JP2021156160A - Damper mechanism for base-isolation structure, arranging structure of damper mechanism for base-isolation structure, trigger mechanism for base-isolation structure, arranging structure of trigger mechanism for base-isolation structure, sliding bearing structure for base-isolation structure, and building - Google Patents

Damper mechanism for base-isolation structure, arranging structure of damper mechanism for base-isolation structure, trigger mechanism for base-isolation structure, arranging structure of trigger mechanism for base-isolation structure, sliding bearing structure for base-isolation structure, and building Download PDF

Info

Publication number
JP2021156160A
JP2021156160A JP2021107090A JP2021107090A JP2021156160A JP 2021156160 A JP2021156160 A JP 2021156160A JP 2021107090 A JP2021107090 A JP 2021107090A JP 2021107090 A JP2021107090 A JP 2021107090A JP 2021156160 A JP2021156160 A JP 2021156160A
Authority
JP
Japan
Prior art keywords
seismic isolation
isolation structure
displacement
damper
sliding bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021107090A
Other languages
Japanese (ja)
Other versions
JP7148679B2 (en
Inventor
康明 伊藤
Yasuaki Ito
康明 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Homes Corp
Original Assignee
Asahi Kasei Homes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Homes Corp filed Critical Asahi Kasei Homes Corp
Priority to JP2021107090A priority Critical patent/JP7148679B2/en
Publication of JP2021156160A publication Critical patent/JP2021156160A/en
Priority to JP2022140899A priority patent/JP7360519B2/en
Application granted granted Critical
Publication of JP7148679B2 publication Critical patent/JP7148679B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)

Abstract

To provide at low cost a damper mechanism for base-isolation structure of lower height.SOLUTION: The damper mechanism for base-isolation structure 30 is provided between a lower structure body 20 and an upper structure body 10 provided above the lower structure body 20. A displacement reduction mechanism 31 is provided for reducing displacement generated between the lower structure body 20 and the upper structure body 10. The displacement reduction mechanism 31 has a linkage and a displacement suppression part 32 which absorbs the energy due to deformation and reduces displacement.SELECTED DRAWING: Figure 1A

Description

本発明は、免震構造用ダンパー機構、免震構造用ダンパー機構の配置構造、免震構造用トリガー機構、免震構造用トリガー機構の配置構造、免震構造用すべり支承機構、及び建物に関する。 The present invention relates to a seismic isolation structure damper mechanism, a seismic isolation structure damper mechanism arrangement structure, a seismic isolation structure trigger mechanism, a seismic isolation structure trigger mechanism arrangement structure, a seismic isolation structure sliding bearing mechanism, and a building.

従来、地震に備えた建物の構造として、例えば、免震構造の建物がある。免震構造の建物は、基礎等の下部構造体と、下部構造体の上方に設けられた上部構造体と、下部構造体及び上部構造体の間に設けられた免震手段と、を備えている。免震手段は、例えば、オイルダンパー、鉛ダンパー、U型ダンパー等が知られており、上部構造体に加わる荷重を低減する機能を有している。 Conventionally, as a structure of a building prepared for an earthquake, for example, there is a building having a seismic isolation structure. A building with a seismic isolation structure is provided with a substructure such as a foundation, an upper structure provided above the lower structure, and seismic isolation means provided between the lower structure and the upper structure. There is. Known seismic isolation means, for example, an oil damper, a lead damper, a U-shaped damper, etc., have a function of reducing the load applied to the superstructure.

ここで、特許文献1には、所要形状に形成した鉛柱体等よりなるダンパー本体の少なくとも一端に、建築物等の構造体に対する取付板を備えた鉛ダンパーが開示されている。 Here, Patent Document 1 discloses a lead damper provided with a mounting plate for a structure such as a building at at least one end of a damper main body made of a lead pillar or the like formed in a required shape.

しかしながら、特許文献1に記載の鉛ダンパーの構造では、高さ方向の寸法が大きくなってしまい、建物全体としての高さが高くなってしまう。また、下部構造体と上部構造体との間に十分な高さの空間を確保しなければならず、比較的小規模な建物には適していない。 However, in the structure of the lead damper described in Patent Document 1, the dimension in the height direction becomes large, and the height of the entire building becomes high. In addition, a sufficient height space must be secured between the substructure and the superstructure, which is not suitable for a relatively small building.

また、特許文献2には、弾塑性材料からなるU字状の湾曲状部材の接合部を上部構造と下部構造にそれぞれ固定した減衰機構を有する、いわゆるU型ダンパーが開示されている。 Further, Patent Document 2 discloses a so-called U-shaped damper having a damping mechanism in which a joint portion of a U-shaped curved member made of an elasto-plastic material is fixed to an upper structure and a lower structure, respectively.

しかしながら、特許文献2に記載のU型ダンパーは、滑動時に初期の寸法を超えて上下に大きく変形するため、下部構造体と上部構造体との間に十分な高さの空間を確保しなければならず、比較的小規模な建物には適していない。 However, since the U-shaped damper described in Patent Document 2 is greatly deformed up and down beyond the initial dimensions when sliding, it is necessary to secure a sufficient height space between the lower structure and the upper structure. It is not suitable for relatively small buildings.

なお、オイルダンパーは高価であり、採用すると建物全体のコストが増大してしまう。 Oil dampers are expensive, and if adopted, the cost of the entire building will increase.

また、外力の大きさに応じて振動モードを切り替えることで構造物の損傷を低減することが可能なトリガー機構を持つ免震構造も知られている。 In addition, a seismic isolation structure having a trigger mechanism capable of reducing damage to the structure by switching the vibration mode according to the magnitude of the external force is also known.

例えば、特許文献3には、所定の地震レベルを超える地震が発生した場合に作動するトリガー機構が開示されている。これによれば、当該トリガー機構が作動することにより、免震装置が稼働して嫌振機器類を保護することができる。 For example, Patent Document 3 discloses a trigger mechanism that operates when an earthquake exceeding a predetermined earthquake level occurs. According to this, by operating the trigger mechanism, the seismic isolation device can be operated to protect the anti-vibration equipment.

しかしながら、特許文献3に記載のトリガー機構では、トリガー機構が作動する際の荷重が一定の大きさを超えると、上部構造体の転倒モーメントによる引抜力、または耐力壁による局所的な引抜力により、トリガー部分に引張力が生ずる可能性がある。すると、当初想定した荷重よりも小さい荷重で、トリガー機構が作動してしまう虞がある。 However, in the trigger mechanism described in Patent Document 3, when the load when the trigger mechanism operates exceeds a certain magnitude, the pulling force due to the overturning moment of the superstructure or the local pulling force due to the bearing wall causes. Tensile force may be generated at the trigger part. Then, there is a risk that the trigger mechanism will operate with a load smaller than the initially assumed load.

また、特許文献4には、所定の水平変位を超えない地震や風、交通振動等による小さな振動に対しては、第一の振動減衰装置と第二の振動減衰装置とを共に作動させ、所定の水平変位を超える地震による大きな振動に対しては、トリガー機構が作動して上部構造体及び下部構造体のうちの少なくとも一方に対する第二の振動減衰装置の連結を解除することにより第一の振動減衰装置のみを作動させるようにした構成が開示されている。 Further, in Patent Document 4, for small vibrations caused by earthquakes, winds, traffic vibrations, etc. that do not exceed a predetermined horizontal displacement, both the first vibration damping device and the second vibration damping device are operated to be predetermined. For large vibrations caused by an earthquake that exceeds the horizontal displacement of, the trigger mechanism is activated to disconnect the second vibration damping device from at least one of the upper structure and the lower structure to cause the first vibration. A configuration is disclosed in which only the damping device is operated.

しかしながら、特許文献4のようなトリガー機構は、構造が複雑で部材が大きくなることから、比較的小規模な建物には適していない。 However, the trigger mechanism as in Patent Document 4 is not suitable for a relatively small-scale building because the structure is complicated and the members are large.

また、特許文献5には、すべり板と、当該すべり板に対して滑動可能に配置された本体部(摺動体)とを備えるすべり支承装置において、薄板鋼板を凹状に成型しグラウト材を充填することで、免震装置のすべり板を形成する技術が開示されている。 Further, in Patent Document 5, in a sliding bearing device including a sliding plate and a main body portion (sliding body) slidably arranged with respect to the sliding plate, a thin steel plate is molded into a concave shape and filled with a grout material. As a result, a technique for forming a sliding plate of a seismic isolation device is disclosed.

しかしながら、特許文献5に記載のすべり支承装置は、上部構造体及び下部構造体の両方にグラウト材を充填した上沓及び下沓を備え、その間に摺動体を挟み込んでいるため、部品数が多く、免震装置の高さも高くなってしまう。このため、比較的小規模な建物には適していない。 However, the sliding bearing device described in Patent Document 5 is provided with an upper sill and a lower sill in which both the upper structure and the lower structure are filled with grout material, and a sliding body is sandwiched between them, so that the number of parts is large. , The height of the seismic isolation device also becomes high. Therefore, it is not suitable for relatively small buildings.

また、特許文献6には、住宅等の構造物に設置される、トリガー機構やゴム積層体からなる復元部材を有する免震装置について開示されている。 Further, Patent Document 6 discloses a seismic isolation device having a restoration member made of a trigger mechanism and a rubber laminate, which is installed in a structure such as a house.

しかしながら、従来のこれらのトリガー機構、復元部材、を備える免震装置では、装置が大型であるため建物全体としても大きくなってしまうこと、また、装置が高価になるといった問題がある。こういった建物は、住宅が密集する狭小地域には向いていない。 However, the conventional seismic isolation device provided with these trigger mechanisms and restoration members has problems that the device is large, so that the entire building becomes large and the device becomes expensive. These buildings are not suitable for small residential areas.

特許第4846142号公報Japanese Patent No. 4846142 特許第3543004号公報Japanese Patent No. 3543004 特許第4470336号公報Japanese Patent No. 4470336 特許第4029685号公報Japanese Patent No. 4029685 特許第4048878号公報Japanese Patent No. 40488878 特開2004−100929号公報Japanese Unexamined Patent Publication No. 2004-100929

それゆえ、本発明は、安価で、高さの低い免震構造用ダンパー機構、及びその配置構造を提供することを目的とする。また、本発明は、上部構造体の転倒モーメント等によりトリガー機構に浮上りが生じたとしても、所期した性能を発揮し得、高さの低い免震構造用トリガー機構、及びその配置構造を提供することを目的とする。また、本発明は、安価に製造可能で高さの低い免震構造用すべり支承機構を提供することを目的とする。さらに、本発明は、建物全体としての大型化を伴わず、安価に、上部構造体の損傷を軽減可能な免震構造の建物を提供することを目的とする。 Therefore, an object of the present invention is to provide a damper mechanism for a seismic isolation structure, which is inexpensive and has a low height, and an arrangement structure thereof. Further, the present invention provides a trigger mechanism for a seismic isolation structure having a low height and an arrangement structure thereof, which can exhibit the desired performance even if the trigger mechanism floats due to an overturning moment of the superstructure or the like. The purpose is to provide. Another object of the present invention is to provide a sliding bearing mechanism for a seismic isolation structure that can be manufactured at low cost and has a low height. Furthermore, an object of the present invention is to provide a building having a seismic isolation structure capable of reducing damage to the superstructure at low cost without increasing the size of the building as a whole.

本発明は、上記課題を解決するためになされたものであり、本発明の免震構造用ダンパー機構は、
下部構造体と、下部構造体の上方に設けられた上部構造体との間に設けられ、
前記下部構造体と前記上部構造体との間に生じる変位を縮小する変位縮小機構を備え、
該変位縮小機構はリンク機構を有するとともに、変形によりエネルギーを吸収して変位を低減させる変位抑制部を有することを特徴とする。
The present invention has been made to solve the above problems, and the damper mechanism for a seismic isolation structure of the present invention is
Provided between the lower structure and the upper structure provided above the lower structure,
A displacement reduction mechanism for reducing the displacement generated between the lower structure and the upper structure is provided.
The displacement reduction mechanism is characterized by having a link mechanism and a displacement suppressing portion that absorbs energy by deformation to reduce the displacement.

