JP2021158423A - Crystal oscillator - Google Patents

Crystal oscillator Download PDF

Info

Publication number
JP2021158423A
JP2021158423A JP2020054190A JP2020054190A JP2021158423A JP 2021158423 A JP2021158423 A JP 2021158423A JP 2020054190 A JP2020054190 A JP 2020054190A JP 2020054190 A JP2020054190 A JP 2020054190A JP 2021158423 A JP2021158423 A JP 2021158423A
Authority
JP
Japan
Prior art keywords
excitation electrode
crystal
crystal piece
piece
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020054190A
Other languages
Japanese (ja)
Other versions
JP7362526B2 (en
Inventor
重隆 加賀
Shigetaka Kaga
重隆 加賀
裕也 西村
Yuya Nishimura
裕也 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2020054190A priority Critical patent/JP7362526B2/en
Publication of JP2021158423A publication Critical patent/JP2021158423A/en
Application granted granted Critical
Publication of JP7362526B2 publication Critical patent/JP7362526B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a specific structure preferable at individual frequencies in an AT-cut crystal oscillator having a first excitation electrode 15 of uniform thickness and a second excitation electrode 17 having an inclined portion 17a near the outer periphery.SOLUTION: The thickness of a main pressure portion 17b of a second excitation electrode is thicker than that of a first excitation electrode. A crystal piece 11 has a crystal X-axis direction dimension L1 of 2.1 mm, a Z' direction dimension of 1.348 mm, and an oscillation frequency of 50 MHz as a fundamental wave. The ratio of the mass of the first and second excitation electrodes to the mass of the crystal piece is 5%, and the confinement coefficient of the crystal piece in the crystal Z' axis direction by the first and second excitation electrodes is 4.7 to 5.6, the width of the inclined portion is set to 1 to 2.5 times the wavelength λ of the vibration in the bending mode generated by the crystal piece, and each of the first and second excitation electrodes has an elliptical shape with the long side direction of the crystal piece as the long axis and the short side direction of the crystal piece as the short axis, and the long axis length/short axis length=1.265 is satisfied.SELECTED DRAWING: Figure 1

Description

本発明は、励振電極の周囲に傾斜部が形成されたATカットの水晶振動子に関する。 The present invention relates to an AT-cut crystal unit in which an inclined portion is formed around an excitation electrode.

厚み滑り振動する水晶振動子では、外周付近の厚さを薄くしたいわゆるコンベックス形状の水晶片を用いることによって、振動エネルギーを水晶片に閉じ込めて、不要振動を抑圧することができる。しかし、水晶片をコンベックス形状に形成するためには、加工の手間及びコストがかかるという問題がある。 In a crystal oscillator that slides and vibrates in thickness, by using a so-called convex-shaped crystal piece having a thin outer circumference, vibration energy can be confined in the crystal piece and unnecessary vibration can be suppressed. However, in order to form the quartz piece into a convex shape, there is a problem that processing is troublesome and costly.

そこで、特許文献1では、水晶片は平板状のままで、両主面に形成される励振電極それぞれの縁に励振電極の厚さが漸減する傾斜部を形成することで、コンベックス形状の効果を生じさせて、水晶片の加工の手間及びコストを削減する旨が示されている。 Therefore, in Patent Document 1, the crystal piece remains flat, and an inclined portion in which the thickness of the excitation electrode gradually decreases is formed on the edge of each of the excitation electrodes formed on both main surfaces, thereby achieving the effect of the convex shape. It has been shown to be generated to reduce the labor and cost of processing the quartz piece.

特開2002−217675JP 2002-217675 特開2018−98592JP-A-2018-98592

一方、特許文献2には、特許文献1に開示された水晶振動子の構造、すなわち、水晶片の両両面に設ける励振電極それぞれが、縁に傾斜部を有したものであると、周波数調整のために励振電極をトリミングする際に傾斜部が消失して、振動エネルギーの損失が大きくなる場合があることが、記載されている(特許文献2の例えば図4、段落26等)。そして、その改善を図るため、水晶片の一方の主面に形成する第1励振電極は全体が一様な厚さのものとし、他方の主面に形成する第2励振電極は一定の厚さで形成される主厚部及び主厚部の周囲に形成され主厚部に接する部分から外に向かい厚さが徐々に薄くなる傾斜部を有するものとし、かつ、主厚部は第1励振電極の厚さよりも厚くする構造が記載されている。 On the other hand, in Patent Document 2, the structure of the crystal oscillator disclosed in Patent Document 1, that is, the excitation electrodes provided on both sides of the crystal piece have inclined portions at the edges, and the frequency is adjusted. Therefore, it is described that the inclined portion may disappear when the excitation electrode is trimmed, resulting in a large loss of vibration energy (Patent Document 2, for example, FIG. 4, paragraph 26, etc.). In order to improve this, the first excitation electrode formed on one main surface of the quartz piece has a uniform thickness as a whole, and the second excitation electrode formed on the other main surface has a constant thickness. It is assumed that there is a main thick portion formed by and an inclined portion formed around the main thick portion and the thickness gradually decreases outward from the portion in contact with the main thick portion, and the main thick portion is the first excitation electrode. The structure to make it thicker than the thickness of is described.

この特許文献2に開示された水晶振動子は、第1励振電極側を周波数調整することによって、周波数調整をしても振動損失の悪化の程度を軽減できるものであった。
しかしながら、特許文献2は、具体的な周波数及び大きさのATカット水晶振動子に関する適正構造の言及は、必ずしも満足のゆくものではなかった。
この出願は上記の点に鑑みなされたものであり、従って、この出願の目的は、一様な厚みの第1励振電極と、外周付近に傾斜部を持つ第2励振電極と、を有したATカット水晶振動子において、個別の周波数において好ましい具体的な構造を提供することにある。
The crystal oscillator disclosed in Patent Document 2 can reduce the degree of deterioration of vibration loss even if the frequency is adjusted by adjusting the frequency on the first excitation electrode side.
However, in Patent Document 2, reference to an appropriate structure relating to an AT-cut crystal unit having a specific frequency and size is not always satisfactory.
This application was made in view of the above points, and therefore, the purpose of this application is to have an AT having a first excitation electrode having a uniform thickness and a second excitation electrode having an inclined portion near the outer periphery. It is an object of the present invention to provide a specific structure preferable in individual frequencies in a cut crystal unit.

