

触媒前駆体分散液又は、担体にコーティングした触媒前駆体分散液を乾燥・焼成すると、成分(B)の無機酸化物水和物は無機酸化物になり、触媒全体が固定化され、3のバインダー層が形成される。   When the catalyst precursor dispersion or the catalyst precursor dispersion coated on the carrier is dried and calcined, the inorganic oxide hydrate of component (B) becomes an inorganic oxide, and the whole catalyst is fixed, and the binder of 3 A layer is formed.

さらに焼成によってCNTが消失することで、図1の1のような空孔ができる。CNT表面に担持されていた貴金属粒子4は図2のように空孔1のふちに適度な間隔を保って配置される。   Further, CNT disappears by firing, so that holes as shown in FIG. 1 are formed. As shown in FIG. 2, the noble metal particles 4 supported on the surface of the CNT are arranged at an appropriate interval at the edge of the hole 1.

実際のCNTはコーティング液中で多少凝集したり、束状になるため、CNTの繊維径(ナノサイズ)よりも大きな空孔(サブミクロン〜ミクロンサイズ)ができることがある。   Since actual CNTs are somewhat agglomerated or bundled in the coating solution, pores (submicron to micron size) larger than the fiber diameter (nanosize) of CNTs may be formed.

本発明の触媒の細孔分布を測定すると、触媒中に含まれる無機化合物粒子や無機化合物水和物に由来する微細な細孔と、CNTを消失させた後にできた細孔の二つのピークが測定される。CNTを消失させた後にできる細孔の細孔ピークは、100nm以上に現れる。   When the pore distribution of the catalyst of the present invention is measured, there are two peaks: fine pores derived from inorganic compound particles and inorganic compound hydrates contained in the catalyst, and pores formed after CNTs are lost. Measured. A pore peak of pores formed after CNT disappears appears at 100 nm or more.

排気ガスを浄化する方法は、触媒を排ガス浄化のための所定の位置に設置し、排ガスを流す。その際、排ガスの温度が下がりすぎると触媒の活性が落ちるので、排ガスの温度が下がらない位置に設置するのが好ましい。また、排ガスの流速が遅くなりすぎるとエンジン等の内圧が上がってしまうため、排ガスの流速を妨げないような位置に設置することが好ましい。   In the method of purifying exhaust gas, a catalyst is installed at a predetermined position for purifying exhaust gas, and exhaust gas is flowed. At that time, if the temperature of the exhaust gas is lowered too much, the activity of the catalyst is lowered. Therefore, the exhaust gas is preferably installed at a position where the temperature of the exhaust gas is not lowered. Moreover, since the internal pressure of an engine etc. will rise if the flow rate of exhaust gas becomes too slow, it is preferable to install in a position that does not hinder the flow rate of exhaust gas.

以下の測定装置を用いて行った。
触媒金属の比表面積 m/g(日本ベル製、BEL-METAL-3)
流動式比表面積自動測定装置(商標“フローソーブII2300”、Micrometrics Instrument Co.)により測定した。
The following measurement apparatus was used.
Specific surface area of catalytic metal m 2 / g (Nippon Bell, BEL-METAL-3)
It was measured by a flow-type specific surface area automatic measuring device (trademark “Flowsorb II2300”, Micrometrics Instrument Co.).

細孔径
水銀圧入式ポロシメーター(オートポアIV9500、MICROMERITICS製)を用いて、0.0018μmから100μmの範囲の細孔分布を測定する。その細孔分布曲線より極大点をピークトップ細孔径とする。
Pore size
Using a mercury intrusion porosimeter (Autopore IV9500, manufactured by MICROMERITICS), the pore distribution in the range of 0.0018 μm to 100 μm is measured. The maximum point is defined as the peak top pore diameter from the pore distribution curve.

平均粒子径
金属の比表面積
金属分散度測定装置(BEL−METAL−3、日本ベル(株))にてCO吸着の度合いを測定し、貴金属の平均粒子径、触媒表面上にある貴金属の表面積を算出した。
Average particle size
Specific surface area of metal
The degree of CO adsorption was measured with a metal dispersion measuring device (BEL-METAL-3, Nippon Bell Co., Ltd.), and the average particle diameter of the noble metal and the surface area of the noble metal on the catalyst surface were calculated.

金属の結晶子径
X線回折装置(RINT2100、(株)リガク)を用いてサンプルを2θ=30〜60°の範囲を測定し、2θ=34°付近の酸化パラジウムに相当するピークの半値幅から結晶子径を算出した。
Metal crystallite diameter
Using a X-ray diffractometer (RINT2100, Rigaku Corporation), the sample was measured in the range of 2θ = 30-60 °, and the crystallite diameter was calculated from the half-width of the peak corresponding to palladium oxide near 2θ = 34 °. did.

排気ガスの分析
排ガス測定器(MEXA−584L,(株)堀場製作所)により、HC、CO、COを測定した。
Analysis of Exhaust Gas HC, CO, and CO 2 were measured with an exhaust gas measuring instrument (MEXA-584L, Horiba, Ltd.).

製造例1
(10%Pd(II)−CNTの製造)
500mL4ツ口フラスコにCNT(Carbon Vol.35 No10-11,pp1495-1501,1997 に記載の方法で作成)3.0g、蒸留水50mLを加えて、5分攪拌した。続いて、硝酸パラジウム溶液(パラジウム濃度50g/L)6mLを攪拌しながらフラスコに加えた。室温下で30分間攪拌後、エバポレーターを用いて水分を減圧留去し、濃縮残分として3.6gを得た。この濃縮物を磁性のるつぼに移し、乾燥器内で100℃、1時間乾燥し、次に窒素置換した電気炉内で350℃、1時間焼成を行い、10%Pd−CNT 3.1gを得た。
Production Example 1
(Production of 10% Pd (II) -CNT)
To a 500 mL four-necked flask, 3.0 g of CNT (prepared by the method described in Carbon Vol.35 No10-11, pp1495-1501, 1997) and 50 mL of distilled water were added and stirred for 5 minutes. Subsequently, 6 mL of a palladium nitrate solution (palladium concentration 50 g / L) was added to the flask with stirring. After stirring at room temperature for 30 minutes, the water was distilled off under reduced pressure using an evaporator to obtain 3.6 g as a concentrated residue. This concentrate was transferred to a magnetic crucible, dried at 100 ° C. for 1 hour in a dryer, and then baked at 350 ° C. for 1 hour in an electric furnace purged with nitrogen to obtain 3.1 g of 10% Pd-CNT. It was.

実施例1
製造した10%Pd(II)−CNT2.0g、アルミナゾル(製品名:アルミゾル−10A、川研ファインケミカル(株)製、アルミナ純分10.0%)158.0g、ジルコニアボール(φ2mm)50gをポリ容器に入れ、ロッキングミル(SEIWAGIKEN ROCKING MILL)を用いて50Hz、1時間処理することにより、触媒前駆体分散液を得た。
Example 1
Polyester of 2.0 g of 10% Pd (II) -CNT produced, 158.0 g of alumina sol (product name: Aluminum sol-10A, manufactured by Kawaken Fine Chemicals Co., Ltd., 10.0% pure alumina), 50 g of zirconia balls (φ2 mm) The catalyst precursor dispersion liquid was obtained by putting into a container and processing for 1 hour at 50 Hz using a rocking mill (SEIWAGIKEN ROCKING MILL).

