JP2011230104A - Exhaust gas purifying catalyst and method for manufacturing the same - Google Patents
Exhaust gas purifying catalyst and method for manufacturing the same Download PDFInfo
- Publication number
- JP2011230104A JP2011230104A JP2010105692A JP2010105692A JP2011230104A JP 2011230104 A JP2011230104 A JP 2011230104A JP 2010105692 A JP2010105692 A JP 2010105692A JP 2010105692 A JP2010105692 A JP 2010105692A JP 2011230104 A JP2011230104 A JP 2011230104A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- catalyst
- exhaust gas
- catalytic
- supported
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 144
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 22
- 238000000034 method Methods 0.000 title claims abstract description 20
- 229910052751 metal Inorganic materials 0.000 claims abstract description 141
- 239000002184 metal Substances 0.000 claims abstract description 141
- 239000000463 material Substances 0.000 claims abstract description 58
- 238000000746 purification Methods 0.000 claims abstract description 54
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 51
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 51
- 230000003197 catalytic effect Effects 0.000 claims abstract description 50
- 239000000203 mixture Substances 0.000 claims abstract description 26
- 239000002243 precursor Substances 0.000 claims abstract description 16
- 239000012702 metal oxide precursor Substances 0.000 claims abstract description 14
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 7
- 230000008569 process Effects 0.000 claims abstract description 7
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 91
- 239000010948 rhodium Substances 0.000 claims description 54
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 52
- 229910000510 noble metal Inorganic materials 0.000 claims description 38
- 229910052697 platinum Inorganic materials 0.000 claims description 33
- 229910052763 palladium Inorganic materials 0.000 claims description 29
- 238000010304 firing Methods 0.000 claims description 27
- 150000002739 metals Chemical class 0.000 claims description 25
- 229910052703 rhodium Inorganic materials 0.000 claims description 24
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 17
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 16
- 239000002041 carbon nanotube Substances 0.000 claims description 15
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 15
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 13
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 9
- 239000004917 carbon fiber Substances 0.000 claims description 9
- 239000002134 carbon nanofiber Substances 0.000 claims description 5
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 4
- 238000011068 loading method Methods 0.000 claims description 4
- 238000003980 solgel method Methods 0.000 claims description 4
- 230000007774 longterm Effects 0.000 abstract description 8
- 239000002657 fibrous material Substances 0.000 abstract description 3
- 230000006866 deterioration Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 57
- 239000010410 layer Substances 0.000 description 29
- 229930195733 hydrocarbon Natural products 0.000 description 20
- 150000002430 hydrocarbons Chemical class 0.000 description 20
- 239000002071 nanotube Substances 0.000 description 15
- 239000000843 powder Substances 0.000 description 15
- 239000000243 solution Substances 0.000 description 15
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 239000006104 solid solution Substances 0.000 description 9
- 238000005275 alloying Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000002485 combustion reaction Methods 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 239000002356 single layer Substances 0.000 description 6
- 230000010757 Reduction Activity Effects 0.000 description 5
- 229910052783 alkali metal Inorganic materials 0.000 description 5
- 150000001340 alkali metals Chemical class 0.000 description 5
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 5
- 150000001342 alkaline earth metals Chemical class 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 239000003575 carbonaceous material Substances 0.000 description 5
- 239000008188 pellet Substances 0.000 description 5
- 230000010718 Oxidation Activity Effects 0.000 description 4
- 238000001354 calcination Methods 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 239000011232 storage material Substances 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 3
- 150000004703 alkoxides Chemical class 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- IXSUHTFXKKBBJP-UHFFFAOYSA-L azanide;platinum(2+);dinitrite Chemical compound [NH2-].[NH2-].[Pt+2].[O-]N=O.[O-]N=O IXSUHTFXKKBBJP-UHFFFAOYSA-L 0.000 description 3
- 229910052788 barium Inorganic materials 0.000 description 3
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 3
- 229910000420 cerium oxide Inorganic materials 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 3
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- VXNYVYJABGOSBX-UHFFFAOYSA-N rhodium(3+);trinitrate Chemical compound [Rh+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VXNYVYJABGOSBX-UHFFFAOYSA-N 0.000 description 3
- 239000002109 single walled nanotube Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- IVORCBKUUYGUOL-UHFFFAOYSA-N 1-ethynyl-2,4-dimethoxybenzene Chemical compound COC1=CC=C(C#C)C(OC)=C1 IVORCBKUUYGUOL-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 229910018967 Pt—Rh Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229910052792 caesium Inorganic materials 0.000 description 2
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- WYKVRFMTWIPDPJ-UHFFFAOYSA-N cerium(3+) ethanolate Chemical compound [Ce+3].CC[O-].CC[O-].CC[O-] WYKVRFMTWIPDPJ-UHFFFAOYSA-N 0.000 description 2
- UNJPQTDTZAKTFK-UHFFFAOYSA-K cerium(iii) hydroxide Chemical compound [OH-].[OH-].[OH-].[Ce+3] UNJPQTDTZAKTFK-UHFFFAOYSA-K 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- UARGAUQGVANXCB-UHFFFAOYSA-N ethanol;zirconium Chemical compound [Zr].CCO.CCO.CCO.CCO UARGAUQGVANXCB-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 239000002048 multi walled nanotube Substances 0.000 description 2
- 239000002116 nanohorn Substances 0.000 description 2
- 229910052762 osmium Inorganic materials 0.000 description 2
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052701 rubidium Inorganic materials 0.000 description 2
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- -1 and calcined Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- UYXRCZUOJAYSQR-UHFFFAOYSA-N nitric acid;platinum Chemical compound [Pt].O[N+]([O-])=O UYXRCZUOJAYSQR-UHFFFAOYSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 description 1
- CLSUSRZJUQMOHH-UHFFFAOYSA-L platinum dichloride Chemical compound Cl[Pt]Cl CLSUSRZJUQMOHH-UHFFFAOYSA-L 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- SONJTKJMTWTJCT-UHFFFAOYSA-K rhodium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Rh+3] SONJTKJMTWTJCT-UHFFFAOYSA-K 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
本発明は、内燃機関から排出される排出ガス等に含まれるNOx、HC、COの浄化に好適な排ガス浄化触媒及びその製造方法に関する。 The present invention relates to an exhaust gas purifying catalyst suitable for purifying NO x , HC, and CO contained in exhaust gas discharged from an internal combustion engine, and a method for manufacturing the same.
従来より、内燃機関を搭載する自動車には、排出される排出ガス中の有害物質を浄化する浄化触媒として三元触媒が一般に実用されている。この三元触媒には、白金(Pt)やロジウム(Rh)、パラジウム(Pd)などの金属が用いられており、これらの金属成分を単一の層中に存在させたものが広く知られている。 Conventionally, a three-way catalyst is generally put into practical use as a purification catalyst for purifying harmful substances in exhaust gas discharged in an automobile equipped with an internal combustion engine. As this three-way catalyst, metals such as platinum (Pt), rhodium (Rh), and palladium (Pd) are used, and those in which these metal components are present in a single layer are widely known. Yes.
浄化触媒の構造としては、金属成分を単一の層中に存在させた単一層構造のほか、例えば2層構造を有する浄化触媒が提案されている。単一層内にPtやRh等の2種以上の触媒金属が共存する層構成の場合、触媒金属間で相互作用して固溶体を作りやすく、固溶体化すると各々の金属が本来有している触媒活性は低下する。例えば、PtやPd、Rhは、NOxの酸化、還元性能に優れるが、固溶体化により触媒活性が低下すると、浄化触媒としての性能は著しく低下する。そのため、金属同士の固溶体化による触媒活性への影響を考慮して、例えばPtとRhを異なる層に含ませた上下2層の触媒層が設けられた触媒などが提案されている。 As a structure of the purification catalyst, a purification catalyst having, for example, a two-layer structure in addition to a single-layer structure in which a metal component is present in a single layer has been proposed. In the case of a layer structure in which two or more kinds of catalyst metals such as Pt and Rh coexist in a single layer, it is easy to form a solid solution by interacting with the catalyst metals. Will decline. For example, Pt or Pd, Rh, the oxidation of NO x, is excellent in reduction performance, the catalyst activity is lowered by the solid solution, the performance of the purification catalyst is remarkably lowered. Therefore, in consideration of the influence on the catalytic activity due to the solid solution of metals, for example, a catalyst provided with two upper and lower catalyst layers in which Pt and Rh are included in different layers has been proposed.
近年では、NOxを効率よく浄化する方法として、三元触媒を2層以上の層構造にしたり、多層構造とし、Rhをガス接触性の高い外層(基材から離れた上層)に配置することが広く検討されている。具体的には、上層にZrO2を主成分とする複合酸化物をロジウム用担体に用い、下層にセリアジルコニア系複合酸化物を担体に用いた触媒などが知られている。 In recent years, as a method for efficiently purify NO x, or a three-way catalyst 2 or more layers structure, it is a multi-layered structure, placing the Rh with high gas contacting outer layer (upper layer away from the substrate) Has been widely studied. Specifically, a catalyst using a complex oxide mainly composed of ZrO 2 in the upper layer as a carrier for rhodium and a ceria zirconia complex oxide in the lower layer as a carrier is known.
排ガス浄化用の触媒に関連する技術として、水酸化物を焼成して形成され、層間に隙間をもつ多層構造を有する酸化物からなる高耐熱性触媒担体、及びこの隙間に貴金属を担持した排ガス浄化用触媒が開示されている(例えば、特許文献1参照)。 As a technology related to a catalyst for exhaust gas purification, a highly heat-resistant catalyst carrier made of an oxide having a multilayer structure formed by firing hydroxide and having a gap between layers, and exhaust gas purification with a noble metal supported in the gap A catalyst for use is disclosed (for example, see Patent Document 1).
