JP2021157153A - Cell observation device and cell observation method - Google Patents

Cell observation device and cell observation method Download PDF

Info

Publication number
JP2021157153A
JP2021157153A JP2020060187A JP2020060187A JP2021157153A JP 2021157153 A JP2021157153 A JP 2021157153A JP 2020060187 A JP2020060187 A JP 2020060187A JP 2020060187 A JP2020060187 A JP 2020060187A JP 2021157153 A JP2021157153 A JP 2021157153A
Authority
JP
Japan
Prior art keywords
cell
cells
container
diameter
height position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020060187A
Other languages
Japanese (ja)
Other versions
JP7502606B2 (en
Inventor
徹 化生
Toru Kasei
徹 化生
茂雄 西田
Shigeo Nishida
茂雄 西田
大介 荒木
Daisuke Araki
大介 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibuya Corp
Original Assignee
Shibuya Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibuya Kogyo Co Ltd filed Critical Shibuya Kogyo Co Ltd
Priority to JP2020060187A priority Critical patent/JP7502606B2/en
Publication of JP2021157153A publication Critical patent/JP2021157153A/en
Application granted granted Critical
Publication of JP7502606B2 publication Critical patent/JP7502606B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Focusing (AREA)
  • Microscoopes, Condenser (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

To improve accuracy of a determination of a defective or non-defective cell, or a count of the number of cells.SOLUTION: A cell observation device 1 is provided with an objective lens 13 on a lower side of a stage 3, in which the objective lens 13 can ascend and descend by an elevation mechanism 14. As descending the objective lens 13 from a rise end to a descent end due to the elevation mechanism 14 by a given amount (a dimension), a cell C in a container 4 is photographed at each height position by imaging means 6. Then, control means 7 is configured to: obtain a length of an outer periphery of the cell C at each height position and a total sum value of the lengths thereof; and determine the height position where the total sum value is a minimum value as an in-focus position of the objective lens 13. Thereafter, the objective lens 13 is positioned at the height position obtained as the in-focus position by the elevation mechanism 14, and then, the cell C in the container 4 is photographed by the imaging means 6. As to the photographed cell C of the image, the control means 7 is configured to make a determination of a non-defective or defective cell, or count the number of cells C.SELECTED DRAWING: Figure 1

Description

本発明は細胞観察装置及び細胞観察方法に関し、より詳しくは、観察対象となる細胞の良否判定や細胞のカウントの精度を向上させることが可能な細胞観察装置及び細胞観察方法に関する。 The present invention relates to a cell observation device and a cell observation method, and more particularly to a cell observation device and a cell observation method capable of improving the quality determination of cells to be observed and the accuracy of cell counting.

従来、顕微鏡などの画像観察装置で細胞を観察する場合には、デジタルカメラなどの撮像手段で細胞を撮像し、該撮像された細胞の画像を画像処理してコントラストを判定することにより、オートフォーカス動作を行う装置が公知である(例えば特許文献1)。 Conventionally, when observing cells with an image observation device such as a microscope, the cells are imaged by an imaging means such as a digital camera, and the image of the captured cells is image-processed to determine the contrast, thereby autofocusing. A device that operates is known (for example, Patent Document 1).

特開2008−20498号公報Japanese Unexamined Patent Publication No. 2008-20298

しかしながら、上述したようなコントラストを判定するオートフォーカス動作を行う装置を用いて細胞の観察や細胞のカウントを行う場合には、作業者が目視でピントを合わせた位置とは撮像手段の焦点位置がずれてしまい細胞の良否判定や細胞のカウントに誤りが生じる場合があった。そのため、細胞培養の自動化が進まず、再生医療製品のコスト高を招く要因ともなって再生医療普及の妨げとなっており、適切な焦点位置を設定できる細胞観察装置と細胞観察方法が要望されていたものである。 However, when observing cells or counting cells using a device that performs an autofocus operation for determining contrast as described above, the focus position of the imaging means is the position that the operator visually focuses on. In some cases, the cells were misaligned, resulting in errors in cell quality judgment and cell counting. Therefore, the automation of cell culture has not progressed, which has hindered the spread of regenerative medicine as a factor that causes the cost of regenerative medicine products to increase, and there has been a demand for a cell observation device and a cell observation method that can set an appropriate focus position. It is a thing.