なお、本発明の免震構造用ダンパー機構にあっては、
前記変位縮小機構は、
複数の横材と、
隣り合う前記横材に対して両端部がそれぞれ回動可能に接続された複数の縦材と、
隣り合う前記縦材を接続する前記変位抑制部と、を有し、
前記複数の横材のうち、一の横材の端部が、下部構造体に直接又は間接的に接続され、他の横材の端部が、上部構造体に直接又は間接的に接続されていることが好ましい。
In the damper mechanism for the seismic isolation structure of the present invention,
The displacement reduction mechanism is
With multiple cross members
A plurality of vertical timbers whose both ends are rotatably connected to the adjacent horizontal timbers,
It has the displacement suppressing portion for connecting the adjacent vertical members, and has.
Of the plurality of cross members, the end of one cross member is directly or indirectly connected to the lower structure, and the end of the other cross member is directly or indirectly connected to the upper structure. It is preferable to have.

また、本発明の免震構造用ダンパー機構にあっては、前記変位縮小機構が最大変形に達した際に、前記隣り合う縦材が相互に接触することで前記最大変形を超える変形を抑制することが好ましい。 Further, in the damper mechanism for a seismic isolation structure of the present invention, when the displacement reduction mechanism reaches the maximum deformation, the adjacent vertical members come into contact with each other to suppress deformation exceeding the maximum deformation. Is preferable.

また、本発明の免震構造用ダンパー機構にあっては、前記変位抑制部は、低降伏点鋼及び極低降伏点鋼の少なくとも一方を含むことが好ましい。 Further, in the damper mechanism for a seismic isolation structure of the present invention, it is preferable that the displacement suppressing portion includes at least one of a low yield point steel and an extremely low yield point steel.

また、本発明の免震構造用ダンパー機構の配置構造は、一方の前記免震構造用ダンパー機構の支点間の距離が拡がった際に、他方の前記免震構造用ダンパー機構の支点間の距離は縮まるように、少なくとも2つの前記免震構造用ダンパー機構が対称に配置されていることを特徴とする。 Further, in the arrangement structure of the seismic isolation structure damper mechanism of the present invention, when the distance between the fulcrums of one of the seismic isolation structure damper mechanisms is increased, the distance between the fulcrums of the other seismic isolation structure damper mechanism is increased. Is characterized in that at least two seismic isolation structural damper mechanisms are symmetrically arranged so as to shrink.

また、本発明の免震構造用トリガー機構は、下部構造体と、下部構造体の上方に設けられた上部構造体との間に設けられ、
前記下部構造体と前記上部構造体とを連結する連結部材を備え、
下部構造体と上部構造体との間に所定量以上の変位が加わった場合に、下部構造体又は上部構造体と、連結部材との間の連結が解除されるよう構成されており、
前記連結部材の水平方向の剛性が、前記連結部材の鉛直方向の剛性よりも大きいことを特徴とする。
Further, the trigger mechanism for the seismic isolation structure of the present invention is provided between the lower structure and the upper structure provided above the lower structure.
A connecting member for connecting the lower structure and the upper structure is provided.
When a displacement of a predetermined amount or more is applied between the lower structure and the upper structure, the connection between the lower structure or the upper structure and the connecting member is released.
The horizontal rigidity of the connecting member is larger than the vertical rigidity of the connecting member.

また、本発明の免震構造用トリガー機構にあっては、前記連結部材は、水平面と略平行となるように配置された板状部材であることが好ましい。 Further, in the trigger mechanism for a seismic isolation structure of the present invention, it is preferable that the connecting member is a plate-shaped member arranged so as to be substantially parallel to the horizontal plane.

また、本発明の免震構造用トリガー機構にあっては、前記連結部材は、前記水平方向の剛性が前記鉛直方向の剛性の1000倍以上となるように構成されていることが好ましい。 Further, in the trigger mechanism for a seismic isolation structure of the present invention, it is preferable that the connecting member is configured such that the rigidity in the horizontal direction is 1000 times or more the rigidity in the vertical direction.

また、本発明の免震構造用トリガー機構にあっては、前記連結部材は、水平面に対して傾斜するように弾性変形させた状態で前記下部構造体及び前記上部構造体に連結されていることが好ましい。 Further, in the seismic isolation structure trigger mechanism of the present invention, the connecting member is connected to the lower structure and the upper structure in a state of being elastically deformed so as to be inclined with respect to the horizontal plane. Is preferable.

また、本発明の免震構造用トリガー機構にあっては、前記連結部材の水平方向の圧縮耐力が、前記下部構造体又は前記上部構造体と前記連結部材との連結が解除される際の力よりも大きいことが好ましい。 Further, in the seismic isolation structure trigger mechanism of the present invention, the horizontal compression strength of the connecting member is the force when the lower structure or the upper structure and the connecting member are disconnected. Is preferably larger than.

また、本発明の免震構造用トリガー機構にあっては、前記下部構造体又は前記上部構造体と前記連結部材とを連結する連結材を有し、該連結材は、所定の変位で切断するよう構成されていることが好ましい。 Further, the trigger mechanism for a seismic isolation structure of the present invention has a connecting member for connecting the lower structure or the upper structure and the connecting member, and the connecting member is cut at a predetermined displacement. It is preferable that the configuration is as follows.

また、本発明の免震構造用トリガー機構の配置構造は、前記免震構造用トリガー機構は、前記下部構造体及び前記上部構造体の外周縁に設けられていることを特徴とする。 Further, the arrangement structure of the seismic isolation structure trigger mechanism of the present invention is characterized in that the seismic isolation structure trigger mechanism is provided on the outer peripheral edge of the lower structure and the upper structure.

また、本発明の免震構造用すべり支承機構は、
下部構造体と、下部構造体の上方に設けられた上部構造体との間に設けられ、
前記下部構造体又は前記上部構造体に固定されるすべり支承を有し、
前記上部構造体が前記すべり支承を介して前記下部構造体上を滑動するよう構成されており、
前記すべり支承は、
平板部と、
該平板部に連なる凹部と有し、
該凹部と、前記下部構造体又は前記上部構造体とで形成される空間に硬化性流動体からなる充填体が設けられていることを特徴とする。
Further, the sliding bearing mechanism for the seismic isolation structure of the present invention is
Provided between the lower structure and the upper structure provided above the lower structure,
Having a sliding bearing fixed to the substructure or the superstructure,
The superstructure is configured to slide over the substructure via the sliding bearings.
The slip bearing is
Flat plate and
It has a recess connected to the flat plate portion and has a recess.
It is characterized in that a filler made of a curable fluid is provided in the space formed by the recess and the lower structure or the upper structure.

また、本発明の免震構造用すべり支承機構にあっては、前記充填体は、圧縮強度が40N/mm2以上であることが好ましい。 Further, in the sliding bearing mechanism for a seismic isolation structure of the present invention, it is preferable that the filler has a compressive strength of 40 N / mm 2 or more.

また、本発明の免震構造用すべり支承機構にあっては、前記すべり支承の前記凹部は、側面部と底面部とを有することが好ましい。 Further, in the sliding bearing mechanism for a seismic isolation structure of the present invention, it is preferable that the recess of the sliding bearing has a side surface portion and a bottom surface portion.

また、本発明の建物は、上記の何れかの免震構造用ダンパー機構および/または上記の免震構造用ダンパー機構の配置構造と、
上記の何れかの免震構造用トリガー機構および/または上記の免震構造用トリガー機構の配置構造と、
上記の何れかの免震構造用すべり支承機構と、を備えることを特徴とする。
Further, the building of the present invention has a structure in which any of the above-mentioned damper mechanisms for seismic isolation structures and / or the above-mentioned damper mechanism for seismic isolation structures is arranged.
The arrangement structure of any of the above seismic isolation structure trigger mechanisms and / or the above seismic isolation structure trigger mechanism,
It is characterized by being provided with any of the above-mentioned sliding bearing mechanisms for seismic isolation structures.

本発明によれば、安価で、高さの低い免震構造用ダンパー機構、及びその配置構造を提供することができる。また、本発明によれば、上部構造体の転倒モーメント等によりトリガー機構に浮上りが生じたとしても、所期した性能を発揮し得、高さの低い免震構造用トリガー機構、及びその配置構造を提供することができる。また、本発明によれば、安価に製造可能で高さの低い免震構造用すべり支承機構を提供することができる。さらに、本発明によれば、建物全体としての大型化を伴わず、安価に、上部構造体の損傷を軽減可能な免震構造の建物を提供することができる。 According to the present invention, it is possible to provide an inexpensive and low-height damper mechanism for a seismic isolation structure and an arrangement structure thereof. Further, according to the present invention, even if the trigger mechanism floats due to the overturning moment of the superstructure or the like, the desired performance can be exhibited, and the trigger mechanism for the seismic isolation structure having a low height and its arrangement thereof. The structure can be provided. Further, according to the present invention, it is possible to provide a sliding bearing mechanism for a seismic isolation structure that can be manufactured at low cost and has a low height. Further, according to the present invention, it is possible to provide a seismically isolated building capable of reducing damage to the superstructure at low cost without increasing the size of the building as a whole.

本発明の一実施形態としての建物を示す側面図である。It is a side view which shows the building as one Embodiment of this invention. 図1Aの建物において、上部構造体が水平移動した状態を示す側面図である。It is a side view which shows the state which the superstructure has moved horizontally in the building of FIG. 1A. 本発明のダンパー機構の一例を示す平面図である。It is a top view which shows an example of the damper mechanism of this invention. 図1のダンパー機構の側面図である。It is a side view of the damper mechanism of FIG. 図2のダンパー機構の引張り方向の変位を示す平面図である。It is a top view which shows the displacement in the tension direction of the damper mechanism of FIG. 図2のダンパー機構の圧縮方向の変位を示す平面図である。It is a top view which shows the displacement of the damper mechanism of FIG. 2 in the compression direction. ダンパー機構の変形例を示す平面図である。It is a top view which shows the modification of the damper mechanism. ダンパー機構の他の変形例を示す平面図である。It is a top view which shows the other modification of the damper mechanism. 複数のダンパー機構を建物に設ける場合の一例を示す平面図である。It is a top view which shows an example of the case where a plurality of damper mechanisms are provided in a building. 建物に水平方向の変位が生じた場合の、ダンパー機構の変位の一例を示す平面図である。It is a top view which shows an example of the displacement of a damper mechanism when a displacement in a horizontal direction occurs in a building. 複数のダンパー機構を設ける場合の他の実施形態である。It is another embodiment in the case where a plurality of damper mechanisms are provided. 本発明のトリガー機構の一例を示す側面図である。It is a side view which shows an example of the trigger mechanism of this invention. 図11のトリガー機構の平面図である。It is a top view of the trigger mechanism of FIG. 本発明のすべり支承機構の一例を示す側面図である。It is a side view which shows an example of the sliding bearing mechanism of this invention. 図13のすべり支承機構の平面図である。It is a top view of the sliding bearing mechanism of FIG.

以下、本発明の一実施形態について、図面を参照して詳細に説明する。本発明の建物構造は、上部構造体10と、下部構造体20との間に、ダンパー機構30(免震構造用ダンパー機構)、トリガー機構40(免震構造用トリガー機構)、及びすべり支承機構50(免震構造用すべり支承機構)の少なくとも何れかを備えている。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. The building structure of the present invention has a damper mechanism 30 (seismic isolation structure damper mechanism), a trigger mechanism 40 (seismic isolation structure trigger mechanism), and a sliding bearing mechanism between the upper structure 10 and the lower structure 20. It is equipped with at least one of 50 (sliding bearing mechanism for seismic isolation structure).

図1A、図1Bに示すように、建物1は、例えば、二階建て或いは三階建て等の住宅である。建物1は、上部構造体10と、下部構造体としての基礎20とを備えている。基礎20は、地盤G上に設置され、上部構造体10等を支持する。 As shown in FIGS. 1A and 1B, the building 1 is, for example, a two-story or three-story house. The building 1 includes an upper structure 10 and a foundation 20 as a lower structure. The foundation 20 is installed on the ground G and supports the superstructure 10 and the like.

