JP2021158887A - エネルギーシステム及びエネルギーシステムの運転方法 - Google Patents

エネルギーシステム及びエネルギーシステムの運転方法 Download PDF

Info

Publication number
JP2021158887A
JP2021158887A JP2020060043A JP2020060043A JP2021158887A JP 2021158887 A JP2021158887 A JP 2021158887A JP 2020060043 A JP2020060043 A JP 2020060043A JP 2020060043 A JP2020060043 A JP 2020060043A JP 2021158887 A JP2021158887 A JP 2021158887A
Authority
JP
Japan
Prior art keywords
power
storage battery
charging
power generation
upper limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020060043A
Other languages
English (en)
Other versions
JP7446141B2 (ja
Inventor
和徹 南
Kazuyuki Minami
和徹 南
俊哉 御堂
Toshiya Mido
俊哉 御堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2020060043A priority Critical patent/JP7446141B2/ja
Publication of JP2021158887A publication Critical patent/JP2021158887A/ja
Application granted granted Critical
Publication of JP7446141B2 publication Critical patent/JP7446141B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

【課題】長い期間での発電装置の発電効率を考慮して蓄電池を制御するエネルギーシステムを提供することを目的とする。【解決手段】エネルギーシステム1は、発電電力が増加するほど発電効率の増大の度合いが小さくなる関係を概ね満たす発電効率曲線に沿って、最小発電電力と最大発電電力との間の目標発電電力を出力する燃料電池11と、燃料電池11の発電電力を利用可能な負荷装置50及び蓄電池23と、蓄電池23の充電率を検出する充電率検出部25と、蓄電池23を制御する蓄電池制御部27とを備え、蓄電池23への充電時は、燃料電池11は、充電電力と負荷電力との和の目標発電電力で動作し、蓄電池制御部27は、負荷電力との和が燃料電池11の最大発電電力以下になり、かつ、充電率が大きくなる程、小さくなる関係で定められる充電電力の上限充電電力以下になるという条件を満たす最大の値に目標充電電力を設定して充電を行う。【選択図】図1