この目的の達成を図るため、この発明のATカットの水晶振動子によれば、パッケージと、該パッケージに内蔵されていて平板かつ平面形状が矩形のATカットの水晶片と、該水晶片の主面の一方の面に設けられ厚さが一様な第1励振電極と、前記主面の他方の面に設けられ外周付近が傾斜部となっていて該傾斜部以外は一様な厚みの主圧部となっている前記第1励振電極の厚みより厚い水晶振動子において、
前記水晶片は、水晶のX軸方向を長辺とし、水晶のZ′方向を短辺とし、発振周波数が基本波で50MHzの水晶片であり、
前記第1励振電極及び第2励振電極の質量/水晶の質量の比を5.0%とし、前記第1励振電極及び第2励振電極による、前記水晶片の水晶Z′軸方向の閉じ込め係数を、4.7〜5.6としてあるか、
又は、前記第1励振電極及び第2励振電極の質量/水晶の質量の比を5.4%とし、前記第1励振電極及び第2励振電極による、前記水晶片の水晶Z′軸方向の閉じ込め係数を、4.9〜5.5としてあるか、
又は、前記第1励振電極及び第2励振電極の質量/水晶の質量の比を5.9%とし、前記第1励振電極及び第2励振電極による、前記水晶片の水晶Z′軸方向の閉じ込め係数を、5.2〜5.7としてあり、
前記傾斜部の幅を、前記水晶片で生じる屈曲モードの振動の波長λに対し1〜2.5λの寸法としてあり、
前記第1励振電極及び第2励振電極各々は、前記水晶片の長辺方向を長軸、前記水晶片の短辺方向を短軸とする楕円形状としてあり、かつ、長軸長さ/短軸長さ=1.265±10%としてあること
を特徴とする。
In order to achieve this object, according to the AT-cut crystal unit of the present invention, a package, an AT-cut crystal piece contained in the package, which is flat and has a rectangular planar shape, and a main crystal piece of the crystal piece. The first excitation electrode provided on one surface of the surface and having a uniform thickness, and the main surface provided on the other surface of the main surface and having an inclined portion near the outer periphery and having a uniform thickness other than the inclined portion. In a crystal oscillator that is thicker than the thickness of the first excitation electrode that is the pressing part,
The crystal piece is a crystal piece having a long side in the X-axis direction of the crystal, a short side in the Z'direction of the crystal, and an oscillation frequency of 50 MHz as a fundamental wave.
The mass ratio of the first excitation electrode and the second excitation electrode / the mass of the crystal is 5.0%, and the confinement coefficient of the crystal piece in the crystal Z'axis direction by the first excitation electrode and the second excitation electrode is set. Is it 4.7 to 5.6?
Alternatively, the mass ratio of the mass of the first excitation electrode and the second excitation electrode / the mass of the crystal is set to 5.4%, and the crystal piece is confined in the crystal Z'axis direction by the first excitation electrode and the second excitation electrode. Is the coefficient set to 4.9 to 5.5?
Alternatively, the mass ratio of the mass of the first excitation electrode and the second excitation electrode / the mass of the crystal is set to 5.9%, and the crystal piece is confined in the crystal Z'axis direction by the first excitation electrode and the second excitation electrode. The coefficient is set to 5.2 to 5.7,
The width of the inclined portion has a dimension of 1 to 2.5 λ with respect to the wavelength λ of the vibration in the bending mode generated in the crystal piece.
Each of the first excitation electrode and the second excitation electrode has an elliptical shape with the long side direction of the crystal piece as the major axis and the short side direction of the crystal piece as the minor axis, and has a major axis length / minor axis. The length is 1.265 ± 10%.

なお、この発明を実施するに当たり、前記水晶片は、水晶のX軸方向の寸法をL1、水晶のZ′軸方向の寸法をW1、厚みをtと表したとき、L1/t≧65、W1/t≧42を満たす水晶片とすることが好ましい。例えば、長辺寸法L1が2.1±0.1mm、短辺寸法W1が1.348±0.1mmの水晶片は、L1/t=65、W1/t=42であり、本発明で使用可能な水晶片の一例である。
また、前記水晶片の発振周波数が基本波で50MHzとは、50MHz±5MHzの周波数帯、より好ましくは50MHz±3MHzの周波数帯も含む。このような周波数帯についても、本発明の設計思想は適用できる。
また、上記の閉じ込め係数とは、n(We/βz・tq)√Δで決まる値である。ここで、nは水晶振動子の振動次数(例えば基本波であれば1)、Weは励振電極の水晶結晶軸のZ′方向の寸法、βzは水晶結晶軸のZ′方向の異方性係数1.538、tqは水晶片の厚みある。また、Δは、励振電極の質量/水晶の質量で決まる値であり、具体的には、(2ρe・te/ρq・tq)で求まる値である。ここで、ρqは水晶の密度、tqは水晶の厚み、ρeは励振電極の密度、teは励振電極の厚みである。
In carrying out the present invention, the crystal piece has L1 / t ≧ 65 and W1 when the dimension of the crystal in the X-axis direction is L1, the dimension of the crystal in the Z'axis direction is W1, and the thickness is t. It is preferable that the crystal piece satisfies / t ≧ 42. For example, a crystal piece having a long side dimension L1 of 2.1 ± 0.1 mm and a short side dimension W1 of 1.348 ± 0.1 mm has L1 / t = 65 and W1 / t = 42, and is used in the present invention. This is an example of a possible crystal piece.
Further, the oscillation frequency of the crystal piece is 50 MHz, which is a fundamental wave, and includes a frequency band of 50 MHz ± 5 MHz, more preferably a frequency band of 50 MHz ± 3 MHz. The design concept of the present invention can be applied to such a frequency band as well.
The confinement coefficient is a value determined by n (We / βz · tq) √Δ. Here, n is the vibration order of the crystal oscillator (for example, 1 for the fundamental wave), We is the dimension of the quartz crystal axis of the excitation electrode in the Z'direction, and βz is the anisotropy coefficient of the crystal crystal axis in the Z'direction. 1.538 and tq are the thickness of the crystal piece. Further, Δ is a value determined by the mass of the excitation electrode / the mass of the crystal, and specifically, is a value obtained by (2ρe · te / ρq · tq). Here, ρq is the density of the crystal, tq is the thickness of the crystal, ρe is the density of the excitation electrode, and te is the thickness of the excitation electrode.