実施例2
実施例1で得られた触媒前駆体分散液を減圧濃縮し、続いて、乾燥器で100℃、2時間乾燥、窒素置換した電気炉で400℃、2時間焼成、さらに800℃、2時間焼成し、1.25%Pd(II)−アルミナ触媒15.1gを得た。
Example 2
The catalyst precursor dispersion obtained in Example 1 was concentrated under reduced pressure, followed by drying at 100 ° C. for 2 hours in a drier, baking at 400 ° C. for 2 hours in an electric furnace purged with nitrogen, and further baking at 800 ° C. for 2 hours. As a result, 15.1 g of a 1.25% Pd (II) -alumina catalyst was obtained.

図3は実施例2で得られた触媒のTEM像であるが、空孔1のふちにPd粒子4が配置されているのがみられる。   FIG. 3 is a TEM image of the catalyst obtained in Example 2. It can be seen that Pd particles 4 are arranged on the edge of the pores 1.

実施例3
製造例1で製造した10%Pd(II)−CNT3.1g、アルミナゾル(製品名:アルミゾル−10A、川研ファインケミカル(株)製、アルミナ純分10.0%)14.0g、γ-アルミナ23.1g(ローディア社、平均粒子径22〜23μm)、蒸留水100mL、ジルコニアボール(φ2mm)50gをポリ容器に入れ、ロッキングミル(SEIWAGIKEN ROCKING MILL)を用いて50Hz、1時間処理することにより、触媒前駆体分散液を得た。
Example 3
3.1 g of 10% Pd (II) -CNT produced in Production Example 1, 14.0 g of alumina sol (Product name: Aluminum sol-10A, manufactured by Kawaken Fine Chemicals Co., Ltd., 10.0% pure alumina), γ-alumina 23 .1 g (Rhodia, average particle size 22-23 μm), distilled water 100 mL, zirconia balls (φ2 mm) 50 g were put in a plastic container and treated with a rocking mill (SEIWAGIKEN ROCKING MILL) at 50 Hz for 1 hour to produce a catalyst. A precursor dispersion was obtained.

実施例4
実施例3で得られた触媒前駆体分散液をステンレス製のバットに入れ、乾燥機で100℃、2時間乾燥し、固形物として24.3gを得た。得られた固形物を解砕した後、磁性のるつぼに24.3g量りとり、窒素置換した電気炉内で400℃、1時間焼成を行い、22.3gを得た。更に、電気炉内で800℃、1時間焼成し、1.25%Pd(II)−アルミナ触媒19.7gを得た。
Example 4
The catalyst precursor dispersion liquid obtained in Example 3 was put in a stainless steel vat and dried at 100 ° C. for 2 hours with a dryer to obtain 24.3 g as a solid. After crushing the obtained solid, 24.3 g was weighed into a magnetic crucible and baked at 400 ° C. for 1 hour in an electric furnace purged with nitrogen to obtain 22.3 g. Furthermore, it was calcined at 800 ° C. for 1 hour in an electric furnace to obtain 19.7 g of a 1.25% Pd (II) -alumina catalyst.

比較製造例1
500mL4ツ口フラスコに蒸留水100mL,γ-アルミナ(ローディア社製、平均粒子径22〜23μm)46.2g、硝酸パラジウム溶液(パラジウム濃度50g/L)12mLを加えて、室温下1時間攪拌した。エバポレーターを用いて水分を減圧留去し、続いて、ステンレス製のバットに移し替えて、乾燥器で100℃、15時間乾燥し、黄褐色粉体として44.8gを得た。得られた粉体を磁製のるつぼに移し、電気炉400℃、1.5時間焼成し、1.28%Pd(II)−アルミナ43.0gを得た。(ただのアルミナ担持触媒)
Comparative production example 1
Distilled water 100 mL, γ-alumina (manufactured by Rhodia, average particle size 22-23 μm) 46.2 g, palladium nitrate solution (palladium concentration 50 g / L) 12 mL were added to a 500 mL four-necked flask and stirred at room temperature for 1 hour. The water was distilled off under reduced pressure using an evaporator, then transferred to a stainless steel vat and dried in a dryer at 100 ° C. for 15 hours to obtain 44.8 g as a tan powder. The obtained powder was transferred to a magnetic crucible and baked for 1.5 hours at 400 ° C. in an electric furnace to obtain 43.0 g of 1.28% Pd (II) -alumina. (Alumina supported catalyst)

比較例1
比較製造例1で製造したPd(II)−アルミナ23.1g、CNT3.0g、10%アルミナゾル溶液(製品名:アルミナゾル10A、川研ファインケミカル(株)製、純分10.0%)6.0g、蒸留水100mL、ジルコニアボール(φ2mm)50gをポリ容器に入れ、ロッキングミルを用いて50Hz、1時間処理して、均一に分散化した。この分散液をステンレス製のバットに入れ、乾燥器内で100℃、2時間乾燥し、固形物として27.7gを得た。得られた固形物を解砕した後、磁製のるつぼに27.5g量りとり、窒素置換した電気炉内で400℃、2時間焼成を行い、22.6gを得た。更に、電気炉で800℃、1時間焼成し、1.25%Pd(II)−アルミナ触媒21.3gを得た。
Comparative Example 1
Pd (II) -alumina 23.1 g produced in Comparative Production Example 1, CNT 3.0 g, 10% alumina sol solution (Product name: Alumina sol 10A, manufactured by Kawaken Fine Chemical Co., Ltd., pure content 10.0%) 6.0 g Then, 100 mL of distilled water and 50 g of zirconia balls (φ2 mm) were placed in a plastic container and treated with a rocking mill at 50 Hz for 1 hour to uniformly disperse. This dispersion was put in a stainless steel vat and dried in a dryer at 100 ° C. for 2 hours to obtain 27.7 g as a solid. After crushing the obtained solid, 27.5 g was weighed into a magnetic crucible and baked at 400 ° C. for 2 hours in an electric furnace purged with nitrogen to obtain 22.6 g. Further, it was calcined at 800 ° C. for 1 hour in an electric furnace to obtain 21.3 g of a 1.25% Pd (II) -alumina catalyst.