建物1は、例えば、鉄骨造の軸組みを有する工業化住宅や、木造住宅等とすることができる。なお、工業化住宅としては例えば、鉄筋コンクリート造の基礎20と、柱や梁などの軸組部材で構成される軸組架構を有し、基礎20の上方に設けられた上部構造体10と、で構成される。なお、軸組架構を構成する軸組部材は、予め規格化(標準化)されたものとすることができ、その場合、予め工場にて製造されたのち建築現場に搬入されて組み立てられる。 The building 1 can be, for example, an industrialized house having a steel frame, a wooden house, or the like. The industrialized house is composed of, for example, a reinforced concrete foundation 20 and a superstructure 10 having a frame frame composed of frame members such as columns and beams and provided above the foundation 20. Will be done. The frame members constituting the frame frame can be standardized (standardized) in advance, and in that case, they are manufactured in advance at the factory and then carried to the construction site for assembly.

上部構造体10は、基礎20の上方に設けられており、内部に居室等の室内空間を有している。上部構造体10は、予め定められた設計規準に基づいて設計及び構築されている。ここで、予め定められた設計規準とは、日本における建築基準法、又は外国における建物に関する法律等、建物が満たすべき強度に関する基準を含む種々の法令又は定め等であってもよい。上部構造体10は、設計規準に示された強度に関する基準を満たし、耐震構造(制振構造)を実現できる構造であれば、種々の構造を採用できる。 The superstructure 10 is provided above the foundation 20 and has an indoor space such as a living room inside. The superstructure 10 is designed and constructed based on predetermined design criteria. Here, the predetermined design criteria may be various laws and regulations including the building standard law in Japan, the law on buildings in foreign countries, and the standards on the strength that the building should satisfy. As the superstructure 10, various structures can be adopted as long as they satisfy the criteria for strength shown in the design criteria and can realize a seismic structure (vibration control structure).

本例の建物1にあっては、上部構造体10と基礎20の間に、ダンパー機構30、トリガー機構40、及びすべり支承機構50が設けられている。平面視では、例えば図8に示すように、ダンパー機構30、トリガー機構40、及びすべり支承機構50が配置される。 In the building 1 of this example, a damper mechanism 30, a trigger mechanism 40, and a sliding bearing mechanism 50 are provided between the superstructure 10 and the foundation 20. In a plan view, for example, as shown in FIG. 8, a damper mechanism 30, a trigger mechanism 40, and a sliding bearing mechanism 50 are arranged.

以下に、上部構造体10に水平荷重が加わった場合の各部の基本的な動作について説明する。上部構造体10に加わる水平荷重がトリガー機構40の破断強度(連結状態が解除され非連結となる強度)を超えるまでは、トリガー機構40によって上部構造体10と基礎20とが連結されているため、トリガー機構40が地震による水平荷重(地震力)に抵抗を付与する。すなわち、設計規準に基づいて設計された上部構造体10の構成によって、上部構造体10は耐震構造(制振構造)として修復性を発揮する。このように、設計規準で規定された地震(極めて稀に起きる地震)までは、建物1は耐震構造(制振構造)として損傷を抑制する。 The basic operation of each part when a horizontal load is applied to the superstructure 10 will be described below. Because the upper structure 10 and the foundation 20 are connected by the trigger mechanism 40 until the horizontal load applied to the upper structure 10 exceeds the breaking strength of the trigger mechanism 40 (the strength at which the connection state is released and the connection is not made). , The trigger mechanism 40 imparts resistance to the horizontal load (seismic force) caused by the earthquake. That is, due to the configuration of the superstructure 10 designed based on the design criteria, the superstructure 10 exhibits repairability as a seismic structure (vibration control structure). In this way, until an earthquake specified in the design criteria (an earthquake that occurs extremely rarely), the building 1 has a seismic structure (vibration control structure) to suppress damage.

一方、地震等によって、上部構造体10にトリガー機構40の耐力(破断強度)を超える水平荷重が加わった場合、図1Bに示すように、トリガー機構40が破断して連結状態が解除される。この場合、上部構造体10は、ダンパー機構30及びすべり支承機構50によって移動が制限されつつ、すべり支承機構50によって水平に移動(滑動)する。すなわち、上部構造体10は免震状態として修復性を発揮する。このように、設計規準で規定された地震を超える地震(極めて大きな地震)が生じた場合、建物1は免震状態として損傷を抑制する。 On the other hand, when a horizontal load exceeding the proof stress (breaking strength) of the trigger mechanism 40 is applied to the superstructure 10 due to an earthquake or the like, the trigger mechanism 40 breaks and the connected state is released as shown in FIG. 1B. In this case, the upper structure 10 moves (slides) horizontally by the sliding bearing mechanism 50 while the movement is restricted by the damper mechanism 30 and the sliding bearing mechanism 50. That is, the superstructure 10 exhibits repairability as a seismic isolated state. In this way, when an earthquake (extremely large earthquake) that exceeds the earthquake specified in the design criteria occurs, the building 1 is in a seismic isolated state and damage is suppressed.

以下に、ダンパー機構30について説明する。図2は、ダンパー機構30の一例を示す平面図であり、図3は、側面図である。 The damper mechanism 30 will be described below. FIG. 2 is a plan view showing an example of the damper mechanism 30, and FIG. 3 is a side view.

図2は、ダンパー機構30が変形する前の初期状態を示している。本例のダンパー機構30は、リンク機構を構成する変位縮小機構31を備える。 FIG. 2 shows an initial state before the damper mechanism 30 is deformed. The damper mechanism 30 of this example includes a displacement reduction mechanism 31 that constitutes a link mechanism.

変位縮小機構31は、変形によりエネルギーを吸収して変位を低減させる変位抑制部32を有する。変位抑制部32としては、例えば、縦材35、36や横材33、34よりも降伏点が低い低降伏点鋼、極低降伏点鋼、または、低降伏点鋼及び極低降伏点鋼の組合せや複合物とすることができるが、これに限られるものではない。 The displacement reduction mechanism 31 has a displacement suppressing unit 32 that absorbs energy by deformation to reduce the displacement. The displacement suppressing portion 32 includes, for example, a low yield point steel, an extremely low yield point steel, or a low yield point steel and an extremely low yield point steel having a lower yield point than the vertical members 35, 36 and the horizontal members 33, 34. It can be a combination or a composite, but is not limited to this.

本例において、変位縮小機構31は、基礎20と上部構造体10との相対的な水平方向の変位の変位を縮小して変位抑制部32に出力可能なリンク機構を構成している。なお、変位縮小機構31は、上部構造体10と基礎20との間に生じた変位を縮小可能なものであればよく、例えば、滑車機構、又は、てこ機構等としてもよい。 In this example, the displacement reduction mechanism 31 constitutes a link mechanism capable of reducing the displacement of the relative horizontal displacement between the foundation 20 and the superstructure 10 and outputting the displacement to the displacement suppression unit 32. The displacement reduction mechanism 31 may be any mechanism as long as it can reduce the displacement generated between the upper structure 10 and the foundation 20, and may be, for example, a pulley mechanism or a lever mechanism.

変位縮小機構31は、略平行に配置された複数の横材33、34を備える。また変位縮小機構31は、隣り合う一対の横材33、34に対して両端部がそれぞれ回動可能に接続された複数の縦材35、36を備える。本例では、横材33、34は、同形状の長尺部材であり、一方の横材33に対して他方の横材34は、180°回転させた向きに平行に配置される。横材33、34及び縦材35、36は、鉄等の鋼材で形成することができるが、これに限定されず、例えば、ステンレス、エンジニアリングプラスチック、セラミック等で形成することも可能である。なお、変位縮小機構31は、3本以上の横材を有する構成としてもよい。例えば、3本の略平行な横材を有する場合、中央の横材と、中央の横材の一方側に位置する横材とを縦材で接続するとともに、中央の横材と他方側に位置する横材とを縦材で接続する構成とすることができる。 The displacement reduction mechanism 31 includes a plurality of cross members 33, 34 arranged substantially in parallel. Further, the displacement reduction mechanism 31 includes a plurality of vertical members 35, 36 whose both ends are rotatably connected to a pair of adjacent horizontal members 33, 34, respectively. In this example, the cross members 33 and 34 are long members having the same shape, and the other cross member 34 is arranged parallel to the one cross member 33 in a direction rotated by 180 °. The cross members 33 and 34 and the vertical members 35 and 36 can be formed of a steel material such as iron, but the present invention is not limited to this, and for example, the cross members 33 and 34 and the vertical members 35 and 36 can also be formed of stainless steel, engineering plastic, ceramic or the like. The displacement reduction mechanism 31 may be configured to have three or more cross members. For example, in the case of having three substantially parallel cross members, the central cross member and the cross member located on one side of the center cross member are connected by a vertical member, and the center cross member and the other side are positioned. It is possible to have a configuration in which the horizontal members to be connected are connected by vertical members.

本例では、複数の横材33、34のうち、一の横材33の端部33aが、基礎20に接続されている。また、他の横材34の端部34aが、上部構造体10に間接的に接続されている。横材33の端部33aは、本例のように接続部材37を介して間接的に基礎20に接続してもよいし、直接、基礎20に接続してもよい。また、図3に示すように、上部構造体10の下方には鉄骨基礎11を設けることができ、本例では、横材34の端部34aが、接続部材38を介して鉄骨基礎11に接続されている。なお、本例のように横材34の端部34aを間接的に上部構造体10に接続してもよいし、直接、上部構造体10に接続してもよい。鉄骨基礎11は、例えばH型鋼などで構成することができる。 In this example, of the plurality of cross members 33, 34, the end portion 33a of one of the cross members 33 is connected to the foundation 20. Further, the end portion 34a of the other cross member 34 is indirectly connected to the upper structure 10. The end portion 33a of the cross member 33 may be indirectly connected to the foundation 20 via the connecting member 37 as in this example, or may be directly connected to the foundation 20. Further, as shown in FIG. 3, a steel frame foundation 11 can be provided below the upper structure 10, and in this example, the end portion 34a of the cross member 34 is connected to the steel frame foundation 11 via the connecting member 38. Has been done. As in this example, the end portion 34a of the cross member 34 may be indirectly connected to the upper structure 10 or may be directly connected to the upper structure 10. The steel frame foundation 11 can be made of, for example, H-shaped steel.

縦材35、36は、各横材33、34に対して固定されたボルト等の締結部材により回動可能に軸支されている。一対の縦材35、36は、同一形状の部材で構成され、一方の縦材35と、他方の縦材36とは対向する向きで平行に配置されている。また、本例では、一対の横材33、34の間に、4組(4対)の一対の縦材35、36が等間隔で配置されている。隣り合う縦材35、36には、一方の縦材35と他方の縦材36とを接続する変位抑制部32が固定されている。本例では、一対の縦材35、36の上面側及び下面側にそれぞれ等間隔に6個ずつ、つまり合計12個の変位抑制部32が配置されているが、変位抑制部32の数及び配置は適宜変更可能であり、上面側のみ、または下面側のみとしてもよい。変位抑制部32は、縦材35、36に対してボルト等の締結部材又は溶接等により固定される。なお、変位抑制部32と一対の縦材35、36とを、一体に形成した一つの部材で構成してもよい。変位抑制部32の大きさや数量は、想定される上部構造体10の変位から決定することができる。なお、変位縮小機構31は、3本以上の縦材を有する構成としてもよい。例えば、3本の略平行な縦材を有する場合、中央の縦材と、中央の縦材の一方側に位置する縦材とを変位抑制部で接続するとともに、中央の縦材と他方側に位置する縦材とを変位抑制部で接続する構成とすることができる。 The vertical members 35 and 36 are rotatably supported by fastening members such as bolts fixed to the horizontal members 33 and 34. The pair of vertical members 35, 36 are made of members having the same shape, and one vertical member 35 and the other vertical member 36 are arranged in parallel in opposite directions. Further, in this example, four pairs (four pairs) of pairs of vertical members 35, 36 are arranged at equal intervals between the pair of horizontal members 33, 34. Displacement suppressing portions 32 that connect one vertical member 35 and the other vertical member 36 are fixed to the adjacent vertical members 35 and 36. In this example, six displacement suppressing portions 32 are arranged at equal intervals on the upper surface side and the lower surface side of the pair of vertical members 35 and 36, that is, a total of 12 displacement suppressing portions 32. However, the number and arrangement of the displacement suppressing portions 32 are arranged. Can be changed as appropriate, and may be changed only on the upper surface side or only on the lower surface side. The displacement suppressing portion 32 is fixed to the vertical members 35 and 36 by a fastening member such as a bolt or by welding or the like. The displacement suppressing portion 32 and the pair of vertical members 35 and 36 may be formed of one member integrally formed. The size and quantity of the displacement suppressing portion 32 can be determined from the assumed displacement of the superstructure 10. The displacement reduction mechanism 31 may be configured to have three or more vertical members. For example, in the case of having three substantially parallel vertical members, the central vertical member and the vertical member located on one side of the central vertical member are connected by a displacement suppressing portion, and the central vertical member and the other side are connected to each other. The vertical member to be located can be connected by a displacement suppressing portion.