なお、上記の発明において、長軸長さ/短軸長さ=1.265±10%とした理由は、ATカット水晶片の異方性係数比(X軸方向:1.945、Z′軸方向:1.538の比=1.945/1.538≒1.265)と、その許容度±10%とに基づく。なお、異方性係数については、例えば文献「弾性波デバイス技術(株オーム社2014年版)、pp。183−185」等に記載されているので、説明は省略する。
また、上記の各発明を実施するに当たり、パッケージとしては、外形寸法でいって長辺が3.2mm、短辺が2.5mmのセラミック製のパッケージ、いわゆる3225サイズのセラミックパッケージが好ましい。ただし、長辺、短辺いずれもパッケージの一般的な公差である±0.2mmは許容される。
また、第1励振電極及び第2励振電極の質量/水晶の質量の比を示した上記値は、それぞれの値に対し±0.1%は、本発明に含まれる。
In the above invention, the reason why the major axis length / minor axis length = 1.265 ± 10% is that the anisotropy coefficient ratio of the AT-cut crystal piece (X-axis direction: 1.945, Z'axis). Direction: 1.538 ratio = 1.945 / 1.538≈1.265) and its tolerance ± 10%. The anisotropy coefficient is described in, for example, the document "Elastic Wave Device Technology (Ohmsha 2014 Edition), pp. 183-185", and thus the description thereof will be omitted.
Further, in carrying out each of the above inventions, as the package, a ceramic package having a long side of 3.2 mm and a short side of 2.5 mm in terms of external dimensions, that is, a so-called 3225 size ceramic package is preferable. However, ± 0.2 mm, which is a general tolerance of the package, is allowed for both the long side and the short side.
Further, the above-mentioned value showing the mass ratio of the mass of the first excitation electrode and the mass of the second excitation electrode / the mass of the crystal is ± 0.1% with respect to each value, which is included in the present invention.

本発明の水晶振動子によれば、周波数が50MHz付近で、かつ、一様な厚みの第1励振電極と、外周付近に傾斜部を持つ第2励振電極とを有した水晶振動子において、不要振動を抑えることができると共に周波数調整の際の振動エネルギーの損失を防ぐことができる。 According to the crystal oscillator of the present invention, it is unnecessary in a crystal oscillator having a first excitation electrode having a frequency of around 50 MHz and a uniform thickness and a second excitation electrode having an inclined portion near the outer periphery. Vibration can be suppressed and loss of vibration energy during frequency adjustment can be prevented.

図1(A)は実施形態の水晶振動子10を説明する平面図、図1(B)は実施形態の水晶振動子10を説明する断面図であって、図1(A)のI−I線に沿う断面図である。1 (A) is a plan view for explaining the crystal oscillator 10 of the embodiment, FIG. 1 (B) is a cross-sectional view for explaining the crystal oscillator 10 of the embodiment, and FIG. It is a cross-sectional view along the line. 図2(A)は実施形態の水晶振動子10の励振電極における傾斜部を説明する断面図、図2(B)は楕円電極を説明する平面図である。FIG. 2A is a cross-sectional view illustrating an inclined portion of the excitation electrode of the crystal unit 10 of the embodiment, and FIG. 2B is a plan view illustrating an elliptical electrode. 実施例1のシミュレーション結果を説明する図である。It is a figure explaining the simulation result of Example 1. FIG. 実施例2のシミュレーション結果を説明する図である。It is a figure explaining the simulation result of Example 2. FIG. 実施例3のシミュレーション結果を説明する図である。It is a figure explaining the simulation result of Example 3. FIG.

以下、図面を参照してこの発明の実施形態について説明する。なお、説明に用いる各図はこれら発明を理解できる程度に概略的に示してあるにすぎない。また、説明に用いる各図において、同様な構成成分については同一の番号を付して示し、その説明を省略する場合もある。また、以下の実施形態中で述べる形状、寸法、材質等はこの発明の範囲内の好適例に過ぎない。従って、本発明が以下の実施形態のみに限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the figures used in the description are merely schematic to the extent that these inventions can be understood. Further, in each of the figures used for explanation, similar constituent components may be indicated with the same number, and the description thereof may be omitted. Further, the shapes, dimensions, materials and the like described in the following embodiments are merely preferable examples within the scope of the present invention. Therefore, the present invention is not limited to the following embodiments.