上述した事情に鑑み、請求項1に記載した本発明は、細胞が収容された容器が載置されるステージと、容器内の細胞を撮像する撮像手段と、上記ステージの高さ位置または上記撮像手段の焦点の高さ位置を変更する昇降手段と、上記撮像手段が撮像した画像における細胞を検出して、該検出された細胞に関する算出値の合計値を求める制御手段とを備え、
上記昇降手段によって上記ステージの高さ位置または上記撮像手段の焦点の高さ位置が変更されながら所定の高さ位置毎に上記撮像手段によって容器内の細胞が撮像され、
上記制御手段は、上記撮像手段が撮像した各高さ位置の画像における細胞に関する算出値の合計値を算定して、該合計値が極小値となる位置を上記撮像手段の合焦点位置と判定し、
上記昇降手段により、上記ステージに載置された容器を合焦点位置に位置させることを特徴とするものである。
また、請求項3に記載した本発明は、細胞が収容された容器が載置されるステージと、容器内の細胞を撮像する撮像手段と、上記ステージの高さ位置または上記撮像手段の焦点の高さ位置を変更する昇降手段と、上記撮像手段が撮像した画像における細胞を検出し、該検出された細胞の外周の長さ、細胞の外周の近似円の直径、細胞の外接円の直径、または細胞の内接円の直径のいずれかを算出する制御手段とを備え、
上記制御手段が算出した細胞の外周の長さ、細胞の外周の近似円の直径、細胞の外接円の直径、または細胞の内接円の直径のいずれかに基づいて上記撮像手段の焦点が容器内の細胞の高さ位置に合った合焦点位置が決定され、
上記昇降手段により、上記ステージに載置された容器が決定された合焦点位置に合わせられることを特徴とするものである。
さらに、請求項4に記載した本発明は、細胞が収容された容器の高さ位置または容器を撮像する撮像手段の焦点の高さ位置を変更して、所定の高さ位置毎に撮像手段によって容器内の細胞の画像を取得し、
取得した各細胞の画像内における細胞を検出し、該検出された細胞の外周長さ、細胞の外周の近似円の直径、細胞の外接円の直径、細胞の内接円の直径、または細胞の面積のいずれかの合計値を算定し、
該合計値が極小値となる高さ位置を上記撮像手段の焦点が容器内の細胞の位置に合った合焦点位置と判定することを特徴とするものである。
In view of the above circumstances, the present invention according to claim 1 comprises a stage on which a container containing cells is placed, an imaging means for imaging cells in the container, a height position of the stage, or the imaging. It is provided with an elevating means for changing the height position of the focal point of the means and a control means for detecting cells in the image captured by the imaging means and obtaining a total value of calculated values for the detected cells.
While the height position of the stage or the height position of the focal point of the imaging means is changed by the elevating means, the cells in the container are imaged by the imaging means at each predetermined height position.
The control means calculates the total value of the calculated values for the cells in the image of each height position imaged by the image pickup means, and determines the position where the total value becomes the minimum value as the in-focus position of the image pickup means. ,
It is characterized in that the container placed on the stage is positioned at the in-focus position by the elevating means.
Further, according to the third aspect of the present invention, there is a stage in which a container containing cells is placed, an imaging means for imaging cells in the container, and a height position of the stage or a focus of the imaging means. The elevating means for changing the height position and the cell in the image captured by the imaging means are detected, and the length of the outer circumference of the detected cell, the diameter of the approximate circle of the outer circumference of the cell, the diameter of the circumscribed circle of the cell, Alternatively, it is equipped with a control means for calculating any of the diameters of the inscribed circles of the cell.
The focus of the imaging means is the container based on any of the length of the outer circumference of the cell, the diameter of the approximate circle of the outer circumference of the cell, the diameter of the circumscribed circle of the cell, or the diameter of the inscribed circle of the cell calculated by the control means. The focus position is determined according to the height position of the cells inside.
The elevating means adjusts the container placed on the stage to a determined focusing position.
Further, in the present invention according to claim 4, the height position of the container in which the cells are housed or the height position of the focal point of the imaging means for imaging the container is changed, and the imaging means is used for each predetermined height position. Get an image of the cells in the container,
A cell is detected in the acquired image of each cell, and the outer circumference length of the detected cell, the diameter of the approximate circle of the outer circumference of the cell, the diameter of the circumscribed circle of the cell, the diameter of the inscribed circle of the cell, or the diameter of the cell Calculate the total value of any of the areas and
It is characterized in that the height position where the total value becomes the minimum value is determined as the in-focus position where the focus of the imaging means matches the position of the cells in the container.

このような構成によれば、適切なオートフォーカス機能を有する細胞観察装置及び細胞観察方法を提供することができ、細胞の良否判定や細胞のカウントの精度を向上させることができる。 According to such a configuration, it is possible to provide a cell observation device and a cell observation method having an appropriate autofocus function, and it is possible to improve the accuracy of cell quality determination and cell counting.

本発明の一実施例を示す縦断面図。The vertical sectional view which shows one Example of this invention. 図1のZ軸(上下方向)の異なる高さ位置で撮像手段が撮像した細胞の画像における細胞に関する算出値の合計値を示すグラフ。The graph which shows the total value of the calculated value about a cell in the image of the cell imaged by the imaging means at the different height positions of the Z axis (vertical direction) of FIG. 図1の撮像手段が撮影した細胞の画像と細胞に関する算出値との関係を示す図であり、図3(A)は細胞の外周の長さを算出値とする場合、図3(B)は近似円の直径を算出値とする場合、図3(C)は外接円の直径を算出値とする場合、図3(D)は内接円の直径を算出値とする場合、図3(E)は面積を算出値とする場合を示している。It is a figure which shows the relationship between the image of a cell photographed by the imaging means of FIG. 1 and the calculated value about a cell, and FIG. When the diameter of the approximate circle is the calculated value, FIG. 3 (C) is the calculated value of the diameter of the circumscribed circle, and FIG. 3 (D) is the calculated value of the diameter of the inscribed circle. ) Indicates the case where the area is used as the calculated value.

以下、図示実施例について本発明を説明すると、図1において1は細胞観察装置であり、この細胞観察装置1は実質的に顕微鏡と同じ構成からなり、無菌細胞培養システムとしてのアイソレータ2の隣接位置に配置されている。
細胞観察装置1と対向するアイソレータ2の壁面の一部には、アイソレータ2の内部と連通する観察部2Aが外方に向けて突設されている。この観察部2Aの底部にステージ3が水平に配置されており、ステージ3上には、観察対象となる容器4が載置されている。なお、容器4としては、上面が開口した皿状の血球計算盤を用いている。
アイソレータ2内に配置された図示しないロボットハンドまたは作業者がピペットを用いてアイソレータ2内で培養容器から細胞懸濁液を上記容器4内に供給するようになっており、該容器4内に収容された細胞Cを細胞観察装置1によって観察するようになっている。観察部2A、ステージ3及び容器4はガラス等の透明な材料からなり、ステージ3に載置された容器4内の細胞Cを細胞観察装置1によって観察することができる。
なお、細胞懸濁液を容器4に供給する前に、アイソレータ2内の培養容器にトリプシンなどの試液を加えても良く、また、細胞Cのカウントを行いやすくするために細胞懸濁液を容器4に供給する前に該細胞懸濁液に希釈したトリパンブルー液などの試液を加えても良い。
Hereinafter, the present invention will be described with reference to the illustrated examples. In FIG. 1, reference numeral 1 denotes a cell observation device, which has substantially the same configuration as a microscope, and is adjacent to an isolator 2 as a sterile cell culture system. Is located in.
An observation unit 2A communicating with the inside of the isolator 2 is projected outward from a part of the wall surface of the isolator 2 facing the cell observation device 1. The stage 3 is horizontally arranged on the bottom of the observation unit 2A, and the container 4 to be observed is placed on the stage 3. As the container 4, a dish-shaped hemocytometer having an open upper surface is used.
A robot hand or an operator (not shown) arranged in the isolator 2 uses a pipette to supply the cell suspension from the culture vessel into the container 4 in the isolator 2 and accommodates the cell suspension in the container 4. The cell C is observed by the cell observation device 1. The observation unit 2A, the stage 3 and the container 4 are made of a transparent material such as glass, and the cells C in the container 4 placed on the stage 3 can be observed by the cell observation device 1.
Before supplying the cell suspension to the container 4, a test solution such as trypsin may be added to the culture container in the isolator 2, and the cell suspension is placed in the container to facilitate counting of cells C. A test solution such as a diluted trypan blue solution may be added to the cell suspension before supplying to 4.