本例において、隣り合う一対の縦材35、36の間には、隙間39が形成されている。隙間39は、変位縮小機構31が許容される最大変形に達した際に、一対の縦材35、36同士が接触するように設定されており、これにより、最大変形を超える変形を抑制することができる。すなわち、ダンパー機構30を、基礎20に対する上部構造体10の移動範囲を規制するストッパーとしても機能させることができる。なお、隙間39の距離が大きすぎると、変位抑制部32が面外方向に変形した場合に当該隙間39に入り込む虞があるので、隙間39の距離は変位抑制部32が、入り込まない距離とすることが望ましい。ここで、変位縮小機構31の最大変形を超える変形を抑制する構成は、上記のような隙間39を設ける構成に限られるものではない。例えば、隣り合う縦材35、36を上下方向に異なる高さに配置した上で、何れか一方の縦材に突起を設けて、変位縮小機構31が最大変形に達した際に、当該突起が他方の縦材に接触して縦材を停止させる構成とすることができる。このような構成でも、変位縮小機構31の、最大変形を超える変形を抑制することができる。 In this example, a gap 39 is formed between a pair of adjacent vertical members 35, 36. The gap 39 is set so that the pair of vertical members 35, 36 come into contact with each other when the displacement reduction mechanism 31 reaches the maximum allowable deformation, thereby suppressing deformation exceeding the maximum deformation. Can be done. That is, the damper mechanism 30 can also function as a stopper that regulates the movement range of the upper structure 10 with respect to the foundation 20. If the distance of the gap 39 is too large, the displacement suppressing portion 32 may enter the gap 39 when it is deformed in the out-of-plane direction. Therefore, the distance of the gap 39 is set so that the displacement suppressing portion 32 does not enter. Is desirable. Here, the configuration for suppressing the deformation of the displacement reduction mechanism 31 exceeding the maximum deformation is not limited to the configuration in which the gap 39 is provided as described above. For example, when adjacent vertical members 35 and 36 are arranged at different heights in the vertical direction and a protrusion is provided on one of the vertical members, the protrusion reaches the maximum deformation when the displacement reduction mechanism 31 reaches the maximum deformation. The vertical member may be stopped by contacting the other vertical member. Even with such a configuration, it is possible to suppress deformation of the displacement reduction mechanism 31 that exceeds the maximum deformation.

図4、5は、基礎20と上部構造体10との間で変位が生じた際の、ダンパー機構30の変形の様子を示している。図4、5は、基礎20に対する上部構造体10の変位の方向がそれぞれ異なる場合を示している。 FIGS. 4 and 5 show the deformation of the damper mechanism 30 when a displacement occurs between the foundation 20 and the superstructure 10. FIGS. 4 and 5 show cases where the displacement directions of the superstructure 10 with respect to the foundation 20 are different from each other.

図4は、一方の横材33の端部33aと他方の横材34の端部34aとの距離が拡大するように変位縮小機構31が変形した場合、すなわち変位縮小機構31が引張り方向に変形した場合の、最大変形状態を示している。これに対して、図5は、変位縮小機構31が圧縮方向に変形した場合の、最大変形状態を示している。 FIG. 4 shows a case where the displacement reduction mechanism 31 is deformed so that the distance between the end 33a of one cross member 33 and the end 34a of the other cross member 34 is increased, that is, the displacement reduction mechanism 31 is deformed in the tensile direction. It shows the maximum deformation state when On the other hand, FIG. 5 shows the maximum deformation state when the displacement reduction mechanism 31 is deformed in the compression direction.

図4に示すように、基礎20に対して上部構造体10が、水平方向に長さL1だけ変位した場合、それぞれの変位抑制部32には、長さL2分の変位が生じる。つまり、基礎20と上部構造体10との間に生じる変位L1が、変位縮小機構31のリンク機構によって変位L2に縮小されて各変位抑制部32に伝わることとなる。具体的には、例えば、変位L1が約350mmである場合に変位L2が約34mmとなる、すなわち、変位の大きさが約1/10に縮小されるような構成とすることができる。 As shown in FIG. 4, when the superstructure 10 is displaced by the length L1 in the horizontal direction with respect to the foundation 20, each displacement suppressing portion 32 is displaced by the length L2. That is, the displacement L1 generated between the foundation 20 and the superstructure 10 is reduced to the displacement L2 by the link mechanism of the displacement reduction mechanism 31 and transmitted to each displacement suppressing unit 32. Specifically, for example, when the displacement L1 is about 350 mm, the displacement L2 becomes about 34 mm, that is, the magnitude of the displacement can be reduced to about 1/10.

このようにして、基礎20と上部構造体10との間に変位が生じる際に、各変位抑制部32にはせん断エネルギーが働き、せん断変形が生じることとなる。このように、各変位抑制部32が変形することにより、エネルギーが吸収されて、上部構造体10の移動速度が制限される。 In this way, when a displacement occurs between the foundation 20 and the superstructure 10, shear energy acts on each displacement suppressing portion 32, and shear deformation occurs. By deforming each displacement suppressing portion 32 in this way, energy is absorbed and the moving speed of the superstructure 10 is limited.

また、基礎20に接続された端部33aに対する、上部構造体10に接続された端部34aの移動範囲は所定の範囲内に制限されるため、基礎20に対する上部構造体10の移動範囲が制限されることとなる。 Further, since the movement range of the end portion 34a connected to the upper structure 10 with respect to the end portion 33a connected to the foundation 20 is limited within a predetermined range, the movement range of the upper structure 10 with respect to the foundation 20 is limited. Will be done.

このように、ダンパー機構30によれば、基礎20に対する上部構造体10の移動速度、及び移動範囲を制限することができる。 In this way, according to the damper mechanism 30, it is possible to limit the moving speed and moving range of the superstructure 10 with respect to the foundation 20.

また、本実施形態のダンパー機構30では、基礎20と上部構造体10との間に生じた変位の変位を、変位縮小機構31により縮小して変位抑制部32に伝える構成としたことにより、基礎20と上部構造体10との間に生じ得る変位の長さに対して、変位抑制部32の大きさを小さく設定することができる。これにより、安価で、低背のダンパー機構30を実現することができる。 Further, in the damper mechanism 30 of the present embodiment, the displacement of the displacement generated between the foundation 20 and the upper structure 10 is reduced by the displacement reduction mechanism 31 and transmitted to the displacement suppressing unit 32, whereby the foundation is formed. The size of the displacement suppressing portion 32 can be set smaller than the length of the displacement that can occur between the 20 and the superstructure 10. As a result, it is possible to realize an inexpensive and low-profile damper mechanism 30.

また、本実施形態のダンパー機構30では、リンク機構である変位縮小機構31と低降伏点鋼(または極低降伏点鋼)である変位抑制部32とを組み合わせたことで、比較的小さい変位抑制部32のせん断変形量で、大きな上部構造体10の変位に対応することができる。 Further, in the damper mechanism 30 of the present embodiment, a relatively small displacement suppression is performed by combining the displacement reduction mechanism 31 which is a link mechanism and the displacement suppression unit 32 which is a low yield point steel (or extremely low yield point steel). The amount of shear deformation of the portion 32 can correspond to the displacement of the large superstructure 10.

図6、7は、ダンパー機構30の変形例を示している。例えば、図6に示すように、一対の横材33、34に対して、一対の縦材35、36を3組(つまり、3対)設けた構成としてもよいし、図7に示すように、例えば4組の一対の縦材35、36のうち、変位抑制部32を設けない組を2組設ける等、変位抑制部32の数を増減してもよい。 6 and 7 show a modified example of the damper mechanism 30. For example, as shown in FIG. 6, a configuration in which three sets (that is, three pairs) of a pair of vertical members 35 and 36 are provided for a pair of horizontal members 33 and 34 may be provided, or as shown in FIG. For example, the number of the displacement suppressing portions 32 may be increased or decreased, for example, two sets of the four pairs of vertical members 35, 36 without the displacement suppressing portion 32 are provided.

ここで、建物1に複数のダンパー機構30を設ける場合には、一方のダンパー機構30の支点間の距離が拡がった際に、他方のダンパー機構30の支点間の距離が縮まるように、少なくとも2つのダンパー機構を対称に配置することが好ましい。なお、ダンパー機構30の支点とは、ダンパー機構30において上部構造体10及び下部構造体(基礎20)にそれぞれ接続される点であり、本例では、変位縮小機構31において基礎20に接続される横材33の端部33aと、上部構造体10に接続される他の横材34の端部34aである。図8に示す例では、2つのダンパー機構301、302が、平面視における建物1の中心点の周りで点対称に配置されている。 Here, when a plurality of damper mechanisms 30 are provided in the building 1, at least 2 are provided so that when the distance between the fulcrums of one damper mechanism 30 increases, the distance between the fulcrums of the other damper mechanism 30 decreases. It is preferable to arrange the two damper mechanisms symmetrically. The fulcrum of the damper mechanism 30 is a point connected to the upper structure 10 and the lower structure (foundation 20) in the damper mechanism 30, respectively. In this example, the fulcrum is connected to the foundation 20 in the displacement reduction mechanism 31. An end portion 33a of the cross member 33 and an end portion 34a of another cross member 34 connected to the upper structure 10. In the example shown in FIG. 8, the two damper mechanisms 301 and 302 are arranged point-symmetrically around the center point of the building 1 in a plan view.

図8に示すように、さらにダンパー機構303と304を配置することで、ダンパー機構301、302に直交する荷重に対しても対応可能とすることができる。図8に示すように、2つのダンパー機構303、304も点対称に配置されている。図9の破線矢印に示す方向に上部構造体が水平移動した場合、一方のダンパー機構304には引張力が働いて支点間の距離が拡がり、他方のダンパー機構303には圧縮力が働いて支点間の距離が縮まる。これにより、ダンパー機構304、303のリンク機構の幾何学的非線形性による荷重変形関係の正と負の非対称性を相殺させることができ、結果として免震層の設計を容易化することができる。なお、一方のダンパー機構304に圧縮力が働いて支点間の距離が縮まる場合、他方のダンパー機構303には引張力が働いて支点間の距離が拡がる。なお、ダンパー機構301、302についても、一方のダンパー機構301に引張力が働いて支点間の距離が拡がる際に、他方のダンパー機構302には圧縮力が働いて支点間の距離が縮まるよう構成されている。また一方のダンパー機構301に圧縮力が働いて支点間の距離が縮まる際には、他方のダンパー機構302には引張力が働いて支点間の距離が拡がることとなる。これにより、特定の方向のみに免震効果が発揮されることを解消し、水平面内のあらゆる方向に免震効果を発揮させることができる。 As shown in FIG. 8, by further arranging the damper mechanisms 303 and 304, it is possible to cope with a load orthogonal to the damper mechanisms 301 and 302. As shown in FIG. 8, the two damper mechanisms 303 and 304 are also arranged point-symmetrically. When the superstructure moves horizontally in the direction shown by the broken line arrow in FIG. 9, a tensile force acts on one of the damper mechanisms 304 to increase the distance between the fulcrums, and a compressive force acts on the other damper mechanism 303 to act as a fulcrum. The distance between them is shortened. As a result, the positive and negative asymmetry of the load deformation relationship due to the geometric non-linearity of the link mechanisms of the damper mechanisms 304 and 303 can be offset, and as a result, the design of the seismic isolation layer can be facilitated. When a compressive force acts on one of the damper mechanisms 304 to reduce the distance between the fulcrums, a tensile force acts on the other damper mechanism 303 to increase the distance between the fulcrums. The damper mechanisms 301 and 302 are also configured so that when a tensile force acts on one of the damper mechanisms 301 to increase the distance between the fulcrums, a compressive force acts on the other damper mechanism 302 to reduce the distance between the fulcrums. Has been done. Further, when a compressive force acts on one of the damper mechanisms 301 to reduce the distance between the fulcrums, a tensile force acts on the other damper mechanism 302 to increase the distance between the fulcrums. As a result, it is possible to eliminate the seismic isolation effect from being exerted only in a specific direction and to exert the seismic isolation effect in all directions in the horizontal plane.