Description

本発明は、エネルギーシステム及びエネルギーシステムの運転方法に関する。
特許文献1(特開2015−122226号公報)には、燃料電池の発電電力を最高効率点又はその近傍に設定して運転し、その燃料電池の発電電力に余剰電力が生じた際に、その余剰電力を蓄電池に充電するシステムが記載されている。
特許文献1の図2に記載されているように、発電電力が大きくなるほど燃料電池の発電効率は大きくなるが、発電電力の増大と発電効率の増大とは比例関係にはなく、発電電力が増大するにつれて発電効率の増大の度合いは小さくなる。言い換えると、発電効率が小さくなるほど発電効率の減少度合いは大きくなる。
特開2015−122226号公報
特許文献1に記載されるようなシステムでは、燃料電池は、蓄電池の充電電力と負荷装置の負荷電力との合計の電力を発電する必要がある。尚、蓄電池は、充電率が上限充電率になると充電を停止するため、その後、燃料電池は、負荷装置の負荷電力のみを発電する。つまり、燃料電池は、蓄電池への充電開始当初はその状況下での最大の発電電力(その状況下での最大の発電効率)で短時間運転し、蓄電池が充電を停止した後はその状況下での最小の発電電力(非常に低い発電効率)で運転する。
従って、長い期間で考えると、燃料電池は最高の発電効率で運転しているとは言えない。
発電装置は、比較的大きい発電電力で比較的長く運転することができれば、発電装置の発電効率を考慮した場合に好ましい。
そこで、本発明は上述の課題に鑑みてなされたものであり、長い期間での発電装置の発電効率を考慮して蓄電池を制御するエネルギーシステム及びエネルギーシステムの運転方法を提供することを目的とする。
本発明に係るエネルギーシステムの特徴構成は、
発電電力が増加するほど発電効率の増大の度合いが小さくなる関係を概ね満たす発電効率曲線に沿って、最小発電電力と最大発電電力との間に設定される所定の目標発電電力を出力するように動作する発電装置と、
前記発電装置が発電した発電電力を利用可能な負荷装置と、
前記発電装置が発電した発電電力を充電可能な蓄電池と、
前記蓄電池の充電率を検出する充電率検出部と、
前記蓄電池への充電又は放電を制御する蓄電池制御部とを備え、
前記蓄電池への充電時は、前記発電装置は、前記蓄電池の充電電力と前記負荷装置の負荷電力との和の合計電力を賄えるように前記目標発電電力を設定して動作し、
前記蓄電池制御部は、前記負荷電力との和が前記発電装置の前記最大発電電力以下になり、かつ、前記充電率検出部が検出した前記充電率が大きくなる程、小さくなる関係で定められる充電電力の上限充電電力以下になるという条件を満たす最大の値に目標充電電力を設定して充電を行う点にある。
上記特徴構成によれば、発電装置は、充電時は、負荷装置の負荷電力と蓄電池の充電電力との和に発電電力を追従させる運転を行う。
蓄電池の目標充電電力は、充電率が大きくなる程、充電電力が小さくなる関係で概ね定められるため、蓄電池の充電率が小さい場合には目標充電電力は大きく(即ち、充電速度は速く)なり、蓄電池の充電率が大きい場合には目標充電電力は小さく(即ち、充電速度は遅く)なる。
つまり、蓄電池の充電率が小さい場合には、蓄電池の充電が高速で行われるため、蓄電池の充電率は短時間で高まる。
一方、蓄電池の充電率が大きい場合には、蓄電池の充電が低速で行われる。そのため、蓄電池の充電が高速で行われている場合に比べて、蓄電池の充電率が上限充電率に到達するまでに要する時間は長くなる。
ここで、発電装置の発電効率について考えると、蓄電池の充電率が小さく目標充電電力が大きい場合、発電装置の発電電力(蓄電池への大きい目標充電電力と負荷電力との合計電力)も大きくなり発電効率も大きくなる。しかし、短時間で蓄電池の充電率が大きくなった後は、目標充電電力が小さくなるかゼロとなり、発電装置は負荷電力に応じた発電を主として行うこととなり発電電力も小さくなる。つまり、発電効率が大きい状態が短時間経過した後は、発電効率が小さい状態が継続する。ここで、発電効率曲線は、発電電力が増加するほど発電効率の増大の度合いが小さくなるという傾向を示すため、発電電力が小さくなると発電効率が減少する度合いは大きくなる。よって、前述の状態においては、発電効率が大きい状態が短時間であり、発電効率が小さい状態が継続するため、長い期間で考えると発電効率は小さい。
一方、蓄電池の充電率が大きく目標充電電力が小さい場合、蓄電池は小さい目標充電電力で充電される。このとき、発電装置は、蓄電池への小さい目標充電電力と負荷電力との和の合計電力として、中程度の発電電力を出力する。つまり、蓄電池の充電率が大きい場合における中程度の発電電力(蓄電池への小さい目標充電電力と負荷電力との和の合計電力)は、充電率が小さい時の発電装置の大きい発電電力(蓄電池への大きい目標充電電力と負荷電力との和の合計電力)と、短時間で蓄電池の充電率が大きくなった後の小さい発電電力(主として負荷装置への負荷電力に応じた発電電力)との間の発電電力となる。そして、中程度の発電電力で出力している場合、蓄電池の充電率が上限充電率に到達するまでに要する時間は長くなることから、中程度の発電効率の状態が長く継続する。よって、長い期間で考えると中程度の発電効率を長く継続している方がトータルの発電効率は大きくなるという利点がある。
本発明に係るエネルギーシステムの更なる特徴構成は、
前記充電率検出部が検出した前記充電率が第1閾値未満の場合の上限充電電力は第1上限充電電力であり、
前記充電率検出部が検出した前記充電率が第1閾値以上かつ第2閾値未満の場合の上限充電電力は、前記第1上限充電電力よりも小さい第2上限充電電力である点にある。
上記特徴構成によれば、充電率が第1閾値以上かつ第2閾値未満の場合の上限充電電力が第1上限充電電力よりも小さい第2上限充電電力となるため、長い期間で考えるとトータルの発電効率は大きくなる。
本発明に係るエネルギーシステムの更なる特徴構成は、
前記蓄電池制御部は、前記負荷装置の負荷電力が小さいことにより前記発電装置による発電電力が発電電力閾値より小さい場合、前記第1閾値、前記第2閾値、前記第1上限充電電力及び前記第2上限充電電力の少なくともいずれかを増加させる点にある。
上記特徴構成によれば、負荷電力が小さく発電電力が発電電力閾値より小さい場合、第1閾値及び第2閾値等の閾値が大きくなるように制御される。つまり、第1閾値及び第2閾値等の閾値が大きくなるように制御されることで、蓄電池への第1上限充電電力及び第2上限充電電力等の上限充電電力を小さくする時期を遅らせる。これにより、小さく制御される前の充電電力により積極的に蓄電池を充電させることができ、発電効率を向上できる。
また、上記特徴構成によれば、負荷電力が小さく発電電力が発電電力閾値より小さい場合、蓄電池への第1上限充電電力及び第2上限充電電力等の上限充電電力を増加させることによっても、発電装置は、増加された上限充電電力に基づいた充電電力により積極的に蓄電池を充電させることができ、発電効率を向上できる。
本発明に係るエネルギーシステムの更なる特徴構成は、
前記蓄電池制御部は、前記負荷装置の負荷電力が大きいことにより前記発電装置による発電電力が発電電力閾値より大きい場合、前記第1閾値、前記第2閾値、前記第1上限充電電力及び前記第2上限充電電力の少なくともいずれかを減少させる点にある。
上記特徴構成によれば、負荷電力が大きく発電電力が発電電力閾値より大きい場合、第1閾値、第2閾値等の閾値が小さくなるように制御される。つまり、閾値が小さくなるように制御されることで、蓄電池における第1上限充電電力及び第2上限充電電力等の上限充電電力を小さくする時期を早める。これにより、発電効率の上昇が限定的な場合において、蓄電池の空き容量を確保することができる。
また、上記特徴構成によれば、発電電力が発電電力閾値より大きい場合、蓄電池における第1上限充電電力及び第2上限充電電力等の上限充電電力を減少させることによっても、発電効率の上昇が限定的な場合において、蓄電池の空き容量を確保することができる。
本発明に係るエネルギーシステムの更なる特徴構成は、
前記蓄電池制御部は、災害の予期を受信した場合、あるいは、前記発電装置が発電した発電電力を抑制する必要性を検出した場合、前記第1閾値、前記第2閾値、前記第1上限充電電力及び前記第2上限充電電力の少なくともいずれかを増加させる点にある。
災害が予期された場合は、災害に備えて蓄電池への充電を積極的に行った方が好ましい。また、発電装置が発電した発電電力を抑制する必要が生じた場合には、発電電力を抑制して発電効率を下げるよりも蓄電池への充電を積極的に行った方が好ましい。そこで、第1閾値、第2閾値、第1上限充電電力及び第2上限充電電力の少なくともいずれかを増加させて、蓄電池における第1上限充電電力及び第2上限充電電力等の上限充電電力を小さくする時期を遅らせて、また、蓄電池における第1上限充電電力及び第2上限充電電力等の上限充電電力を増加させて、蓄電池に高速に充電電力を充電する。