比較製造例2
CNT3.0g、γ−アルミナ23.1g、10%アルミナゾル溶液(製品名:アルミナゾル10A、川研ファインケミカル(株)製、純分10.0%)6.0g、酢酸6.6g、蒸留水100mL、ジルコニアボール(φ2mm)50gをポリ容器に入れ、ロッキングミルを用いて50Hz、1時間処理して、均一に分散化した。この分散液をステンレス製のバットに入れ、乾燥器で100℃、2時間乾燥し、固形物として22.3g得た。得られた固形物を解砕した後、磁製のるつぼに移し、窒素置換した電気炉で350℃、2時間焼成した。更に電気炉で800℃、2時間焼成し、多孔質アルミナ18.3g得た。
Comparative production example 2
CNT 3.0 g, γ-alumina 23.1 g, 10% alumina sol solution (product name: alumina sol 10A, manufactured by Kawaken Fine Chemical Co., Ltd., pure content 10.0%) 6.0 g, acetic acid 6.6 g, distilled water 100 mL, 50 g of zirconia balls (φ2 mm) was put in a plastic container and treated with a rocking mill at 50 Hz for 1 hour to uniformly disperse. This dispersion was placed in a stainless steel vat and dried at 100 ° C. for 2 hours with a dryer to obtain 22.3 g of a solid. The obtained solid was crushed, transferred to a magnetic crucible, and baked at 350 ° C. for 2 hours in an electric furnace purged with nitrogen. Further, it was baked at 800 ° C. for 2 hours in an electric furnace to obtain 18.3 g of porous alumina.

比較例2
比較製造例2で製造したアルミナ18.0g、蒸留水200mL、硝酸パラジウム溶液(パラジウム濃度50g/L)4.6mLを500mL4ツ口フラスコに加え、室温下1時間攪拌した後、エバポレーターを用いて減圧濃縮し、淡黄色固体として22.9g得た。得られた粉体22.6gを磁製のるつぼに量りとり、窒素置換した電気炉内で400℃、2時間焼成を行い、17.4gを得た。更に、電気炉で800℃、1時間焼成し、1.25%Pd(II)−アルミナ触媒17.2gを得た。
Comparative Example 2
18.0 g of alumina produced in Comparative Production Example 2, 200 mL of distilled water and 4.6 mL of palladium nitrate solution (palladium concentration 50 g / L) were added to a 500 mL four-necked flask, stirred at room temperature for 1 hour, and then reduced in pressure using an evaporator. Concentration gave 22.9 g as a pale yellow solid. 22.6 g of the obtained powder was weighed into a magnetic crucible and baked at 400 ° C. for 2 hours in an electric furnace purged with nitrogen to obtain 17.4 g. Further, it was calcined at 800 ° C. for 1 hour in an electric furnace to obtain 17.2 g of a 1.25% Pd (II) -alumina catalyst.

比較例3
比較製造例1で製造した1.28%Pd(II)−アルミナ10.0g、10%アルミナゾル溶液(製品名:アルミナゾル10A、純分10.0%)2.6g、蒸留水80.0g、ジルコニアボール50gをポリ容器に入れ、ロッキングミルを用いて50Hz、1時間処理して、均一に分散化した。分散液をステンレス製のバットに入れ、100℃、2時間乾燥し、固形物を得た。固形物を磁製のるつぼに移し替え、電気炉で400℃、400℃、2時間焼成、さらに800℃、2時間焼成し、1.25%Pd(II)−アルミナ触媒9.12gを得た。
Comparative Example 3
1.28% Pd (II) -alumina 10.0 g produced in Comparative Production Example 1 10% alumina sol solution (product name: alumina sol 10A, pure content 10.0%) 2.6 g, distilled water 80.0 g, zirconia 50 g of balls were put in a plastic container and treated at 50 Hz for 1 hour using a rocking mill to uniformly disperse. The dispersion was placed in a stainless steel vat and dried at 100 ° C. for 2 hours to obtain a solid. The solid was transferred to a magnetic crucible and calcined in an electric furnace at 400 ° C., 400 ° C. for 2 hours, and further calcined at 800 ° C. for 2 hours to obtain 9.12 g of a 1.25% Pd (II) -alumina catalyst. .

以下に作成した触媒それぞれの物性を表1に示す。   Table 1 shows the physical properties of the catalysts prepared below.

図4に実施例4の触媒の細孔分布曲線を示す。   FIG. 4 shows a pore distribution curve of the catalyst of Example 4.

CNTが入っている触媒(実施例2、実施例4、比較例1、比較例2)については、細孔分布曲線で二つのピークがでる。それは、アルミナが持つ小さな細孔と、CNTを消失させた後にできた比較的大きな細孔ができていることを示す。   For the catalyst containing CNT (Example 2, Example 4, Comparative Example 1, Comparative Example 2), two peaks appear in the pore distribution curve. It shows that small pores of alumina and relatively large pores formed after CNT disappears.

製造例2
500mL4ツ口フラスコに蒸留水100mL,CNT(上記と同じ)10.0g、硝酸パラジウム溶液(パラジウム濃度50g/L)6.4mL、硝酸ロジウム溶液(ロジウム濃度3.0g/L)27mLを加えて、室温下1時間攪拌した。エバポレーターを用いて水分を減圧留去し、続いて、磁製のるつぼに移し、乾燥器で100℃、2時間乾燥した。さらに、窒素雰囲気下の電気炉内で400℃、2時間焼成し、3.2%Pd(II)−0.8%Rh(III)−CNT 9.9gを得た。
Production Example 2
Add 500 mL of distilled water, 10.0 g of CNT (same as above), 6.4 mL of palladium nitrate solution (palladium concentration 50 g / L), 27 mL of rhodium nitrate solution (rhodium concentration 3.0 g / L) to a 500 mL four-necked flask, Stir at room temperature for 1 hour. The water was distilled off under reduced pressure using an evaporator, then transferred to a magnetic crucible and dried at 100 ° C. for 2 hours in a drier. Furthermore, it was fired in an electric furnace under a nitrogen atmosphere at 400 ° C. for 2 hours to obtain 9.9 g of 3.2% Pd (II) -0.8% Rh (III) -CNT.

実施例5
製造例2で製造した3.2%Pd(II)−0.8%Rh(III)−CNT 2.0g、γ−アルミナ2.0g、10%アルミナゾル溶液(製品名:アルミナゾル10A、純分10.0%)180.0g、蒸留水40mL、酢酸5g、及びジルコニアボール(φ2mm)50gを250mLポリ容器に入れ、ロッキングミルを用いて50Hz、1時間処理して、触媒前駆体分散液を作成した。
Example 5
2.0% of 3.2% Pd (II) -0.8% Rh (III) -CNT produced in Production Example 2, 2.0 g of γ-alumina, 10% alumina sol solution (product name: alumina sol 10A, pure content 10 0.0%) 180.0 g, distilled water 40 mL, acetic acid 5 g, and zirconia balls (φ2 mm) 50 g were placed in a 250 mL plastic container and treated with a rocking mill at 50 Hz for 1 hour to prepare a catalyst precursor dispersion. .

