JP2021155941A - Method for evaluating shear strength of beam with slab and structure - Google Patents

Method for evaluating shear strength of beam with slab and structure Download PDF

Info

Publication number
JP2021155941A
JP2021155941A JP2020054817A JP2020054817A JP2021155941A JP 2021155941 A JP2021155941 A JP 2021155941A JP 2020054817 A JP2020054817 A JP 2020054817A JP 2020054817 A JP2020054817 A JP 2020054817A JP 2021155941 A JP2021155941 A JP 2021155941A
Authority
JP
Japan
Prior art keywords
slab
strength
concrete
shear
shear strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020054817A
Other languages
Japanese (ja)
Inventor
浩二 森
Koji Mori
浩二 森
慎也 老藤
Shinya Oifuji
慎也 老藤
剛 岸本
Takeshi Kishimoto
剛 岸本
博仁 赤星
Hirohito Akaboshi
博仁 赤星
真 濱田
Makoto Hamada
真 濱田
貴之 岩渕
Takayuki Iwabuchi
貴之 岩渕
克朗 前島
Katsuro Maejima
克朗 前島
和也 笹井
Kazuya Sasai
和也 笹井
康弘 石渡
Yasuhiro Ishiwatari
康弘 石渡
茂雄 野畑
Shigeo Nobata
茂雄 野畑
剛成 羽生田
Takenari Hanyuda
剛成 羽生田
峰里 鈴木
Mineri Suzuki
峰里 鈴木
裕司 芳賀
Yuji Haga
裕司 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Kumagai Gumi Co Ltd
Okumura Corp
Asanuma Corp
Yahagi Construction Co Ltd
Tekken Corp
Original Assignee
Penta Ocean Construction Co Ltd
Kumagai Gumi Co Ltd
Okumura Corp
Asanuma Corp
Yahagi Construction Co Ltd
Tekken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd, Kumagai Gumi Co Ltd, Okumura Corp, Asanuma Corp, Yahagi Construction Co Ltd, Tekken Corp filed Critical Penta Ocean Construction Co Ltd
Priority to JP2020054817A priority Critical patent/JP2021155941A/en
Publication of JP2021155941A publication Critical patent/JP2021155941A/en
Priority to JP2024020703A priority patent/JP2024040450A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rod-Shaped Construction Members (AREA)

Abstract

To provide a method for evaluating the shear strength of a beam with a slab.SOLUTION: In a beam 30 with a slab comprising of a beam lower part 11 made of first concrete, a beam upper part 12 made of second concrete, and a slab 20, when the design reference strength of the first concrete is Fcd [N/mm2], the design reference strength of the second concrete is Fcu [N/mm2], the cross-sectional area of the beam lower part 11 is Ad [mm2], the cross-sectional area of the beam upper part 12 is Au [mm2], the cooperation width of the slab 20 is ba [mm], the thickness of the slab 20 is t [mm], the height of the beam upper part 12 is Tu [mm], and the width of the beam 10 is b [mm], the average strength Fce [N/mm2] of the concrete in evaluating the shear strength of the beam 30 with the slab is expressed by the formula: Fce=(Fcd×Ad + αs×Fcu×Au)/(Ad + Au) ...(1), and the overdesign factor αs in the formula (1) is expressed by the formula: αs=1 + t '×b' ...(2),where t '=t/Tu, b'=ba/b.SELECTED DRAWING: Figure 2

Description

本発明は、スラブ付き梁のせん断強度評価方法及びこれを用いて評価したスラブ付き梁を備えた構築物に関する。 The present invention relates to a method for evaluating the shear strength of a beam with a slab and a structure including a beam with a slab evaluated using the method.

プレキャストコンクリートで形成した梁下部を構築物の所定位置に設置した後に、梁上部及びこれに接続するスラブの配筋を行って現場コンクリートを一体に打設することにより、梁とスラブとが一体化したスラブ付き梁をハーフプレキャスト梁として形成することが知られている。 After installing the lower part of the beam made of precast concrete at a predetermined position in the structure, the upper part of the beam and the slab connected to it are laid out and the on-site concrete is placed integrally, so that the beam and the slab are integrated. It is known to form a beam with a slab as a half precast beam.