本発明に係るエネルギーシステムの運転方法は、
発電電力が増加するほど発電効率の増大の度合いが小さくなる関係を概ね満たす発電効率曲線に沿って、最小発電電力と最大発電電力との間に設定される所定の目標発電電力を出力するように動作する発電装置と、
前記発電装置が発電した発電電力を利用可能な負荷装置と、
前記発電装置が発電した発電電力を充電可能な蓄電池と、
前記蓄電池の充電率を検出する充電率検出部と、
前記蓄電池への充電又は放電を制御する蓄電池制御部とを備えるエネルギーシステムの運転方法であって、その特徴構成は、
前記蓄電池への充電時は、前記発電装置は、前記蓄電池の充電電力と前記負荷装置の負荷電力との和の合計電力を賄えるように前記目標発電電力を設定して動作し、
前記蓄電池制御部は、前記負荷電力との和が前記発電装置の前記最大発電電力以下になり、かつ、前記充電率検出部が検出した前記充電率が大きくなる程、小さくなる関係で定められる充電電力の上限充電電力以下になるという条件を満たす最大の値に目標充電電力を設定して充電を行う点にある。
エネルギーシステムの全体構成図である。 充電率と上限充電電力との関係を示す説明図である。 充電率と充電電力との関係を示す説明図である。 発電電力と発電効率との関係を示す発電効率曲線の説明図である。 発電効率曲線における変曲点を示す説明図である。 増加させた場合の閾値A、閾値Bと充電電力との関係を示す説明図である。 閾値A、閾値Bと増加させた充電電力との関係を示す説明図である。 減少させた場合の閾値A、閾値Bと充電電力との関係を示す説明図である。 閾値A、閾値Bと減少させた充電電力との関係を示す説明図である。 別のエネルギーシステムの全体構成図である。
以下に実施形態に係るエネルギーシステム及びエネルギーシステムの運転方法について説明する。
(1)全体構成
図1に示すようにエネルギーシステム1は、燃料電池システム10と、蓄電池システム20と、系統電源30に接続されている分電盤40と、負荷装置50とを備えている。系統電源30は、電力会社等が供給する系統電力の供給源であり、分電盤40を介して燃料電池システム10及び蓄電池システム20に接続されている。また、系統電源30には、分電盤40を介して負荷装置50が接続されている。負荷装置50は、燃料電池11の発電電力、系統電源30の系統電力及び蓄電池システム20に充電されている充電電力の少なくともいずれかの電力を消費可能である。
(2)燃料電池システム
燃料電池システム10は、燃料電池11(発電装置の一例)、パワーコンディショナ13及び燃料電池制御部15を備えている。燃料電池11は、水素等の燃料ガスと酸素等の酸化剤ガスとを反応させることで発電を行う。燃料電池11は、燃料電池制御部15の制御に基づいて、定格運転、定格の80%の出力での運転、定格の50%の出力での運転、負荷装置50の負荷電力の大きさに応じた負荷追従運転などを行うことができる。
なお、本実施形態の後述の充電専用モード及び充放電可能モードの充電時、つまり後述蓄電池23の充電時においては、燃料電池11は、燃料電池制御部15の制御に基づいて、蓄電池23の充電電力と負荷装置50の負荷電力との和の合計電力を賄えるように目標発電電力を発電する。
パワーコンディショナ13は、燃料電池11が発電した直流電力である発電電力を交流電力に変換し、系統電源30の交流電力である系統電力と系統連系可能とする。
(3)分電盤
分電盤40は、燃料電池システム10及び蓄電池システム20と系統電源30との間に
設けられているとともに、負荷装置50が接続されている。負荷装置50は、分電盤40を介して、系統電源30からの系統電力、燃料電池システム10からの発電電力及び蓄電池システム20からの充電電力の少なくともいずれかの電力の供給を受けることが可能である。系統電源30が停電して図示しないスイッチが開くと、分電盤40は系統電源30から切り離され、燃料電池システム10等が系統電源30から解列される。
(4)蓄電池システム
蓄電池システム20は、パワーコンディショナ21と、蓄電池23と、充電率検出部25と、蓄電池制御部27とを備えている。
(4−1)パワーコンディショナ、蓄電池
パワーコンディショナ21は、蓄電池システム20に供給される交流電力を直流電力に変換し、充電のために蓄電池23に供給する。また、パワーコンディショナ21は、蓄電池23に蓄電されている直流電力を交流電力に変換し負荷装置50等に供給する。
蓄電池23としては、これに限定されないが、リチウムイオン電池、鉛蓄電池、ニッケル−カドミウム電池、ニッケル−水素電池等が挙げられる。
(4−2)充電率検出部
充電率検出部25は、蓄電池23の充電率を検出する。例えば、充電率検出部25は、蓄電池23に流した電流と検出される電圧とに基づいて現在の充電量を検出する。そして、充電率検出部25は、満充電まで充電した場合の蓄電可能容量に対する現在の充電量の割合である充電率を検出する。
(4−3)蓄電池制御部
本実施形態では、蓄電池制御部27は、充放電が許可された充放電可能モード及び充電のみが許可された充電専用モードで蓄電池23の充放電を制御する。なお、本実施形態では、充放電可能モード及び充電専用モードが設けられているが、後述の通り蓄電池23への充電時において、燃料電池11の発電効率が向上可能な制御が行われればよく、充放電可能モード及び充電専用モードの両方が設けられている場合のみに本発明が適用されるわけではない。
充放電可能モードにおいて、蓄電池制御部27は、燃料電池11及び系統電源30の少なくともいずれかから負荷装置50に供給される供給電力に不足が生じている場合、不足電力を蓄電池23から放電するように制御する(充放電可能モードの放電時)。
充放電可能モードにおいて、蓄電池制御部27は、燃料電池11の発電電力が負荷装置50により消費されず余剰電力が生じている場合、余剰電力を蓄電池23に充電するように制御する(充放電可能モードの充電時)。
充電専用モードにおいて、蓄電池制御部27は、蓄電池23に対する充電を行い、放電を行わない。
上記の充放電可能モードの充電時及び充電専用モードにおいて、蓄電池制御部27は、所定の上限充電率(後述の閾値B)に相当する充電電力まで蓄電池23に充電するように制御する。前述の通り、充電専用モード及び充放電可能モードの充電時、つまり蓄電池23の充電時においては、燃料電池11は、燃料電池制御部15の制御に基づいて、後述の蓄電池23の充電電力と負荷装置50の負荷電力との和の合計電力を賄えるように目標発電電力を発電する。つまり、充電専用モード及び充放電可能モードの充電時では、目標発電電力=充電電力+負荷電力の関係となるように、燃料電池制御部15は燃料電池11の発電運転を制御する。さらに、目標発電電力は、後述の発電効率曲線に沿った燃料電池11の最小発電電力と最大発電電力との間に設定される。
本実施形態では、蓄電池制御部27は、充電専用モード及び充放電可能モードの充電時における燃料電池11の発電効率を向上するような制御を行う。以下では、充電専用モード及び充放電可能モードの充電時(充電時)における、充電率に応じた蓄電池23への充電制御を行うことによる発電効率の向上の制御、負荷電力に応じた蓄電池23への充電制御を行うことによる発電効率の向上の制御を例に挙げて説明する。
(a)充電率に応じた蓄電池への充電制御
まず、充電専用モード及び充放電可能モードの充電時(充電時)において、充電率に応じた蓄電池23への充電制御を行うことによる発電効率の向上の制御について説明する。
蓄電池制御部27は、充電率検出部25が検出した蓄電池23の充電率に基づいて蓄電池23に充電する際の目標充電電力を制御する。より具体的には、蓄電池制御部27は、負荷装置50の負荷電力との和が燃料電池11の最大発電電力以下になり、かつ、充電率検出部25が検出した充電率が大きくなる程、小さくなる関係で定められる充電電力の上限充電電力(上限充電電力α、上限充電電力β)以下になるという条件を満たす最大の値に目標充電電力を設定して充電を行う。
図2、図3を用いてさらに説明する。以下において、満充電を100%として充電率に対する閾値A(第1閾値の一例)及び閾値B(第2閾値の一例)は100%未満であり、閾値Aは、閾値Bよりも小さい(閾値A<閾値B)。
まず充電率が閾値A未満の場合の充電について説明する。なお、次の例では、充電率が閾値A未満(充電率<閾値A)における目標充電電力が上限充電電力α(第1上限充電電力の一例)であるとして説明するものとする。