また、カーボンナノチューブに複合酸化物の前駆体を含有する液体を含浸し、複合酸化物を担持させ、その後カーボンナノチューブを消失させてなる触媒担体用基材が開示されており(例えば、特許文献2参照)、高い比表面積が得られるとされている。 In addition, a catalyst carrier base material is disclosed in which a carbon nanotube is impregnated with a liquid containing a precursor of a composite oxide, the composite oxide is supported, and then the carbon nanotube is eliminated (for example, Patent Document 2). It is said that a high specific surface area can be obtained.
金属酸化物の上に貴金属を担持させた触媒では、長期使用の間に貴金属が移動し、粒成長することで触媒活性が劣化する課題がある。貴金属の移動は、空間内で移動を遮蔽する物質がないために自由に起こる現象である。 In a catalyst in which a noble metal is supported on a metal oxide, there is a problem that the catalytic activity deteriorates due to the movement of the noble metal during long-term use and grain growth. The movement of noble metal is a phenomenon that occurs freely because there is no substance that blocks movement in space.
上記従来の技術のうち、層間の隙間に貴金属を担持させる排ガス浄化触媒では、多層構造がAl2O3でしかできず、CeO2、ZrO2、CZ(CeO2−ZrO2)などの担体の選択性がなく、所望とする触媒構成を採れないという課題がある。また、多層構造を有するα−Al2O3の層間にCeO2、ZrO2、CZなどの酸化物粒子を担持することが好ましいとされているものの、その担持量は貴金属の担持量に比べて多いため、層間の内壁をCeO2等で被覆することは難しい。CeO2等による被覆ができないため、貴金属は多層構造をなすAl2O3に担持される領域ができて、CeO2のO2ストレージ効果やRhを担持した際のZrO2の特性が充分に発揮されないといった課題もある。 Among the conventional techniques described above, in the exhaust gas purifying catalyst in which the noble metal is supported in the gap between the layers, the multilayer structure can only be made of Al 2 O 3 , and the carrier such as CeO 2 , ZrO 2 , CZ (CeO 2 —ZrO 2 ) There is a problem that there is no selectivity and a desired catalyst configuration cannot be taken. Although there is a it is preferable to carry an oxide particles such as CeO 2, ZrO 2, CZ between the layers of α-Al 2 O 3 having a multilayer structure, the supported amount as compared with the amount of the noble metal often makes it difficult to coat the inner wall of the interlayer in CeO 2 or the like. Since it cannot be coated with CeO 2 or the like, the noble metal has a region supported by Al 2 O 3 having a multilayer structure, and the O 2 storage effect of CeO 2 and the characteristics of ZrO 2 when Rh is supported are fully exhibited. There is also a problem that it is not done.
本発明は、上記に鑑みなされたものであり、長期使用での触媒活性の低下を防ぎ、内燃機関等から排出された排出ガス(本明細書中において単に「排ガス」ともいう)に対する高いガス浄化能(NOx、HC、及びCOの少なくとも一種を含むガスの浄化性能;以下同様とする)を、従来より長期に亘って保持することができる排ガス浄化触媒、及びガス浄化能を従来より長期に亘り保持し得る排ガス浄化触媒を簡易かつ安定的に作製することができる排ガス浄化触媒の製造方法を提供することを目的とし、該目的を達成することを課題とする。 The present invention has been made in view of the above, and prevents a decrease in catalyst activity during long-term use, and high gas purification with respect to exhaust gas discharged from an internal combustion engine or the like (also simply referred to as “exhaust gas” in this specification) Exhaust gas purification catalyst that can maintain the performance (purification performance of gas containing at least one of NO x , HC, and CO; hereinafter the same) for a long period of time and gas purification capacity for a long period of time It aims at providing the manufacturing method of the exhaust gas purification catalyst which can produce the exhaust gas purification catalyst which can be hold | maintained easily and stably, and makes it a subject to achieve this objective.
本発明は、チューブ状に成形された担体の中空内部に金属が移動してくる確率は低いと考えられ、所期の触媒活性を長期保持する点で、粒成長や合金化を起こしやすい貴金属を選択的にチューブ構造の内部に配し、それ以外の金属をその外部に配した構造は極めて高い向上効果が見込めるとの知見を得、かかる知見に基づいて達成されたものである。 In the present invention, it is considered that the probability that the metal moves into the hollow inside of the carrier formed into a tube shape is low, and a noble metal that easily causes grain growth and alloying is maintained in that the desired catalytic activity is maintained for a long time. The structure in which the tube is selectively disposed inside the tube structure and the other metal is disposed outside the tube structure has been obtained based on the knowledge that an extremely high improvement effect can be expected.
前記目的を達成するために、第1の発明に係る排ガス浄化触媒の製造方法は、
<1> 棒状又は繊維状の焼成除去可能な材料の表面に第1の触媒金属を担持する第1の金属担持工程と、前記材料の第1の触媒金属が担持された金属担持部を覆って金属酸化物前駆体含有組成物を付与し、前記材料の上に前駆体組成物層を形成する層形成工程と、前記前駆体組成物層が形成されている前記材料を焼成し、前記材料を除去することにより、内壁に前記第1の触媒金属が担持された中空構造を有する金属酸化物担体を形成する酸化物担体形成工程と、前記金属酸化物担体の外壁に、第2の触媒金属を担持する第2の金属担持工程と、を設けて構成したものである。
In order to achieve the above object, a method for producing an exhaust gas purification catalyst according to the first invention comprises:
<1> Covering a first metal supporting step of supporting the first catalytic metal on the surface of the rod-like or fibrous material that can be baked and removed, and a metal supporting portion on which the first catalytic metal of the material is supported. Applying a metal oxide precursor-containing composition and forming a precursor composition layer on the material; firing the material on which the precursor composition layer is formed; and firing the material An oxide carrier forming step of forming a metal oxide carrier having a hollow structure in which the first catalytic metal is supported on the inner wall by removing, and a second catalytic metal on the outer wall of the metal oxide carrier. And a second metal supporting step for supporting.
第1の発明に係る排ガス浄化触媒の製造方法においては、焼成除去可能な鋳型となる材料に予め所望とする触媒金属(及び必要により他の金属;好ましくは、粒成長や合金化を起こしやすい貴金属)を担持した後にその触媒金属を覆うように金属酸化物前駆体含有組成物を層状に設け、焼成し、焼成により形成された担体に前記所望の触媒金属と異なる触媒金属(及び必要により他の金属;好ましくは、粒成長や合金化を起こし難い貴金属)を担持させることで、中空構造に形成された金属酸化物の担体の内部と外部とに所望とする種類、担持量の貴金属を担持することができる。これにより、長期に亘って高温環境に曝される場合に、NOx、HC、COの浄化に寄与する例えばPtやPd等の貴金属の粒成長や合金化を回避することができる。これにより、長期使用での触媒活性の低下が防止され、NOx、HC、COに対する所期の浄化能を高く維持した状態で従来より長期に亘り使用することができる排ガス浄化触媒を提供することができる。 In the method for producing an exhaust gas purifying catalyst according to the first aspect of the present invention, a desired catalytic metal (and other metal if necessary; preferably a noble metal that easily causes grain growth and alloying) is used as a material that can be fired and removed. ) Is applied in a layer form so as to cover the catalyst metal, and calcined, and a catalyst metal different from the desired catalyst metal (and other metal if necessary) is formed on the support formed by calcination. By supporting a metal (preferably a noble metal that is unlikely to cause grain growth or alloying), a desired type and amount of noble metal is supported inside and outside the metal oxide support formed in the hollow structure. be able to. Thereby, when exposed to a high temperature environment for a long period of time, it is possible to avoid grain growth and alloying of noble metals such as Pt and Pd that contribute to the purification of NO x , HC, and CO. Accordingly, it is possible to provide an exhaust gas purifying catalyst that can be used for a longer period of time than in the past while maintaining a desired purifying ability for NO x , HC, and CO while preventing a decrease in catalytic activity during long-term use. Can do.
<2> 前記<1>に記載の排ガス浄化触媒の製造方法において、第1の触媒金属及び第2の触媒金属は、白金(Pt)、パラジウム(Pd)、及びロジウム(Rh)から選ばれるそれぞれ異なる貴金属を含むことが好ましい。 <2> In the method for producing an exhaust gas purification catalyst according to <1>, the first catalyst metal and the second catalyst metal are each selected from platinum (Pt), palladium (Pd), and rhodium (Rh). It is preferable to include different noble metals.
排ガス浄化に際し、金属酸化物担体の中空構造の内部と外部とで異なる貴金属を担持させるようにすることで、HC、CO、NOxの浄化に特に寄与する貴金属が相互に作用して合金化等することに伴なう各貴金属の触媒活性の低下を抑えることができる。 During exhaust gas purification, different noble metals are supported on the inside and outside of the hollow structure of the metal oxide support, so that noble metals that particularly contribute to the purification of HC, CO, and NO x interact with each other to form alloys. It is possible to suppress a decrease in the catalytic activity of each noble metal that accompanies this.
<3> 前記<1>又は前記<2>に記載の排ガス浄化触媒の製造方法において、第1の触媒金属の少なくとも一種がPt(白金)及びPd(パラジウム)の少なくとも一方であって、第2の触媒金属の少なくとも一種がRh(ロジウム)であるのが好ましい態様である。 <3> In the method for producing an exhaust gas purification catalyst according to <1> or <2>, at least one of the first catalytic metals is at least one of Pt (platinum) and Pd (palladium), In a preferred embodiment, at least one of the catalytic metals is Rh (rhodium).