細胞観察装置1は、ステージ3上の容器4に向けて白色光源5から白色光L1を照射するとともに、白色光L1が照射された状態において容器4内の細胞Cを下方側から撮像手段6で撮像し、撮像手段6によって撮像された画像を基にして制御手段7が細胞Cの良否の判定や細胞Cの粒子数(個数)をカウントするようになっている。
ここで、細胞観察装置1の観察対象となる細胞Cとしては、iPS細胞やES細胞等の幹細胞、幹細胞から分化した細胞、生検などにより採取された細胞、及び採取された細胞が培養された細胞などを想定している。
細胞観察装置1は、細胞Cを収容した容器4が載置される上記ステージ3と、フレーム8と、フレーム8の上部に配置されて、上記ステージ3上の容器4内に向けて白色光L1を照射する白色光源5と、この白色光源5から照射された白色光L1をステージ3上の容器4へ案内する第1光学系11と、フレーム8の下部に配置されて容器4内の細胞Cを下方側から撮像する撮像手段6と、ステージ3の下方側の位置から撮像手段6の間に配置された第2光学系12と、第2光学系12の対物レンズ13を昇降させる昇降機構14と、白色光源5や昇降機構14等の作動を制御するとともに細胞Cの良否の判定や細胞Cの粒子数(個数)のカウントを行う制御手段7を備えている。
上記各構成部材が配置されたフレーム8は、図示しない水平移動機構15に支持されており、該水平移動機構15によってフレーム8全体が水平面における相互に直交するX方向とY方向に移動可能となっている。これにより、ステージ3を除いた細胞観察装置1全体が水平面のXY方向に移動可能となっており、撮像手段6がステージ3上の容器4を撮像する際の水平方向の位置の調整や観察領域の変更ができるようになっている。
The cell observation device 1 irradiates the white light L1 from the white light source 5 toward the container 4 on the stage 3, and in a state where the white light L1 is irradiated, the cells C in the container 4 are imaged from below by the imaging means 6. Based on the image taken by the imaging means 6, the control means 7 determines the quality of the cell C and counts the number (number) of the cells C.
Here, as the cells C to be observed by the cell observation device 1, stem cells such as iPS cells and ES cells, cells differentiated from the stem cells, cells collected by biopsy and the like, and collected cells were cultured. It is supposed to be a cell.
The cell observation device 1 is arranged above the stage 3, the frame 8, and the frame 8 on which the container 4 containing the cells C is placed, and the white light L1 is directed toward the inside of the container 4 on the stage 3. The white light source 5 that irradiates the white light source 5, the first optical system 11 that guides the white light L1 emitted from the white light source 5 to the container 4 on the stage 3, and the cells C in the container 4 that are arranged at the lower part of the frame 8. The image pickup means 6 that images the image from the lower side, the second optical system 12 arranged between the image pickup means 6 from the position on the lower side of the stage 3, and the elevating mechanism 14 that raises and lowers the objective lens 13 of the second optical system 12. The control means 7 is provided for controlling the operation of the white light source 5, the elevating mechanism 14, and the like, as well as determining the quality of the cell C and counting the number (number) of particles of the cell C.
The frame 8 in which each of the above components is arranged is supported by a horizontal moving mechanism 15 (not shown), and the horizontal moving mechanism 15 enables the entire frame 8 to move in the X and Y directions orthogonal to each other in the horizontal plane. ing. As a result, the entire cell observation device 1 excluding the stage 3 can be moved in the XY direction on the horizontal plane, and the imaging means 6 can adjust the horizontal position and the observation area when the container 4 on the stage 3 is imaged. Can be changed.