蓄電池制御部27は、蓄電池23の充電率が閾値A未満(充電率<閾値A)と判定すると、例えば目標充電電力で蓄電池23を充電する。つまり、蓄電池制御部27は充電率が閾値A未満で小さい場合は、比較的に大きい目標充電電力(この例では上限充電電力α)で蓄電池23を充電する。これにより、上限充電率である閾値Bまでの蓄電池23の充電が高速で行われるため、蓄電池23の充電率は短時間で高まる。
このとき、燃料電池制御部15は、目標充電電力である上限充電電力α及び負荷装置50の負荷電力との和の合計電力を賄うことが可能な目標発電電力を発電するように燃料電池11を制御する。
なお、上記では、目標充電電力が上限充電電力αである場合を例に挙げて説明したが、目標充電電力は、負荷電力及び燃料電池11が発電可能な最大発電電力との関係で、上限充電電力α未満であってもよい。
次に、充電率が閾値A以上閾値B未満の場合の充電について説明する。なお、次の例では、充電率が閾値A以上閾値B未満(閾値A≦充電率<閾値B)における目標充電電力が上限充電電力β(第2上限充電電力の一例)であるとして説明するものとする。
蓄電池制御部27は、蓄電池23の充電率が閾値A以上閾値B未満(閾値A≦充電率<閾値B)と判定すると、例えば目標充電電力で蓄電池23を充電する。つまり、蓄電池制御部27は充電率が閾値A以上閾値B未満であると、目標充電電力を減少させて充電速度を減少させる。ここでの例では、充電率が閾値A以上閾値B未満であると、閾値A未満の目標充電電力であった上限充電電力αを減少させて上限充電電力β(<上限充電電力α)として目標充電電力を設定し、充電速度を減少させる。これにより、上限充電率である閾値Bまでの蓄電池23の充電に要する時間が長くなる。
このとき、燃料電池制御部15は、目標充電電力である上限充電電力β及び負荷装置50の負荷電力との和の合計電力を賄うことが可能な目標発電電力を発電するように燃料電池11を制御する。
なお、上記では、目標充電電力が上限充電電力βである場合を例に挙げて説明したが、目標充電電力は、負荷電力及び燃料電池11が発電可能な最大発電電力との関係で、上限充電電力β未満であってもよい。
次に、蓄電池制御部27は、蓄電池23の充電率が閾値B以上(充電率≧閾値B)と判定すると、上限充電電力をゼロとして蓄電池23への充電を停止させる。このとき、燃料電池制御部15は、負荷装置50の負荷電力を賄うことが可能な目標発電電力を発電するように燃料電池11を制御する。上限充電率である閾値Bは満充電よりも小さいため、蓄電池23への充電は満充電になる前に停止される。よって、満充電まで繰り返し充放電することによる蓄電池23の劣化を抑制できる。
上記のように充電率に応じて上限充電電力を制御することで、また、上限充電電力に応じて目標充電電力を制御することで、燃料電池11の発電効率を高くすることができる。
蓄電池23の充電率が閾値A未満と小さく目標充電電力が大きい場合(ここでは目標充電電力を上限充電電力αとしている)、燃料電池11の発電電力(蓄電池23への大きい目標充電電力と負荷電力との合計電力)も大きくなり発電効率も大きくなる。しかし、短時間で蓄電池23の充電率が大きくなった後は、目標充電電力が小さく(ここでは目標充電電力を上限充電電力βとしている)なるかゼロとなり、燃料電池11は負荷電力に応じた発電を主として行うこととなり発電電力も小さくなる。つまり、発電効率が大きい状態が短時間経過した後は、発電効率が小さい状態が継続する。ここで、発電効率曲線は、発電電力が増加するほど発電効率の増大の度合いが小さくなるという傾向を示すため、発電電力が小さくなると発電効率が減少する度合いは大きくなる。よって、前述の状態においては、発電効率が大きい状態が短時間であり、発電効率が小さい状態が継続するため、長い期間で考えると発電効率は小さい。
一方、蓄電池23の充電率が閾値A以上閾値B未満と大きく目標充電電力が小さい場合(ここでは目標充電電力を上限充電電力βとしている)、蓄電池23は小さい目標充電電力で充電される。このとき、燃料電池11は、蓄電池23への小さい目標充電電力と負荷電力との和の合計電力として、中程度の発電電力を出力する。つまり、蓄電池23の充電率が大きい場合における中程度の発電電力(蓄電池23への小さい目標充電電力(上限充電電力β)と負荷電力との和の合計電力)は、充電率が小さい時の燃料電池11の大きい発電電力(蓄電池23への大きい目標充電電力(上限充電電力α)と負荷電力との和の合計電力)と、短時間で蓄電池23の充電率が大きくなった後の小さい発電電力(主として負荷装置50への負荷電力に応じた発電電力)との間の発電電力となる。そして、中程度の発電電力で出力している場合、蓄電池23の充電率が閾値B(上限充電率の一例)に到達するまでに要する時間は長くなることから、中程度の発電効率の状態が長く継続する。よって、長い期間で考えると中程度の発電効率を長く継続している方がトータルの発電効率は大きくなるという利点がある。
以下に、発電効率の向上について図4を用いてさらに説明する。
図4は発電効率曲線であり、横軸を発電電力とし縦軸を発電効率として発電装置の発電効率が表されている。発電効率曲線は、発電電力が増加するほど発電効率の増大の度合いが小さくなる。より具体的には、発電効率曲線は、発電電力が小さい方から大きい方に向かうほど上に凸を描いて発電効率が上昇するとともに、発電電力がある程度大きくなると発電効率が概ね一定程度となる。ここで、図4の発電効率曲線は、発電電力が増加するほど発電効率の増大の度合いが小さくなる関係を曲線上に全てにおいて満たしている必要はなく、当該関係を曲線上において概ね満たしていればよい。例えば、発電効率曲線は、一部においてその凸の曲線が他の曲線上の点よりも突出していてもよい。
まず、蓄電池23の充電率が閾値A未満にあり、上限充電電力が上限充電電力αである場合の発電効率について説明する。
充電専用モード及び充放電可能モードの充電時において、燃料電池11は、負荷装置50に供給する負荷電力と蓄電池23に充電する目標充電電力(上限充電電力α以下)との和の合計電力を発電している。充電専用モード及び充放電可能モードの充電時においては、蓄電池23の空き容量(例えば400Wh)を充電する制御を優先する制御(以下では、第1発電制御)が行われるため、第1段階において燃料電池11は蓄電池23の空き容量を充電するために発電を行う。よって、第1段階では、燃料電池11は、負荷装置50が必要とする負荷電力(例えば100W)と蓄電池23への目標充電電力(例えば400W)との和の合計の発電電力(例えば500W)で発電する。第1段階が終了すると第2段階では、燃料電池11は負荷装置50の負荷電力を賄うために発電を行う。
ここで、図4においてバツ印のプロットを参照すると、負荷装置50が必要とする負荷電力はPNL(例えば100W)であり、燃料電池11による合計の発電電力はPNH(例えば500W)であり、蓄電池の23への目標充電電力はPNH−PNL(例えば400W)であるものとする。このように蓄電池の23への目標充電電力がPNH−PNL(例えば400W)であることから、蓄電池23の空き容量(例えば400Wh)の充電は、第1段階における燃料電池11によるPNH(例えば500W)の発電電力による1時間の発電によって賄われる。つまり、燃料電池11がPNH(例えば500W)の発電電力で1時間発電すると発電電力量500Whとなり、このうち、発電電力量400Whが蓄電池23の空き容量の充電に用いられ、残りの発電電力量100Whが負荷装置50に供給される。
蓄電池23の空き容量が充電された後、第2段階において、燃料電池11は、負荷装置50が必要とする負荷電力を賄うために発電を行う。ここでは、負荷装置50が必要とする負荷電力は前述と同様にPNL(例えば100W)であり、第2段階では1時間の発電を行っているものとする。よって、第2段階では、燃料電池11がPNL(例えば100W)の発電電力で1時間発電すると発電電力量100Whとなり、この発電電力量100Whが負荷装置50に供給される。
一方、蓄電池23の充電率が閾値A以上になると、蓄電池制御部27は上限充電電力αを減少させて上限充電電力βとする。これに応じて、蓄電池23への目標充電電力も小さくなり、第1発電制御よりも蓄電池23への充電に要する時間が長くなる発電制御(以下では、第2発電制御)が行われる。このとき、燃料電池11は、負荷装置50が必要とする負荷電力と蓄電池23への充電電力βとの合計の発電電力で発電する。