ここで、図8に示す例において、上部構造体10(鉄骨基礎11)が図8に矢印で示すX方向(図8における右側)に変位した場合、ダンパー機構301は支点間の距離が拡がり、ダンパー機構303は支点間の距離が縮まる。同様に、ダンパー機構304は支点間の距離が拡がり、ダンパー機構302は支点間の距離が縮まる。なお、ダンパー機構301とダンパー機構303とは、図8のY方向に平行な直線に対して線対称に配置され、ダンパー機構304とダンパー機構302とは、当該直線に対して線対称に配置されている。 Here, in the example shown in FIG. 8, when the superstructure 10 (steel foundation 11) is displaced in the X direction (right side in FIG. 8) indicated by the arrow in FIG. 8, the distance between the fulcrums of the damper mechanism 301 increases. The distance between the fulcrums of the damper mechanism 303 is shortened. Similarly, the damper mechanism 304 increases the distance between the fulcrums, and the damper mechanism 302 reduces the distance between the fulcrums. The damper mechanism 301 and the damper mechanism 303 are arranged line-symmetrically with respect to a straight line parallel to the Y direction in FIG. 8, and the damper mechanism 304 and the damper mechanism 302 are arranged line-symmetrically with respect to the straight line. ing.

図8に示す例において、上部構造体10(鉄骨基礎11)が図8に矢印で示すY方向(図8における下側)に変位した場合、ダンパー機構304は支点間の距離が拡がり、ダンパー機構301は支点間の距離が縮まる。同様に、ダンパー機構302は支点間の距離が拡がり、ダンパー機構303は支点間の距離が縮まる。なお、ダンパー機構304とダンパー機構301とは、図8のX方向に平行な直線に対して線対称に配置され、ダンパー機構302とダンパー機構303とは、当該直線に対して線対称に配置されている。 In the example shown in FIG. 8, when the superstructure 10 (steel foundation 11) is displaced in the Y direction (lower side in FIG. 8) indicated by the arrow in FIG. 8, the damper mechanism 304 increases the distance between the fulcrums and the damper mechanism. In 301, the distance between the fulcrums is shortened. Similarly, the damper mechanism 302 increases the distance between the fulcrums, and the damper mechanism 303 decreases the distance between the fulcrums. The damper mechanism 304 and the damper mechanism 301 are arranged line-symmetrically with respect to a straight line parallel to the X direction in FIG. 8, and the damper mechanism 302 and the damper mechanism 303 are arranged line-symmetrically with respect to the straight line. ing.

また、建物1に複数のダンパー機構30を設ける場合には、図8に示すように、下部構造体20に接続する端部33aが建物1の中心側に位置し、上部構造体10に接続する端部34aが外周縁側に位置することが好ましい。複数のダンパー機構30の干渉を防止しつつ、水平面内でのあらゆる方向の変位に対応させることができる。 Further, when a plurality of damper mechanisms 30 are provided in the building 1, as shown in FIG. 8, the end portion 33a connected to the lower structure 20 is located on the center side of the building 1 and is connected to the upper structure 10. It is preferable that the end portion 34a is located on the outer peripheral edge side. While preventing the interference of the plurality of damper mechanisms 30, it is possible to cope with the displacement in all directions in the horizontal plane.

図10は、ここで、建物1に複数のダンパー機構30を設ける場合の他の例を示している。図10に示す例では、基礎20に接続される端部33aと、上部構造体10に接続される端部34aを、共に、建物1の中心から離れた位置に配置している。このような位置で複数のダンパー機構30(301、302、303、304)を配置することにより、免震層の捩じり剛性を高めることができる。これにより、免震構造として挙動する際の上部構造体の回転を抑制することができる。なお、図10の例では、4つのダンパー機構30を用いているが、これに限定されず、ダンパー機構30の数は適宜変更可能である。 FIG. 10 shows another example in the case where a plurality of damper mechanisms 30 are provided in the building 1. In the example shown in FIG. 10, the end portion 33a connected to the foundation 20 and the end portion 34a connected to the superstructure 10 are both arranged at positions away from the center of the building 1. By arranging the plurality of damper mechanisms 30 (301, 302, 303, 304) at such positions, the torsional rigidity of the seismic isolation layer can be increased. As a result, it is possible to suppress the rotation of the superstructure when it behaves as a seismic isolation structure. In the example of FIG. 10, four damper mechanisms 30 are used, but the number of damper mechanisms 30 is not limited to this, and the number of damper mechanisms 30 can be changed as appropriate.

以下に、トリガー機構40について説明する。 The trigger mechanism 40 will be described below.

図11は、トリガー機構40を備えた建物1の一部を示す側面図であり、図12は平面図を示している。トリガー機構40は、下部構造体としての基礎20と上部構造体10とを連結する連結部材41を備える。 FIG. 11 is a side view showing a part of the building 1 provided with the trigger mechanism 40, and FIG. 12 is a plan view. The trigger mechanism 40 includes a connecting member 41 that connects the foundation 20 as the lower structure and the upper structure 10.

連結部材41は、基礎20に対して第1連結部41aで連結され、上部構造体10(図示例では鉄骨基礎11)に対して第2連結部41bで連結されている。連結部材41は、基礎20と上部構造体10との間に所定量以上の水平方向の変位が加わった場合に、第1連結部41a連結が解除されて非連結となるように構成されている。なお、連結部材41は、基礎20と上部構造体10との間に所定量以上の水平方向の変位が加わった場合に、第2連結部41bの連結が解除されて非連結となるように構成してもよい。連結部材41は、金属製としてもよいし、エンジニアリングプラスチック等の樹脂製でもよい。 The connecting member 41 is connected to the foundation 20 by a first connecting portion 41a, and is connected to the superstructure 10 (steel frame foundation 11 in the illustrated example) by a second connecting portion 41b. The connecting member 41 is configured so that when a displacement of a predetermined amount or more in the horizontal direction is applied between the foundation 20 and the superstructure 10, the first connecting portion 41a is released from the connection and is not connected. .. The connecting member 41 is configured so that when a displacement of a predetermined amount or more in the horizontal direction is applied between the foundation 20 and the superstructure 10, the second connecting portion 41b is released from the connection and becomes unconnected. You may. The connecting member 41 may be made of metal or a resin such as engineering plastic.

連結部材41は、連結部材41の水平方向の剛性が、鉛直方向の剛性よりも大きくなるように構成されている。 The connecting member 41 is configured such that the rigidity of the connecting member 41 in the horizontal direction is larger than the rigidity in the vertical direction.

本例において、連結部材41は、水平面と略平行となるように配置された板状の部材で構成されている。また、本例の連結部材41は、平面視でL字状となっており、L字状の角部が基礎20に対して連結される第1連結部41aとなっており、2箇所の先端部が、上部構造体10に対して連結される第2連結部41bとなっている。 In this example, the connecting member 41 is composed of a plate-shaped member arranged so as to be substantially parallel to the horizontal plane. Further, the connecting member 41 of this example has an L-shape in a plan view, and the L-shaped corner portion is a first connecting portion 41a connected to the foundation 20, and two tips thereof. The portion is a second connecting portion 41b connected to the superstructure 10.

本例の第1連結部41aには、連結部材41を基礎20に取付けるための、トリガー基礎取付部材43及びトリガー取付部材44が設けられている。トリガー基礎取付部材43は例えば鋼板で構成され、鋼板から突出して設けられた突出部に連結材としてのトリガーピン42が接続されるトリガーピン用の孔(ボルト孔)が設けられている。トリガー取付部材44は、例えば鋼板で形成される。第2連結部41bには、トリガー基礎取付部材43が設けられている。なお、第1連結部41a及び第2連結部41bの構成は図示例に限定されない。 The first connecting portion 41a of this example is provided with a trigger foundation mounting member 43 and a trigger mounting member 44 for mounting the connecting member 41 to the foundation 20. The trigger foundation mounting member 43 is made of, for example, a steel plate, and a hole (bolt hole) for a trigger pin to which a trigger pin 42 as a connecting member is connected is provided in a protruding portion provided so as to project from the steel plate. The trigger mounting member 44 is made of, for example, a steel plate. The second connecting portion 41b is provided with a trigger foundation mounting member 43. The configurations of the first connecting portion 41a and the second connecting portion 41b are not limited to the illustrated examples.

連結部材41は、板状の部材に限られず、例えば円柱、角柱等の棒状としてもよい。また、本例の連結部材41は、平面視でL字状となっているが、これに限られず、例えば長方形状、三角形状としてもよい。 The connecting member 41 is not limited to a plate-shaped member, and may be, for example, a rod-shaped member such as a cylinder or a prism. Further, the connecting member 41 of this example is L-shaped in a plan view, but is not limited to this, and may be, for example, rectangular or triangular.

連結部材41は、水平面に対して傾斜するように弾性変形させた状態で基礎20及び上部構造体10に連結されている。より具体的には、上部構造体10側の第2連結部41bから、基礎20側の第1連結部41aに向けて、下方に向けて僅かに傾斜している。例えば第2連結部41bと第1連結部41aの高さが1mm〜20mm程度異なる位置となるように、下方に向けて傾斜させてもよい。傾斜させすぎると連結部材41の水平方向の剛性による効果を得づらくなる可能性がある。このような構成より、連結部材41が基礎20または上部構造体10に対して非連結となったときに弾性変形していた連結部材41が復元力により水平面と平行な水平状態となり、基礎20に対して上部構造体10が変位する際に、連結部材41が基礎20又は上部構造体10に干渉し難くなる。その結果、非連結となった連結部材41の接触による基礎20または上部構造体10の損傷を防止することができる。 The connecting member 41 is connected to the foundation 20 and the superstructure 10 in a state of being elastically deformed so as to be inclined with respect to the horizontal plane. More specifically, it is slightly inclined downward from the second connecting portion 41b on the upper structure 10 side toward the first connecting portion 41a on the foundation 20 side. For example, the heights of the second connecting portion 41b and the first connecting portion 41a may be inclined downward so as to be at different positions by about 1 mm to 20 mm. If it is tilted too much, it may be difficult to obtain the effect of the horizontal rigidity of the connecting member 41. With such a configuration, the connecting member 41, which was elastically deformed when the connecting member 41 was not connected to the foundation 20 or the superstructure 10, became a horizontal state parallel to the horizontal plane due to the restoring force, and became the foundation 20. On the other hand, when the superstructure 10 is displaced, the connecting member 41 is less likely to interfere with the foundation 20 or the superstructure 10. As a result, it is possible to prevent damage to the foundation 20 or the superstructure 10 due to contact with the disconnected connecting member 41.

また、本例において、連結部材41の水平方向の圧縮耐力は、基礎20又は上部構造体10と連結部材41との連結が解除される際の力(破断耐力)よりも大きくなっている。このような構成により、板状の連結部材41が原形を留めた状態で連結が解除されて非連結となる。つまり、連結部材41が座屈しないので、鉛直方向の剛性を低く保ちながらも確実にトリガーピンを破断させることができる。 Further, in this example, the compression proof stress in the horizontal direction of the connecting member 41 is larger than the force (breaking proof stress) when the connection between the foundation 20 or the superstructure 10 and the connecting member 41 is released. With such a configuration, the plate-shaped connecting member 41 is released from the connection in a state where the original shape is retained, and the plate-shaped connecting member 41 is not connected. That is, since the connecting member 41 does not buckle, the trigger pin can be reliably broken while keeping the rigidity in the vertical direction low.