ハーフプレキャスト梁は梁の上部と下部とで異種強度のコンクリートを使用することができる。そこで、構造材である梁には高強度のコンクリートが必要であるが、二次部材であるスラブはスラブとして成り立つ強度だけあれば充分であるので、スラブ及び梁上部には普通強度のコンクリートを使用すれば、材料コストの低減に有効である。ただし、この場合、梁の構造的な耐力(主にせん断耐力)を適正に判断する必要があり、強度的に過不足のない設計方法が求められる。 Half precast beams can use concrete of different strengths at the top and bottom of the beam. Therefore, high-strength concrete is required for the beam, which is the structural material, but since the slab, which is the secondary member, only needs to have the strength to be established as a slab, normal-strength concrete is used for the slab and the upper part of the beam. If this is done, it is effective in reducing the material cost. However, in this case, it is necessary to properly judge the structural strength (mainly shear strength) of the beam, and a design method with just enough strength is required.

例えば、特許文献1に記載の技術においては、梁の上部の高さtが梁全体の高さDの1/2以上(D/2≧t)の場合、梁の1/2より上側の部分のみを考慮して、梁の上部と下部との高さの比によるコンクリートの平均強度に基づいて梁のせん断強度を算出している。一方、D/2<tの場合 梁の上部のコンクリート強度をそのまま梁のせん断強度としている。 For example, in the technique described in Patent Document 1, when the height t of the upper part of the beam is 1/2 or more (D / 2 ≧ t) of the height D of the entire beam, the portion above 1/2 of the beam. The shear strength of the beam is calculated based on the average strength of concrete based on the ratio of the height of the upper part to the lower part of the beam. On the other hand, when D / 2 <t, the concrete strength at the top of the beam is used as it is as the shear strength of the beam.

しかしながら、上記特許文献1に記載の技術においては、梁全体のせん断強度を求める際に梁の高さの1/2より上側の部分しか考慮していない。また、梁の上部と一体化されたスラブによる梁のせん断強度の向上を何ら考慮していない。 However, in the technique described in Patent Document 1, when determining the shear strength of the entire beam, only the portion above 1/2 of the height of the beam is considered. In addition, no consideration is given to the improvement of the shear strength of the beam by the slab integrated with the upper part of the beam.

そこで、例えば、特許文献2に記載の技術においては、梁の上部のコンクリート強度をスラブの協力幅と梁の幅との比に応じた値で割り増した値を梁のせん断強度として求めている。ここで、スラブの協力幅Bは、スラブ部で負担される圧縮力がスラブと梁上部との境界面で伝達可能なせん断力を上回らない範囲内となるように、梁の内法長さLと梁上部のコンクリートの圧縮強度σc2とせん断強度σs2から、B<L/(2×σc2/σs2)の範囲内にあるように協力幅Bを求めている。 Therefore, for example, in the technique described in Patent Document 2, the value obtained by dividing the concrete strength of the upper part of the beam by a value corresponding to the ratio of the cooperation width of the slab and the width of the beam is obtained as the shear strength of the beam. Here, the cooperation width B of the slab is the inner length L of the beam so that the compressive force borne by the slab portion does not exceed the shear force that can be transmitted at the interface between the slab and the upper part of the beam. From the compressive strength σc2 and shear strength σs2 of the concrete above the beam, the cooperation width B is obtained so that it is within the range of B <L / (2 × σc2 / σs2).

特開2006−225894号公報Japanese Unexamined Patent Publication No. 2006-225894 特開2006−097320号公報Japanese Unexamined Patent Publication No. 2006-097320

しかしながら、本願発明者は、上記特許文献2に記載の技術においても、スラブ付き梁のせん断強度を過少に求めており、スラブ付き梁のせん断耐力が不当に低く評価されていることを見出した。 However, the inventor of the present application has found that the shear strength of the slab-attached beam is underestimated even in the technique described in Patent Document 2, and the shear strength of the slab-attached beam is unreasonably evaluated as low.