フレーム8の前面の中央部には上記アイソレータ2内の観察部2Aの位置に合わせて収容凹部8Aが形成されており、この収容凹部8Aに観察部2Aを収容した状態において、容器4内の細胞の観察を行うようになっている。
白色光源5及び第1光学系11は、フレーム8の上方側に配置されており、撮像手段6及び第2光学系12は、フレーム8の下方側に配置されている。
第1光学系11は、フレーム8の収容凹部8Aの上方側に配置されており、上方側から順次、第1反射ミラー17、位相差リング18及びコンデンサレンズ19によって構成されている。これら第1光学系11の構成部材は、フレーム8の所定の高さ位置に固定して配置されている。
白色光源5の作動は制御手段7によって制御されるようになっており、制御手段7が白色光源5を作動させると、該白色光源5から発光された白色光L1は第1反射ミラー17によって下方に向けて反射された後に、位相差リング18及びコンデンサレンズ19を経由して、ステージ3上の容器4に照射されるようになっている。
一方、第2光学系12は、フレーム8における収容凹部8Aの下方側に配置されており、収容凹部8Aの直下位置に水平に配置された対物レンズ13と、その下方に配置された第2反射ミラー21と、この第2反射ミラー21と撮像手段6の間に順次配置された位相差板22及び集光レンズ23を備えている。
第2反射ミラー21、位相差板22及び集光レンズ23は所定の高さ位置に固定して配置されているが、対物レンズ13は、昇降機構14に支持されてZ方向(上下方向)に昇降可能となっている。
昇降機構14の作動は制御手段7によって制御されるようになっており、制御手段7は、昇降機構14によって対物レンズ13を可動可能な上下方向の範囲において昇降させることにより、撮像手段6が容器4内の細胞Cを撮像する際に対物レンズ13の焦点位置を調整できるようになっている。
本実施例は、白色光源5から白色光L1を発光させて、第1光学系11を経由してステージ3上の容器4に白色光L1を照射し、そのように白色光L1が照射された状態の容器4内の細胞Cを下方側から第2光学系12を介して撮像手段6によって撮像するようにしている。
撮像手段6としてはデジタルカメラを用いており、該撮像手段6が撮像した容器4内の細胞Cの画像は、制御手段7に送信されるようになっている。そして、制御手段7は、撮像手段6が撮像した容器4内の細胞Cの画像を基にして細胞の良否や細胞の数をカウントするようになっている。
後に詳述するが、本実施例は、撮像手段6が容器4内の細胞Cを撮像する際に対物レンズ13の焦点が容器4内の細胞Cの位置に合った合焦点位置にオートフォーカス可能な装置と方法を提案するものであり、合焦点位置を求めたら、その位置で容器4を撮像手段6によって再度、撮像し、その撮像画像を基にして細胞Cの良否等を判定するようになっている。
A storage recess 8A is formed in the central portion of the front surface of the frame 8 in accordance with the position of the observation portion 2A in the isolator 2, and the cells in the container 4 are stored in the storage recess 8A. Is supposed to be observed.
The white light source 5 and the first optical system 11 are arranged on the upper side of the frame 8, and the imaging means 6 and the second optical system 12 are arranged on the lower side of the frame 8.
The first optical system 11 is arranged on the upper side of the accommodating recess 8A of the frame 8, and is composed of the first reflection mirror 17, the retardation ring 18, and the condenser lens 19 in order from the upper side. The constituent members of the first optical system 11 are fixedly arranged at a predetermined height position of the frame 8.
The operation of the white light source 5 is controlled by the control means 7, and when the control means 7 operates the white light source 5, the white light L1 emitted from the white light source 5 is lowered by the first reflection mirror 17. After being reflected toward, the container 4 on the stage 3 is irradiated via the retardation ring 18 and the condenser lens 19.
On the other hand, the second optical system 12 is arranged on the lower side of the accommodating recess 8A in the frame 8, the objective lens 13 horizontally arranged at a position directly below the accommodating recess 8A, and the second reflection arranged below the objective lens 13. It includes a mirror 21, a retardation plate 22 and a condenser lens 23 which are sequentially arranged between the second reflection mirror 21 and the image pickup means 6.
The second reflection mirror 21, the retardation plate 22, and the condenser lens 23 are fixedly arranged at predetermined height positions, but the objective lens 13 is supported by the elevating mechanism 14 and is supported in the Z direction (vertical direction). It can be raised and lowered.
The operation of the elevating mechanism 14 is controlled by the control means 7, and the control means 7 moves the objective lens 13 up and down within a movable vertical range by the elevating mechanism 14, so that the imaging means 6 moves the container. The focal position of the objective lens 13 can be adjusted when the cell C in 4 is imaged.
In this embodiment, the white light L1 is emitted from the white light source 5, the container 4 on the stage 3 is irradiated with the white light L1 via the first optical system 11, and the white light L1 is irradiated in that way. The cells C in the container 4 in the state are imaged by the imaging means 6 from the lower side via the second optical system 12.
A digital camera is used as the imaging means 6, and the image of the cells C in the container 4 captured by the imaging means 6 is transmitted to the control means 7. Then, the control means 7 counts the quality of the cells and the number of cells based on the image of the cells C in the container 4 imaged by the imaging means 6.
As will be described in detail later, in this embodiment, when the imaging means 6 images the cells C in the container 4, the focus of the objective lens 13 can be autofocused to the in-focus position that matches the position of the cells C in the container 4. The device and method are proposed, and once the in-focus position is obtained, the container 4 is imaged again by the imaging means 6 at that position, and the quality of the cell C is determined based on the captured image. It has become.