実施例6
実施例5の触媒前駆体分散液をステンレス製バットに入れ、特開2005−095846号公報に記載の方法で作成されたフェライト系ステンレスの網(サイズ3cm×24cm、6.38g)を浸し、ディップコートした。余分な触媒前駆体分散液は、窒素ガスを吹き付けて取り除いた。コートした網は、乾燥器で100℃、2時間乾燥し、電気炉で400℃、2時間焼成した。同様な操作をさらに2回繰り返した。次に、電気炉で800℃、2時間焼成し、含有するCNTを焼成・除去し、0.32%Pd−0.08%Rh−アルミナ担持ステンレス網触媒6.66gを得た(触媒担持率:3.89mg/cm)。
Example 6
The catalyst precursor dispersion of Example 5 was placed in a stainless steel vat and immersed in a ferritic stainless steel net (size 3 cm × 24 cm, 6.38 g) prepared by the method described in JP-A-2005-095846. Coated. Excess catalyst precursor dispersion was removed by blowing nitrogen gas. The coated net was dried at 100 ° C. for 2 hours in a drier and baked in an electric furnace at 400 ° C. for 2 hours. The same operation was repeated twice more. Next, calcination was carried out at 800 ° C. for 2 hours in an electric furnace, and the contained CNTs were calcinated and removed to obtain 6.66 g of a 0.32% Pd-0.08% Rh-alumina supported stainless mesh catalyst (catalyst support rate) : 3.89 mg / cm < 2 >).

比較製造例3
500mL4ツ口フラスコに蒸留水100mL,γ―アルミナ10.0g、硝酸パラジウム溶液(パラジウム濃度6.4g/L)50mL、硝酸ロジウム溶液(ロジウム濃度3.0g/L)27mLを加えて、室温下1時間攪拌した。エバポレーターを用いて水分を減圧留去し、続いて、磁製のるつぼに移し、乾燥器で100℃、2時間乾燥した。さらに、電気炉で400℃、2時間焼成し、3.2%Pd−0.8%Rh−アルミナ 9.9gを得た。
Comparative production example 3
Distilled water 100 mL, γ-alumina 10.0 g, palladium nitrate solution (palladium concentration 6.4 g / L) 50 mL, rhodium nitrate solution (rhodium concentration 3.0 g / L) 27 mL were added to a 500 mL four-necked flask at room temperature. Stir for hours. The water was distilled off under reduced pressure using an evaporator, then transferred to a magnetic crucible and dried at 100 ° C. for 2 hours in a drier. Furthermore, it baked at 400 degreeC for 2 hours with the electric furnace, and obtained 9.9g of 3.2% Pd-0.8% Rh-alumina.

製造した3.2%Pd(II)−0.8%Rh(III)−アルミナ 2.0g、γ−アルミナ2.0g、10%アルミナゾル溶液(製品名:アルミナゾル10A、純分10.0%)160.0g、蒸留水40mL、酢酸5g、及びジルコニアボール(φ2mm)50gを200mLポリ容器に入れ、ロッキングミルを用いて50Hz、1時間処理して、触媒前駆体分散液を作成した。   Produced 3.2% Pd (II) -0.8% Rh (III) -alumina 2.0 g, γ-alumina 2.0 g, 10% alumina sol solution (product name: alumina sol 10A, pure content 10.0%) 160.0 g, distilled water 40 mL, acetic acid 5 g, and zirconia balls (φ2 mm) 50 g were placed in a 200 mL plastic container and treated with a rocking mill at 50 Hz for 1 hour to prepare a catalyst precursor dispersion.

比較例5
比較製造例3の触媒前駆体分散液をステンレス製バットに入れ、特開2005-095846に記載の方法で作成されたフェライト系ステンレスの網(2.7cm×15cm、3.34g)を浸し、ディップコートした。余分な触媒前駆体分散液は、窒素ガスを吹き付けて取り除いた。コートした網は、乾燥機で100℃、2時間乾燥し、電気炉で400℃、2時間焼成した。同様な操作をさらに2回繰り返した。次に、電気炉で800℃、2時間焼成し、0.32%Pd(II)−0.08%Rh(III)−アルミナ担持ステンレス網触媒3.50gを得た(触媒担持の割合:3.95mg/cm)。
Comparative Example 5
The catalyst precursor dispersion of Comparative Production Example 3 was placed in a stainless steel vat and immersed in a ferritic stainless steel net (2.7 cm × 15 cm, 3.34 g) prepared by the method described in JP-A-2005-095846. Coated. Excess catalyst precursor dispersion was removed by blowing nitrogen gas. The coated net was dried at 100 ° C. for 2 hours in a drier and baked in an electric furnace at 400 ° C. for 2 hours. The same operation was repeated twice more. Next, it was calcined at 800 ° C. for 2 hours in an electric furnace to obtain 3.50 g of 0.32% Pd (II) -0.08% Rh (III) -alumina-supported stainless mesh catalyst (ratio of catalyst support: 3 .95 mg / cm 2 ).

触媒の活性試験
汎用エンジンより排出される排気ガスを触媒を装着できるステンレス管に通し、排出される炭化水素(以下HC)、一酸化炭素(以下CO)の削減率を調べた。汎用エンジンは(株)工進製ハイデルスポンプKR−25Sについている2サイクルエンジンを使用してアイドリング時の排気ガスの分析を実施した。
Catalyst activity test Exhaust gas discharged from a general-purpose engine was passed through a stainless steel pipe to which a catalyst can be attached, and the reduction rate of discharged hydrocarbon (hereinafter referred to as HC) and carbon monoxide (hereinafter referred to as CO) was examined. The general-purpose engine used was a 2-cycle engine attached to the Koyo Heidels pump KR-25S, and exhaust gas was analyzed during idling.

エンジンの総排気量:24.5cc
アイドリング時の回転数:3700rpm
ガソリンは、(株)カインズ製25:1専用混合ガソリン(2サイクルエンジン用)を使用した。
Total engine displacement: 24.5cc
Number of revolutions when idling: 3700 rpm
The gasoline used was a mixed gasoline (for 2-cycle engine) manufactured by Cainz Co., Ltd. 25: 1.

排出ガスの分析は、堀場製作所社製自動車排ガス分析装置MEXA−584Lを用いてHC、CO、CO2の同時分析を同時に行った。 For the analysis of exhaust gas, simultaneous analysis of HC, CO, and CO 2 was simultaneously performed using an automobile exhaust gas analyzer MEXA-584L manufactured by Horiba.

触媒1枚中の貴金属量:65.6μg(Pd:49.2μg、Rh:16.4μg)
HC比0.5%削減された際の触媒の触媒燃焼処理効果は、毎分135リットル(HC)/g(貴金属) と見積もられる。
Noble metal content in one catalyst: 65.6 μg (Pd: 49.2 μg, Rh: 16.4 μg)
The catalytic combustion treatment effect of the catalyst when the HC ratio is reduced by 0.5% is estimated to be 135 liters per minute (HC) / g (noble metal).

CO比3%削減された際の触媒の燃焼処理効果は、毎分809リットル(CO)/g(貴金属)と見積もられる。   The combustion treatment effect of the catalyst when the CO ratio is reduced by 3% is estimated to be 809 liters (CO) / g (noble metal) per minute.