本発明は、以上の点に鑑み、スラブ付き梁のせん断強度を適正に求めることが可能なスラブ付き梁のせん断強度評価方法、及びこれを用いて評価したスラブ付き梁を備えた構築物を提供することを目的とする。 In view of the above points, the present invention provides a method for evaluating the shear strength of a beam with a slab capable of appropriately determining the shear strength of the beam with a slab, and a structure including the beam with a slab evaluated using the method. The purpose is.

本発明のスラブ付き梁のせん断強度評価方法は、第1のコンクリートを用いて形成された梁下部と、前記梁下部と一体化され、第1のコンクリートと異なる第2のコンクリートを用いて形成された梁上部及びスラブとからなるスラブ付き梁のせん断強度評価方法であって、前記第1のコンクリートの設計基準強度をFcd[N/mm2]、前記第2のコンクリートの設計基準強度をFcu[N/mm2]、前記梁下部の断面積をAd[mm2]、前記梁上部の断面積をAu [mm2]、前記スラブの協力幅をba[mm]、前記スラブの厚さをt[mm]、前記梁上部の高さをTu[mm]、前記梁下部及び前記梁上部の幅をb[mm]としたとき、前記スラブ付き梁のせん断強度を評価する際のコンクリートの平均強度Fce[N/mm2]は、式(1)で表され、
Fce=(Fcd・Ad+αs・Fcu・Au)/(Ad+Au) ・・・ (1)
式(1)における割増係数αsは、式(2)で表され、
αs=1+t’・b’ ・・・ (2)
ここで、t’=t/Tu、b’=ba/bであることを特徴とする。
The method for evaluating the shear strength of a beam with a slab of the present invention is formed by using a second concrete that is integrated with the lower part of the beam formed by using the first concrete and the lower part of the beam and is different from the first concrete. A method for evaluating the shear strength of a beam with a slab consisting of an upper part of a beam and a slab. The design standard strength of the first concrete is Fcd [N / mm 2 ], and the design standard strength of the second concrete is Fcu [. N / mm 2 ], the cross-sectional area of the lower part of the beam is Ad [mm 2 ], the cross-sectional area of the upper part of the beam is Au [mm 2 ], the cooperation width of the slab is ba [mm], and the thickness of the slab is t. When [mm], the height of the upper part of the beam is Tu [mm], and the widths of the lower part of the beam and the upper part of the beam are b [mm], the average strength of concrete when evaluating the shear strength of the beam with slabs. Fce [N / mm 2 ] is expressed by the equation (1).
Fce = (Fcd / Ad + αs / Fcu / Au) / (Ad + Au) ・ ・ ・ (1)
The premium coefficient αs in the equation (1) is expressed by the equation (2).
αs = 1 + t'・ b'・ ・ ・ (2)
Here, t'= t / Tu and b'= ba / b.

本発明のスラブ付き梁のせん断強度評価方法によれば、後述するように、スラブ付き梁のコンクリート強度について理論的に検討し、実験で確認したうえでコンクリートの平均強度Fceが提案されている。この平均強度Fceをせん断強度の評価の際に用いることにより、安全側であって、かつ、過大なせん断耐力を有した設計となることの抑制を図ることが可能となる。 According to the method for evaluating the shear strength of a beam with a slab of the present invention, as will be described later, the concrete strength of the beam with a slab is theoretically examined and confirmed by experiments, and then the average strength Fce of the concrete is proposed. By using this average strength Fce in the evaluation of the shear strength, it is possible to suppress the design from being on the safe side and having an excessive shear strength.

本発明のスラブ付き梁を備えた構築物は、本発明のスラブ付き梁のせん断強度評価方法を用いてせん断強度を評価して形成したことを特徴とする。 The structure provided with the slab-bearing beam of the present invention is characterized in that it is formed by evaluating the shear strength using the shear strength evaluation method of the slab-bearing beam of the present invention.