以下、細胞観察装置1による具体的なオートフォーカス方法と判定処理について説明する。
先ず、アイソレータ2内で細胞を培養している図示しない培養容器(ディッシュ、プレート、フラスコなど)内に所要に応じてロボットハンド(または作業者)がトリプシン等の試液を加える。
次に、アイソレータ2内において、上記培養容器からロボットハンド(または作業者)がピペットを用いて細胞懸濁液を取り出した後、ステージ3上の容器4内に供給する。なお、必要に応じて上記アイソレータ2内において上記培養容器内から取り出された細胞懸濁液に、希釈したトリパンブルー液等の試液を加えることで、細胞観察装置1による細胞Cの数のカウントを行いやすくなる。
この後、細胞観察装置1においては、先ず粗サーチによって撮像手段6が容器4を撮像する際の対物レンズ13の合焦点位置がある高さ領域を求め、次に、詳細サーチによって上記高さ領域における合焦点位置を求めるようになっている。
より詳細には、粗サーチは次のようにして行われる。すなわち、先ず、白色光源5から容器4に向けて白色光L1を照射した状態において、昇降機構14によって対物レンズ13を昇降可能な範囲における上昇端の高さ位置から下降端の高さ位置(Z軸における0〜X)まで所定量ずつ(例えば30μmずつ)下降させながら、該所定量ずつ下降させる高さ毎に撮像手段6によって容器4内の細胞Cを撮像して、撮像する高さ位置が異なる複数の画像を取得する。なお、このように間欠的に下降させるのではなく、連続的に下降させながら所定量下降する毎に撮像手段6で容器4を撮像するようにしても良い。
撮像手段6が撮像した容器4内の細胞Cの画像は制御手段7に送信されるので、制御手段7は、撮像手段6が撮像した所定量ずつ下降させた各高さ位置における画像において、各画像内にある全ての細胞Cまたは細胞領域の各々の外周の長さを算出値として算出した後、さらにそれら算出値としての外周の長さの合計値を算定する。本実施例では、各画像について求めた細胞Cの外周の長さを算出値として用いている(図2、図3(A)参照)。
なお、理解を容易にするために、図3(A)では細胞Cを1つだけ示しているが、実際には複数の細胞Cまたは細胞領域が検出されるものであって、それら全ての細胞Cまたは細胞領域に対して外周の長さを算出した後、合計値を算定するものである。
なお、算出値としては、細胞Cまたは細胞領域の外周の長さを用いる代わりに、各画像における各細胞Cまたは細胞領域の外周の近似円の直径を算出値として求めて、それら各々の細胞の外周の近似円の直径の合計値を算定しても良い(図3(B)参照)。また、細胞Cの外周の近似円の直径の代わりに、細胞Cの外接円の直径(図3(C))、または細胞Cの内接円の直径(図3(D))、または細胞Cの面積(図3(E))のいずれかを算出値として求めて、それらについての合計値を算定しても良い。
このようにして、対物レンズ13を上昇端から下降端まで所定量ずつ下降させた際における撮像手段6による各高さでの細胞Cの撮像画像を取得すると、制御手段7は、算出された算出値の合計値が極小値A4(山A2と山A3の谷間となる値)となる大まかな高さ領域A1を求める(図2参照)。
ここでいう「極小値A4」は、図2における局所的最小値を意味するものであり、単なる最小値とは異なるものである。つまり、算出値としての細胞Cの外周の長さの合計値の変動に着目するが、山A2と山A3の谷の部分A4(減少傾向から増加傾向に切り替わる最小値)を「極小値A4」として制御手段7が認識するようになっている。
このようにして、本実施例では、先ず粗サーチを行うことで、合焦点位置AXに対応する極小値A4が含まれている高さ領域A1を制御手段7が求めるようになっている。
Hereinafter, a specific autofocus method and determination processing by the cell observation device 1 will be described.
First, a robot hand (or an operator) adds a test solution such as trypsin into a culture vessel (dish, plate, flask, etc.) (not shown) in which cells are cultured in the isolator 2, if necessary.
Next, in the isolator 2, a robot hand (or an operator) takes out the cell suspension from the culture vessel using a pipette, and then supplies the cell suspension into the vessel 4 on the stage 3. If necessary, a test solution such as a diluted trypan blue solution is added to the cell suspension taken out from the culture vessel in the isolator 2 to count the number of cells C by the cell observation device 1. It will be easier to do.
After that, in the cell observation device 1, the height region where the in-focus position of the objective lens 13 when the imaging means 6 images the container 4 is first obtained by a rough search, and then the above-mentioned height region is obtained by a detailed search. The focus position in is calculated.
More specifically, the coarse search is performed as follows. That is, first, in a state where the white light L1 is irradiated from the white light source 5 toward the container 4, the height position of the ascending end to the height position of the descending end (Z) within the range in which the objective lens 13 can be moved up and down by the elevating mechanism 14. While lowering by a predetermined amount (for example, by 30 μm) from 0 to X) on the axis, the cell C in the container 4 is imaged by the imaging means 6 at each height of lowering by the predetermined amount, and the height position to be imaged is set. Get multiple different images. Instead of lowering the container 4 intermittently in this way, the container 4 may be imaged by the imaging means 6 each time the container 4 is lowered by a predetermined amount while being continuously lowered.
Since the image of the cells C in the container 4 captured by the imaging means 6 is transmitted to the control means 7, the control means 7 takes each image in the image at each height position imaged by the imaging means 6 by a predetermined amount. After calculating the outer peripheral lengths of all the cells C or cell regions in the image as calculated values, the total value of the outer peripheral lengths as those calculated values is further calculated. In this example, the length of the outer circumference of the cell C obtained for each image is used as a calculated value (see FIGS. 2 and 3 (A)).
For ease of understanding, only one cell C is shown in FIG. 3 (A), but in reality, a plurality of cells C or cell regions are detected, and all of these cells are detected. After calculating the length of the outer circumference with respect to C or the cell region, the total value is calculated.
As the calculated value, instead of using the length of the outer circumference of the cell C or the cell region, the diameter of the approximate circle of the outer circumference of each cell C or the cell region in each image is obtained as the calculated value, and the diameter of each cell is calculated. The total value of the diameters of the approximate circles on the outer circumference may be calculated (see FIG. 3B). Also, instead of the diameter of the approximate circle on the outer circumference of the cell C, the diameter of the circumscribed circle of the cell C (FIG. 3 (C)) or the diameter of the inscribed circle of the cell C (FIG. 3 (D)), or the cell C. (Fig. 3 (E)) may be obtained as a calculated value, and the total value for them may be calculated.
In this way, when the captured image of the cell C at each height is acquired by the imaging means 6 when the objective lens 13 is lowered by a predetermined amount from the ascending end to the descending end, the control means 7 calculates the calculated image. A rough height region A1 at which the total value of the values is the minimum value A4 (the value that is the valley between the peaks A2 and A3) is obtained (see FIG. 2).
The "minimum value A4" here means the local minimum value in FIG. 2, and is different from the simple minimum value. That is, paying attention to the fluctuation of the total value of the outer circumference of the cell C as the calculated value, the valley portion A4 of the peak A2 and the peak A3 (the minimum value at which the decreasing tendency is switched to the increasing tendency) is referred to as the "minimum value A4". The control means 7 recognizes the above.
In this way, in this embodiment, the control means 7 obtains the height region A1 including the minimum value A4 corresponding to the in-focus position AX by first performing a rough search.