Pt及びPdは、粒成長しやすく、また例えばロジウム(Rh)等の他の金属と合金化しやすいため、金属酸化物担体の中空構造の内部(内壁)に触媒金属としてPt、Pdを配することで、Pt、Pdが極度に粒成長したり合金化するのが抑えられる。そのため、排ガスの浄化にあたり、HC、COの酸化活性に優れるPt及びPdが安定的に保持される。
また、Rhを金属酸化物担体の外部(外壁)に担持し、PtやPdと隔離して存在させることで、RhのPtやPdの担持領域への移動の抑制が図れるので、Pt等との固溶体化が抑えられる。そのため、Rhの持つNO還元活性が保たれると共に、Pt及びPdの触媒活性を損なうことも抑えられる。
これにより、長期使用時における浄化性能の所期性能からの低下を効果的に抑えることができる。
Since Pt and Pd are easy to grow grains and alloy with other metals such as rhodium (Rh), Pt and Pd are disposed as catalyst metals in the hollow structure (inner wall) of the metal oxide support. Thus, it is possible to prevent Pt and Pd from excessively growing and alloying. Therefore, when purifying exhaust gas, Pt and Pd, which are excellent in HC and CO oxidation activity, are stably retained.
In addition, since Rh is supported on the outside (outer wall) of the metal oxide support and separated from Pt and Pd, the movement of Rh to the Pt and Pd supporting region can be suppressed. Solid solution is suppressed. Therefore, the NO reduction activity possessed by Rh is maintained, and the loss of the catalytic activity of Pt and Pd can be suppressed.
Thereby, the fall from the expected performance of the purification performance at the time of long-term use can be suppressed effectively.
<4> 前記<1>〜前記<3>のいずれか1つに記載の排ガス浄化触媒の製造方法では、焼成除去可能な材料として炭素繊維を用いた態様が好ましく、更には、カーボンナノチューブ、カーボンナノホーン、及びカーボンナノファイバーから選ばれる一種又は二種以上の中空構造を有する炭素材料が好ましい。
焼成除去可能な材料は、炭素繊維を用いると不純物が少なく安定的に焼成が行なえる。炭素繊維は中空構造を有している必要はないが、カーボンナノチューブ等の炭素繊維を用いた場合、中空構造を有しているために、熱伝達がよく、焼成段階で容易に焼失させることができ、また燃焼物が少ないために燃焼時の急激な発熱が抑制され、金属酸化物損傷の危険性が低い点で有利である。
<4> In the method for producing an exhaust gas purifying catalyst according to any one of <1> to <3>, an aspect in which carbon fiber is used as a material that can be removed by firing is preferable. A carbon material having one or more hollow structures selected from nanohorns and carbon nanofibers is preferred.
When the carbon fiber is used as the material that can be removed by firing, the material can be stably fired with less impurities. Carbon fibers do not have to have a hollow structure, but when carbon fibers such as carbon nanotubes are used, they have a hollow structure, so heat transfer is good and they can be easily burned off at the firing stage. In addition, since there are few combustion products, rapid heat generation during combustion is suppressed, which is advantageous in that the risk of metal oxide damage is low.
<5> 前記<1>〜前記<4>のいずれか1つに記載の排ガス浄化触媒の製造方法では、層形成工程での前駆体組成物層を形成は、ゾルゲル法又は水熱法により行なうことが好ましい態様である。 <5> In the method for producing an exhaust gas purifying catalyst according to any one of <1> to <4>, the formation of the precursor composition layer in the layer forming step is performed by a sol-gel method or a hydrothermal method. Is a preferred embodiment.
次に、第2の発明に係る排ガス浄化触媒は、
<6> 中空構造を有する金属酸化物担体と、前記金属酸化物担体の中空構造の内壁に配された第1の触媒金属及び外壁に配された第2の触媒金属とを設けて構成したものである。
Next, the exhaust gas purification catalyst according to the second invention is:
<6> A metal oxide support having a hollow structure, a first catalyst metal disposed on the inner wall of the hollow structure of the metal oxide support, and a second catalyst metal disposed on the outer wall. It is.
前記<6>に記載の排ガス浄化触媒は、内部中空の金属酸化物担体の内壁と外壁とで異なる触媒金属が担持されていることで、長期に亘り高温環境に曝された場合に、例えばNOx、HC、COの浄化を担う貴金属(PtやPd等)等の触媒金属の粒成長や合金化を回避することができる。これにより、長期使用での触媒活性の低下が防止され、NOx、HC、COに対する所期の浄化能を高く維持した状態で長期間使用に供することができる。 The exhaust gas purifying catalyst according to the above <6> has, for example, NO when it is exposed to a high temperature environment over a long period of time because different catalytic metals are supported on the inner wall and the outer wall of the hollow metal oxide support. It is possible to avoid grain growth and alloying of catalytic metals such as noble metals (Pt, Pd, etc.) responsible for purification of x , HC and CO. As a result, the catalyst activity is prevented from lowering over a long period of use, and can be used for a long period of time while maintaining the desired purification performance for NO x , HC, and CO.
<7> 前記<6>に記載の排ガス浄化触媒において、第1の触媒金属及び第2の触媒金属は、Pt(白金)、Pd(パラジウム)、及びRh(ロジウム)から選ばれるそれぞれ異なる貴金属を含んでいることが好ましい。その中でも、第1の触媒金属の少なくとも一種が白金及びパラジウムの少なくとも一方であり、第2の触媒金属の少なくとも一種がロジウムである場合が好ましい。 <7> In the exhaust gas purification catalyst according to <6>, the first catalyst metal and the second catalyst metal are different noble metals selected from Pt (platinum), Pd (palladium), and Rh (rhodium). It is preferable to include. Among these, it is preferable that at least one of the first catalyst metals is at least one of platinum and palladium, and at least one of the second catalyst metals is rhodium.
前記<7>に記載の排ガス浄化触媒では、上記のように、排ガス中のNOx、HC、COの浄化に特に寄与するPt、Pd、及びRhの触媒活性を、粒成長や合金化により損なわれずに保持することができる。特に、PtやPdの粒成長やPtとRhとの固溶体化が回避され、高温環境に長期に亘り曝された場合の触媒活性の低下を軽減することができる。 In the exhaust gas purification catalyst according to <7>, as described above, the catalytic activities of Pt, Pd, and Rh that particularly contribute to the purification of NO x , HC, and CO in the exhaust gas are impaired by grain growth and alloying. Can be held without being. In particular, grain growth of Pt and Pd and solid solution formation of Pt and Rh are avoided, and reduction in catalytic activity when exposed to a high temperature environment for a long period can be reduced.
本発明によれば、長期使用での触媒活性の低下を防ぎ、内燃機関等から排出された排ガスに対する高いガス浄化能(NOx、HC、及びCOの少なくとも一種を含むガスの浄化性能)を、従来より長期に亘って保持することができる排ガス浄化触媒を提供することができる。また、
本発明によれば、ガス浄化能を従来より長期に亘り保持し得る排ガス浄化触媒を簡易かつ安定的に作製することができる排ガス浄化触媒の製造方法を提供することができる。
According to the present invention, it is possible to prevent a decrease in catalyst activity in a long-term use, and to have a high gas purification ability (gas purification performance including at least one of NO x , HC, and CO) with respect to exhaust gas discharged from an internal combustion engine or the like. It is possible to provide an exhaust gas purification catalyst that can be maintained for a longer period than before. Also,
ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the exhaust gas purification catalyst which can produce the exhaust gas purification catalyst which can hold | maintain gas purification ability over a long period of time easily and stably can be provided.
以下、本発明の排ガス浄化触媒の製造方法について詳細に説明し、該説明を通じて、本発明の排ガス浄化触媒についても詳述する。 Hereinafter, the manufacturing method of the exhaust gas purification catalyst of the present invention will be described in detail, and the exhaust gas purification catalyst of the present invention will be described in detail through the description.
本発明の排ガス浄化触媒の製造方法は、棒状又は繊維状の焼成除去可能な材料の表面に第1の触媒金属を担持する第1の金属担持工程と、前記焼成除去可能な材料の第1の触媒金属が担持された金属担持部を覆って金属酸化物前駆体含有組成物を付与し、前記焼成除去可能な材料の上に前駆体組成物層を形成する層形成工程と、前記前駆体組成物層が形成されている前記焼成除去可能な材料を焼成し、前記焼成除去可能な材料を除去することにより、内壁に前記第1の触媒金属が担持された中空構造を有する金属酸化物担体を形成する酸化物担体形成工程と、前記金属酸化物担体の外壁に、第2の触媒金属を担持する第2の金属担持工程と、を設けて構成されている。本発明の排ガス浄化触媒の製造方法は、必要に応じて、更に乾燥工程などの他の工程を設けて構成されてもよい。 The method for producing an exhaust gas purifying catalyst of the present invention includes a first metal supporting step of supporting a first catalytic metal on the surface of a rod-like or fibrous sinterable material, and a first sinterable material first A layer forming step of applying a metal oxide precursor-containing composition over a metal supporting portion on which a catalytic metal is supported, and forming a precursor composition layer on the material capable of being removed by firing; and the precursor composition A metal oxide support having a hollow structure in which the first catalytic metal is supported on an inner wall by firing the fireable removable material on which a physical layer is formed and removing the fireable removable material. An oxide carrier forming step to be formed and a second metal supporting step for supporting the second catalytic metal on the outer wall of the metal oxide carrier are provided. The method for producing an exhaust gas purifying catalyst of the present invention may be configured by further providing other processes such as a drying process, if necessary.
−第1の金属担持工程−
本発明における第1の金属担持工程は、棒状又は繊維状の焼成除去可能な材料(以下、「焼成除去材」ということがある。)の表面に、第1の触媒金属を担持する。焼成除去可能な焼成除去材は、焼成時に焼失させて後述の層形成工程で担体を成形することが可能な鋳型として機能し、焼成後の担体内部に金属を担持させるのではなく、焼成前に予め第1の触媒金属を存在させておくことで、担体形成と同時に担体内部に第1の触媒金属が担持された構造を得ることができる。
-First metal loading process-
In the first metal supporting step of the present invention, the first catalytic metal is supported on the surface of a rod-like or fibrous material that can be removed by firing (hereinafter, also referred to as “fired removal material”). The calcination-removable material that can be removed by calcination functions as a mold that can be burned off during calcination and can form a carrier in the layer forming step described later, and does not carry a metal inside the baked carrier, but before firing. By making the first catalyst metal exist in advance, it is possible to obtain a structure in which the first catalyst metal is supported inside the support simultaneously with the formation of the support.