ここで、前述と同様に、負荷装置50が必要とする負荷電力はPNL(例えば100W)であるものとする。また、図4において、燃料電池11による合計の発電電力はPS(例えば300W)であり、蓄電池の23への目標充電電力はPS−PNL(例えば200W)であるものとする。このように蓄電池の23への目標充電電力がPS−PNL(例えば200W)であることから、蓄電池23の空き容量(例えば400Wh)の充電は、燃料電池11によるPS(例えば300W)の発電電力による2時間の発電によって賄われる。つまり、燃料電池11がPS(例えば300W)の発電電力で2時間発電すると発電電力量600Whとなり、このうち、発電電力量400Whが蓄電池23の空き容量の充電に用いられ、残りの発電電力量200Whが負荷装置50に供給される。
ここで、図4に示す発電効率曲線において、第1発電制御での発電効率ENは、第1段階での1時間に亘る発電電力PNH(例えば500W)の時の発電効率ENHと第2段階での1時間に亘る発電電力PNL(例えば100W)の時の発電効率ENLとの平均((ENH+ENL)/2)である。つまり、第1発電制御では、全体として、発電効率曲線上の発電効率ENHの点と発電効率ENLの点とを直線で結んだ中点での発電効率ENで発電が行われている。一方、第2発電制御では、2時間に亘る発電効率曲線上の発電電力PS(例えば300W)の時の発電効率ESで発電が行われている。前述の通り、発電効率曲線は上に凸に描かれるため、発電効率曲線上の発電効率ENLの点と発電効率ENHの点とを結ぶ直線は発電効率曲線の下側に位置する。よって、中点である発電効率ENもまた発電効率曲線の下側に位置する。その結果、蓄電池23への目標充電電力が小さく充電に要する時間が長い(上記の例では2時間)第2発電制御での発電効率ESは、蓄電池23への目標充電電力が大きく充電に要する時間が短い(上記の例では第1段階における1時間)第1発電制御での発電効率ENよりも大きくなる。
以上の通り、蓄電池23の充電率が閾値A以上になった場合に蓄電池23への上限充電電力の減少により目標充電電力を減少させて蓄電池23の充電に要する時間を長くすることで、蓄電池23への上限充電電力を高くして目標充電電力を高くしたままで短い時間で充電するよりも発電効率を高めることができる。
(b)負荷電力に応じた蓄電池への充電制御
次に、充電専用モード及び充放電可能モードの充電時(充電時)において、負荷電力の大小に応じた蓄電池23への充電制御を行うことによる発電効率の向上の制御について説明する。
(b1)発電電力が第1発電電力閾値PLより小さい場合
まずは、負荷電力が小さい場合の発電効率の向上の制御について説明する。
ここで、充電専用モード及び充放電可能モードの充電時において、燃料電池11は、負荷装置50が必要とする負荷電力と蓄電池23への充電電力との和の合計の発電電力で発電する。よって、燃料電池11の発電電力は負荷装置50が必要とする負荷電力が大きくなれば大きくなり、負荷電力が小さくなれば発電電力も小さくなる。つまり、燃料電池11による発電電力が第1発電電力閾値PLより小さい場合とは、負荷電力が、第1発電電力閾値PLに対応する第1負荷電力閾値より小さい場合と同等である。
そして、蓄電池制御部27は、負荷電力が小さいことにより、燃料電池11による発電電力が第1発電電力閾値PL(発電電力閾値の一例)より小さい場合、閾値A(第1閾値の一例)を大きくする制御、及び、閾値B(第2閾値の一例)を大きくする制御、上限充電電力α(第1上限充電電力の一例)を増加させる制御、上限充電電力β(第2上限充電電力の一例)を増加させる制御の少なくともいずれかを行う。
ここで、図5に示すように、横軸を発電電力とし縦軸を発電効率とした燃料電池11の発電効率曲線において、発電効率の減少率が少なくとも他の部分よりも大きくなる第1変曲点Lと、発電効率の増加率が少なくとも他の部分よりも小さくなる第2変曲点Hとが存在する。
第1発電電力閾値PLは、第1変曲点Lにおける発電電力である。燃料電池11の発電電力が第1発電電力閾値PLを下回ると、発電効率曲線の減少率が著しく大きくなる傾向にあり、発電効率が著しく低下する。第1変曲点Lでの発電電力は例えば200Wである。
後述の第2発電電力閾値PHは、第2変曲点Hにおける発電電力である。燃料電池11の発電電力が第2発電電力閾値PHを上回ると、発電効率曲線の増加率が他の部分よりも小さく概ね一定程度になる傾向にあり、発電電力をそれ以上増加させても発電効率の増加がほとんどない。第2変曲点Hでの発電電力は例えば500Wである。
(i)閾値Aを大きくする制御
上記に記載の通り、蓄電池制御部27は充電率が閾値A以上であると、上限充電電力を上限充電電力αから減少させて上限充電電力βとし、燃料電池11の発電効率を高める。このように閾値Aは、蓄電池23への上限充電電力αを減少させる基準である。蓄電池制御部27は、燃料電池11による発電電力が第1発電電力閾値PLより小さい場合、図6に示すように蓄電池23への上限充電電力αを減少させる基準である閾値Aを大きくする。図6では、閾値AはAUに大きくなっている。
これにより、増加後の閾値AUに充電率が到達するまで蓄電池23への上限充電電力αは減少させない。つまり、蓄電池23への上限充電電力αを減少させる時の充電率の基準を高くして、蓄電池23への上限充電電力αを減少させる時期を遅らせることができる。よって、増加後の閾値AUに充電率が到達するまでは、上限充電電力αを上限とした大きな発電電力により積極的に蓄電池23を充電させて、第1発電電力閾値PLを上回る発電電力で燃料電池11に発電を行わせることで、発電効率を向上できる。
例えば、第1変曲点Lでの第1発電電力閾値PLが200Wであり、第1変曲点Lを下回ると発電効率が急激に低下する場合について、具体例を挙げて次に説明する。負荷装置50の負荷電力が100Wであり、閾値Aが80%、閾値Bが90%、上限充電電力αが150W、上限充電電力βが50Wであり、蓄電池23の充電率が82%であるとする。
この場合、蓄電池23の充電率が82%であることから、充電率が82%は閾値A以上閾値B未満である(閾値A≦82%<閾値B)。よって、蓄電池23は、何ら制御されない場合は、例えば上限充電電力β(50W)で充電される。この場合、燃料電池11の発電電力は、負荷電力(100W)+上限充電電力β(50W)=150Wである。よって、第1変曲点Lでの第1発電電力閾値PL(200W)を下回る発電電力で燃料電池11が発電を行っているため、発電効率が悪い。
そこで、蓄電池制御部27は、燃料電池11の発電電力(150W)が第1発電電力閾値PL(200W)より小さいので、閾値Aを85%と大きくする。そうすると、蓄電池23の充電率82%は閾値Aより小さくなる(82%<閾値A)。よって、蓄電池23は、例えば上限充電電力α(150W)で充電される。この場合、燃料電池11の発電電力は、負荷電力(100W)+上限充電電力α(150W)=250Wである。よって、第1変曲点Lでの第1発電電力閾値PL(200W)を上回る発電電力で燃料電池11が発電を行っているため、発電効率を向上させることができている。
(ii)閾値Bを大きくする制御
蓄電池制御部27は充電率が閾値B以上であると、上限充電電力をゼロとして蓄電池23への充電を停止させる。このように閾値Bは、蓄電池23への充電を停止させる基準である。蓄電池制御部27は、燃料電池11による発電電力が第1発電電力閾値PLより小さい場合、図6に示すように蓄電池23への充電を停止させる基準である閾値Bを大きくする。図6では、閾値BはBUに大きくなっている。
これにより、増加後の閾値BUに充電率が到達するまで蓄電池23への充電を停止させない。つまり、蓄電池23への充電を停止させる時の充電率の基準を高くして、蓄電池23への充電を停止させる時期を遅らせることができる。よって、増加後の閾値BUに充電率が到達するまでは、上限充電電力βを上限とした大きな発電電力により積極的に蓄電池23を充電させて、第1発電電力閾値PLを上回る発電電力で燃料電池11に発電を行わせることで、発電効率を向上できる。
(iii)蓄電池への充電電力を増加させる制御
蓄電池制御部27は、燃料電池11による発電電力が第1発電電力閾値PLより小さい場合、蓄電池23への上限充電電力α、βを図7に示すように増加させる。図7では、上限充電電力αはαUに大きくなっており、上限充電電力βはβUに大きくなっている。これにより、上限充電電力αU又は上限充電電力βUを上限とした大きな発電電力により積極的に蓄電池23を充電させて、第1発電電力閾値PLを上回る発電電力で燃料電池11に発電を行わせることで、発電効率を向上できる。
(b2)発電電力が第2発電電力閾値PHより大きい場合、
次に、負荷電力が大きい場合の発電効率の向上の制御について説明する。