比較例6
(排気ガスを用いたブランク試験)
ハイデルスポンプKR−25S((株)工進製、以下「ポンプ」と略称する)を稼働させ、回転計にて回転数が3700rpm(±50rpm)になるように調整後、排気ガスの分析を行った。排出ガスは、内径2.4mmのステンレス製の管内を通し、内部の温度を測定するとともに、そのステンレス管から排出されるガスの分析をMEXA−584Lで測定した。
Comparative Example 6
(Blank test using exhaust gas)
Heidels pump KR-25S (manufactured by Koshin Co., Ltd., hereinafter abbreviated as “pump”) is operated and adjusted to 3700 rpm (± 50 rpm) with a tachometer, and then exhaust gas analysis is performed. It was. The exhaust gas was passed through a stainless steel tube having an inner diameter of 2.4 mm, the internal temperature was measured, and analysis of the gas exhausted from the stainless steel tube was measured with MEXA-584L.

実施例7
比較例6と同じ条件でポンプを稼働させ、排出する排気ガスを使用して触媒の活性試験を行った。直径2.3cmに切り抜いた実施例6の触媒を排気ガスの流速方向に垂直に1枚配置して排気ガスのHC、CO、COの組成変化をガス分析装置で測定した。各測定値は触媒の直前にある温度計が所定の温度(排ガス温度)に達したことを確認後3分経過のちに行った。
Example 7
The pump was operated under the same conditions as in Comparative Example 6, and the catalyst activity test was performed using the exhaust gas discharged. One catalyst of Example 6 cut out to a diameter of 2.3 cm was arranged perpendicularly to the flow rate direction of the exhaust gas, and the composition change of HC, CO, CO 2 in the exhaust gas was measured with a gas analyzer. Each measured value was measured 3 minutes after confirming that the thermometer immediately before the catalyst reached a predetermined temperature (exhaust gas temperature).

実施例8
直径2.3cmに切り抜いた実施例6の触媒を排気ガスの流速方向に垂直に2枚配置した以外は、実施例6と同様に排ガスの測定を行った。
Example 8
Exhaust gas was measured in the same manner as in Example 6 except that two catalysts of Example 6 cut out to a diameter of 2.3 cm were arranged perpendicular to the flow rate direction of the exhaust gas.

比較例7
直径2.3cmに切り抜いたステンレス網を用いた以外は、実施例7と同じ方法で排ガスの測定を実施した。
Comparative Example 7
Exhaust gas was measured by the same method as in Example 7 except that a stainless mesh cut out to a diameter of 2.3 cm was used.

比較例8
直径2.3cmに切り抜いた比較例5で作成した触媒を用いた以外は実施例7と同じ方法で実施した。
Comparative Example 8
It implemented by the same method as Example 7 except having used the catalyst created by the comparative example 5 cut out to diameter 2.3cm.

通常、触媒はその活性を上げるために平均粒子径、結晶子径を小さくし、貴金属の比表面積を高くすることで、触媒活性を高めようとする。しかし本発明は、表1をみてもわかるとおり、比較例と比べてPdの比表面積が低く、平均粒子径、結晶子径が比較例と比べて高い。つまり、通常の触媒が求める物性とは逆の物性を示している。しかし本発明の触媒の活性は、比較例の触媒と同等もしくはそれ以上の能力を示す。それは、本発明の触媒は貴金属が排ガスの入り込めない微細孔には存在せず、CNTの消失により作成された空孔のみに存在しているためである。   Usually, in order to increase the activity of the catalyst, the average particle diameter and the crystallite diameter are reduced, and the specific surface area of the noble metal is increased to increase the catalytic activity. However, as can be seen from Table 1, in the present invention, the specific surface area of Pd is lower than that of the comparative example, and the average particle diameter and crystallite diameter are higher than those of the comparative example. That is, the physical properties opposite to those required by ordinary catalysts are exhibited. However, the activity of the catalyst of the present invention shows the same or better ability than the catalyst of the comparative example. This is because the catalyst of the present invention does not exist in the fine pores where the exhaust gas cannot enter, but exists only in the pores created by the disappearance of the CNTs.

製造例3
(10%Pd(0)−CNTの製造)
1L4ツ口フラスコにCNT10.0g、蒸留水300mLを加えて1時間攪拌した。続いて、炭酸ナトリウム8.0gを攪拌しながらフラスコに加え、室温下で1時間攪拌した。さらに塩化パラジウム水溶液(パラジウム含量1.15g)をゆっくり加えたのち、12時間撹拌した。80〜90℃で1時間加温後、一旦室温まで冷却した後、ギ酸ナトリウム2.5gをゆっくり加えて80〜90℃で1時間加温した。その後、室温まで冷却した後、桐山漏斗を用いて触媒を濾過し、さらに水2Lで洗浄した。濾過した触媒を乾燥器内で100℃、12時間乾燥後、10%Pd(0)−CNT11.8gを得た。
Production Example 3
(Production of 10% Pd (0) -CNT)
10.0 g of CNT and 300 mL of distilled water were added to a 1 L four-necked flask and stirred for 1 hour. Subsequently, 8.0 g of sodium carbonate was added to the flask with stirring, and the mixture was stirred at room temperature for 1 hour. Further, an aqueous palladium chloride solution (palladium content 1.15 g) was slowly added, followed by stirring for 12 hours. After heating at 80 to 90 ° C. for 1 hour, the mixture was once cooled to room temperature, 2.5 g of sodium formate was slowly added, and the mixture was heated at 80 to 90 ° C. for 1 hour. Then, after cooling to room temperature, the catalyst was filtered using a Kiriyama funnel and further washed with 2 L of water. The filtered catalyst was dried in a dryer at 100 ° C. for 12 hours to obtain 11.8 g of 10% Pd (0) -CNT.

実施例9
実施例4で作成した1.25%Pd(II)−アルミナ触媒に櫛がけを行い20−40メッシュサイズに調整し、空気(10%水分)を通気した電気炉内で1000℃、24時間でエイジング処理を行った後、0.6gを用いて後述する触媒活性試験を行った。
Example 9
The 1.25% Pd (II) -alumina catalyst prepared in Example 4 was combed and adjusted to a 20-40 mesh size, and air (10% water) was passed through an electric furnace at 1000 ° C. for 24 hours. After the aging treatment, a catalytic activity test described later was conducted using 0.6 g.

実施例10
実施例3の10%Pd(II)-CNTの代わりに製造例3で作成した10%Pd(0)−CNTを用いた以外は実施例3及び実施例4と同様の方法を用いて1.25%Pd(0)−アルミナ触媒を作成した。その触媒に篩がけを行い20−40メッシュサイズに調整し、実施例9と同様な方法でエイジング処理を行った後、0.6gを用いて後述する触媒活性試験を行った。
Example 10
Using the same method as in Example 3 and Example 4 except that 10% Pd (0) -CNT prepared in Production Example 3 was used instead of 10% Pd (II) -CNT in Example 3. A 25% Pd (0) -alumina catalyst was prepared. The catalyst was sieved, adjusted to a 20-40 mesh size, subjected to an aging treatment in the same manner as in Example 9, and then a catalytic activity test described later was conducted using 0.6 g.