なお、本発明における「焼成除去可能な材料」は、200℃以上(好ましくは400℃以上)の温度領域での焼成により除去することができる材料をいう。 In the present invention, the “material that can be removed by firing” refers to a material that can be removed by firing in a temperature range of 200 ° C. or higher (preferably 400 ° C. or higher).
焼成除去材は、後述する焼成の過程で焼失し得る材料であって棒状又は繊維状の構造を有していれば、特に制限はなくいずれの材料を選択してもよい。焼成除去可能な材料(焼成除去材)としては、例えば、ポリエステル等の各種の樹脂材料、ゴム材料等の有機材料、及び炭素材料等の無機材料などを挙げることができる。これらのうち、無機材料、中でも炭素材料が、純度、表面積、外形サイズの点で好ましい。 The fired removal material is not particularly limited as long as it is a material that can be burned off during the firing process described later and has a rod-like or fibrous structure, and any material may be selected. Examples of the material that can be removed by firing (fired removal material) include various resin materials such as polyester, organic materials such as rubber materials, and inorganic materials such as carbon materials. Of these, inorganic materials, particularly carbon materials are preferred in terms of purity, surface area, and external size.
炭素材料の例としては、カーボン繊維(Carbon fiber)が好ましく、中でも、カーボンナノチューブ(CNT)、カーボンナノホーン、カーボンナノファイバー(CNF)、などを好適に挙げることができる。カーボンナノチューブには、単層構造のシングルウォールナノチューブ(SWNT)、二層構造や三層構造等の多層構造のマルチウォールナノチューブ(MWNT)のいずれも含まれ、直管構造又は螺旋構造のいずれでもよい。微粒化、薄層化の観点からは、単層構造のカーボンナノチューブで構成されるのが望ましい。
また、カーボンナノホーンは、単層構造のカーボンナノチューブの先端が円錐状に閉じたものの集合体である。
なお、炭素材料は、一種単独で用いるほか、二種以上を併用してもよい。
As an example of the carbon material, carbon fiber is preferable, and among them, carbon nanotube (CNT), carbon nanohorn, carbon nanofiber (CNF), and the like can be preferably exemplified. Carbon nanotubes include single-walled single-walled nanotubes (SWNT) and multi-walled multi-walled nanotubes (MWNT) such as double-walled and triple-walled structures, and may be either straight tube or helical . From the viewpoint of atomization and thinning, it is desirable that the carbon nanotubes have a single-layer structure.
The carbon nanohorn is an aggregate of carbon nanotubes having a single-layer structure whose tip is closed in a conical shape.
Carbon materials may be used alone or in combination of two or more.
カーボン繊維は、外径(平均外径)が30nm以下が好ましく、より好ましくは10nm以下である。外径が上記範囲である場合、触媒金属を担持する担体として径の細い管状体を用いることになるので、触媒金属を担持可能な表面積を広く確保することができ、触媒金属を高分散状態で担持することが可能である。 The carbon fiber preferably has an outer diameter (average outer diameter) of 30 nm or less, more preferably 10 nm or less. When the outer diameter is in the above range, a tubular body having a small diameter is used as a carrier for supporting the catalyst metal, so that a large surface area capable of supporting the catalyst metal can be secured, and the catalyst metal can be dispersed in a highly dispersed state. It is possible to carry.
カーボンナノチューブ等の合成は,アーク放電,レーザー蒸発法,CVD 法など気相を介しての合成が一般的であるが、水熱法によっても合成することができる。 Carbon nanotubes and the like are generally synthesized via a gas phase such as arc discharge, laser evaporation, and CVD, but can also be synthesized by a hydrothermal method.
焼成除去材は、棒状又は繊維状の構造とする。焼成除去材の構造を棒状又は繊維状とすることで、内燃機関から排出された排出ガス(排ガス)が通過可能な開口を有する筒形の金属酸化物担体が得られる。この金属酸化物担体の中空内部の壁面に第一の貴金属が担持され、流通する排ガス中のNOx、HC、COの浄化が行なえる。 The fire removal material has a rod-like or fibrous structure. A cylindrical metal oxide support having an opening through which exhaust gas (exhaust gas) discharged from the internal combustion engine can pass is obtained by making the structure of the fired removal material rod-shaped or fiber-shaped. The first noble metal is supported on the hollow inner wall surface of the metal oxide carrier, and NO x , HC and CO in the flowing exhaust gas can be purified.
棒状又は繊維状とは、幅長(又は太さ)より大きい長さを持つ直線状又は曲線状の形状をさし、上記のような排ガスの流通や、後工程で第2の触媒金属を担持させる際の中空内部への第2の触媒金属の侵入を防ぐ点から、長手方向との直行断面における最大長さ(r)に対する該焼成除去材の長手方向の長さ(l)が長い(好ましくは、長手方向の長さlが断面最大長さrの3倍以上、更には5倍以上の)アスペクト比を持つ形状が好ましい。 The rod-like or fiber-like shape means a linear or curved shape having a length larger than the width (or thickness), and supports the second catalytic metal in the exhaust gas flow and the post-process as described above. The length (l) in the longitudinal direction of the fired removal material with respect to the maximum length (r) in a cross section perpendicular to the longitudinal direction is long (preferably from the viewpoint of preventing the second catalytic metal from entering the hollow interior during The shape having an aspect ratio in which the length 1 in the longitudinal direction is 3 times or more of the maximum cross-sectional length r, and further 5 times or more is preferable.
焼成除去材の長手方向の長さlが長手方向との直行断面の最大長さrより長い形状、好ましくは長手方向の長さlが断面の最大長さrの3倍以上、更には5倍以上のアスペクト比を持つ形状であることにより、焼成後の金属酸化物担体の外壁に、例えば含浸法や吸着法等により第2の触媒金属を担持する場合に、金属酸化物担体の中空構造の内部へ第2の触媒金属が侵入するのを防ぐことができる。これにより、中空構造の内壁に配される金属種を、外壁に配される金属種とより確実に分け隔てた構造に構成することができる。 The length l in the longitudinal direction of the fired removal material is longer than the maximum length r of the orthogonal cross section with the longitudinal direction, preferably the length l in the longitudinal direction is at least 3 times the maximum length r of the cross section, more preferably 5 times Due to the shape having the above aspect ratio, when the second catalytic metal is supported on the outer wall of the fired metal oxide support by, for example, the impregnation method or the adsorption method, the hollow structure of the metal oxide support. It is possible to prevent the second catalytic metal from entering the inside. Thereby, the metal seed | species distribute | arranged to the inner wall of a hollow structure can be comprised in the structure separated from the metal seed | species distribute | arranged to an outer wall more reliably.
棒状又は繊維状の焼成除去材は、直線状又は曲線状の形状を有し、その外径(平均径)が30nm以下である構造が好ましく、より好ましい内径は10nm以下である。外径が上記範囲であることで、金属酸化物担体を成形した際に、触媒金属を担持可能な表面積を広く確保することができ、触媒金属を担持したときには高分散状態で担持することができる。
この場合、棒状又は繊維状の焼成除去材の長手方向の長さとしては、0.005μm以上5μm以下が好ましい。中でも、長手方向の長さが0.1μm以上3μm以下の炭素繊維(特にカーボンナノチューブ、カーボンナノホーン、カーボンナノファイバー)が好ましい。長さが前記範囲であると、金属酸化物担体の中空構造の内部へ第2の触媒金属が侵入するのを効果的に防ぐのに有効である。
The rod-like or fiber-like fired removal material has a linear or curved shape, and preferably has an outer diameter (average diameter) of 30 nm or less, and more preferably an inner diameter of 10 nm or less. When the outer diameter is in the above range, a large surface area capable of supporting the catalyst metal can be secured when the metal oxide support is molded, and when the catalyst metal is supported, it can be supported in a highly dispersed state. .
In this case, the length in the longitudinal direction of the rod-like or fibrous fired removal material is preferably 0.005 μm or more and 5 μm or less. Among these, carbon fibers (particularly carbon nanotubes, carbon nanohorns, carbon nanofibers) having a length in the longitudinal direction of 0.1 μm to 3 μm are preferable. When the length is in the above range, it is effective to effectively prevent the second catalytic metal from entering the hollow structure of the metal oxide support.
棒状又は繊維状の焼成除去材は、第1の触媒金属を担持させる前にあらかじめ、親水性を付与するための前処理を施しておくことが好ましい。前処理は、例えば、硝酸や、硫酸と硝酸の混酸等を用いて還流等することにより行なうことができる。 It is preferable that the rod-like or fibrous calcination removing material is subjected to pretreatment for imparting hydrophilicity in advance before supporting the first catalyst metal. The pretreatment can be performed, for example, by refluxing with nitric acid or a mixed acid of sulfuric acid and nitric acid.