1.水晶振動子の構造
先ず、図1(A)及び(B)を参照して実施形態の水晶振動子10の構造について説明する。
実施形態の水晶振動子10は、パッケージ11、ATカット水晶片13、第1励振電極15及び第2励振電極17を備えている。
パッケージ11は、この例の場合、セラミック製のパッケージであって、AT水晶片を実装する凹部11aを有したものである。凹部11aの周囲は土手部11bとなっている。このセラミック製パッケージ11では、蓋部材(図示を省略)を土手11b部に、シーム封止、ガラス封止、金錫封止等の任意好適な方法によって接合することによって、水晶片11を封止できる。なお、後述するシミュレーションで用いた水晶片13の大きさを考慮すると、パッケージ11の外形寸法は、長辺L0が約3.2mm、短辺W0が約2.5mmの、いわゆる3225サイズが良い。
AT水晶片13は、平板かつ平面形状が矩形のもので、周波数に応じた厚みを有したものである。なお、ATカット水晶片自体は公知のものなので、その説明を省略する。
このATカット水晶片11の一方の主面に、第1励振電極15を設けてあり。他方の主面に、第2励振電極17を設けてある。これら電極15,17は例えばクロム膜と金膜との積層膜で構成できる。
第1励振電極15は、厚さが一様となっている。第2励振電極17は、図1(B)に示したように、外周付近が、水晶片の中央側から縁に向かって厚さが減じている傾斜部17aとなっていて、傾斜部17a以外は一様な厚みの主圧部17bとなっている。第2励振電極17の主厚部17bの厚みは、第1励振電極15の厚みより厚くなっている。
そして、この実施形態の水晶振動子10は、水晶片13の周波数に応じて、以下のような構造となっている。
1. 1. Structure of Crystal Oscillator First, the structure of the crystal oscillator 10 of the embodiment will be described with reference to FIGS. 1 (A) and 1 (B).
The crystal oscillator 10 of the embodiment includes a package 11, an AT-cut crystal piece 13, a first excitation electrode 15, and a second excitation electrode 17.
In the case of this example, the package 11 is a ceramic package and has a recess 11a for mounting an AT crystal piece. The circumference of the recess 11a is a bank portion 11b. In this ceramic package 11, the crystal piece 11 is sealed by joining a lid member (not shown) to the bank 11b by any suitable method such as seam sealing, glass sealing, and gold tin sealing. can. Considering the size of the crystal piece 13 used in the simulation described later, the external dimensions of the package 11 are preferably the so-called 3225 size, in which the long side L0 is about 3.2 mm and the short side W0 is about 2.5 mm.
The AT crystal piece 13 is a flat plate and a rectangular flat surface, and has a thickness corresponding to a frequency. Since the AT-cut quartz piece itself is known, the description thereof will be omitted.
A first excitation electrode 15 is provided on one main surface of the AT-cut crystal piece 11. A second excitation electrode 17 is provided on the other main surface. These electrodes 15 and 17 can be composed of, for example, a laminated film of a chromium film and a gold film.
The first excitation electrode 15 has a uniform thickness. As shown in FIG. 1 (B), the second excitation electrode 17 has an inclined portion 17a whose thickness decreases from the center side of the crystal piece toward the edge in the vicinity of the outer periphery thereof, except for the inclined portion 17a. Is a main pressure portion 17b having a uniform thickness. The thickness of the main thick portion 17b of the second excitation electrode 17 is thicker than the thickness of the first excitation electrode 15.
The crystal oscillator 10 of this embodiment has the following structure according to the frequency of the crystal piece 13.

当該水晶片13は、水晶のX軸方向を長辺とし、水晶のZ′方向を短辺とし、発振周波数が基本波で50MHzの水晶片となっている。
さらに、第1励振電極15及び第2励振電極17の質量/水晶片13の質量の比を5.0%とし、第1励振電極及び第2励振電極による、水晶片の水晶Z′軸方向の閉じ込め係数を、4.7〜5.6としてある。
又は、第1励振電極15及び第2励振電極17の質量/水晶の質量の比を5.4%とし、第1励振電極15及び第2励振電極17による、水晶片の水晶Z′軸方向の閉じ込め係数を、4.9〜5.5としてある。
又は、第1励振電極15及び第2励振電極17の質量/水晶の質量の比を5.9%とし、第1励振電極15及び第2励振電極17による、水晶片の水晶Z′軸方向の閉じ込め係数を、5.2〜5.7としてある。
さらに、傾斜部17の幅Wk(図2(A)参照)を、水晶片13で生じる屈曲モードの振動の波長λに対し1〜2.5λの寸法としてある。
さらに、第1励振電極15及び第2励振電極17各々は、水晶片13の長辺方向を長軸、水晶片13の短辺方向を短軸とする楕円形状としてあり、かつ、長軸長さLa/短軸長さWa=1.265±10%としてある。
ここで、長軸長さLa、短軸長さWaは、この例の場合は、傾斜部17の中間点同士を結んだ長さと定義している(図2(B)参照)。
なお、閉じ込め係数と、長軸長さLa/短軸長さWa=1.265±10%とについては、上記の「課題を解決するための手段の項」にて説明したものである。
The crystal piece 13 is a crystal piece having a long side in the X-axis direction of the crystal, a short side in the Z'direction of the crystal, and an oscillation frequency of 50 MHz as a fundamental wave.
Further, the mass ratio of the mass of the first excitation electrode 15 and the second excitation electrode 17 / the mass of the crystal piece 13 is set to 5.0%, and the crystal Z'axis direction of the crystal piece by the first excitation electrode and the second excitation electrode is used. The confinement coefficient is set to 4.7 to 5.6.
Alternatively, the mass ratio of the mass of the first excitation electrode 15 and the second excitation electrode 17 / the mass of the crystal is set to 5.4%, and the first excitation electrode 15 and the second excitation electrode 17 are used in the crystal Z'axis direction of the crystal piece. The confinement coefficient is set to 4.9 to 5.5.
Alternatively, the mass ratio of the mass of the first excitation electrode 15 and the second excitation electrode 17 / the mass of the crystal is set to 5.9%, and the first excitation electrode 15 and the second excitation electrode 17 are used in the crystal Z'axis direction of the crystal piece. The confinement coefficient is set to 5.2 to 5.7.
Further, the width Wk of the inclined portion 17 (see FIG. 2A) is set to have a dimension of 1 to 2.5 λ with respect to the wavelength λ of the vibration in the bending mode generated in the crystal piece 13.
Further, each of the first excitation electrode 15 and the second excitation electrode 17 has an elliptical shape with the long side direction of the crystal piece 13 as the major axis and the short side direction of the crystal piece 13 as the minor axis, and has a major axis length. La / minor axis length Wa = 1.265 ± 10%.
Here, the major axis length La and the minor axis length Wa are defined as the lengths connecting the midpoints of the inclined portions 17 in this example (see FIG. 2B).
The confinement coefficient and the major axis length La / minor axis length Wa = 1.265 ± 10% have been described in the above-mentioned "Means for Solving Problems".