実施例11
製造例1のPd(II)-CNTの製造方法において硝酸パラジウム中のパラジウム濃度を50g/Lから5g/Lに変更したこと以外は製造例1と同様にして1%Pd(II)−CNTを作成した。
Example 11
1% Pd (II) -CNT was prepared in the same manner as in Production Example 1 except that the palladium concentration in palladium nitrate was changed from 50 g / L to 5 g / L in the production method of Pd (II) -CNT in Production Example 1. Created.

この1%Pd(II)−CNT2.0g、γ−アルミナ10.0g、10%アルミナゾル溶液(製品名:アルミナゾル10A、純分10.0%)9.0g、蒸留水70mL、酢酸0.5gから実施例3及び実施例4と同様な方法を用いて、0.2%Pd(II)−アルミナ触媒9.5gを作成した。その触媒に篩がけを行い20−40メッシュサイズに調整し、実施例9と同様な方法でエイジング処理を行った後、0.6gを用いて後述する触媒活性試験を行った。   From 1% Pd (II) -CNT 2.0 g, γ-alumina 10.0 g, 10% alumina sol solution (product name: alumina sol 10A, pure content 10.0%) 9.0 g, distilled water 70 mL, acetic acid 0.5 g Using the same method as in Example 3 and Example 4, 9.5 g of 0.2% Pd (II) -alumina catalyst was prepared. The catalyst was sieved, adjusted to a 20-40 mesh size, subjected to an aging treatment in the same manner as in Example 9, and then a catalytic activity test described later was conducted using 0.6 g.

実施例12
実施例11で作成した1%Pd(II)−CNT0.4g、CNT1.6g、γ−アルミナ19.0g、10%アルミナゾル溶液(製品名:アルミナゾル10A、純分10.0%)10.0g、蒸留水70mL、酢酸0.5gから実施例3及び実施例4と同様な方法を用いて、0.02%Pd(II)−アルミナ触媒9.5gを作成した。その触媒に篩がけを行い20−40メッシュサイズに調整し、実施例9と同様な方法でエイジング処理を行った後、0.6gを用いて後述する触媒活性試験を行った。
Example 12
0.4 g of 1% Pd (II) -CNT prepared in Example 11, 1.6 g of CNT, 19.0 g of γ-alumina, 10.0 g of 10% alumina sol solution (product name: alumina sol 10A, pure content 10.0%), Using 70 mL of distilled water and 0.5 g of acetic acid, 9.5 g of 0.02% Pd (II) -alumina catalyst was prepared in the same manner as in Example 3 and Example 4. The catalyst was sieved, adjusted to a 20-40 mesh size, subjected to an aging treatment in the same manner as in Example 9, and then a catalytic activity test described later was conducted using 0.6 g.

実施例13
実施例12で作成した触媒に篩がけを行い20−40メッシュサイズに調整し、実施例9と同様な方法でエイジング処理を行った後、0.3gを用いて後述する触媒活性試験を行った。
Example 13
The catalyst prepared in Example 12 was sieved and adjusted to a 20-40 mesh size, and after aging treatment was performed in the same manner as in Example 9, a catalytic activity test described later was performed using 0.3 g. .

製造例4
(3.8%Pd(II)−0.2%Rh(III)−CNT)
200mL4ツ口フラスコに蒸留水100mL,CNT(上記と同じ)10.0g、硝酸パラジウム溶液(パラジウム濃度50g/L)7.6mL、硝酸ロジウム溶液(ロジウム濃度3.0g/L)6.7mLを加えて、室温下1時間攪拌した。エバポレーターを用いて水分を減圧留去し、続いて、磁製のるつぼに移し、乾燥器で100℃、2時間乾燥した。さらに、窒素雰囲気下の電気炉内で400℃、2時間焼成し、3.8%Pd(II)−0.2%Rh(III)−CNT 9.8gを得た。
Production Example 4
(3.8% Pd (II) -0.2% Rh (III) -CNT)
Add 200 mL of distilled water, 10.0 g of CNT (same as above), 7.6 mL of palladium nitrate solution (palladium concentration 50 g / L), and 6.7 mL of rhodium nitrate solution (rhodium concentration 3.0 g / L) to a 200 mL four-necked flask. And stirred at room temperature for 1 hour. The water was distilled off under reduced pressure using an evaporator, then transferred to a magnetic crucible and dried at 100 ° C. for 2 hours in a drier. Furthermore, it was baked at 400 ° C. for 2 hours in an electric furnace under a nitrogen atmosphere to obtain 9.8 g of 3.8% Pd (II) -0.2% Rh (III) -CNT.

実施例14
製造例4で製造した3.8%Pd(II)−0.2%Rh(III)−CNT 5.0g、酸化セリウム(IV)(粒子径25nm以下)0.87g、酸化ジルコニア(IV)(粒子径100nm以下)2.47g、γ−アルミナ 12.1g、10%アルミナゾル溶液(製品名:アルミナゾル10A、アルミナ純分10.0%)4.0g、蒸留水100mL、酢酸0.23g、から実施例3及び実施例4と同様な方法を用いて、1.19%Pd(II)−0.06%Rh(III)−アルミナ触媒14.1gを作成した。その触媒に篩がけを行い20−40メッシュサイズに調整し、実施例9と同様な方法でエイジング処理を行った後、0.6gを用いて後述する触媒活性試験を行った。
Example 14
3.8% Pd (II) -0.2% Rh (III) -CNT 5.0 g produced in Production Example 4, cerium (IV) oxide (particle diameter 25 nm or less) 0.87 g, zirconia (IV) oxide ( (Particle size 100 nm or less) 2.47 g, γ-alumina 12.1 g, 10% alumina sol solution (product name: alumina sol 10A, alumina pure 10.0%) 4.0 g, distilled water 100 mL, acetic acid 0.23 g Using a method similar to Example 3 and Example 4, 14.1 g of a 1.19% Pd (II) -0.06% Rh (III) -alumina catalyst was made. The catalyst was sieved, adjusted to a 20-40 mesh size, subjected to an aging treatment in the same manner as in Example 9, and then a catalytic activity test described later was conducted using 0.6 g.

比較例9
比較製造例1の硝酸パラジウム溶液のパラジウム濃度を50g/Lから5g/Lに変更した以外は、比較製造例1と同様にして0.2%Pd(II)−アルミナを作成した。
Comparative Example 9
0.2% Pd (II) -alumina was prepared in the same manner as Comparative Production Example 1 except that the palladium concentration of the palladium nitrate solution of Comparative Production Example 1 was changed from 50 g / L to 5 g / L.