第1の触媒金属は、HC、COの酸化活性又はNOxの還元活性を持つ貴金属として、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、オスミウム(Os)、イリジウム(Ir)、金(Au)などが挙げられ、中でも、Pt、Pd、及びRhから選ばれる貴金属が好ましい。第1の触媒金属は、後述のように金属酸化物の担体の中空構造の内壁に担持される触媒金属であるため、高温環境下で粒成長しやすくあるいは他の金属と合金化しやすい貴金属であるのがより好ましい。この観点から、第1の触媒金属としては、Pt及び/又はPdがより好ましい。Pt、PdはHC、COの酸化活性に優れており、RhはNOxの還元活性が高いため、これら触媒金属の触媒活性が高く維持されることにより、浄化触媒としての性能を長期に亘って高く保持することができる。 The first catalytic metal is platinum (Pt), palladium (Pd), rhodium (Rh), osmium (Os), iridium (Ir), gold, as a noble metal having HC, CO oxidation activity or NO x reduction activity. (Au) etc. are mentioned, Among these, the noble metal chosen from Pt, Pd, and Rh is preferable. Since the first catalyst metal is a catalyst metal supported on the inner wall of the hollow structure of the metal oxide carrier as described later, it is a noble metal that easily grows in a high temperature environment or is alloyed with other metals. Is more preferable. From this viewpoint, Pt and / or Pd are more preferable as the first catalyst metal. Pt, Pd is excellent HC, the oxidation activity of CO, Rh has high reduction activity of NO x, by the catalytic activity of these catalytic metal is maintained high, over the performance of the purification catalyst for long-term Can be held high.
また、前記焼成除去材の表面には、貴金属を担持するほか、さらに貴金属以外の金属が担持されていてもよい。貴金属以外の金属として、AlやFe等の助触媒やアルカリ金属、アルカリ土類金属などのNOx吸蔵材料を担持することができる。これら金属の詳細については、後述する金属酸化物担体の外壁に担持可能な金属の項で述べる。 In addition to supporting a noble metal, the surface of the fired removal material may further support a metal other than the noble metal. As metals other than noble metals, promoters such as Al and Fe, and NO x storage materials such as alkali metals and alkaline earth metals can be supported. Details of these metals will be described in the section of metals that can be supported on the outer wall of the metal oxide support described later.
Ptの焼成除去材への担持量(換言すれば後述の金属酸化物担体への担持量)は、HC、COの酸化効率の観点から、0.05〜10g/Lの範囲が好ましく、0.1〜5g/Lの範囲であるのが好ましい。 The amount of Pt supported on the fired removal material (in other words, the amount supported on the metal oxide support described later) is preferably in the range of 0.05 to 10 g / L from the viewpoint of the oxidation efficiency of HC and CO. A range of 1 to 5 g / L is preferred.
Pt、Pdの粒子径としては、1〜20nmの範囲が好ましく、1〜10nmの範囲がより好ましい。 As a particle diameter of Pt and Pd, the range of 1-20 nm is preferable, and the range of 1-10 nm is more preferable.
Pt及び/又はPdを担持する場合、被担持材である焼成除去材と、ジニトロジアンミン白金溶液、塩化白金溶液、アンミン白金溶液等、及び/又は、硝酸パラジウム溶液、塩化パラジウム溶液等とを混合し、エタノール等で還元し、必要により焼成することにより、焼成除去材の表面にPt等を担持することができる。 When supporting Pt and / or Pd, mix the fired removal material, which is the supported material, with dinitrodiammine platinum solution, platinum chloride solution, ammine platinum solution, etc. and / or palladium nitrate solution, palladium chloride solution, etc. Pt or the like can be supported on the surface of the fired removal material by reduction with ethanol or the like, and firing as necessary.
−層形成工程−
本発明における層形成工程は、焼成除去可能な材料(焼成除去材)の第1の触媒金属が担持された金属担持部を覆って金属酸化物前駆体含有組成物を付与し、前記焼成除去材の上に前駆体組成物層を形成する。この前駆体組成物層は、後述の酸化物担体形成工程での焼成により金属酸化物担体をなすものである。
-Layer formation process-
The layer forming step in the present invention includes applying a metal oxide precursor-containing composition so as to cover the metal supporting part on which the first catalytic metal of the material that can be fired and removed (fired removing material) is supported. A precursor composition layer is formed thereon. This precursor composition layer forms a metal oxide carrier by firing in the oxide carrier forming step described later.
本発明における金属酸化物前駆体含有組成物は、焼成時に酸化分解することにより金属酸化物を生成可能な金属酸化物前駆体を少なくとも含有する。金属酸化物前駆体としては、金属酸化物を形成する、金属アルコキシド、硝酸塩、酢酸塩等から作られる金属の水酸化物などが好適である。
ここでの金属は、Pt等の第1の触媒金属を担持するための担体を形成する金属であり、担持される貴金属に適する金属が好適に用いられる。具体的には、セリウム、ジルコニウム、ケイ素、アルミニウム、チタンなどである。金属酸化物前駆体の例としては、水酸化セリウム、水酸化ジルコニウム等の、金属アルコキシド、硝酸塩、酢酸塩などから作られる水酸化物が好ましい。
The metal oxide precursor-containing composition in the present invention contains at least a metal oxide precursor capable of generating a metal oxide by oxidative decomposition during firing. As the metal oxide precursor, a metal hydroxide formed from a metal alkoxide, nitrate, acetate or the like which forms a metal oxide is suitable.
The metal here is a metal that forms a carrier for supporting the first catalyst metal such as Pt, and a metal suitable for the noble metal to be supported is preferably used. Specifically, cerium, zirconium, silicon, aluminum, titanium and the like. As an example of the metal oxide precursor, a hydroxide made from a metal alkoxide, nitrate, acetate or the like, such as cerium hydroxide or zirconium hydroxide, is preferable.
前駆体組成物層の形成は、金属酸化物前駆体含有組成物を用いて、ゾルゲル法、含浸法、水熱法などを利用して行なうことができる。なお、ゾルゲル法は、一般に、金属アルコキシドのゾルを加水分解・重縮合反応により流動性を失ったゲルとし、このゲルを加熱して酸化物を得る方法である。 The precursor composition layer can be formed using a metal oxide precursor-containing composition using a sol-gel method, an impregnation method, a hydrothermal method, or the like. The sol-gel method is generally a method in which a metal alkoxide sol is made into a gel that loses fluidity by hydrolysis and polycondensation reaction, and the gel is heated to obtain an oxide.
−酸化物担体形成工程−
本発明における酸化物担体形成工程は、前駆体組成物層が形成されている焼成除去可能な材料(焼成除去材)を焼成し、焼成除去材を除去することにより、内壁に前記第1の触媒金属が担持された中空構造を有する金属酸化物担体を形成する。本工程で焼成除去材が焼失すると、焼成除去材の形状に準じた中空構造に成形された金属酸化物担体が得られる。
-Oxide support forming step-
In the oxide carrier forming step in the present invention, the first catalyst is formed on the inner wall by firing the fireable and removable material (fired removal material) on which the precursor composition layer is formed, and removing the fired removal material. A metal oxide support having a hollow structure on which a metal is supported is formed. When the fired removal material is burned out in this step, a metal oxide support formed into a hollow structure according to the shape of the fired removal material is obtained.
焼成は、鋳型として用いる焼成除去材(焼成除去可能な材料)を除去できる条件であれば、制限なく任意に選択することができる。焼成は、例えば、200〜400℃、あるいは200〜300℃で0.5〜10時間の範囲で好適に行なえる。 The firing can be arbitrarily selected without limitation as long as it can remove the firing removal material (material that can be removed by firing) used as a mold. Firing can be suitably performed, for example, at 200 to 400 ° C. or 200 to 300 ° C. for 0.5 to 10 hours.
触媒金属を担持する金属酸化物担体は、前記金属酸化物前駆体含有組成物中に含まれている金属酸化物前駆体が酸化されて形成された触媒担持用担体であり、例えば、酸化セリウム(CeO2)、二酸化ジルコニウム(ZrO2)、酸化アルミニウム(Al2O3)、二酸化チタン(TiO2)、シリカ、シリカ−アルミナ、アルミナ−チタニア(Al2O3−TiO2)、ゼオライトなどの酸化物の粒子、並びにこれらの混合粒子が挙げられる。中でも、Ptの担持に特に適している点から、酸化セリウムと酸化ジルコニウムとの固溶体が好ましい。この固溶体は、流通する排ガスの酸素濃度を調整して触媒活性を促進すると共に、Ptとの間で相互作用してPtの粒成長が抑制される。 The metal oxide support for supporting the catalyst metal is a support for catalyst support formed by oxidizing the metal oxide precursor contained in the metal oxide precursor-containing composition. For example, cerium oxide ( Oxidation of CeO 2 ), zirconium dioxide (ZrO 2 ), aluminum oxide (Al 2 O 3 ), titanium dioxide (TiO 2 ), silica, silica-alumina, alumina-titania (Al 2 O 3 —TiO 2 ), zeolite, etc. Product particles, and mixed particles thereof. Among these, a solid solution of cerium oxide and zirconium oxide is preferable because it is particularly suitable for supporting Pt. This solid solution adjusts the oxygen concentration of the flowing exhaust gas to promote catalytic activity, and interacts with Pt to suppress Pt grain growth.
酸化物担体形成工程で形成される金属酸化物担体は、水酸化セリウム及び水酸化ジルコニウムを含む金属酸化物前駆体を含む金属酸化物前駆体含有組成物を用い、焼成除去材の上に前駆体組成物層を形成、焼成することにより、酸化セリウムと酸化ジルコニウムとの固溶体であるCZ担体として形成されてもよい。 The metal oxide support formed in the oxide support forming step uses a metal oxide precursor-containing composition containing a metal oxide precursor containing cerium hydroxide and zirconium hydroxide, and a precursor on the fired removal material. It may be formed as a CZ carrier which is a solid solution of cerium oxide and zirconium oxide by forming and firing a composition layer.
形成される金属酸化物担体の中空構造を形成する壁厚は、1〜100nmが好ましく、より好ましくは3〜30nmである。 The wall thickness forming the hollow structure of the formed metal oxide support is preferably 1 to 100 nm, more preferably 3 to 30 nm.