連結部材41は、第1連結部41aにおいて、基礎20に対して、トリガー基礎取付部材43及びトリガー取付部材44を介してトリガーピン42(連結材)で連結されている。また、連結部材41は、第2連結部41bにおいて、上部構造体10の鉄骨基礎11に対して、トリガー基礎取付部材43を介してボルト45で連結されている。トリガーピン42は、所定の変位で切断するよう構成されたボルトである。所定の変位で切断する連結材とは、例えば、強度区分10.9の中ボルト又は高力ボルト(F10T)とすることができる。このように、降伏比が高く脆性的に破断しやすいボルトを使用することで、所定の変位が働いたときに意図した変位でボルトを切断させることができる。すなわち、トリガー機構40の精度を高めることができる。なお、トリガーピン42は、所定の耐力を有し、伸びが少ないボルトであれば、前述以外のボルトも使用することができる。また、所定の耐力を有し、伸びの少ないものであればボルト以外の部材も使用することができる。また、トリガー機構40を複数設けた場合には、一か所のトリガーピン42が破断したした際に他のトリガーピン42も連続して破断し易い構成とすることが好ましい。複数のトリガーピン42が連続して破断せず一か所でも固定されていると、ダンパー機構30やすべり支承機構50が意図した効果を十分に発揮しない可能性がある。 The connecting member 41 is connected to the foundation 20 by a trigger pin 42 (connecting member) via the trigger foundation mounting member 43 and the trigger mounting member 44 in the first connecting portion 41a. Further, the connecting member 41 is connected to the steel frame foundation 11 of the upper structure 10 by a bolt 45 via the trigger foundation mounting member 43 in the second connecting portion 41b. The trigger pin 42 is a bolt configured to cut at a predetermined displacement. The connecting material to be cut with a predetermined displacement can be, for example, a medium bolt or a high strength bolt (F10T) having a strength category of 10.9. As described above, by using a bolt having a high yield ratio and easily broken brittlely, it is possible to cut the bolt with an intended displacement when a predetermined displacement is applied. That is, the accuracy of the trigger mechanism 40 can be improved. As the trigger pin 42, a bolt other than the above can be used as long as it has a predetermined yield strength and has little elongation. Further, a member other than the bolt can be used as long as it has a predetermined yield strength and has little elongation. Further, when a plurality of trigger mechanisms 40 are provided, it is preferable that when one trigger pin 42 breaks, the other trigger pins 42 also easily break continuously. If the plurality of trigger pins 42 are not continuously broken and are fixed at even one place, the damper mechanism 30 and the sliding bearing mechanism 50 may not sufficiently exert the intended effect.

本実施形態のトリガー機構40にあっては、連結部材41の水平方向の剛性が、鉛直方向の剛性よりも大きくなるように構成されていることにより、上部構造体10の転倒モーメント等によりトリガー機構40に浮上りが生じたとしても、トリガーピン42に生ずる引張エネルギーは工学的に十分無視できる程度に留めることができる。なお連結部材41は、鉛直方向に対してはその浮上りに追従して変形する。同様の観点から、連結部材41を構成する板状部材の断面積、及び水平方向の長さにもよるが、例えば、連結部材41の水平方向の剛性が鉛直方向の剛性の1000倍以上となることが好ましい。 In the trigger mechanism 40 of the present embodiment, the rigidity of the connecting member 41 in the horizontal direction is configured to be larger than the rigidity in the vertical direction, so that the trigger mechanism is caused by the overturning moment of the upper structure 10 or the like. Even if the 40 is lifted, the tensile energy generated in the trigger pin 42 can be sufficiently kept to a negligible level in terms of engineering. The connecting member 41 is deformed following its ascent in the vertical direction. From the same viewpoint, the rigidity of the connecting member 41 in the horizontal direction is 1000 times or more the rigidity in the vertical direction, although it depends on the cross-sectional area of the plate-shaped members constituting the connecting member 41 and the length in the horizontal direction. Is preferable.

また、本実施形態のトリガー機構40にあっては、連結部材41を板状部材とすることにより、安価に製造可能となるため、コスト削減が可能となる。また、連結部材41を板状部材とし、水平面(後述する、すべり支承の摺動面)と略平行に設けることで、トリガー機構40全体としての高さを低くする(低背とする)ことができる。また、連結部材41としての板状部材は面外方向の曲げ剛性が低く、面内方向の剛性が高いため、水平方向の剛性を鉛直方向の剛性よりも大きくなるように構成し易くなる。 Further, in the trigger mechanism 40 of the present embodiment, by using the connecting member 41 as a plate-shaped member, it can be manufactured at low cost, so that the cost can be reduced. Further, the height of the trigger mechanism 40 as a whole can be lowered (lowered) by forming the connecting member 41 as a plate-shaped member and providing it substantially parallel to the horizontal plane (sliding surface of the sliding bearing, which will be described later). can. Further, since the plate-shaped member as the connecting member 41 has low bending rigidity in the out-of-plane direction and high rigidity in the in-plane direction, it is easy to configure the horizontal rigidity to be larger than the vertical rigidity.

トリガー機構40は、基礎20及び上部構造体10の外周縁に設けられていることが好ましく、これによれば、建物1の外側からトリガー機構40の修復作業を容易に行うことができる。同様の観点から、基礎20の上面の外周縁と、上部構造体10の底面の外周縁は、同形状となっていることが好ましく、さらに、当該外周縁に沿ってトリガー機構40を設置することが好ましい。 The trigger mechanism 40 is preferably provided on the outer peripheral edges of the foundation 20 and the superstructure 10, which allows the trigger mechanism 40 to be easily repaired from the outside of the building 1. From the same viewpoint, it is preferable that the outer peripheral edge of the upper surface of the foundation 20 and the outer peripheral edge of the lower surface of the upper structure 10 have the same shape, and further, the trigger mechanism 40 is installed along the outer peripheral edge. Is preferable.

以下に、すべり支承機構50について説明する。すべり支承機構50は、基礎20上での上部構造体10の水平方向の移動を許容しつつ、上部構造体10の重量を基礎20に伝達する。 The slip bearing mechanism 50 will be described below. The sliding bearing mechanism 50 transmits the weight of the superstructure 10 to the foundation 20 while allowing the superstructure 10 to move horizontally on the foundation 20.

図13は、すべり支承機構50を備えた建物1の一部を示す側面図であり、図14は平面図を示している。すべり支承機構50は、下部構造体としての基礎20または上部構造体10(鉄骨基礎11)に固定されるすべり支承51を備える。上部構造体10は、すべり支承51を介して基礎20上を滑動するよう構成されている。図12に示すように、すべり支承51は鉄骨基礎11に固定された補強梁59に対して固定してもよい。図13に示すように、本例におけるすべり支承51は、上部構造体10にボルトで固定されているが、上下逆転させて基礎20に固定してもよい。 FIG. 13 is a side view showing a part of the building 1 provided with the sliding bearing mechanism 50, and FIG. 14 is a plan view. The sliding bearing mechanism 50 includes a sliding bearing 51 fixed to a foundation 20 as a lower structure or an upper structure 10 (steel frame foundation 11). The superstructure 10 is configured to slide on the foundation 20 via a sliding bearing 51. As shown in FIG. 12, the sliding bearing 51 may be fixed to the reinforcing beam 59 fixed to the steel frame foundation 11. As shown in FIG. 13, the sliding bearing 51 in this example is fixed to the upper structure 10 with bolts, but it may be turned upside down and fixed to the foundation 20.

すべり支承51は、平板部52と、平板部52に連なる凹部53と有する。凹部53は、すべり支承51が固定されている上部構造体10側に開口を有する有底筒状部によって構成されており、側面部54と底面部55とを有する。換言すれば、凹部53は、上部構造体10側から基礎20に向けて突出した形状となっている。すべり支承51は、すべり支承取付部材58を介して鉄骨基礎11に対してボルトで固定されている。すべり支承取付部材58は、例えば鋼板で形成することができるが、これに限定されない。また、すべり支承取付部材58には、凹部53(空間S)に充填体56を投入するための開口(貫通孔)が設けられている。 The sliding bearing 51 has a flat plate portion 52 and a recess 53 connected to the flat plate portion 52. The recess 53 is composed of a bottomed cylindrical portion having an opening on the upper structure 10 side to which the sliding bearing 51 is fixed, and has a side surface portion 54 and a bottom surface portion 55. In other words, the recess 53 has a shape protruding from the upper structure 10 side toward the foundation 20. The sliding bearing 51 is bolted to the steel frame foundation 11 via the sliding bearing mounting member 58. The sliding bearing mounting member 58 can be formed of, for example, a steel plate, but is not limited thereto. Further, the sliding bearing mounting member 58 is provided with an opening (through hole) for inserting the filler 56 into the recess 53 (space S).

凹部53と上部構造体10とで形成される空間Sには、硬化性流動体からなる充填体56が設けられている。すべり支承51は、凹部53を構成する底面部55の下面55aが、基礎20に設けられた受け台57の滑動面57aを滑動するように構成されている。なお、底面部55の大きさは荷重計算によって適宜変更することができる。また、すべり支承51をすべり支承取付部材58に固定するボルトは滑動面57aに接触しないように構成されている。 A filler 56 made of a curable fluid is provided in the space S formed by the recess 53 and the superstructure 10. The sliding bearing 51 is configured such that the lower surface 55a of the bottom surface portion 55 forming the recess 53 slides on the sliding surface 57a of the pedestal 57 provided on the foundation 20. The size of the bottom surface portion 55 can be appropriately changed by load calculation. Further, the bolts that fix the sliding bearing 51 to the sliding bearing mounting member 58 are configured so as not to come into contact with the sliding surface 57a.

すべり支承51の平板部52と凹部53は、1mm以上の厚さの鋼板で構成されることが好ましい。例えば、鋼板が1mm未満であるとボルトの支圧に耐えられなくなる虞があるが、凹部53と上部構造体10とで形成される空間Sに硬化性流動体からなる充填体56が設けられている場合、鋼板が1mm以上あれば、例えば上部構造体10が、鉛直方向に一時的に浮き上り、着地した際の衝撃荷重に対して十分な耐力を持たせることができる。また、鋼板が厚過ぎると加工が難しくなるため、5mm以下であることが好ましい。このように鋼板を5mm以下とすることで、プレス加工だけで安価に製造することが可能となる。 The flat plate portion 52 and the recess 53 of the sliding bearing 51 are preferably made of a steel plate having a thickness of 1 mm or more. For example, if the steel plate is less than 1 mm, it may not be able to withstand the bearing pressure of the bolt, but a filler 56 made of a curable fluid is provided in the space S formed by the recess 53 and the superstructure 10. If the steel plate is 1 mm or more, for example, the superstructure 10 can temporarily float in the vertical direction and have sufficient proof stress against an impact load when landing. Further, if the steel sheet is too thick, it becomes difficult to process it, so that it is preferably 5 mm or less. By making the steel sheet 5 mm or less in this way, it becomes possible to manufacture the steel sheet at low cost only by press working.

また、すべり支承51を構成する鋼板は、亜鉛メッキ鋼板、ステンレス又はアルミ製であることが好ましい。このように、例えば鋼板を亜鉛メッキ処理することで防錆効果が上がり耐久性があがる。またメッキ処理によりすべり支承51と、基礎20の滑動面57aとの間の摩擦係数を低減し適当な値とすることができる。より具体的には、当該鋼板は、溶融亜鉛-アルミニウム-マグネシウム合金めっき鋼板とすることが好ましい。 Further, the steel plate constituting the sliding bearing 51 is preferably made of galvanized steel plate, stainless steel or aluminum. In this way, for example, by galvanizing a steel sheet, the rust preventive effect is improved and the durability is improved. Further, the friction coefficient between the sliding bearing 51 and the sliding surface 57a of the foundation 20 can be reduced by the plating treatment to an appropriate value. More specifically, the steel sheet is preferably a hot-dip zinc-aluminum-magnesium alloy plated steel sheet.