その0.2%Pd(II)−アルミナ1.0g、γ-アルミナ8.5g、10%アルミナゾル溶液(製品名:アルミナゾル10A、純分10.0%)5.0g、蒸留水70mL、酢酸0.5gから実施例3及び実施例4と同様な方法を用いて、0.02%Pd(II)−アルミナ触媒9.4gを作成した。その触媒に篩がけを行い20−40メッシュサイズに調整し、実施例9と同様な方法でエイジング処理を行った後、0.3gを用いて後述する触媒活性試験を行った。   The 0.2% Pd (II) -alumina 1.0 g, γ-alumina 8.5 g, 10% alumina sol solution (product name: alumina sol 10A, pure content 10.0%) 5.0 g, distilled water 70 mL, acetic acid 0 9.4 g of 0.02% Pd (II) -alumina catalyst was prepared from 0.5 g using the same method as in Example 3 and Example 4. The catalyst was sieved, adjusted to a 20-40 mesh size, subjected to an aging treatment in the same manner as in Example 9, and then a catalytic activity test described later was conducted using 0.3 g.

比較例10
粉末状のγ-アルミナ(ローディア社、平均粒子径22〜23μm)を加圧成形してプレート状にした後、解砕及び篩がけを行い、20−40メッシュのサイズに調整した。サイズ調整を行ったγ-アルミナ0.6gについて後述する触媒活性試験を行った。
Comparative Example 10
After powdery γ-alumina (Rhodia, average particle size 22-23 μm) was pressure-molded into a plate shape, crushing and sieving were performed to adjust the size to 20-40 mesh. A catalytic activity test described later was conducted on 0.6 g of the γ-alumina whose size was adjusted.

(自動車モデル排ガスを用いた触媒活性試験)
実施例9〜14及び比較例9〜10で作成した触媒を、それぞれ図5に示す石英ガラス製円筒形の反応容器(内径17mm)11の中央部12に充填した。その反応容器を地面に対して垂直に固定し、ガスを上部から下部へ流す。ガスは、酸素8.0%、二酸化炭素10.3%、プロピレン2,700ppm(炭素換算)、一酸化炭素900ppm、水分10%、及び窒素(残分)となる混合ガスを使用し、ガス流速は2,000mL/分となるように反応容器の上部から流した。外部に設置された電気炉によって加熱され、反応容器中央に設置された熱電対用管15の先端で温度を測定する。
(Catalyst activity test using automobile model exhaust gas)
The catalysts prepared in Examples 9 to 14 and Comparative Examples 9 to 10 were filled in the central portion 12 of a quartz glass cylindrical reaction vessel (inner diameter 17 mm) 11 shown in FIG. The reaction vessel is fixed perpendicular to the ground, and gas flows from top to bottom. The gas used is a mixed gas consisting of oxygen 8.0%, carbon dioxide 10.3%, propylene 2,700 ppm (carbon conversion), carbon monoxide 900 ppm, moisture 10%, and nitrogen (residue), and the gas flow rate. Was allowed to flow from the top of the reaction vessel at 2,000 mL / min. Heated by an electric furnace installed outside, the temperature is measured at the tip of a thermocouple tube 15 installed in the center of the reaction vessel.

容器内温度を昇温速度5℃/分で100から400℃の範囲で変化させ、混合ガスを流し、反応容器下部から排出されるガスから、プロピレンの酸化及び一酸化炭素の酸化反応の経時変化を追跡した。プロピレン及び一酸化炭素の分析は、赤外スペクトル測定装置(Nicolet製NEXUS 670-FTIR)を用いて行い、反応容器から排出される混合ガス中のプロピレン(測定波長:912cm-1)及び一酸化炭素(測定波長:2,158cm-1)の含有率を計測した。 Change the temperature in the vessel at a rate of temperature rise of 5 ° C / min in the range of 100 to 400 ° C, flow mixed gas, and change over time of the oxidation reaction of propylene and the oxidation of carbon monoxide from the gas discharged from the lower part of the reaction vessel Tracked. Propylene and carbon monoxide are analyzed using an infrared spectrum measuring apparatus (NEXUS 670-FTIR manufactured by Nicolet). Propylene (measurement wavelength: 912 cm −1 ) and carbon monoxide discharged from the reaction vessel The content of (measurement wavelength: 2,158 cm −1 ) was measured.

結果を図6、図7に示す。   The results are shown in FIGS.

比較例と比べて本発明の触媒の方が、低温で活性があることがわかった。   It was found that the catalyst of the present invention was more active at a lower temperature than the comparative example.

本発明により、排気ガスの浄化に適した触媒を工業的に簡便に製造することができるので、環境保護の観点から極めて有用である。   According to the present invention, a catalyst suitable for exhaust gas purification can be easily produced industrially, which is extremely useful from the viewpoint of environmental protection.

1:CNTの消失跡にできた空孔
2:担体
3:バインダー層
4:貴金属粒子
5:バインダー
6:無機酸化物粒子
11:反応容器
12:触媒設置部
13:ガラスウール
14:触媒固定台座(メッシュ構造)
15:熱電対設置管
1: pores formed in disappearance trace of CNT 2: carrier 3: binder layer 4: noble metal particles 5: binder 6: inorganic oxide particles
11: Reaction vessel
12: Catalyst installation section
13: Glass wool
14: Catalyst fixed base (mesh structure)
15: Thermocouple installation tube

Claims (9)

(A)Ag、Ru、Rh、Pd、In、Os、Ir及びPtからなる群より選ばれる少なくとも1種の貴金属粒子又は貴金属酸化物粒子を担持させたカーボンナノチューブ及び(B)無機酸化物水和物を含むことを特徴とする触媒前駆体分散液。   (A) Carbon nanotube carrying at least one kind of noble metal particles or noble metal oxide particles selected from the group consisting of Ag, Ru, Rh, Pd, In, Os, Ir and Pt, and (B) hydration of inorganic oxide A catalyst precursor dispersion liquid comprising a product. (A)Ag、Ru、Rh、Pd、In、Os、Ir及びPtからなる群より選ばれる少なくとも1種の貴金属粒子又は貴金属酸化物粒子を担持させたカーボンナノチューブ、(B)無機酸化物水和物及び(C)アルミナ、シリカ、チタニア、ジルコニア及びセリア−ジルコニアからなる群より選ばれる少なくとも1種の無機化合物粒子を含むことを特徴とする触媒前駆体分散液。   (A) Carbon nanotube carrying at least one kind of noble metal particles or noble metal oxide particles selected from the group consisting of Ag, Ru, Rh, Pd, In, Os, Ir and Pt, (B) Inorganic oxide hydration And (C) a catalyst precursor dispersion comprising at least one inorganic compound particle selected from the group consisting of alumina, silica, titania, zirconia and ceria-zirconia. 請求項1または2に記載の触媒前駆体分散液を乾燥・焼成したことを特徴とする触媒。   A catalyst obtained by drying and calcining the catalyst precursor dispersion according to claim 1. 請求項1または2に記載の触媒前駆体分散液を担体にコーティングした後、焼成してカーボンナノチューブを焼失させたことを特徴とする触媒。   A catalyst, wherein the catalyst precursor dispersion according to claim 1 or 2 is coated on a carrier and then calcined to burn off carbon nanotubes. 前記の担体が金属製であることを特徴とする請求項4に記載の触媒。   The catalyst according to claim 4, wherein the carrier is made of metal. 前記の金属製担体が表面に無機酸化物を有することを特徴とする請求項5に記載の触媒。   The catalyst according to claim 5, wherein the metal carrier has an inorganic oxide on the surface. 前記の金属製担体がアルミニウムを含有するステンレス鋼であることを特徴とする請求項5または6に記載の触媒。   The catalyst according to claim 5 or 6, wherein the metal support is stainless steel containing aluminum. 担体の形状が金網であることを特徴とする請求項5〜7のいずれか1項に記載の触媒。   The catalyst according to any one of claims 5 to 7, wherein the shape of the support is a wire mesh. 請求項3〜8のいずれか1項に記載の触媒を用いることを特徴とする排気ガスの浄化方法。   An exhaust gas purification method using the catalyst according to any one of claims 3 to 8.
JP2011158783A 2010-07-23 2011-07-20 Catalyst precursor dispersion, catalyst, and exhaust gas purification method Active JP5806536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011158783A JP5806536B2 (en) 2010-07-23 2011-07-20 Catalyst precursor dispersion, catalyst, and exhaust gas purification method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010165613 2010-07-23
JP2010165613 2010-07-23
JP2011158783A JP5806536B2 (en) 2010-07-23 2011-07-20 Catalyst precursor dispersion, catalyst, and exhaust gas purification method