2.シミュレーション及びその結果
上記の実施形態の水晶振動子10について、以下に実施例1〜実施例3として示す各種条件による有限要素法によるシミュレーションを行った。なお、これらのシミュレーションでは、図2(A)に示したように、傾斜部17aが、第1部分17aa、第2部分17ab及び第3部分17acの階段状の3つの部分からなる傾斜部を持つモデルを用いた。
また、傾斜部17aの幅Wkを75μmとした。この75μmとは、50MHzの水晶片で生じる屈曲モードの不要信号の波長λの1.4倍に相当する寸法である。
2. Simulation and Results The crystal oscillator 10 of the above embodiment was simulated by the finite element method under various conditions shown in Examples 1 to 3 below. In these simulations, as shown in FIG. 2A, the inclined portion 17a has an inclined portion composed of three stepped portions of a first portion 17aa, a second portion 17ab, and a third portion 17ac. A model was used.
Further, the width Wk of the inclined portion 17a was set to 75 μm. This 75 μm is a dimension corresponding to 1.4 times the wavelength λ of the unnecessary signal in the bending mode generated in the crystal piece of 50 MHz.

なお、シミュレーションで用いた水晶片の大きさであるが、長辺寸法L1が2.1mm、短辺寸法W1が1.348mmである。もちろん、水晶片の大きさはこれらの例に限られない。例えば、水晶片の長辺寸法L1、短辺寸法W1が上記より大きければ、厚みtに対するL1/t、W1/t、すなわち辺比が水晶振動子の特性に有利になるので、水晶片は上記より大きくても良い。 Regarding the size of the crystal piece used in the simulation, the long side dimension L1 is 2.1 mm and the short side dimension W1 is 1.348 mm. Of course, the size of the crystal piece is not limited to these examples. For example, if the long side dimension L1 and the short side dimension W1 of the crystal piece are larger than the above, L1 / t and W1 / t with respect to the thickness t, that is, the side ratio is advantageous for the characteristics of the crystal oscillator. It may be larger.

また、実施例1〜実施例3各々のモデルの第1部分17aaの幅Wka、第2部分17abの幅Wkb及び第3部分17acの幅Wkc(それぞれ図2(A)参照)は、それぞれ、傾斜部の幅Wkの3分の1の寸法とした。
第1部分17aaの厚さt1、第2部分17abの厚さt2及び第3部分17acの厚さt3(それぞれ図2(A)参照)は、それぞれ、主厚部17bの厚さtの4分の1とした。
また、実施例1のモデルは、第2励振電極17の主厚部17bの厚さを110nmとし、実施例2のモデルは、第2励振電極17の主厚み部17bの厚さを120nmとし、実施例3のモデルは、第2励振電極17の主厚部17bの厚さを130nmとした。
そして、実施例1〜実施例3のいずれのモデルも、第1励振電極15の厚さは、第2励振電極17の主厚部17bの厚さより30nm薄くした。第1励振電極の膜厚及び第2励振用電極の膜厚を上記の値としたのは、電極の質量/水晶片の質量の比を、本願でいう5.0%や、5.4%等にするためである。なお、第1励振電極の膜厚を第2励振用電極の膜厚より30nm薄くしたが、これは一例であり、薄くする程度はこれに限られない。第1励振電極が膜として成立する範囲までさらに薄くしても良い。ただし、周波数調整ができなくなる程度まで薄い場合は、本発明の範囲外である。
Further, the width Wka of the first portion 17aa, the width Wkb of the second portion 17ab, and the width Wkc of the third portion 17ac (see FIG. 2A, respectively) of each of the models of Examples 1 to 3 are inclined. The size was set to one-third of the width Wk of the part.
The thickness t1 of the first portion 17aa, the thickness t2 of the second portion 17ab, and the thickness t3 of the third portion 17ac (see FIG. 2A, respectively) are four minutes of the thickness t of the main thickness portion 17b, respectively. It was set to 1.
Further, in the model of Example 1, the thickness of the main thickness portion 17b of the second excitation electrode 17 is 110 nm, and in the model of Example 2, the thickness of the main thickness portion 17b of the second excitation electrode 17 is 120 nm. In the model of Example 3, the thickness of the main thickness portion 17b of the second excitation electrode 17 was set to 130 nm.
In each of the models of Examples 1 to 3, the thickness of the first excitation electrode 15 was 30 nm thinner than the thickness of the main thick portion 17b of the second excitation electrode 17. The film thickness of the first excitation electrode and the film thickness of the second excitation electrode were set to the above values, because the ratio of the mass of the electrode to the mass of the crystal piece was 5.0% or 5.4% in the present application. This is to make it equal. The film thickness of the first excitation electrode was reduced by 30 nm from the film thickness of the second excitation electrode, but this is an example, and the degree of thinning is not limited to this. It may be further thinned to the extent that the first excitation electrode is formed as a film. However, if the frequency is so thin that the frequency cannot be adjusted, it is outside the scope of the present invention.

上記の実施例1のシミュレーションモデルについて、表1に示したように励振電極の楕円形状の長軸及び短軸寸法を振ることで、閉じ込め係数が異なる6種類のモデルを構成し、それらモデルの第1励振電極15の膜厚を減じた場合、すなわち水晶振動子の周波数調整によって第1励振電極15がアルゴンイオンなどによって削られた場合の、当該水晶振動子での損失(1/Q)を、有限要素法によって算出した。 With respect to the simulation model of Example 1 above, by swinging the elliptical major axis and minor axis dimensions of the excitation electrode as shown in Table 1, six types of models having different confinement coefficients are constructed, and the first of these models The loss (1 / Q) in the crystal oscillator when the film thickness of the excitation electrode 15 is reduced, that is, when the first excitation electrode 15 is scraped by argon ions or the like by adjusting the frequency of the crystal oscillator, is determined. Calculated by the finite element method.

また、上記の実施例2のシミュレーションモデルについて、表2に示したように励振電極の楕円形状の長軸および短軸寸法を振ることで、閉じ込め係数が異なる6種類のモデルを構成し、それらモデルの第1励振電極15の膜厚を減じた場合、すなわち水晶振動子の周波数調整によって第1励振電極15がアルゴンイオンなどによって削られた場合の、当該水晶振動子での損失(1/Q)を、有限要素法によって算出した。 Further, with respect to the simulation model of the above-mentioned Example 2, six types of models having different confinement coefficients are constructed by oscillating the elliptical major axis and minor axis dimensions of the excitation electrode as shown in Table 2, and these models. Loss (1 / Q) in the crystal oscillator when the film thickness of the first excitation electrode 15 is reduced, that is, when the first excitation electrode 15 is scraped by argon ions or the like by adjusting the frequency of the crystal oscillator. Was calculated by the finite element method.