また、すべり支承51の凹部53における、基礎20の滑動面57aと滑動可能に接する面(底面部55の下面55a)が、クロメートフリー化成処理されていることが好ましい。この下面55aをクロメートフリー化成処理することで、基礎20の滑動面57aの摩擦を低減することができる。 Further, it is preferable that the surface (lower surface 55a of the bottom surface portion 55) in the recess 53 of the sliding bearing 51 that is in sliding contact with the sliding surface 57a of the foundation 20 is subjected to chromate-free chemical conversion treatment. By subjecting the lower surface 55a to chromate-free chemical conversion treatment, the friction of the sliding surface 57a of the foundation 20 can be reduced.

同様に、基礎20の滑動面57aは、クロメートフリー化成処理された鋼板からなることが好ましく、これによれば、すべり支承51の底面部55の下面55aとの摩擦を低減することができる。ここで、すべり支承51と、滑動面57aとの間の摩擦係数は、例えば、0.05以上0.4以下とすることができる。この場合、トリガーが破断するような大きな水平荷重が上部構造体10に加わった場合であっても、免震状態に移行した上部構造体10の滑動変位を抑制することができる。 Similarly, the sliding surface 57a of the foundation 20 is preferably made of a chromate-free chemical conversion-treated steel plate, which can reduce friction with the lower surface 55a of the bottom surface portion 55 of the sliding bearing 51. Here, the coefficient of friction between the sliding bearing 51 and the sliding surface 57a can be, for example, 0.05 or more and 0.4 or less. In this case, even when a large horizontal load that breaks the trigger is applied to the superstructure 10, it is possible to suppress the sliding displacement of the superstructure 10 that has transitioned to the seismic isolation state.

凹部53が側面部54と底面部55とを有する有底筒状であり、凹部53の開口を上部構造体10側の底面で塞ぐようにすることにより、上下左右全方位から拘束することができ、これにより、高圧縮耐力をより高い精度で実現することができる。 The recess 53 has a bottomed tubular shape having a side surface portion 54 and a bottom surface portion 55, and by closing the opening of the recess 53 with the bottom surface on the upper structure 10 side, it is possible to restrain the recess 53 from all directions. As a result, high compression strength can be realized with higher accuracy.

本実施形態のすべり支承機構50にあっては、すべり支承51の凹部53に設けられた充填体56の周囲の拘束により高圧縮耐力を実現している。これにより、例えば上部構造体10が、鉛直方向に一時的に浮き上り、着地した際の衝撃荷重に対して十分な耐力を持たせることができる。 In the sliding bearing mechanism 50 of the present embodiment, high compression strength is realized by restraint around the filler 56 provided in the recess 53 of the sliding bearing 51. As a result, for example, the superstructure 10 can temporarily float in the vertical direction and have sufficient proof stress against an impact load when it lands.

すべり支承51により高圧縮耐力を実現することと、安価であることとの両立を図る観点から、充填体56は、圧縮強度が40N/mm2以上であることが好ましく、例えばモルタルまたはグラウト等の充填剤からなることがより好ましい。 From the viewpoint of achieving both high compressive strength by the sliding bearing 51 and low cost, the filler 56 preferably has a compressive strength of 40 N / mm 2 or more, for example, mortar or grout. More preferably it consists of a filler.

また、トリガー機構40は、下部構造体20のたわみ(変形)が少ない場所、例えばすべり支承機構50近傍に設置することが好ましい。たわみが少なく水平が保たれている場所にトリガー機構40を設置すると、トリガーピン42の破断後、下部構造体20に対して水平状態となった連結部材41が、上部構造体10や下部構造体20と衝突することを防止でき、すべり支承機構50やダンパー機構30の効果を発揮しやすくなる。ダンパー機構 Further, the trigger mechanism 40 is preferably installed in a place where the lower structure 20 has little deflection (deformation), for example, in the vicinity of the sliding bearing mechanism 50. When the trigger mechanism 40 is installed in a place where there is little deflection and the level is maintained, the connecting member 41 which is in a horizontal state with respect to the lower structure 20 after the trigger pin 42 is broken becomes the upper structure 10 or the lower structure. It is possible to prevent the vehicle from colliding with the 20 and facilitate the effect of the sliding bearing mechanism 50 and the damper mechanism 30. Damper mechanism

上述の通り、本発明によれば、建物全体としての大型化を伴わず、安価に、上部構造体の損傷を軽減可能な免震構造の建物1を提供することができる。 As described above, according to the present invention, it is possible to provide a building 1 having a seismic isolation structure capable of reducing damage to the superstructure at low cost without increasing the size of the building as a whole.

本発明に係る建物は、上述した実施形態の構成に限定されるものではなく、特許請求の範囲で記載された内容を逸脱しない範囲で、様々な構成により実現することが可能である。例えば、建物1に、トリガー機構40およびすべり支承機構50を設けず、ダンパー機構30のみとしてもよいし、ダンパー機構30とトリガー機構40のみとしてもよい。また、ダンパー機構30に加えて、またはダンパー機構30に代えて、他のダンパー等を設けてもよい。 The building according to the present invention is not limited to the configuration of the above-described embodiment, and can be realized by various configurations without departing from the contents described in the claims. For example, the building 1 may not be provided with the trigger mechanism 40 and the sliding bearing mechanism 50, and may be only the damper mechanism 30, or may be only the damper mechanism 30 and the trigger mechanism 40. Further, another damper or the like may be provided in addition to the damper mechanism 30 or in place of the damper mechanism 30.

1:建物
10:上部構造体
11:鉄骨基礎
20:基礎(下部構造体)
30:ダンパー機構(免震構造用ダンパー機構)
31:変位縮小機構
32:変位抑制部
33、34:横材
33a:一方の横材の端部
34a:他方の横材の端部
35、36:縦材
37、38:接続部材
39:隙間
40:トリガー機構(免震構造用トリガー機構)
41:連結部材
41a:第1連結部
41b:第2連結部
42:トリガーピン(連結材)
43:トリガー基礎取付部材
44:トリガー取付部材
45:ボルト
50:すべり支承機構(免震構造用すべり支承機構)
51:すべり支承
52:平板部
53:凹部
54:側面部
55:底面部
55a:下面
56:充填体
57:受け台
57a:滑動面
58:すべり支承取付部材
G:地盤
L1:下部構造体と上部構造体との間の変位(長さ)
L2:変位抑制部の変位
S:空間
1: Building 10: Superstructure 11: Steel foundation 20: Foundation (substructure)
30: Damper mechanism (damper mechanism for seismic isolation structure)
31: Displacement reduction mechanism 32: Displacement suppressing portion 33, 34: Cross member 33a: One cross member end 34a: Another cross member end 35, 36: Vertical member 37, 38: Connecting member 39: Gap 40 : Trigger mechanism (trigger mechanism for seismic isolation structure)
41: Connecting member 41a: First connecting portion 41b: Second connecting portion 42: Trigger pin (connecting material)
43: Trigger foundation mounting member 44: Trigger mounting member 45: Bolt 50: Slip bearing mechanism (slip bearing mechanism for seismic isolation structure)
51: Sliding bearing 52: Flat plate 53: Recess 54: Side 55: Bottom 55a: Bottom 56: Filler 57: Stake 57a: Sliding surface 58: Sliding bearing mounting member G: Ground L1: Substructure and upper part Displacement (length) with the structure
L2: Displacement of displacement suppressing part S: Space

Claims (16)

下部構造体と、下部構造体の上方に設けられた上部構造体との間に設けられ、
前記下部構造体と前記上部構造体との間に生じる変位を縮小する変位縮小機構を備え、
該変位縮小機構はリンク機構を有するとともに、変形によりエネルギーを吸収して変位を低減させる変位抑制部を有する、免震構造用ダンパー機構。
Provided between the lower structure and the upper structure provided above the lower structure,
A displacement reduction mechanism for reducing the displacement generated between the lower structure and the upper structure is provided.
The displacement reduction mechanism is a seismic isolation structure damper mechanism having a link mechanism and a displacement suppressing portion that absorbs energy by deformation to reduce displacement.
前記変位縮小機構は、
複数の横材と、
隣り合う前記横材に対して両端部がそれぞれ回動可能に接続された複数の縦材と、
隣り合う前記縦材を接続する前記変位抑制部と、を有し、
前記複数の横材のうち、一の横材の端部が、下部構造体に直接又は間接的に接続され、他の横材の端部が、上部構造体に直接又は間接的に接続されている、請求項1に記載の免震構造用ダンパー機構。
The displacement reduction mechanism is
With multiple cross members
A plurality of vertical timbers whose both ends are rotatably connected to the adjacent horizontal timbers,
It has the displacement suppressing portion for connecting the adjacent vertical members, and has.
Of the plurality of cross members, the end of one cross member is directly or indirectly connected to the lower structure, and the end of the other cross member is directly or indirectly connected to the upper structure. The damper mechanism for a seismic isolation structure according to claim 1.
前記変位縮小機構が最大変形に達した際に、前記隣り合う縦材が相互に接触することで前記最大変形を超える変形を抑制する、請求項2に記載の免震構造用ダンパー機構。 The damper mechanism for a seismic isolation structure according to claim 2, wherein when the displacement reduction mechanism reaches the maximum deformation, the adjacent vertical members come into contact with each other to suppress deformation exceeding the maximum deformation. 前記変位抑制部は、低降伏点鋼及び極低降伏点鋼の少なくとも一方を含む、請求項1〜3の何れか一項に記載の免震構造用ダンパー機構。 The damper mechanism for a seismic isolation structure according to any one of claims 1 to 3, wherein the displacement suppressing portion includes at least one of a low yield point steel and an extremely low yield point steel. 一方の前記免震構造用ダンパー機構の支点間の距離が拡がった際に、他方の前記免震構造用ダンパー機構の支点間の距離は縮まるように、少なくとも2つの前記免震構造用ダンパー機構が対称に配置されている、請求項1〜4の何れか一項に記載の免震構造用ダンパー機構の配置構造。 At least two seismic isolation structure damper mechanisms are provided so that when the distance between the fulcrums of one of the seismic isolation structure damper mechanisms increases, the distance between the fulcrums of the other seismic isolation structure damper mechanism decreases. The arrangement structure of the seismic isolation structure damper mechanism according to any one of claims 1 to 4, which is arranged symmetrically. 下部構造体と、下部構造体の上方に設けられた上部構造体との間に設けられ、
前記下部構造体と前記上部構造体とを連結する連結部材を備え、
下部構造体と上部構造体との間に所定量以上の変位が加わった場合に、下部構造体又は上部構造体と、連結部材との間の連結が解除されるよう構成されており、
前記連結部材の水平方向の剛性が、前記連結部材の鉛直方向の剛性よりも大きい、免震構造用トリガー機構。
Provided between the lower structure and the upper structure provided above the lower structure,
A connecting member for connecting the lower structure and the upper structure is provided.
When a displacement of a predetermined amount or more is applied between the lower structure and the upper structure, the connection between the lower structure or the upper structure and the connecting member is released.
A trigger mechanism for a seismic isolation structure in which the rigidity of the connecting member in the horizontal direction is larger than the rigidity of the connecting member in the vertical direction.
前記連結部材は、水平面と略平行となるように配置された板状部材である、請求項6に記載の免震構造用トリガー機構。 The trigger mechanism for a seismic isolation structure according to claim 6, wherein the connecting member is a plate-shaped member arranged so as to be substantially parallel to a horizontal plane. 前記連結部材は、前記水平方向の剛性が前記鉛直方向の剛性の1000倍以上となるように構成されている、請求項6または7に記載の免震構造用トリガー機構。 The trigger mechanism for a seismic isolation structure according to claim 6 or 7, wherein the connecting member is configured such that the rigidity in the horizontal direction is 1000 times or more the rigidity in the vertical direction. 前記連結部材は、水平面に対して傾斜するように弾性変形させた状態で前記下部構造体及び前記上部構造体に連結されている、請求項8に記載の免震構造用トリガー機構。 The seismic isolation structure trigger mechanism according to claim 8, wherein the connecting member is connected to the lower structure and the upper structure in a state of being elastically deformed so as to be inclined with respect to a horizontal plane. 前記連結部材の水平方向の圧縮耐力が、前記下部構造体又は前記上部構造体と前記連結部材との連結が解除される際の力よりも大きい、請求項6〜9の何れか一項に記載の免震構造用トリガー機構。 6. Trigger mechanism for seismic isolation structure. 前記下部構造体又は前記上部構造体と前記連結部材とを連結する連結材を有し、該連結材は、所定の変位で切断するよう構成されている、請求項6〜10の何れか一項に記載の免震構造用トリガー機構。 6. Trigger mechanism for seismic isolation structure described in. 前記免震構造用トリガー機構は、前記下部構造体及び前記上部構造体の外周縁に設けられている、請求項6〜11の何れか一項に記載の免震構造用トリガー機構の配置構造。 The arrangement structure of the seismic isolation structure trigger mechanism according to any one of claims 6 to 11, wherein the seismic isolation structure trigger mechanism is provided on the lower structure and the outer peripheral edge of the upper structure. 下部構造体と、下部構造体の上方に設けられた上部構造体との間に設けられ、
前記下部構造体又は前記上部構造体に固定されるすべり支承を有し、
前記上部構造体が前記すべり支承を介して前記下部構造体上を滑動するよう構成されており、
前記すべり支承は、
平板部と、
該平板部に連なる凹部と有し、
該凹部と、前記下部構造体又は前記上部構造体とで形成される空間に硬化性流動体からなる充填体が設けられている、免震構造用すべり支承機構。
Provided between the lower structure and the upper structure provided above the lower structure,
Having a sliding bearing fixed to the substructure or the superstructure,
The superstructure is configured to slide over the substructure via the sliding bearings.
The slip bearing is
Flat plate and
It has a recess connected to the flat plate portion and has a recess.
A sliding bearing mechanism for a seismic isolation structure in which a filler made of a curable fluid is provided in a space formed by the recess and the lower structure or the upper structure.
前記充填体は、圧縮強度が40N/mm2以上である、請求項13に記載の免震構造用すべり支承機構。 The sliding bearing mechanism for a seismic isolation structure according to claim 13, wherein the filler has a compressive strength of 40 N / mm 2 or more. 前記すべり支承の前記凹部は、側面部と底面部とを有する、請求項13または14に記載の免震構造用すべり支承機構。 The sliding bearing mechanism for a seismic isolation structure according to claim 13 or 14, wherein the recess of the sliding bearing has a side surface portion and a bottom surface portion. 請求項1〜4の何れか一項に記載の免震構造用ダンパー機構および/または請求項5に記載の免震構造用ダンパー機構の配置構造と、
請求項6〜11の何れか一項に記載の免震構造用トリガー機構および/または請求項12に記載の免震構造用トリガー機構の配置構造と、
請求項13〜15の何れか一項に記載の免震構造用すべり支承機構と、を備える建物。
The arrangement structure of the seismic isolation structure damper mechanism according to any one of claims 1 to 4 and / or the seismic isolation structure damper mechanism according to claim 5.
The arrangement structure of the seismic isolation structure trigger mechanism according to any one of claims 6 to 11 and / or the seismic isolation structure trigger mechanism according to claim 12.
A building including the sliding bearing mechanism for a seismic isolation structure according to any one of claims 13 to 15.
JP2021107090A 2017-10-30 2021-06-28 Damper mechanism for seismic isolation structure, arrangement structure of damper mechanism for seismic isolation structure, trigger mechanism for seismic isolation structure, arrangement structure of trigger mechanism for seismic isolation structure, slide bearing mechanism for seismic isolation structure, and building Active JP7148679B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021107090A JP7148679B2 (en) 2017-10-30 2021-06-28 Damper mechanism for seismic isolation structure, arrangement structure of damper mechanism for seismic isolation structure, trigger mechanism for seismic isolation structure, arrangement structure of trigger mechanism for seismic isolation structure, slide bearing mechanism for seismic isolation structure, and building
JP2022140899A JP7360519B2 (en) 2017-10-30 2022-09-05 Damper mechanism for seismic isolation structure, arrangement structure of damper mechanism for seismic isolation structure, trigger mechanism for seismic isolation structure, arrangement structure of trigger mechanism for seismic isolation structure, sliding bearing mechanism for seismic isolation structure, and building