ここで、充電専用モード及び充放電可能モードの充電時において、燃料電池11は、負荷装置50が必要とする負荷電力と蓄電池23への充電電力との和の合計の発電電力で発電する。よって、燃料電池11の発電電力は負荷装置50が必要とする負荷電力が大きくなれば大きくなり、負荷電力が小さくなれば発電電力も小さくなる。つまり、燃料電池11による発電電力が第2発電電力閾値PHより大きい場合とは、負荷電力が、第2発電電力閾値PHに対応する第2負荷電力閾値より大きい場合と同等である。
そして、蓄電池制御部27は、負荷電力が大きいことにより、燃料電池11による発電電力が第2発電電力閾値PHより大きい場合、閾値Aを小さくする制御、及び、閾値Bを小さくする制御、上限充電電力αを減少させる制御、上限充電電力βを減少させる制御の少なくともいずれかを行う。
(i)閾値Aを小さくする制御
蓄電池制御部27は、燃料電池11による発電電力が第2発電電力閾値PHより大きい場合、図8に示すように蓄電池23への上限充電電力αを減少させる基準である閾値Aを小さくする。図8では、閾値AはADに小さくなっている。
これにより、減少後の閾値ADに充電率が到達すると上限充電電力αを減少させる。つまり、蓄電池23への上限充電電力αを減少させる時の充電率の基準を低くして、蓄電池23への上限充電電力αを減少させる時期を早めることができる。前述の通り、燃料電池11の発電電力が第2発電電力閾値PHを上回ると、発電効率曲線の増加率が他の部分よりも小さく概ね一定程度になる傾向にあり、発電電力をそれ以上増加させても発電効率の増加がほとんどない。よって、閾値Aを小さくすることで、発電効率の上昇が限定的な場合において、燃料電池11の発電電力を第2発電電力閾値PH以下とし、蓄電池23の空き容量を確保することができる。
(ii)閾値Bを小さくする制御
蓄電池制御部27は、燃料電池11による発電電力が第2発電電力閾値PHより大きい場合、図8に示すように蓄電池23への充電を停止させる基準である閾値Bを小さくする。図8では、閾値BはBDに小さくなっている。
これにより、減少後の閾値BDに充電率が到達すると蓄電池23への充電を停止させる。つまり、蓄電池23への充電を停止させる時の充電率の基準を低くして、蓄電池23への充電を停止させる時期を早めることができる。よって、閾値Aを小さくする場合と同様に、閾値Bを小さくすることで、発電効率の上昇が限定的な場合において、燃料電池11の発電電力を第2発電電力閾値PH以下とし、蓄電池23の空き容量を確保することができる。
(iii)蓄電池への充電電力を減少させる制御
蓄電池制御部27は、燃料電池11による発電電力が第2発電電力閾値PHより大きい場合、上限充電電力である上限充電電力α、βを図9に示すように減少させる。図9では、上限充電電力αはαDに小さくなっており、上限充電電力βはβDに小さくなっている。これにより、発電効率の向上が限定的な場合において蓄電池23への充電を抑制し、燃料電池11の発電電力を第2発電電力閾値PH以下とし、蓄電池の空き容量を確保しておくことができる。
(c)災害の予期がある場合における蓄電池への充電制御
蓄電池制御部27は、災害を予期する情報を受信した場合、閾値Aを大きくする制御、閾値Bを大きくする制御、上限充電電力αを増加させる制御、上限充電電力βを増加させる制御のいずれかを行う。これにより、前述したように発電効率の低下を抑制でき、災害に備えて蓄電池23への充電を積極的に行い、蓄電池23に高速に充電できる。
災害の予期は、災害を予期する例えば別途の情報サーバ等が行ってもよいし、人が行ってもよい。
(d)発電電力を抑制する必要が生じた場合における蓄電池への充電制御
蓄電池制御部27は、燃料電池11が発電した発電電力を抑制する必要性を検出した場合、閾値Aを大きくする制御、閾値Bを大きくする制御、上限充電電力αを増加させる制御、上限充電電力βを増加させる制御のいずれかを行う。これにより、前述したように発電効率の低下を抑制できる。また、発電した発電電力を抑制する必要が生じた場合には、蓄電池23への充電を積極的に行い、発電効率の低下を回避できる。
〔他の実施形態〕
なお上述の実施形態(他の実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。
(1)上記実施形態の蓄電池システム20では、充放電が許可された充放電可能モード及び充電のみが許可された充電専用モードで蓄電池23の充放電を制御する。
しかし、蓄電池システム20は、充放電可能モードのみを有している構成であってもよい。そして、蓄電池システム20が充放電可能モードでのみ動作する場合であっても、蓄電池制御部27は、充放電可能モードにおいて、上述したような燃料電池11の発電効率を向上するような制御を行うことができる。
また、上記実施形態では、蓄電池システム20が充放電可能モード及び充電専用モードで動作する場合において、充放電可能モードでの充電時及び充電専用モードの両方で、上述したような燃料電池11の発電効率を向上するような制御を行うことができる。しかし、、蓄電池システム20が充放電可能モード及び充電専用モードが両方のモードで動作する場合であっても、充放電可能モードの充電時のみに上述したような燃料電池11の発電効率を向上するような制御を行ってもよいし、充電専用モードのみにおいて上述したような燃料電池11の発電効率を向上するような制御を行ってもよい。
(2)上記実施形態では、図1に示すように、燃料電池11が発電した直流電力である発電電力はパワーコンディショナ13により交流電力に変換される。パワーコンディショナ21は、蓄電池システム20に供給される交流電力を直流電力に変換して蓄電池23に供給し、蓄電池23の直流電力を交流電力に変換して外部に供給する。よって、燃料電池11と蓄電池23との間に、パワーコンディショナ13、21が備えられている。
しかし、図10に示すように、燃料電池システム10と蓄電池システム20とはパワーコンディショナを介さずに接続されていてもよい。この場合、燃料電池システム10は、燃料電池11及び燃料電池制御部15を備えており、蓄電池システム20は、蓄電池23及び蓄電池制御部27を備えている。燃料電池11が発電した直流電力が蓄電池23に充電される。燃料電池システム10が発電した直流電力及び蓄電池23の直流電力は、パワーコンディショナ45を介して交流電力に変換され、また、系統電源30の系統電力である交流電力はパワーコンディショナ45を介して直流電力に変換される。
(3)上記実施形態では、充電率に対して閾値A及び閾値Bが設けられており、閾値A>充電率の場合は上限充電電力αが設定され、閾値A≦充電率<閾値Bの場合は上限充電電力βが設定され、閾値B<充電率の場合は蓄電池23への充電は停止される。
しかし、充電率に対して閾値Aのみが設けられていてもよい。この場合、閾値A>充電率の場合は上限充電電力αが設定され、閾値A≦充電率の場合は上限充電電力βが設定される。そして、蓄電池制御部27は、燃料電池11による発電電力が第1発電電力閾値PLより小さい場合、閾値Aを大きくする制御、及び、蓄電池23への上限充電電力αを増加させる制御の少なくともいずれかを行う。
(4)上記実施形態では、第1発電電力閾値PLは発電効率曲線における第1変曲点Lでの発電電力であり、第2発電電力閾値PHは発電効率曲線における第2変曲点Hでの発電電力である。しかし、第1発電電力閾値PLは、燃料電池11が発電可能な最大発電電力の範囲内の中でも小さい任意の発電電力であってもよい。第2発電電力閾値PHは、燃料電池11が発電可能な最大発電電力の範囲の中でも大きい任意の発電電力であってもよい。第1発電電力閾値PL及び第2発電電力閾値PHを任意に決定できることで、燃料電池11の発電効率の制御の自由度を向上できる。
(5)上記実施形態では、発電効率曲線において、第1変曲点L及び第2変曲点Hの複数の変曲点が存在している。しかし、変曲点は1つのみであってもよく、第1変曲点のみであってもよいし、第2変曲点のみであってもよい。また、変曲点は3つ以上であってもよい。
(6)上記実施形態では、発電装置として燃料電池11を挙げている。しかし、発電装置としては電力を発電可能な装置であれば特に限定はなく、例えば発電機等であってもよい。また、発電装置の利用用途としては、燃料電池11を含む燃料電池システム、発電機を含むコージェネレーションシステム、燃料電池自動車等を挙げることができる。
1 :エネルギーシステム
11 :燃料電池
23 :蓄電池
25 :充電率検出部
27 :蓄電池制御部
A :閾値(第1閾値)
B :閾値(第2閾値)
α :上限充電電力
β :上限充電電力