また、上記の実施例3のシミュレーションモデルについて、表3に示したように励振電極の楕円形状の長軸および短軸の寸法を振ることで、閉じ込め係数が異なる6種類のモデルを構成し、それらのモデルの第1励振電極15の膜厚を減じた場合、すなわち水晶振動子の周波数調整によって第1励振電極15がアルゴンイオンなどによって削られた場合の、当該水晶振動子での損失(1/Q)を、有限要素法によって算出した。 Further, with respect to the simulation model of the above-mentioned Example 3, six types of models having different confinement coefficients are constructed by oscillating the dimensions of the elliptical major axis and the minor axis of the excitation electrode as shown in Table 3. When the film thickness of the first excitation electrode 15 of the model is reduced, that is, when the first excitation electrode 15 is scraped by argon ions or the like by adjusting the frequency of the crystal oscillator, the loss (1 /) in the crystal oscillator. Q) was calculated by the finite element method.

Figure 2021158423
Figure 2021158423

Figure 2021158423
Figure 2021158423

Figure 2021158423
Figure 2021158423

図3は、表1に示した6種類の試料について、横軸に第1励振電極15の周波数調整で減った膜厚(nm)をとり、縦軸にその際の水晶振動子の損失(1/Q)をとって、両者の関係を示した図である。
図3、表1から、周波数が50MHzの場合で、励振電極の質量/水晶片の質量の比を5.0%とした場合、短軸長W2を1.048〜1.245mmすなわち閉じ込め係数を4.7〜5.6とすると、第1励振電極15の膜厚を周波数調整によって減じても、損失は小さく抑えられることが分かる。
In FIG. 3, for the six types of samples shown in Table 1, the horizontal axis represents the film thickness (nm) reduced by the frequency adjustment of the first excitation electrode 15, and the vertical axis represents the loss of the crystal oscillator (1). / Q) is taken to show the relationship between the two.
From FIG. 3 and Table 1, when the frequency is 50 MHz and the ratio of the mass of the excitation electrode to the mass of the crystal piece is 5.0%, the minor axis length W2 is 1.048 to 1.245 mm, that is, the confinement coefficient is set. When it is set to 4.7 to 5.6, it can be seen that the loss can be suppressed to a small value even if the film thickness of the first excitation electrode 15 is reduced by frequency adjustment.

図4は、表2に示した6種類の試料について、横軸に第1励振電極15の周波数調整で減った膜厚(nm)をとり、縦軸にその際の水晶振動子の損失(1/Q)をとって、両者の関係を示した図である。
図4、表2から、周波数が50MHzの場合で、励振電極の質量/水晶片の質量の比を5.4%とした場合、短軸長W2を1.048〜1.166mmすなわち閉じ込め係数を4.9〜5.5とすると、第1励振電極15の膜厚を周波数調整によって減じても、損失は小さく抑えられることが分かる。
In FIG. 4, for the six types of samples shown in Table 2, the horizontal axis represents the film thickness (nm) reduced by the frequency adjustment of the first excitation electrode 15, and the vertical axis represents the loss of the crystal oscillator (1). / Q) is taken to show the relationship between the two.
From FIG. 4 and Table 2, when the frequency is 50 MHz and the ratio of the mass of the excitation electrode to the mass of the crystal piece is 5.4%, the minor axis length W2 is 1.048 to 1.166 mm, that is, the confinement coefficient is set. When it is set to 4.9 to 5.5, it can be seen that the loss can be suppressed to a small value even if the film thickness of the first excitation electrode 15 is reduced by frequency adjustment.

図5は、表3に示した6種類の試料について、横軸に第1励振電極15の周波数調整で減った膜厚(nm)をとり、縦軸にその際の水晶振動子の損失(1/Q)をとって、両者の関係を示した図である。
図5、表3から、周波数が50MHzの場合で、励振電極の質量/水晶片の質量の比を5.9%とした場合、短軸長W2を1.048〜1.166mmすなわち閉じ込め係数が5.2〜5.7とすると、第1励振電極15の膜厚を周波数調整によって減じても、損失は小さく抑えられることが分かる。
In FIG. 5, for the six types of samples shown in Table 3, the horizontal axis represents the film thickness (nm) reduced by the frequency adjustment of the first excitation electrode 15, and the vertical axis represents the loss of the crystal oscillator (1). / Q) is taken to show the relationship between the two.
From FIG. 5 and Table 3, when the frequency is 50 MHz and the ratio of the mass of the excitation electrode to the mass of the crystal piece is 5.9%, the minor axis length W2 is 1.048 to 1.166 mm, that is, the confinement coefficient is When it is set to 5.2 to 5.7, it can be seen that the loss can be suppressed to a small value even if the film thickness of the first excitation electrode 15 is reduced by frequency adjustment.

以上、本発明の実施形態について説明したが、本発明は上記の例に限られない。例えば、上記実施形態における傾斜部の段差は4段であるが、段差は4段に限らず、これよりも多くても少なくとも良い。また、上記の実施形態は様々に組み合わせて実施されても良い。
また、シミュレーションによる実施例として、周波数が50MHz帯で長辺寸法L1が2.1mm、短辺寸法W1が1.348mmの水晶片の例を挙げたが、パッケージ寸法がいわゆる3225サイズに収納できる対応として、長辺寸法L1が2〜2.4mm、短辺寸法W1が1.2〜1.5mmまでの範囲の水晶片においても同様の効果を確認している。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above examples. For example, the step of the inclined portion in the above embodiment is four steps, but the step is not limited to four steps, and the step may be at least more than this. Moreover, the above-described embodiment may be implemented in various combinations.
Further, as an example by simulation, an example of a crystal piece having a frequency of 50 MHz, a long side dimension L1 of 2.1 mm, and a short side dimension W1 of 1.348 mm was given, but the package size can be stored in the so-called 3225 size. As a result, the same effect has been confirmed for crystal pieces having a long side dimension L1 of 2 to 2.4 mm and a short side dimension W1 of 1.2 to 1.5 mm.