本発明のスラブ付き梁を備えた構築物によれば、必要なせん断耐力を確保しながら構築物の構築コストの削減を図ることが可能となる。 According to the structure provided with the beam with a slab of the present invention, it is possible to reduce the construction cost of the structure while ensuring the required shear strength.

本発明の実施形態に係る構造物の概略側面図。The schematic side view of the structure which concerns on embodiment of this invention. 図1のII−II線における模式断面図。FIG. 2 is a schematic cross-sectional view taken along the line II-II of FIG. 曲げヒンジの発生前にせん断破壊した試験体における余裕度の関係を示すグラフ。The graph which shows the relationship of the margin degree in the specimen which sheared and fractured before the occurrence of a bending hinge. 曲げヒンジが発生した試験体における試験体における余裕度の関係を示すグラフ。The graph which shows the relationship of the margin degree in the test body in the test body which generated the bending hinge. 本発明の実施形態の変形例に係るスラブ付き梁の縦断面図。FIG. 3 is a vertical cross-sectional view of a beam with a slab according to a modified example of the embodiment of the present invention. 本発明の実施形態の他の変形例に係るスラブ付き梁の縦断面図。FIG. 3 is a vertical cross-sectional view of a beam with a slab according to another modification of the embodiment of the present invention. 本発明の実施形態のさらに他の変形例に係るスラブ付き梁の縦断面図。FIG. 3 is a vertical cross-sectional view of a beam with a slab according to still another modification of the embodiment of the present invention. 本発明の実施形態のさらに他の変形例に係るスラブ付き梁の縦断面図。FIG. 3 is a vertical cross-sectional view of a beam with a slab according to still another modification of the embodiment of the present invention.

本発明の実施形態に係る評価方法にて評価される構築物100について図1及び図2を参照して説明する。 The structure 100 evaluated by the evaluation method according to the embodiment of the present invention will be described with reference to FIGS. 1 and 2.

構築物100は、梁下部11が第1のコンクリートを用いて形成され、梁下部11と一体化された梁上部12及び梁上部12と一体化されたスラブ20とが共に第2のコンクリ−トを用いて形成された異種コンクリートを用いた形成されたスラブ付き梁30を備えた構造物である。 In the structure 100, the beam lower portion 11 is formed by using the first concrete, and the beam upper portion 12 integrated with the beam lower portion 11 and the slab 20 integrated with the beam upper portion 12 both form a second concrete. It is a structure including a beam 30 with a slab formed by using dissimilar concrete formed by using.

梁下部11と梁上部12とによって梁10全体が構成されている。梁10は柱40と柱40の間に存在し、柱40間の内法寸法はL0である。本構造物100は、例えば、特許第4021588号公報に記載された工法によって構築される。 The entire beam 10 is composed of the lower beam 11 and the upper beam 12. The beam 10 exists between the columns 40 and 40, and the internal dimension between the columns 40 is L0. The structure 100 is constructed by, for example, the construction method described in Japanese Patent No. 4021588.

梁下部11の高さ(厚さ)はTd[mm]、梁上部12の高さはTu[mm]であり、梁10全体の高さ(梁せい)はD[mm](=Td+Tu)である。なお、梁上部12の高さTuは、梁せいDの0.5倍以下であることが好ましく、より好ましくは0.25〜0.5倍である。また、梁せいDは、内法寸法L0の1/2.5以下が好ましく、より好ましくは、1/6〜1/2.5である。 The height (thickness) of the lower part 11 of the beam is Td [mm], the height of the upper part 12 of the beam is Tu [mm], and the height (thickness) of the entire beam 10 is D [mm] (= Td + Tu). be. The height Tu of the upper part 12 of the beam is preferably 0.5 times or less, more preferably 0.25 to 0.5 times the beam length D. The beam length D is preferably 1 / 2.5 or less, more preferably 1/6 to 1 / 2.5 of the internal dimension L0.