形成された金属酸化物担体の中空構造は、その長手方向と直行する中空構造断面の最大長さが0.005〜3μmであることが好ましく、より好ましい最大長さは0.15〜2.0μmである。断面の最大長さは、0.005μm以上であると、浄化触媒として使用した際のガスの流通性が良好であり、3μm以下であると、ウォッシュコート用スラリーの調製時の撹拌により、粉砕が免れやすく細断されることが少ない。 In the formed hollow structure of the metal oxide support, the maximum length of the cross section of the hollow structure perpendicular to the longitudinal direction is preferably 0.005 to 3 μm, and the more preferable maximum length is 0.15 to 2.0 μm. It is. When the maximum length of the cross section is 0.005 μm or more, gas flowability when used as a purification catalyst is good, and when it is 3 μm or less, pulverization is caused by stirring during the preparation of the washcoat slurry. It is easy to escape and is not shredded.
−第2の金属担持工程−
本発明における第2の金属担持工程は、前記酸化物担体形成工程で形成された金属酸化物担体の外壁に、第2の触媒金属を担持する。本工程では、金属酸化物担体の外壁に、内壁に担持されている第1の触媒金属と異なる貴金属を担持する。
-Second metal loading process-
In the second metal supporting step in the present invention, the second catalytic metal is supported on the outer wall of the metal oxide support formed in the oxide support forming step. In this step, a noble metal different from the first catalyst metal supported on the inner wall is supported on the outer wall of the metal oxide support.
第2の触媒金属は、HC、COの酸化活性又はNOxの還元活性を持つ貴金属として、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)などが挙げられ、中でも、Pt、Pd、及びRhから選ばれる貴金属が好ましい。第2の触媒金属は、金属酸化物担体の中空構造の外壁に担持される金属であるため、高温環境下で粒成長しにくくあるいは他の金属と合金化しにくい貴金属であるのがより好ましい。この点から、第2の触媒金属としては、Rhがより好ましい。Rhは、粒成長しにくくNOxの還元活性に優れるため、Rhが本来有する性質を生かして構成することができる。 Examples of the second catalytic metal include platinum (Pt), palladium (Pd), rhodium (Rh), etc., as noble metals having HC, CO oxidation activity or NO x reduction activity, among which Pt, Pd, and A noble metal selected from Rh is preferred. Since the second catalyst metal is a metal supported on the outer wall of the hollow structure of the metal oxide support, it is more preferable that the second catalyst metal is a noble metal that is difficult to grow grains or alloy with other metals in a high temperature environment. In this respect, Rh is more preferable as the second catalyst metal. Rh is excellent in reduction activity of grain growth was hardly NO x, can be constituted by utilizing the properties possessed Rh originally.
Rhの粒子径としては、1〜20nmの範囲が好ましく、1〜10nmの範囲がより好ましい。該粒子径は、1nm以上であると、酸化物化により失活しにくく、20nm以下であると、担持されたRhの多くが反応を促進でき、触媒活性が良好になる。 As a particle diameter of Rh, the range of 1-20 nm is preferable, and the range of 1-10 nm is more preferable. When the particle size is 1 nm or more, it is difficult to deactivate due to oxidation, and when it is 20 nm or less, most of the supported Rh can promote the reaction and the catalytic activity is improved.
また、前記金属酸化物担体の外壁には、貴金属を担持するほか、さらに貴金属以外の金属が担持されていてもよい。貴金属以外の金属として、Al、Fe等やアルカリ金属、アルカリ土類金属などのNOx吸蔵材料を担持することができる。アルカリ金属としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム等が挙げられる。アルカリ土類金属としては、例えば、バリウム、マグネシウム、カルシウム、ストロンチウム等が挙げられる。中でも、高い塩基性を有し、酸化物を形成した際に高いNOx吸蔵性能を発揮できる観点から、カリウム、ルビジウム、セシウム、バリウムが好ましく、バリウムがより好ましい。 In addition to supporting a noble metal, the outer wall of the metal oxide support may further support a metal other than the noble metal. As a metal other than the noble metal, an NO x storage material such as Al, Fe or the like, an alkali metal, or an alkaline earth metal can be supported. Examples of the alkali metal include lithium, sodium, potassium, rubidium, cesium and the like. Examples of the alkaline earth metal include barium, magnesium, calcium, strontium and the like. Among these, potassium, rubidium, cesium, and barium are preferable, and barium is more preferable from the viewpoint of having high basicity and exhibiting high NO x storage performance when an oxide is formed.
また、例えばAlの酸化物であるAl2O3は、比表面積が大きくHCの吸着性を高め得ると共に、共存するRhのHC吸着被毒を抑制するため、Rhのメタル化を促してRhの持つNOx浄化能を効果的に発揮させることができる。したがって、リッチ定常雰囲気下でのNOx浄化能を高めることができる。 For example, Al 2 O 3, which is an oxide of Al, has a large specific surface area and can enhance HC adsorption, and also suppresses HC adsorption poisoning of coexisting Rh. the NO x purification capability with can be effectively exhibited. Therefore, it is possible to enhance the NO x purification ability under a rich steady atmosphere.
Rhの金属酸化物担体への担持量は、NOxの還元効率の観点から、0.01〜10g/Lの範囲が好ましく、0.03〜5g/Lの範囲がより好ましい。 The amount of Rh supported on the metal oxide carrier is preferably in the range of 0.01 to 10 g / L, more preferably in the range of 0.03 to 5 g / L, from the viewpoint of NO x reduction efficiency.
第2の触媒金属を担持は、焼成後の金属酸化物担体に対し、硝酸ロジウム溶液、塩化ロジウム溶液、アンミンロジウム溶液等を用いて含浸法、吸着法等を利用することにより行なうことができる。 The second catalyst metal can be supported by using an impregnation method, an adsorption method, or the like using a rhodium nitrate solution, a rhodium chloride solution, an ammine rhodium solution, or the like on the metal oxide support after firing.
また、前記焼成除去材の表面には、第2の触媒金属を担持するほか、さらに貴金属以外の金属として、Fe等の助触媒や、Li、K、Na、Mg、Ca、St、Ba等のアルカリ金属、アルカリ土類金属などのNOx吸蔵材料を担持されていてもよい。 In addition to supporting the second catalytic metal on the surface of the fired removal material, as a metal other than the noble metal, a promoter such as Fe, Li, K, Na, Mg, Ca, St, Ba, etc. An NO x storage material such as an alkali metal or an alkaline earth metal may be supported.
本発明の排ガス浄化触媒は、中空構造を有する金属酸化物担体と、金属酸化物担体の中空構造の内壁に配された第1の触媒金属と、該中空構造の外壁に配された第2の触媒金属とを設けて構成されている。本発明の排ガス浄化触媒は、内部中空の金属酸化物担体の内壁と外壁とで異なる触媒金属が担持されていることで、長期に亘り高温環境に曝されて使用された場合にも触媒金属の粒成長や合金化を回避して、長期使用での触媒活性の低下を抑制することができる。 The exhaust gas purification catalyst of the present invention includes a metal oxide support having a hollow structure, a first catalyst metal disposed on the inner wall of the hollow structure of the metal oxide support, and a second catalyst disposed on the outer wall of the hollow structure. A catalyst metal is provided. The exhaust gas purifying catalyst of the present invention supports different catalytic metals on the inner wall and outer wall of the hollow metal oxide carrier, so that the catalyst metal can be used even when used in a high temperature environment for a long time. By avoiding grain growth and alloying, it is possible to suppress a decrease in catalyst activity after long-term use.
本発明の排ガス浄化触媒は、金属酸化物担体の内壁と外壁とで異なる触媒金属を担持できる方法であれば、いずれの方法で形成されたものでもよいが、好ましくは、上記の第1の金属担持工程、層形成工程、酸化物担体形成工程、及び第2の金属担持工程を有する製造方法(本発明の排ガス浄化触媒の製造方法)により作製される。 The exhaust gas purifying catalyst of the present invention may be formed by any method as long as it is a method capable of supporting different catalytic metals on the inner wall and the outer wall of the metal oxide carrier, but preferably the first metal described above It is produced by a production method (a method for producing an exhaust gas purification catalyst of the present invention) having a supporting step, a layer forming step, an oxide carrier forming step, and a second metal supporting step.
金属酸化物担体の詳細については既述した通りである。金属酸化物担体の中空構造は、直線状又は曲線状の形状を有し、その内径(平均内径)が30nm以下である構造が好ましく、より好ましい内径は10nm以下である。内径が上記範囲であることで、触媒金属を担持可能な表面積を広く確保することができ、触媒金属を高密度に担持できる。 Details of the metal oxide support are as described above. The hollow structure of the metal oxide support has a linear or curved shape, and an inner diameter (average inner diameter) of 30 nm or less is preferable, and a more preferable inner diameter is 10 nm or less. When the inner diameter is in the above range, a wide surface area capable of supporting the catalyst metal can be secured, and the catalyst metal can be supported at a high density.
金属酸化物担体に担持される第1及び第2の触媒金属としては、貴金属として、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、オスミウム(Os)、イリジウム(Ir)、金(Au)などが挙げられる。また、貴金属以外の金属として、AlやFe等の助触媒やアルカリ金属、アルカリ土類金属などのNOx吸蔵材料を担持することができる。中でも、第1の触媒金属と第2の触媒金属とがそれぞれ、白金、パラジウム、及びロジウムから選ばれる異なる触媒金属を含む形態に構成されていることが好ましく、特には、内壁の第1の触媒金属としてPt及び/又はPdを含み、外壁の第2の触媒金属としてRhを含む形態が好ましい。 As the first and second catalyst metals supported on the metal oxide support, platinum (Pt), palladium (Pd), rhodium (Rh), osmium (Os), iridium (Ir), gold (Au) are used as noble metals. ) And the like. In addition, as a metal other than the noble metal, a promoter such as Al or Fe, or an NO x storage material such as an alkali metal or alkaline earth metal can be supported. Especially, it is preferable that the first catalyst metal and the second catalyst metal are each configured to include different catalyst metals selected from platinum, palladium, and rhodium, and in particular, the first catalyst on the inner wall. A form containing Pt and / or Pd as the metal and Rh as the second catalytic metal of the outer wall is preferable.