上述した粗サーチの後に詳細サーチが行われる。すなわち、この後、上記極小値A4が含まれる高さ領域A1に関して、上述した粗サーチの場合と比べて小さな寸法となる所定量(例えば6μm)毎に、高さ領域A1における上昇端の高さから下降端の高さまで昇降機構14によって対物レンズ13を下降させて、その都度、撮像手段6によって容器4内の細胞Cの画像を撮像する。
そして、高さ領域A1において撮像手段6によって撮像された各高さ位置における容器4内の細胞Cの画像を基にして、上述した粗サーチの場合と同様に、制御手段7は、各高さ位置の画像における細胞Cの外周の長さを算出値として求めた後に、それらの合計値を算定する。
なお、ここでも、算出値として細胞Cの外周の長さの代わりに、図3(B)〜図3(E)に示すように、細胞Cの外周の近似円の直径、細胞Cの外接円の直径、細胞Cの内接円の直径、または細胞の面積のいずれかを求めて、それらを検出して用いても良い。
この後、制御手段7は、上記高さ領域A1において算出値の合計値が極小値A4(最小値)となる高さ位置を、撮像手段6が容器4を撮影する際の対物レンズ13の焦点が合った合焦点位置AXとして判定する。
本実施例では、以上のようにして、制御手段7が昇降機構14を介して対物レンズ13を上昇端から下降端まで所定量ずつ下降させ、それに伴って撮像手段6によって容器4内の細胞Cの画像を順次、撮像手段6により撮像し、先ず粗サーチにおいて極小値A4がある高さ領域A1を求め、次に、詳細サーチによって極小値A4の位置、つまり、対物レンズ13の焦点が容器4内の細胞Cの高さと合った合焦点位置AXを求める。
そして、この後、合焦点位置AXとして検出された極小値A4の高さ位置まで昇降機構14によって対物レンズ13を移動させて、その高さ位置で対物レンズ13を停止させてから、再度、撮像手段6によって容器4内の細胞Cを撮像する。これにより、容器4内の細胞Cに対して正確にピントが合った状態で、撮像手段6によって容器4内の細胞Cを撮像することができる。
この後、制御手段7は、合焦点位置AXで撮像手段6が撮影した容器4内の細胞Cの画像を基にして、細胞の良否の判定を行うとともに細胞粒子のカウントを行うようになっている。
A detailed search is performed after the above-mentioned rough search. That is, after that, with respect to the height region A1 including the minimum value A4, the height of the rising end in the height region A1 is set for each predetermined amount (for example, 6 μm) which is smaller than the case of the above-mentioned rough search. The objective lens 13 is lowered by the elevating mechanism 14 to the height of the descending end, and the image of the cells C in the container 4 is imaged by the imaging means 6 each time.
Then, based on the image of the cells C in the container 4 at each height position imaged by the imaging means 6 in the height region A1, the control means 7 has each height as in the case of the above-mentioned rough search. After obtaining the length of the outer circumference of the cell C in the image of the position as a calculated value, the total value thereof is calculated.
Again, as calculated values, instead of the length of the outer circumference of the cell C, as shown in FIGS. 3 (B) to 3 (E), the diameter of the approximate circle of the outer circumference of the cell C and the circumscribed circle of the cell C. The diameter of the cell, the diameter of the inscribed circle of the cell C, or the area of the cell may be determined, and they may be detected and used.
After that, the control means 7 focuses the objective lens 13 when the imaging means 6 photographs the container 4 at a height position where the total value of the calculated values becomes the minimum value A4 (minimum value) in the height region A1. It is determined as the in-focus position AX that matches.
In this embodiment, as described above, the control means 7 lowers the objective lens 13 from the ascending end to the descending end by a predetermined amount via the elevating mechanism 14, and the cell C in the container 4 is brought down by the imaging means 6 accordingly. The images of the above are sequentially imaged by the imaging means 6, first, the height region A1 having the minimum value A4 is obtained in the rough search, and then the position of the minimum value A4, that is, the focus of the objective lens 13 is the container 4 by the detailed search. The in-focus position AX that matches the height of the cell C inside is obtained.
Then, after that, the objective lens 13 is moved by the elevating mechanism 14 to the height position of the minimum value A4 detected as the in-focus position AX, the objective lens 13 is stopped at that height position, and then imaging is performed again. The cell C in the container 4 is imaged by the means 6. As a result, the cells C in the container 4 can be imaged by the imaging means 6 in a state where the cells C in the container 4 are accurately focused.
After that, the control means 7 determines the quality of the cells and counts the cell particles based on the image of the cells C in the container 4 taken by the imaging means 6 at the in-focus position AX. There is.

以上のように、本実施例によれば、作業者が目視で対物レンズ13を昇降させることで撮像手段6のピントが容器4内の細胞に合った合焦点位置を探す場合と同等の精度で合焦点位置AXをオートフォーカスで検出することができる。そのため、容器4内の細胞Cを撮像手段6で撮像するにあたって最適なオートフォーカス機能を有する細胞観察装置1を提供することができる。また、細胞Cの良否の判定や細胞の数のカウントの精度を向上させることが可能な細胞観察装置1を提供することができる。
さらに、本実施例の細胞観察装置1は細胞自動培養装置に搭載することが可能であり、それによって再生医療の普及に大きく貢献することが可能である。
As described above, according to the present embodiment, the operator visually raises and lowers the objective lens 13 to obtain the focus position of the imaging means 6 that matches the cells in the container 4 with the same accuracy as when searching for the focus position. The in-focus position AX can be detected by autofocus. Therefore, it is possible to provide the cell observation device 1 having an optimum autofocus function for imaging the cells C in the container 4 with the imaging means 6. In addition, it is possible to provide a cell observation device 1 capable of improving the accuracy of determining the quality of cells C and counting the number of cells.
Further, the cell observation device 1 of the present embodiment can be mounted on the cell automatic culture device, which can greatly contribute to the spread of regenerative medicine.