10:実施形態の水晶振動子 11:パッケージ
13:ATカット水晶片 15:第1励振電極
17:第2励振電極 17a:傾斜部
17aa:第1部分 17ab:第2部分
17ac:第3部分 17b:主圧部
10: Crystal oscillator of the embodiment 11: Package 13: AT cut crystal piece 15: First excitation electrode 17: Second excitation electrode 17a: Inclined portion 17aa: First part 17ab: Second part 17ac: Third part 17b: Main pressure part

Claims (4)

パッケージと、該パッケージに内蔵されていて平板かつ平面形状が矩形のATカットの水晶片と、該水晶片の主面の一方の面に設けられ厚さが一様な第1励振電極と、前記主面の他方の面に設けられ外周付近が傾斜部となっていて該傾斜部以外は一様な厚みの主圧部となっている第2励振電極と、を備え、前記主厚部の厚みが前記第1励振電極の厚みより厚い水晶振動子において、
前記水晶片は、水晶のX軸方向を長辺とし、水晶のZ′方向を短辺とし、発振周波数が基本波で50MHzの水晶片であり、
前記第1励振電極及び第2励振電極の質量/水晶の質量を5.0%とし、前記第1励振電極及び第2励振電極による、前記水晶片の水晶Z′軸方向の閉じ込め係数を、4.7〜5.6としてあり、
前記傾斜部の幅を、前記水晶片で生じる屈曲モードの振動の波長λに対し1〜2.5λの寸法としてあり、
前記第1励振電極及び第2励振電極各々は、前記水晶片の長辺方向を長軸、前記水晶片の短辺方向を短軸とする楕円形状としてあり、かつ、長軸長さ/短軸長さ=1.265±10%としてあること
を特徴とする水晶振動子。
A package, an AT-cut crystal piece that is flat and has a rectangular planar shape, and a first excitation electrode that is provided on one surface of the main surface of the crystal piece and has a uniform thickness. A second excitation electrode provided on the other surface of the main surface and having an inclined portion near the outer periphery and a main pressure portion having a uniform thickness other than the inclined portion is provided, and the thickness of the main thick portion is provided. Is thicker than the thickness of the first excitation electrode,
The crystal piece is a crystal piece having a long side in the X-axis direction of the crystal, a short side in the Z'direction of the crystal, and an oscillation frequency of 50 MHz as a fundamental wave.
The mass of the first excitation electrode and the second excitation electrode / the mass of the crystal is 5.0%, and the confinement coefficient of the crystal piece in the crystal Z'axis direction by the first excitation electrode and the second excitation electrode is 4 It is set as .7 to 5.6.
The width of the inclined portion has a dimension of 1 to 2.5 λ with respect to the wavelength λ of the vibration in the bending mode generated in the crystal piece.
Each of the first excitation electrode and the second excitation electrode has an elliptical shape with the long side direction of the crystal piece as the major axis and the short side direction of the crystal piece as the minor axis, and has a major axis length / minor axis. A crystal oscillator characterized in that the length is 1.265 ± 10%.
パッケージと、該パッケージに内蔵されていて平板かつ平面形状が矩形のATカットの水晶片と、該水晶片の主面の一方の面に設けられ厚さが一様な第1励振電極と、前記主面の他方の面に設けられ外周付近が傾斜部となっていて該傾斜部以外は一様な厚みの主圧部となっている第2励振電極と、を備え、前記主厚部の厚みが前記第1励振電極の厚みより厚い水晶振動子において、
前記水晶片は、水晶のX軸方向を長辺とし、水晶のZ′方向を短辺とし、発振周波数が基本波で50MHzの水晶片であり、
前記第1励振電極及び第2励振電極の質量/水晶の質量を5.4%とし、前記第1励振電極及び第2励振電極による、前記水晶片の水晶Z′軸方向の閉じ込め係数を、4.9〜5.5としてあり、
前記傾斜部の幅を、前記水晶片で生じる屈曲モードの振動の波長λに対し1〜2.5λの寸法としてあり、
前記第1励振電極及び第2励振電極各々は、前記水晶片の長辺方向を長軸、前記水晶片の短辺方向を短軸とする楕円形状としてあり、かつ、長軸長さ/短軸長さ=1.265±10%としてあること
を特徴とする水晶振動子。
A package, an AT-cut crystal piece that is flat and has a rectangular planar shape, and a first excitation electrode that is provided on one surface of the main surface of the crystal piece and has a uniform thickness. A second excitation electrode provided on the other surface of the main surface and having an inclined portion near the outer periphery and a main pressure portion having a uniform thickness other than the inclined portion is provided, and the thickness of the main thick portion is provided. Is thicker than the thickness of the first excitation electrode,
The crystal piece is a crystal piece having a long side in the X-axis direction of the crystal, a short side in the Z'direction of the crystal, and an oscillation frequency of 50 MHz as a fundamental wave.
The mass of the first excitation electrode and the second excitation electrode / the mass of the crystal is 5.4%, and the confinement coefficient of the crystal piece in the crystal Z'axis direction by the first excitation electrode and the second excitation electrode is 4 It is set as .9 to 5.5,
The width of the inclined portion has a dimension of 1 to 2.5 λ with respect to the wavelength λ of the vibration in the bending mode generated in the crystal piece.
Each of the first excitation electrode and the second excitation electrode has an elliptical shape with the long side direction of the crystal piece as the major axis and the short side direction of the crystal piece as the minor axis, and has a major axis length / minor axis. A crystal oscillator characterized in that the length is 1.265 ± 10%.
パッケージと、該パッケージに内蔵されていて平板かつ平面形状が矩形のATカットの水晶片と、該水晶片の主面の一方の面に設けられ厚さが一様な第1励振電極と、前記主面の他方の面に設けられ外周付近が傾斜部となっていて該傾斜部以外は一様な厚みの主圧部となっている第2励振電極と、を備え、前記主厚部の厚みが前記第1励振電極の厚みより厚い水晶振動子において、
前記水晶片は、水晶のX軸方向を長辺とし、水晶のZ′方向を短辺とし、発振周波数が基本波で50MHzの水晶片であり、
前記第1励振電極及び第2励振電極の質量/水晶の質量を5.9%とし、前記第1励振電極及び第2励振電極による、前記水晶片の水晶Z′軸方向の閉じ込め係数を、5.2〜5.7としてあり、
前記傾斜部の幅を、前記水晶片で生じる屈曲モードの振動の波長λに対し1〜2.5λの寸法としてあり、
前記第1励振電極及び第2励振電極各々は、前記水晶片の長辺方向を長軸、前記水晶片の短辺方向を短軸とする楕円形状としてあり、かつ、長軸長さ/短軸長さ=1.265±10%としてあること
を特徴とする水晶振動子。
A package, an AT-cut crystal piece that is flat and has a rectangular planar shape, and a first excitation electrode that is provided on one surface of the main surface of the crystal piece and has a uniform thickness. A second excitation electrode provided on the other surface of the main surface and having an inclined portion near the outer periphery and a main pressure portion having a uniform thickness other than the inclined portion is provided, and the thickness of the main thick portion is provided. Is thicker than the thickness of the first excitation electrode,
The crystal piece is a crystal piece having a long side in the X-axis direction of the crystal, a short side in the Z'direction of the crystal, and an oscillation frequency of 50 MHz as a fundamental wave.
The mass of the first excitation electrode and the second excitation electrode / the mass of the crystal is 5.9%, and the confinement coefficient of the crystal piece in the crystal Z'axis direction by the first excitation electrode and the second excitation electrode is 5. It is as .2 to 5.7,
The width of the inclined portion has a dimension of 1 to 2.5 λ with respect to the wavelength λ of the vibration in the bending mode generated in the crystal piece.
Each of the first excitation electrode and the second excitation electrode has an elliptical shape with the long side direction of the crystal piece as the major axis and the short side direction of the crystal piece as the minor axis, and has a major axis length / minor axis. A crystal oscillator characterized in that the length is 1.265 ± 10%.
前記水晶片は、長辺寸法が2〜2.4mm、短辺寸法W1が1.2〜1.5mmから選ばれる大きさであり、前記パッケージは外形の長辺寸法が3.2±0.2mm及び短辺寸法が2.5±0.2mmであることを特徴とする請求項1〜3のいずれか1項に記載の水晶振動子。 The crystal piece has a long side dimension of 2 to 2.4 mm and a short side dimension W1 of 1.2 to 1.5 mm, and the package has an outer long side dimension of 3.2 ± 0. The crystal transducer according to any one of claims 1 to 3, wherein the crystal transducer has a short side dimension of 2.5 ± 0.2 mm and 2 mm.
JP2020054190A 2020-03-25 2020-03-25 Crystal oscillator Active JP7362526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020054190A JP7362526B2 (en) 2020-03-25 2020-03-25 Crystal oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020054190A JP7362526B2 (en) 2020-03-25 2020-03-25 Crystal oscillator