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017209381A JP6936114B2 (en) 2017-10-30 2017-10-30 Seismic isolation structure damper mechanism, seismic isolation structure damper mechanism layout structure, seismic isolation structure trigger mechanism, seismic isolation structure trigger mechanism layout structure, seismic isolation structure sliding bearing mechanism, and building
JP2021107090A JP7148679B2 (en) 2017-10-30 2021-06-28 Damper mechanism for seismic isolation structure, arrangement structure of damper mechanism for seismic isolation structure, trigger mechanism for seismic isolation structure, arrangement structure of trigger mechanism for seismic isolation structure, slide bearing mechanism for seismic isolation structure, and building

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017209381A Division JP6936114B2 (en) 2017-10-30 2017-10-30 Seismic isolation structure damper mechanism, seismic isolation structure damper mechanism layout structure, seismic isolation structure trigger mechanism, seismic isolation structure trigger mechanism layout structure, seismic isolation structure sliding bearing mechanism, and building

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022140899A Division JP7360519B2 (en) 2017-10-30 2022-09-05 Damper mechanism for seismic isolation structure, arrangement structure of damper mechanism for seismic isolation structure, trigger mechanism for seismic isolation structure, arrangement structure of trigger mechanism for seismic isolation structure, sliding bearing mechanism for seismic isolation structure, and building

Publications (2)

Publication Number Publication Date
JP2021156160A true JP2021156160A (en) 2021-10-07
JP7148679B2 JP7148679B2 (en) 2022-10-05

Family

ID=66669553

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2017209381A Active JP6936114B2 (en) 2017-10-30 2017-10-30 Seismic isolation structure damper mechanism, seismic isolation structure damper mechanism layout structure, seismic isolation structure trigger mechanism, seismic isolation structure trigger mechanism layout structure, seismic isolation structure sliding bearing mechanism, and building
JP2021107090A Active JP7148679B2 (en) 2017-10-30 2021-06-28 Damper mechanism for seismic isolation structure, arrangement structure of damper mechanism for seismic isolation structure, trigger mechanism for seismic isolation structure, arrangement structure of trigger mechanism for seismic isolation structure, slide bearing mechanism for seismic isolation structure, and building
JP2022140899A Active JP7360519B2 (en) 2017-10-30 2022-09-05 Damper mechanism for seismic isolation structure, arrangement structure of damper mechanism for seismic isolation structure, trigger mechanism for seismic isolation structure, arrangement structure of trigger mechanism for seismic isolation structure, sliding bearing mechanism for seismic isolation structure, and building

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017209381A Active JP6936114B2 (en) 2017-10-30 2017-10-30 Seismic isolation structure damper mechanism, seismic isolation structure damper mechanism layout structure, seismic isolation structure trigger mechanism, seismic isolation structure trigger mechanism layout structure, seismic isolation structure sliding bearing mechanism, and building

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022140899A Active JP7360519B2 (en) 2017-10-30 2022-09-05 Damper mechanism for seismic isolation structure, arrangement structure of damper mechanism for seismic isolation structure, trigger mechanism for seismic isolation structure, arrangement structure of trigger mechanism for seismic isolation structure, sliding bearing mechanism for seismic isolation structure, and building

Country Status (1)

Country Link
JP (3) JP6936114B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115306049A (en) * 2022-01-07 2022-11-08 郑州航空工业管理学院 Shock absorption and isolation mechanism of fabricated building
CN114908995B (en) * 2022-06-07 2023-09-22 中国航空规划设计研究总院有限公司 Ancient building supports deformation damping structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4048878B2 (en) * 2002-08-21 2008-02-20 オイレス工業株式会社 Manufacturing method of upper and lower armor of seismic isolation device
JP2008156945A (en) * 2006-12-25 2008-07-10 Takenaka Komuten Co Ltd Base isolation structure, base isolation structure designing method, and base isolated building
JP2008214986A (en) * 2007-03-06 2008-09-18 Nippon Hume Corp Base isolator mounting structure at pile head, and its mounting method
JP4470336B2 (en) * 2001-03-19 2010-06-02 大成建設株式会社 Floor seismic isolation structure
JP2016044724A (en) * 2014-08-21 2016-04-04 株式会社フジタ Aseismic base isolation method and seismic isolator for structure and bolt fixing laminated rubber used at seismic isolator
JP2017044036A (en) * 2015-08-28 2017-03-02 Jfeスチール株式会社 Vibration damping device and assembling method of vibration damping device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000038774A (en) * 1998-07-22 2000-02-08 Sekisui Chem Co Ltd Base isolation element, building with same and base isolation element control method
JP4386234B2 (en) * 2002-01-30 2009-12-16 旭化成ホームズ株式会社 Energy absorber
JP4602804B2 (en) * 2005-03-16 2010-12-22 大和ハウス工業株式会社 Rotating friction damping device for seismic isolation system
JP2013060765A (en) * 2011-09-14 2013-04-04 Ntn Corp Torsion damper and vibration control device
JP6358880B2 (en) * 2014-07-18 2018-07-18 オイレス工業株式会社 Seismic isolation device
JP6629568B2 (en) * 2015-02-05 2020-01-15 Jfeシビル株式会社 Damping device
JP6885670B2 (en) * 2015-12-22 2021-06-16 旭化成ホームズ株式会社 Building structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4470336B2 (en) * 2001-03-19 2010-06-02 大成建設株式会社 Floor seismic isolation structure
JP4048878B2 (en) * 2002-08-21 2008-02-20 オイレス工業株式会社 Manufacturing method of upper and lower armor of seismic isolation device
JP2008156945A (en) * 2006-12-25 2008-07-10 Takenaka Komuten Co Ltd Base isolation structure, base isolation structure designing method, and base isolated building
JP2008214986A (en) * 2007-03-06 2008-09-18 Nippon Hume Corp Base isolator mounting structure at pile head, and its mounting method
JP2016044724A (en) * 2014-08-21 2016-04-04 株式会社フジタ Aseismic base isolation method and seismic isolator for structure and bolt fixing laminated rubber used at seismic isolator
JP2017044036A (en) * 2015-08-28 2017-03-02 Jfeスチール株式会社 Vibration damping device and assembling method of vibration damping device

Also Published As

Publication number Publication date
JP7148679B2 (en) 2022-10-05
JP6936114B2 (en) 2021-09-15
JP2019082031A (en) 2019-05-30
JP7360519B2 (en) 2023-10-12
JP2022171747A (en) 2022-11-11

Similar Documents

Publication Publication Date Title
JP7360519B2 (en) Damper mechanism for seismic isolation structure, arrangement structure of damper mechanism for seismic isolation structure, trigger mechanism for seismic isolation structure, arrangement structure of trigger mechanism for seismic isolation structure, sliding bearing mechanism for seismic isolation structure, and building
TWI472670B (en) Method and structure for damping movement in buildings
US20210301900A1 (en) A three-dimensional isolator with adaptive stiffness property
Gledhill et al. The damage avoidance design of tall steel frame buildings-Fairlie Terrace Student Accommodation Project, Victoria University of Wellington
JP4804231B2 (en) Seismic isolation structure on the piloti floor
JP4913660B2 (en) Steel stairs
JP5483525B2 (en) Seismic wall
JPH09296625A (en) Building structure having earthquake-resistant construction
JP6352845B2 (en) V brace fulcrum structure
JP5305756B2 (en) Damping wall using corrugated steel
JP6833292B2 (en) Roof seismic structure
JP2008063821A (en) Seismically reinforcing structure for existing building
JP4277649B2 (en) Composite damper and column beam structure
JP2008297727A (en) Seismic reinforcing structure of existing building
JP2011038294A (en) Additional mass seismic response control building
US20160017565A1 (en) Earthquake proof building system
JP5159487B2 (en) Seismic control column construction method, seismic control column, and building structure
JP2002004632A (en) Base isolation column base structure
JP2012233374A5 (en)
US20010032420A1 (en) Gravity balance frame
JP6885670B2 (en) Building structure
JP2012233374A (en) Seismic reinforcement structure
JP5060842B2 (en) Damping structure
JP5415093B2 (en) Vibration control structure
JP4456726B2 (en) Seismic isolation structure

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210628

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220922

R150 Certificate of patent or registration of utility model

Ref document number: 7148679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150