なお、本実施例においては、観察対象となる細胞Cとして、iPS細胞、ES細胞といった幹細胞、幹細胞から分化した細胞、生検などにより採取された細胞、採取された細胞が培養された細胞を想定しているが、特にこれらに限定されるものではない。
また、細胞の種類や培養の経過(初期、中期、後期)に応じて、図3(A)〜図3(E)に示した算出値のもとになる対象(細胞の外周の長さ、細胞の外周の近似円の直径、細胞の外接円の直径、細胞の内接円の直径、細胞の面積)を適宜使い分けても良い。
また、上述した実施例においては、粗サーチ及び詳細サーチにおいて昇降機構14を介して対物レンズ13を上昇端から下降端まで所定量(寸法)ずつ下降させているが、これとは逆に、対物レンズ13を下降端から上昇端まで所定量(寸法)ずつ上昇させることで上記算出値を得るようにしても良い。また、必ずしも上昇端から下降端まで下降、または下降端から上昇端まで上昇させなくとも良く、所定の範囲で下降または上昇させるものでも良い。
また、昇降機構14によって対物レンズ13を昇降させる代わりに、ステージ3自体を昇降させる構成を採用しても良く、さらには、撮像手段6及び第2光学系12を一体的に昇降させる構成を採用しても良い。
また、観察部2Aにおいてステージ3の代わりに、ロボットハンドが容器4を保持し、容器4を水平または上下に移動させるようにしても良い。
In this example, as the cells C to be observed, stem cells such as iPS cells and ES cells, cells differentiated from stem cells, cells collected by biopsy, and cells in which the collected cells are cultured are assumed. However, it is not particularly limited to these.
In addition, depending on the type of cell and the course of culture (early, middle, late), the target (the length of the outer circumference of the cell, which is the basis of the calculated values shown in FIGS. 3 (A) to 3 (E), The diameter of the approximate circle on the outer circumference of the cell, the diameter of the circumscribing circle of the cell, the diameter of the inscribed circle of the cell, the area of the cell) may be appropriately used.
Further, in the above-described embodiment, the objective lens 13 is lowered by a predetermined amount (dimensions) from the ascending end to the descending end via the elevating mechanism 14 in the rough search and the detailed search. The calculated value may be obtained by raising the lens 13 from the descending end to the ascending end by a predetermined amount (dimension). Further, it does not necessarily have to be lowered from the rising end to the falling end, or raised from the falling end to the rising end, and may be lowered or raised within a predetermined range.
Further, instead of raising and lowering the objective lens 13 by the raising and lowering mechanism 14, a configuration in which the stage 3 itself is raised and lowered may be adopted, and further, a configuration in which the imaging means 6 and the second optical system 12 are integrally raised and lowered is adopted. You may.
Further, in the observation unit 2A, instead of the stage 3, the robot hand may hold the container 4 and move the container 4 horizontally or vertically.

1‥細胞観察装置 3‥ステージ
4‥容器 6‥撮像手段
7‥制御手段 13‥対物レンズ
14‥昇降機構 AX‥合焦点位置
A4‥極小値 C‥細胞
1 ‥ Cell observation device 3 ‥ Stage 4 ‥ Container 6 ‥ Imaging means 7 ‥ Control means 13 ‥ Objective lens 14 ‥ Elevating mechanism AX ‥ Focusing position A4 ‥ Minimum value C ‥ Cell

Claims (4)

細胞が収容された容器が載置されるステージと、容器内の細胞を撮像する撮像手段と、上記ステージの高さ位置または上記撮像手段の焦点の高さ位置を変更する昇降手段と、上記撮像手段が撮像した画像における細胞を検出して、該検出された細胞に関する算出値の合計値を求める制御手段とを備え、
上記昇降手段によって上記ステージの高さ位置または上記撮像手段の焦点の高さ位置が変更されながら所定の高さ位置毎に上記撮像手段によって容器内の細胞が撮像され、
上記制御手段は、上記撮像手段が撮像した各高さ位置の画像における細胞に関する算出値の合計値を算定して、該合計値が極小値となる位置を上記撮像手段の合焦点位置と判定し、
上記昇降手段により、上記ステージに載置された容器を合焦点位置に位置させることを特徴とする細胞観察装置。
A stage on which a container containing cells is placed, an imaging means for imaging cells in the container, an elevating means for changing the height position of the stage or the focal height position of the imaging means, and the imaging A control means for detecting cells in an image captured by the means and obtaining a total value of calculated values for the detected cells is provided.
While the height position of the stage or the height position of the focal point of the imaging means is changed by the elevating means, the cells in the container are imaged by the imaging means at each predetermined height position.
The control means calculates the total value of the calculated values for the cells in the image of each height position imaged by the image pickup means, and determines the position where the total value becomes the minimum value as the in-focus position of the image pickup means. ,
A cell observation device characterized in that a container placed on the stage is positioned at a focal point position by the elevating means.
上記細胞に関する算出値は、細胞の外周の長さ、細胞の外周の近似円の直径、細胞の外接円の直径、細胞の内接円の直径、または細胞の面積のいずれかであることを特徴とする請求項1に記載の細胞観察装置。 The calculated value for the cell is characterized by being any one of the length of the outer circumference of the cell, the diameter of the approximate circle of the outer circumference of the cell, the diameter of the circumscribed circle of the cell, the diameter of the inscribed circle of the cell, or the area of the cell. The cell observation device according to claim 1. 細胞が収容された容器が載置されるステージと、容器内の細胞を撮像する撮像手段と、上記ステージの高さ位置または上記撮像手段の焦点の高さ位置を変更する昇降手段と、上記撮像手段が撮像した画像における細胞を検出し、該検出された細胞の外周の長さ、細胞の外周の近似円の直径、細胞の外接円の直径、または細胞の内接円の直径のいずれかを算出する制御手段とを備え、
上記制御手段が算出した細胞の外周の長さ、細胞の外周の近似円の直径、細胞の外接円の直径、または細胞の内接円の直径のいずれかに基づいて上記撮像手段の焦点が容器内の細胞の高さ位置に合った合焦点位置が決定され、
上記昇降手段により、上記ステージに載置された容器が決定された合焦点位置に合わせられることを特徴とする細胞観察装置。
A stage on which a container containing cells is placed, an imaging means for imaging cells in the container, an elevating means for changing the height position of the stage or the focal height position of the imaging means, and the imaging A cell is detected in an image imaged by the means, and either the length of the outer circumference of the detected cell, the diameter of the approximate circle of the outer circumference of the cell, the diameter of the circumscribed circle of the cell, or the diameter of the inner circle of the cell is determined. Equipped with a control means to calculate
The focus of the imaging means is the container based on any of the length of the outer circumference of the cell, the diameter of the approximate circle of the outer circumference of the cell, the diameter of the circumscribed circle of the cell, or the diameter of the inscribed circle of the cell calculated by the control means. The focus position is determined according to the height position of the cells inside.
A cell observation device, characterized in that the container placed on the stage is adjusted to a determined in-focus position by the elevating means.
細胞が収容された容器の高さ位置または容器を撮像する撮像手段の焦点の高さ位置を変更して、所定の高さ位置毎に撮像手段によって容器内の細胞の画像を取得し、
取得した各細胞の画像内における細胞を検出し、該検出された細胞の外周長さ、細胞の外周の近似円の直径、細胞の外接円の直径、細胞の内接円の直径、または細胞の面積のいずれかの合計値を算定し、
該合計値が極小値となる高さ位置を上記撮像手段の焦点が容器内の細胞の位置に合った合焦点位置と判定することを特徴とする細胞観察方法。
The height position of the container containing the cells or the height position of the focal point of the imaging means for imaging the container is changed, and an image of the cells in the container is acquired by the imaging means at each predetermined height position.
A cell is detected in the acquired image of each cell, and the outer circumference length of the detected cell, the diameter of the approximate circle of the outer circumference of the cell, the diameter of the circumscribed circle of the cell, the diameter of the inscribed circle of the cell, or the diameter of the cell Calculate the total value of any of the areas and
A cell observation method, characterized in that a height position at which the total value becomes a minimum value is determined as a focused position where the focus of the imaging means matches the position of cells in the container.
JP2020060187A 2020-03-30 2020-03-30 Cell observation device and cell observation method Active JP7502606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020060187A JP7502606B2 (en) 2020-03-30 2020-03-30 Cell observation device and cell observation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020060187A JP7502606B2 (en) 2020-03-30 2020-03-30 Cell observation device and cell observation method