触媒性能と省資源(コスト)の観点から、金属酸化物担体の内壁に担持された第1の触媒金属の担持量としては、0.05〜10g/Lの範囲が好ましく、金属酸化物担体の外壁に担持された第2の触媒金属の担持量としては、0.01〜10g/Lの範囲が好ましい。更には、内壁への第1の触媒金属の担持量が0.1〜3g/Lであり、外壁への第2の触媒金属の担持量が0.03〜0.5g/Lである場合がより好ましい。 From the viewpoint of catalyst performance and resource saving (cost), the amount of the first catalyst metal supported on the inner wall of the metal oxide support is preferably in the range of 0.05 to 10 g / L. The amount of the second catalytic metal supported on the outer wall is preferably in the range of 0.01 to 10 g / L. Furthermore, the amount of the first catalyst metal supported on the inner wall is 0.1 to 3 g / L, and the amount of the second catalyst metal supported on the outer wall is 0.03 to 0.5 g / L. More preferred.
以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を越えない限り、以下の実施例に限定されるものではない。なお、特に断りのない限り、「部」は質量基準である。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist thereof. Unless otherwise specified, “part” is based on mass.
(実施例1)
直線状の単層カーボンナノチューブ(主として長さ1μm、外径φ1.5nm;以下、「単層CNT」という。)を用意し、これを硝酸により140℃で1日間還流することで、親水性を付与するための前処理を行なった。
Example 1
Linear single-walled carbon nanotubes (mainly 1 μm in length, outer diameter φ1.5 nm; hereinafter referred to as “single-walled CNT”) are prepared, and this is refluxed with nitric acid at 140 ° C. for one day, thereby improving hydrophilicity. A pretreatment for giving was performed.
前処理を終了した単層CNT50mgをジニトロジアミン白金硝酸溶液(Pt=0.33g相当)に含浸させ、エタノールで還元処理し、乾燥させて、Pt/単層CNT触媒粉末を得た。 50 mg of single-walled CNT that had been pretreated was impregnated in a dinitrodiamine platinum nitric acid solution (corresponding to Pt = 0.33 g), reduced with ethanol, and dried to obtain a Pt / single-walled CNT catalyst powder.
次いで、得られたPt/単層CNT触媒粉末を、セリウムエトキシド4.4gとジルコニウムエトキシド3.7gのエタノ−ル溶液とを混合した溶液に分散させて、約20分間撹拌した後、試料を吸引ろ過した。この試料を、約60℃に加温した水槽中に窒素ガスを供給してバブリングし、窒素ガス流通下で約70℃にて約30分間加熱し、その後、乾燥機で100℃にて1時間乾燥させた。この試料を再び、セリウムエトキシド4.4gとジルコニウムエトキシド3.7gのエタノール溶液とを混合した溶液に分散し、さらに撹拌、濾過、乾燥を行ない、この繰り返し作業を計4回行なった。 Next, the obtained Pt / single-walled CNT catalyst powder was dispersed in a mixed solution of 4.4 g of cerium ethoxide and 3.7 g of zirconium ethoxide and stirred for about 20 minutes. Was filtered with suction. This sample was bubbled by supplying nitrogen gas into a water bath heated to about 60 ° C., heated at about 70 ° C. for about 30 minutes under a nitrogen gas flow, and then dried at 100 ° C. for 1 hour. Dried. This sample was again dispersed in a solution obtained by mixing 4.4 g of cerium ethoxide and 3.7 g of an ethanol solution of zirconium ethoxide, and further stirred, filtered and dried, and this repeated operation was performed four times.
このようにして得られた試料を350℃で1時間、その後500℃で2時間かけて焼成し、内壁にPtが担持されたPt/CeO2−ZrO2(=1:1)ナノチューブ(以下、Pt/CZナノチューブと称する。)を得た。なお、以下においてCeO2−ZrO2のナノチューブを「CZナノチューブ」と称する。得られたPt/CZナノチューブを化学分析した結果、このPt/CZナノチューブには、2質量%のPtが担持されていることを確認した。
また、Pt/CZナノチューブは、主として内径が約2nm、長さが500nmの形状を有していた。
このPt/CZナノチューブの触媒粉末5gと、市販のAl2O3担体5gと、をミキサーでよく混合した後、プレス加工し、数mm程度のペレット触媒とした。
The sample thus obtained was fired at 350 ° C. for 1 hour and then at 500 ° C. for 2 hours, and Pt / CeO 2 —ZrO 2 (= 1: 1) nanotubes (hereinafter referred to as “Pt / CeO 2 —ZrO 2” ) supported on the inner wall. (Referred to as Pt / CZ nanotubes). Hereinafter, the CeO 2 —ZrO 2 nanotube is referred to as “CZ nanotube”. As a result of chemical analysis of the obtained Pt / CZ nanotube, it was confirmed that 2% by mass of Pt was supported on the Pt / CZ nanotube.
The Pt / CZ nanotube mainly had a shape with an inner diameter of about 2 nm and a length of 500 nm.
The Pt / CZ nanotube catalyst powder 5 g and a commercially available Al 2 O 3 carrier 5 g were mixed well with a mixer and then pressed to obtain a pellet catalyst of about several mm.
(実施例2)
実施例1と同様の方法により、2質量%のPtが担持されたPt/CZナノチューブの触媒粉末を作製し、このPt/CZナノチューブの触媒粉末5gを、硝酸ロジウム溶液(Rh=0.015g相当)と混合し、乾燥させた後、さらに500℃で2時間焼成し、Pt/CZナノチューブの外壁に、CZナノチューブ当たり0.3gのRhを担持した。
このようにして、該壁にRhが担持されたPt/CeO2−ZrO2/Rhナノチューブ(以下、Pt/CZ/Rhナノチューブと称する。)を得た。
得られたPt/CZ/Rhナノチューブの触媒粉末5gと、市販のAl2O3担体5gと、をミキサーでよく混合した後、プレス加工し、数mm程度のペレット触媒とした。
(Example 2)
A catalyst powder of Pt / CZ nanotubes carrying 2% by mass of Pt was prepared in the same manner as in Example 1, and 5 g of this Pt / CZ nanotube catalyst powder was added to a rhodium nitrate solution (corresponding to Rh = 0.015 g). And dried at 500 ° C. for 2 hours, and 0.3 g of Rh per CZ nanotube was supported on the outer wall of the Pt / CZ nanotube.
Thus, a Pt / CeO 2 —ZrO 2 / Rh nanotube (hereinafter referred to as a Pt / CZ / Rh nanotube) having Rh supported on the wall was obtained.
5 g of the obtained Pt / CZ / Rh nanotube catalyst powder and 5 g of a commercially available Al 2 O 3 carrier were mixed well with a mixer and then pressed to obtain a pellet catalyst of about several mm.
(比較例1)
市販のCZ粉末(CeO2−ZrO2粉末)5gを、ジニトロジアンミン白金溶液(Pt=0.1g相当)と混合し、乾燥させた後、500℃で2時間焼成を行なうことにより、2質量%のPtが担持されたPt/CZ触媒粉末を作製した。このPt/CZ触媒粉末5gと、市販のAl2O3担体5gとをミキサーでよく混合した後、実施例1と同様にしてプレス加工し、ペレット触媒を得た。
(Comparative Example 1)
5 g of commercially available CZ powder (CeO 2 —ZrO 2 powder) was mixed with a dinitrodiammine platinum solution (corresponding to Pt = 0.1 g), dried, and then calcined at 500 ° C. for 2 hours to obtain 2% by mass. A Pt / CZ catalyst powder carrying Pt was prepared. 5 g of this Pt / CZ catalyst powder and 5 g of a commercially available Al 2 O 3 carrier were mixed well with a mixer, and then pressed in the same manner as in Example 1 to obtain a pellet catalyst.
(比較例2)
市販のCZ粉末(CeO2−ZrO2粉末)5gを、ジニトロジアンミン白金溶液(Pt=0.1g相当)及び硝酸ロジウム溶液(Rh=0.015g相当)の混合溶液と混合し、乾燥させた後、500℃で2時間焼成を行なうことにより、Pt−Rh/CZ触媒粉末を作製した。Pt/CZ触媒粉末には、2質量%のPtと0.3%のRhとが担持されていた。
得られたPt/CZ触媒粉末5gと、市販のAl2O3担体5gとをミキサーでよく混合した後、実施例1と同様にしてプレス加工し、ペレット触媒を得た。
(Comparative Example 2)
After 5 g of commercially available CZ powder (CeO 2 —ZrO 2 powder) is mixed with a mixed solution of dinitrodiammine platinum solution (corresponding to Pt = 0.1 g) and rhodium nitrate solution (corresponding to Rh = 0.015 g) and dried. The Pt—Rh / CZ catalyst powder was produced by firing at 500 ° C. for 2 hours. The Pt / CZ catalyst powder supported 2% by mass of Pt and 0.3% of Rh.
5 g of the obtained Pt / CZ catalyst powder and 5 g of a commercially available Al 2 O 3 carrier were mixed well with a mixer and then pressed in the same manner as in Example 1 to obtain a pellet catalyst.
(評価)
上記の実施例及び比較例で作製したペレット触媒を密閉し、触媒床温1000℃で5時間、下記表1に示すように排ガスを模擬したリーン雰囲気ガス及びリッチ雰囲気ガスを流す耐久試験を実施した。この耐久試験品について、下記表2に示す組成のモデルガスにて、触媒性能を評価した。評価結果は、実施例1及び比較例1のHC−50%浄化温度を図1に、実施例2及び比較例2のNOx−50%浄化温度を図2に示す。
(Evaluation)
The pellet catalysts prepared in the above examples and comparative examples were sealed, and an endurance test was conducted in which a lean atmosphere gas and a rich atmosphere gas simulating exhaust gas were flown at a catalyst bed temperature of 1000 ° C. for 5 hours as shown in Table 1 below. . With respect to this durability test product, the catalyst performance was evaluated using a model gas having the composition shown in Table 2 below. The evaluation results show the HC-50% purification temperature of Example 1 and Comparative Example 1 in FIG. 1, and the NO x -50% purification temperature of Example 2 and Comparative Example 2 in FIG.