Publications (2)

Publication Number Publication Date
JP2012040550A true JP2012040550A (en) 2012-03-01
JP5806536B2 JP5806536B2 (en) 2015-11-10

Family

ID=45897438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011158783A Active JP5806536B2 (en) 2010-07-23 2011-07-20 Catalyst precursor dispersion, catalyst, and exhaust gas purification method

Country Status (1)

Country Link
JP (1) JP5806536B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017495A (en) * 2014-07-10 2016-02-01 日野自動車株式会社 Exhaust emission control device
JP2017047379A (en) * 2015-09-02 2017-03-09 マツダ株式会社 Catalyst material production process and catalyst material as well as exhaust gas purification catalyst containing said catalyst material
JP2022107173A (en) * 2021-01-08 2022-07-21 株式会社豊田中央研究所 catalyst

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9855547B2 (en) 2015-10-05 2018-01-02 GM Global Technology Operations LLC Low-temperature oxidation catalysts
US9827562B2 (en) 2015-10-05 2017-11-28 GM Global Technology Operations LLC Catalytic converters with age-suppressing catalysts
US10422036B2 (en) 2015-10-23 2019-09-24 GM Global Technology Operations LLC Suppressing aging of platinum group metal particles in a catalytic converter
US9901907B1 (en) 2016-08-31 2018-02-27 GM Global Technology Operations LLC Catalytic converters with age-suppressing catalysts
US10035133B2 (en) 2016-10-25 2018-07-31 GM Global Technology Operations LLC Catalysts with atomically dispersed platinum group metal complexes and a barrier disposed between the complexes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193392A (en) * 2005-01-17 2006-07-27 Tokyo Institute Of Technology Oxide composite material, its manufacturing method, electrochemical device and catalyst containing oxide composite material
JP2009537312A (en) * 2006-05-23 2009-10-29 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Temperature stable catalyst for gas phase oxidation
JP2011230104A (en) * 2010-04-30 2011-11-17 Toyota Motor Corp Exhaust gas purifying catalyst and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193392A (en) * 2005-01-17 2006-07-27 Tokyo Institute Of Technology Oxide composite material, its manufacturing method, electrochemical device and catalyst containing oxide composite material
JP2009537312A (en) * 2006-05-23 2009-10-29 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Temperature stable catalyst for gas phase oxidation
JP2011230104A (en) * 2010-04-30 2011-11-17 Toyota Motor Corp Exhaust gas purifying catalyst and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017495A (en) * 2014-07-10 2016-02-01 日野自動車株式会社 Exhaust emission control device
JP2017047379A (en) * 2015-09-02 2017-03-09 マツダ株式会社 Catalyst material production process and catalyst material as well as exhaust gas purification catalyst containing said catalyst material
JP2022107173A (en) * 2021-01-08 2022-07-21 株式会社豊田中央研究所 catalyst
JP7425416B2 (en) 2021-01-08 2024-01-31 株式会社豊田中央研究所 catalyst

Also Published As

Publication number Publication date
JP5806536B2 (en) 2015-11-10

Similar Documents

Publication Publication Date Title
JP5806536B2 (en) Catalyst precursor dispersion, catalyst, and exhaust gas purification method
JP4913727B2 (en) Oxygen removal catalyst and oxygen removal method using the catalyst
JP2011230104A (en) Exhaust gas purifying catalyst and method for manufacturing the same
JP4296908B2 (en) Catalyst body and method for producing the same
JP2015077543A (en) Honeycomb structure, method of manufacturing the same, and exhaust emission control catalyst
CN101733111B (en) Perovskite/cerium dioxide composite catalyst and preparation method thereof and catalytic combustion on soot
WO2011052676A1 (en) Exhaust cleaner for internal combustion engine
JP4063807B2 (en) Exhaust gas purification catalyst
JP4714568B2 (en) Exhaust gas purification catalyst and method for producing the same
JP5515635B2 (en) Noble metal-supported silicon carbide particles, production method thereof, catalyst containing the same, and production method thereof
JP2006314894A (en) Production method of catalyst for cleaning emission gas
JP2007098197A (en) Manufacturing method of photocatalyst material
JP2006297348A (en) Catalyst for clarifying exhaust gas
JP4296430B2 (en) Catalyst for water gas shift reaction and process for producing the same
JP5503155B2 (en) Carbon monoxide removal filter
JP5216001B2 (en) Catalyst for treating exhaust gas containing organic acid and method for treating exhaust gas containing organic acid
JPH04250852A (en) Catalyst to oxidize carbon-containing compound and its production
JP2008207161A (en) Method of manufacturing air purification material, air purification material, and apparatus and method of purifying air
JP6225807B2 (en) VOC decomposition removal catalyst, method for producing the same, and VOC decomposition removal method using the same
JP4298071B2 (en) Exhaust gas purification material and method for producing the same
JP4233572B2 (en) Honeycomb catalyst for exhaust gas purification
JP2007136420A (en) Exhaust gas purification catalyst and method of fabricating the same
JP5706476B2 (en) Carbon monoxide oxidation catalyst and production method thereof
JP2009279546A (en) Method for producing core-shell structure and catalyst comprising the structure produced thereby and for cleaning exhaust gas
JP2005046669A (en) Base material for supporting catalyst and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150807

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150904

R150 Certificate of patent or registration of utility model

Ref document number: 5806536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250