Publications (2)

Publication Number Publication Date
JP2021157153A true JP2021157153A (en) 2021-10-07
JP7502606B2 JP7502606B2 (en) 2024-06-19

Family

ID=77918262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020060187A Active JP7502606B2 (en) 2020-03-30 2020-03-30 Cell observation device and cell observation method

Country Status (1)

Country Link
JP (1) JP7502606B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011065253A (en) * 2009-09-15 2011-03-31 Utsunomiya Univ Extraction method for blurring, positioning method and micro manipulation system
JP2012141457A (en) * 2010-12-28 2012-07-26 Canon Inc Focus adjustment device and method
JP2016071588A (en) * 2014-09-30 2016-05-09 株式会社Screenホールディングス Image processing method and image processor
WO2018003340A1 (en) * 2016-07-01 2018-01-04 ソニー株式会社 Image acquisition method, image acquisition device, program and culture container
WO2018213709A1 (en) * 2017-05-19 2018-11-22 Thrive Bioscience, Inc. Systems and methods for counting cells
JP2019070751A (en) * 2017-10-10 2019-05-09 オリンパス株式会社 Observation device and focus adjustment method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014085599A (en) 2012-10-25 2014-05-12 Olympus Corp Microscope

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011065253A (en) * 2009-09-15 2011-03-31 Utsunomiya Univ Extraction method for blurring, positioning method and micro manipulation system
JP2012141457A (en) * 2010-12-28 2012-07-26 Canon Inc Focus adjustment device and method
JP2016071588A (en) * 2014-09-30 2016-05-09 株式会社Screenホールディングス Image processing method and image processor
WO2018003340A1 (en) * 2016-07-01 2018-01-04 ソニー株式会社 Image acquisition method, image acquisition device, program and culture container
WO2018213709A1 (en) * 2017-05-19 2018-11-22 Thrive Bioscience, Inc. Systems and methods for counting cells
JP2019070751A (en) * 2017-10-10 2019-05-09 オリンパス株式会社 Observation device and focus adjustment method

Also Published As

Publication number Publication date
JP7502606B2 (en) 2024-06-19

Similar Documents

Publication Publication Date Title
US7071451B2 (en) Autofocus system and microscope
US10754135B2 (en) Light sheet microscope and control method for light sheet microscope
JP6563131B2 (en) Focusing system for telecentric optical measuring machine
JP4599941B2 (en) Automatic focus detection apparatus and microscope system including the same
US20190339505A1 (en) Inclination measurement and correction of the cover glass in the optical path of a microscope
JP2017107201A (en) Dynamic autofocus system
US11977214B2 (en) Phase difference observation apparatus and cell treatment apparatus
CN211826705U (en) Microscope fine-adjustment focusing device utilizing piezoelectric objective table
US20230367112A1 (en) Microscopic devices and focusing methods thereof
JP6894908B2 (en) Observation device
JP2011220790A (en) Hardness testing machine and hardness testing method
EP3540418B1 (en) Radiation detection device and computer program
JP2021157153A (en) Cell observation device and cell observation method
CN106292197A (en) A kind of focusing leveling device based on image processing techniques and method
TW201638621A (en) Automatic focusing system and focusing method thereof
CN111158132B (en) Microscope fine-tuning focusing device utilizing piezoelectric object stage
US20190121111A1 (en) Microscope system, observation method, and computer-readable recording medium
JP7034280B2 (en) Observation device
JP4384446B2 (en) Autofocus method and apparatus
KR101858533B1 (en) Particle Analyzer Microscope
JP2009282357A (en) Observation apparatus and observation method
US20240045189A1 (en) Apparatus and method of focusing a laser-scanning cytometer using the reflection of the laser
WO2024183011A1 (en) Focusing method and system
US20240329381A1 (en) System and method for microscope optical alignment
JP4684646B2 (en) Autofocus method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240520

R150 Certificate of patent or registration of utility model

Ref document number: 7502606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150