Claims (6)

  1. 発電電力が増加するほど発電効率の増大の度合いが小さくなる関係を概ね満たす発電効率曲線に沿って、最小発電電力と最大発電電力との間に設定される所定の目標発電電力を出力するように動作する発電装置と、
    前記発電装置が発電した発電電力を利用可能な負荷装置と、
    前記発電装置が発電した発電電力を充電可能な蓄電池と、
    前記蓄電池の充電率を検出する充電率検出部と、
    前記蓄電池への充電又は放電を制御する蓄電池制御部とを備え、
    前記蓄電池への充電時は、前記発電装置は、前記蓄電池の充電電力と前記負荷装置の負荷電力との和の合計電力を賄えるように前記目標発電電力を設定して動作し、
    前記蓄電池制御部は、前記負荷電力との和が前記発電装置の前記最大発電電力以下になり、かつ、前記充電率検出部が検出した前記充電率が大きくなる程、小さくなる関係で定められる充電電力の上限充電電力以下になるという条件を満たす最大の値に目標充電電力を設定して充電を行うエネルギーシステム。
  2. 前記充電率検出部が検出した前記充電率が第1閾値未満の場合の上限充電電力は第1上限充電電力であり、
    前記充電率検出部が検出した前記充電率が第1閾値以上かつ第2閾値未満の場合の上限充電電力は、前記第1上限充電電力よりも小さい第2上限充電電力である、請求項1に記載のエネルギーシステム。
  3. 前記蓄電池制御部は、前記負荷装置の負荷電力が小さいことにより前記発電装置による発電電力が発電電力閾値より小さい場合、前記第1閾値、前記第2閾値、前記第1上限充電電力及び前記第2上限充電電力の少なくともいずれかを増加させる、請求項2に記載のエネルギーシステム。
  4. 前記蓄電池制御部は、前記負荷装置の負荷電力が大きいことにより前記発電装置による発電電力が発電電力閾値より大きい場合、前記第1閾値、前記第2閾値、前記第1上限充電電力及び前記第2上限充電電力の少なくともいずれかを減少させる、請求項2に記載のエネルギーシステム。
  5. 前記蓄電池制御部は、災害の予期を受信した場合、あるいは、前記発電装置が発電した発電電力を抑制する必要性を検出した場合、前記第1閾値、前記第2閾値、前記第1上限充電電力及び前記第2上限充電電力の少なくともいずれかを増加させる、請求項2に記載のエネルギーシステム。
  6. 発電電力が増加するほど発電効率の増大の度合いが小さくなる関係を概ね満たす発電効率曲線に沿って、最小発電電力と最大発電電力との間に設定される所定の目標発電電力を出力するように動作する発電装置と、
    前記発電装置が発電した発電電力を利用可能な負荷装置と、
    前記発電装置が発電した発電電力を充電可能な蓄電池と、
    前記蓄電池の充電率を検出する充電率検出部と、
    前記蓄電池への充電又は放電を制御する蓄電池制御部とを備えるエネルギーシステムの運転方法であって、
    前記蓄電池への充電時は、前記発電装置は、前記蓄電池の充電電力と前記負荷装置の負荷電力との和の合計電力を賄えるように前記目標発電電力を設定して動作し、
    前記蓄電池制御部は、前記負荷電力との和が前記発電装置の前記最大発電電力以下になり、かつ、前記充電率検出部が検出した前記充電率が大きくなる程、小さくなる関係で定められる充電電力の上限充電電力以下になるという条件を満たす最大の値に目標充電電力を設定して充電を行う、エネルギーシステムの運転方法。
JP2020060043A 2020-03-30 2020-03-30 エネルギーシステム及びエネルギーシステムの運転方法 Active JP7446141B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020060043A JP7446141B2 (ja) 2020-03-30 2020-03-30 エネルギーシステム及びエネルギーシステムの運転方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020060043A JP7446141B2 (ja) 2020-03-30 2020-03-30 エネルギーシステム及びエネルギーシステムの運転方法