図1に示すように、実施例1では、比較例1に比べて優れたHC浄化性能を示した。これは、主にPtの粒成長が抑制されたためと推定される。また、図2に示すように、実施例2では、比較例2に比べて優れたNOx浄化性能を示した。これは、主にPt−Rhの固溶が抑制されたためと推定される。 As shown in FIG. 1, Example 1 showed superior HC purification performance compared to Comparative Example 1. This is presumably because the Pt grain growth was suppressed. In addition, as shown in FIG. 2, Example 2 showed superior NO x purification performance compared to Comparative Example 2. This is presumably because the solid solution of Pt—Rh was suppressed.
上記の実施例では、本発明における第1の触媒金属としてPtを、第2の触媒金属としてAl、Rhを用いた場合を例に説明したが、これら触媒金属以外の上記した他の金属触媒を用いた場合にも、上記実施例と同様の効果を奏することができる。 In the above embodiment, the case where Pt is used as the first catalyst metal in the present invention and Al and Rh are used as the second catalyst metal has been described as an example. Even when used, the same effects as in the above embodiment can be obtained.
Claims (9)
前記材料の第1の触媒金属が担持された金属担持部を覆って金属酸化物前駆体含有組成物を付与し、前記材料の上に前駆体組成物層を形成する層形成工程と、
前記前駆体組成物層が形成されている前記材料を焼成し、前記材料を除去することにより、内壁に前記第1の触媒金属が担持された中空構造を有する金属酸化物担体を形成する酸化物担体形成工程と、
前記金属酸化物担体の外壁に、第2の触媒金属を担持する第2の金属担持工程と、
を有する排ガス浄化触媒の製造方法。 A first metal loading step of loading a first catalytic metal on the surface of a rod-like or fibrous fire-removable material;
A layer forming step of applying a metal oxide precursor-containing composition over the metal supporting portion on which the first catalyst metal of the material is supported, and forming a precursor composition layer on the material;
An oxide that forms a metal oxide support having a hollow structure in which the first catalytic metal is supported on an inner wall by firing the material on which the precursor composition layer is formed and removing the material A carrier forming step;
A second metal supporting step of supporting a second catalytic metal on the outer wall of the metal oxide support;
A method for producing an exhaust gas purifying catalyst.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010105692A JP2011230104A (en) | 2010-04-30 | 2010-04-30 | Exhaust gas purifying catalyst and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010105692A JP2011230104A (en) | 2010-04-30 | 2010-04-30 | Exhaust gas purifying catalyst and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011230104A true JP2011230104A (en) | 2011-11-17 |
Family
ID=45320000
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010105692A Pending JP2011230104A (en) | 2010-04-30 | 2010-04-30 | Exhaust gas purifying catalyst and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011230104A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012040550A (en) * | 2010-07-23 | 2012-03-01 | Kawaken Fine Chem Co Ltd | Catalyst precursor dispersion, catalyst, and cleaning method of exhaust gas |
JP2013180235A (en) * | 2012-03-01 | 2013-09-12 | Nissan Motor Co Ltd | Catalyst for cleaning exhaust gas and method for producing the catalyst |
JP2014039910A (en) * | 2012-08-22 | 2014-03-06 | Noritake Co Ltd | Pt-SUPPORTED MICROTUBE AND METHOD FOR PRODUCING THE SAME |
US9827562B2 (en) | 2015-10-05 | 2017-11-28 | GM Global Technology Operations LLC | Catalytic converters with age-suppressing catalysts |
US9855547B2 (en) | 2015-10-05 | 2018-01-02 | GM Global Technology Operations LLC | Low-temperature oxidation catalysts |
US9901907B1 (en) | 2016-08-31 | 2018-02-27 | GM Global Technology Operations LLC | Catalytic converters with age-suppressing catalysts |
US10035133B2 (en) | 2016-10-25 | 2018-07-31 | GM Global Technology Operations LLC | Catalysts with atomically dispersed platinum group metal complexes and a barrier disposed between the complexes |
US10046310B2 (en) | 2015-10-05 | 2018-08-14 | GM Global Technology Operations LLC | Catalytic converters with age-suppressing catalysts |
US10159960B2 (en) | 2016-10-25 | 2018-12-25 | GM Global Technology Operations LLC | Catalysts with atomically dispersed platinum group metal complexes |
JP2019063784A (en) * | 2017-09-28 | 2019-04-25 | 太平洋セメント株式会社 | Catalyst for exhaust purification and method for producing the same |
JP2019063702A (en) * | 2017-09-28 | 2019-04-25 | 太平洋セメント株式会社 | Catalyst for exhaust purification and method for producing the same |
JP2019112263A (en) * | 2017-12-23 | 2019-07-11 | バイオエポック株式会社 | Platinum nanoparticle-mixed powder and method for producing the powder, and platinum nanoparticle-containing ceramic-molded article and method for producing the article |
US10422036B2 (en) | 2015-10-23 | 2019-09-24 | GM Global Technology Operations LLC | Suppressing aging of platinum group metal particles in a catalytic converter |
-
2010
- 2010-04-30 JP JP2010105692A patent/JP2011230104A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012040550A (en) * | 2010-07-23 | 2012-03-01 | Kawaken Fine Chem Co Ltd | Catalyst precursor dispersion, catalyst, and cleaning method of exhaust gas |
JP2013180235A (en) * | 2012-03-01 | 2013-09-12 | Nissan Motor Co Ltd | Catalyst for cleaning exhaust gas and method for producing the catalyst |
JP2014039910A (en) * | 2012-08-22 | 2014-03-06 | Noritake Co Ltd | Pt-SUPPORTED MICROTUBE AND METHOD FOR PRODUCING THE SAME |
US9827562B2 (en) | 2015-10-05 | 2017-11-28 | GM Global Technology Operations LLC | Catalytic converters with age-suppressing catalysts |
US9855547B2 (en) | 2015-10-05 | 2018-01-02 | GM Global Technology Operations LLC | Low-temperature oxidation catalysts |
US10046310B2 (en) | 2015-10-05 | 2018-08-14 | GM Global Technology Operations LLC | Catalytic converters with age-suppressing catalysts |
US10422036B2 (en) | 2015-10-23 | 2019-09-24 | GM Global Technology Operations LLC | Suppressing aging of platinum group metal particles in a catalytic converter |
US9901907B1 (en) | 2016-08-31 | 2018-02-27 | GM Global Technology Operations LLC | Catalytic converters with age-suppressing catalysts |
US10035133B2 (en) | 2016-10-25 | 2018-07-31 | GM Global Technology Operations LLC | Catalysts with atomically dispersed platinum group metal complexes and a barrier disposed between the complexes |
US10159960B2 (en) | 2016-10-25 | 2018-12-25 | GM Global Technology Operations LLC | Catalysts with atomically dispersed platinum group metal complexes |
JP2019063784A (en) * | 2017-09-28 | 2019-04-25 | 太平洋セメント株式会社 | Catalyst for exhaust purification and method for producing the same |
JP2019063702A (en) * | 2017-09-28 | 2019-04-25 | 太平洋セメント株式会社 | Catalyst for exhaust purification and method for producing the same |
JP2019112263A (en) * | 2017-12-23 | 2019-07-11 | バイオエポック株式会社 | Platinum nanoparticle-mixed powder and method for producing the powder, and platinum nanoparticle-containing ceramic-molded article and method for producing the article |
JP7080466B2 (en) | 2017-12-23 | 2022-06-06 | バイオエポック株式会社 | Platinum nanoparticle mixed powder and its manufacturing method, ceramic molded product containing platinum nanoparticles and its manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2011230104A (en) | Exhaust gas purifying catalyst and method for manufacturing the same | |
JP6505181B2 (en) | Catalyst for purifying automobile exhaust gas and method for producing the same | |
JP5376261B2 (en) | Exhaust gas purification catalyst | |
JP5458126B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JP5350614B2 (en) | Exhaust gas purification catalyst and exhaust gas purification apparatus using the same | |
JP5031168B2 (en) | Catalyst body | |
JP2016536120A (en) | Catalyst design for heavy duty diesel combustion engines | |
JP5806536B2 (en) | Catalyst precursor dispersion, catalyst, and exhaust gas purification method | |
JP4296908B2 (en) | Catalyst body and method for producing the same | |
JP2008119629A (en) | Exhaust gas cleaning catalyst and its manufacturing method | |
WO2015087780A1 (en) | Exhaust gas purifying catalyst | |
JP2007229653A (en) | Exhaust gas treatment catalyst | |
WO2011052676A1 (en) | Exhaust cleaner for internal combustion engine | |
JP4714568B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JP5515635B2 (en) | Noble metal-supported silicon carbide particles, production method thereof, catalyst containing the same, and production method thereof | |
JP4296430B2 (en) | Catalyst for water gas shift reaction and process for producing the same | |
JP2005224792A (en) | Catalyst for cleaning exhaust gas | |
JP5216001B2 (en) | Catalyst for treating exhaust gas containing organic acid and method for treating exhaust gas containing organic acid | |
JP2007136420A (en) | Exhaust gas purification catalyst and method of fabricating the same | |
JP2007203209A (en) | Catalytic body, and inorganic carrier and method for manufacturing the same | |
JP5112966B2 (en) | Lean burn exhaust gas purification catalyst | |
JP6167834B2 (en) | Exhaust gas purification catalyst | |
JP5973914B2 (en) | Method for producing catalyst composition for exhaust gas treatment | |
JP4753613B2 (en) | NOx purification catalyst | |
JP2008155071A (en) | Exhaust gas purifying catalyst |