Publications (2)

Publication Number Publication Date
JP2021158423A true JP2021158423A (en) 2021-10-07
JP7362526B2 JP7362526B2 (en) 2023-10-17

Family

ID=77918823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020054190A Active JP7362526B2 (en) 2020-03-25 2020-03-25 Crystal oscillator

Country Status (1)

Country Link
JP (1) JP7362526B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007214941A (en) 2006-02-10 2007-08-23 Epson Toyocom Corp Piezoelectric vibration chip and piezoelectric device
JP6841678B2 (en) 2016-08-22 2021-03-10 日本電波工業株式会社 Crystal oscillator
JP6855227B2 (en) 2016-12-12 2021-04-07 日本電波工業株式会社 Piezoelectric vibrating pieces and piezoelectric devices
JP6791766B2 (en) 2017-01-17 2020-11-25 日本電波工業株式会社 Piezoelectric vibrating pieces and piezoelectric devices

Also Published As

Publication number Publication date
JP7362526B2 (en) 2023-10-17

Similar Documents

Publication Publication Date Title
JP5632627B2 (en) Quartz crystal
TWI707486B (en) Piezoelectric vibrating piece and piezoelectric device
JPWO2009020022A1 (en) Piezoelectric vibrator
JP2011205516A (en) Piezoelectric vibrating element and piezoelectric vibrator
JP2013258520A (en) Piezoelectric vibration piece and piezoelectric device
US8319404B2 (en) Surface-mountable quartz-crystal devices and methods for manufacturing same
JP2014127743A (en) Crystal oscillator
JP2012165367A (en) Piezoelectric vibrator and acoustic wave device
JP2018074267A (en) Piezoelectric vibration piece and piezoelectric device
JP4771070B2 (en) Piezoelectric vibrating piece and piezoelectric device
JP2011193436A (en) Tuning fork crystal resonator chip, tuning fork crystal resonator, and method of manufacturing the tuning fork crystal resonator chip
JP2006270465A (en) Method for adjusting frequency characteristics of piezoelectric vibrator
JP2021158423A (en) Crystal oscillator
JP2021158422A (en) Crystal oscillator
JP2021158532A (en) Crystal oscillator
TWI710149B (en) Crystal resonator
JP2017183808A (en) Crystal element and crystal device
JPH0257009A (en) Piezoelectric resonator
JP2007088691A (en) Piezoelectric vibration chip, piezoelectric device, and manufacturing method of them
JP6766879B2 (en) Frequency adjustment method for piezoelectric vibration device
US20180054181A1 (en) Crystal resonator
JP3543786B2 (en) Piezoelectric vibrating reed and method of manufacturing piezoelectric vibrator
JP2012065000A (en) Piezoelectric vibration piece, piezoelectric vibrator
JP4449482B2 (en) Piezoelectric vibrating piece, method for manufacturing piezoelectric vibrating piece, piezoelectric vibrator, and piezoelectric oscillator
JP7423231B2 (en) Manufacturing method of piezoelectric vibrating piece, piezoelectric vibrating piece and piezoelectric vibrator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231004

R150 Certificate of patent or registration of utility model

Ref document number: 7362526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150