Publications (2)

Publication Number Publication Date
JP2021158887A true JP2021158887A (ja) 2021-10-07
JP7446141B2 JP7446141B2 (ja) 2024-03-08

Family

ID=77918955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020060043A Active JP7446141B2 (ja) 2020-03-30 2020-03-30 エネルギーシステム及びエネルギーシステムの運転方法

Country Status (1)

Country Link
JP (1) JP7446141B2 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005346984A (ja) 2004-05-31 2005-12-15 Toshiba Corp 電子機器システム、燃料電池ユニットおよび給電制御方法
JP5676847B2 (ja) 2008-12-19 2015-02-25 株式会社東芝 燃料電池電源装置
JP5897899B2 (ja) 2011-12-22 2016-04-06 京セラ株式会社 電力制御システム、制御装置、及び電力制御方法

Also Published As

Publication number Publication date
JP7446141B2 (ja) 2024-03-08

Similar Documents

Publication Publication Date Title
CN110861538B (zh) 燃料电池汽车混合动力控制方法及系统
EP2587623B1 (en) Dc power distribution system
US8578184B2 (en) Power control system for distributing power to power demanding facility
KR100794197B1 (ko) 하이브리드 분산발전 시스템을 이용한 운전 제어방법
US9651927B2 (en) Power supply control system and power supply control method
US20170187190A1 (en) Distributed power supply system, power converter device, and method of controlling power factor
JP6614010B2 (ja) 蓄電池システム
CN114899913A (zh) 一种混合储能逆变器离网模式下电池充放电电流控制方法
CN108695528B (zh) 用于燃料电池的电压控制方法和系统
JP2014535138A (ja) ハイブリッドシステムの動作を制御する方法
US8889276B2 (en) Method for managing the operation of a hybrid system
KR102142983B1 (ko) Ups를 이용한 수용가 부하 관리 시스템
CN110829464A (zh) 一种基于直流侧的光伏储能电池调频系统和方法
JP7446141B2 (ja) エネルギーシステム及びエネルギーシステムの運転方法
US11217998B2 (en) Power conditioner
JP7226224B2 (ja) 制御装置、制御方法およびコンピュータプログラム
JP6865651B2 (ja) 分散型電源システム
KR102053812B1 (ko) 하이브리드 배터리에 연결된 전력 변환 시스템을 제어하기 위한 방법 및 시스템
JP2011211812A (ja) 電源装置
JP6795082B2 (ja) 直流給電システム
US11909249B2 (en) Power feeding system
WO2024029111A1 (ja) 発電システムの制御装置、発電システムの制御方法、およびプログラム
JP2019030161A (ja) 分散型電源システム
JP2019030162A (ja) 分散型電源システム
JP6629694B2 (ja) 電力制御装置及びその制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240227

R150 Certificate of patent or registration of utility model

Ref document number: 7446141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150