梁10の幅はb[mm]である。そして、梁下部11は、その長手方向と直交する縦断面の断面積がAd[mm2](=Td・b)であり、梁上部12は、その長手方向と直交する縦断面の断面積がAu [mm2](=Tu ・b)である。 The width of the beam 10 is b [mm]. The lower beam 11 has a vertical cross-sectional area orthogonal to its longitudinal direction Ad [mm 2 ] (= Td · b), and the upper beam 12 has a vertical cross-sectional area orthogonal to its longitudinal direction. Au [mm 2 ] (= Tu ・ b).

梁上部12の高さTuは、スラブ20の厚さt1,t2[mm]よりも低い。すなわち、梁下部11とスラブ20とは接触していない。なお、スラブ20の厚さt1,t2は、梁せいDの0.19倍以上であることが好ましく、より好ましくは0.19〜0.5倍である。 The height Tu of the beam upper portion 12 is lower than the thickness t1, t2 [mm] of the slab 20. That is, the lower part 11 of the beam and the slab 20 are not in contact with each other. The thicknesses t1 and t2 of the slab 20 are preferably 0.19 times or more, more preferably 0.19 to 0.5 times the beam thickness D.

梁下部11を形成する際に用いられる第1のコンクリートは、例えば高強度コンクリートであり、その設計基準強度はFcd[N/mm2]である。梁上部12及びスラブ20を形成する際に用いられる第2のコンクリートは、例えば普通強度コンクリートであり、その設計基準強度はFcu[N/mm2]であり、Fcdよりも小さい。第1及び第2のコンクリートの設計基準強度Fcu,Fcdは、好ましくは、24〜60N/mm2であり、第2のコンクリートの設計基準強度Fcuは第1のコンクリートの設計基準強度Fcdの1/2以上であることが好ましい。 The first concrete used for forming the beam lower portion 11 is, for example, high-strength concrete, and its design standard strength is Fcd [N / mm 2 ]. The second concrete used for forming the beam upper portion 12 and the slab 20 is, for example, ordinary strength concrete, and its design standard strength is Fcu [N / mm 2 ], which is smaller than Fcd. The design standard strengths Fcu and Fcd of the first and second concretes are preferably 24 to 60 N / mm 2 , and the design standard strength Fcu of the second concrete is 1/1 of the design standard strength Fcd of the first concrete. It is preferably 2 or more.

ここでは、梁上部12の両側方にスラブ20(21,22)が存在し、梁上部12とスラブ20との天端は同一面に位置し、梁10とスラブ20とは全体として縦断面がT字形状となっている。一方の側のスラブ21は協力幅がba1[mm]、厚さがt1[mm]であり、他方の側のスラブ22は協力幅がba2[mm]、厚さがt2[mm]である。協力幅ba1,ba2及び厚さt1,t2は同じであっても、相違していてもよい。両方のスラブ21,22の厚さは、同じであっても相違していてもよい。 Here, slabs 20 (21, 22) exist on both sides of the beam upper portion 12, the top ends of the beam upper portion 12 and the slab 20 are located on the same surface, and the beam 10 and the slab 20 have a vertical cross section as a whole. It has a T-shape. The slab 21 on one side has a cooperation width of ba1 [mm] and a thickness of t1 [mm], and the slab 22 on the other side has a cooperation width of ba2 [mm] and a thickness of t2 [mm]. The cooperation widths ba1 and ba2 and the thicknesses t1 and t2 may be the same or different. The thickness of both slabs 21 and 22 may be the same or different.

スラブ21,22の協力幅ba1,ba2は、日本建築学会編「鉄筋コンクリート構造計算規準・同解説(2010)」に従って算出される。なお、スラブ21,22の協力幅の合計ba1+ba2は、内法寸法L0の0.1倍以上であることが好ましく、より好ましくは0.1〜0.83倍である。 The cooperation widths ba1 and ba2 of the slabs 21 and 22 are calculated according to "Reinforced Concrete Structure Calculation Criteria and Explanation (2010)" edited by the Architectural Institute of Japan. The total cooperation width of the slabs 21 and 22 is preferably 0.1 times or more, more preferably 0.1 to 0.83 times the internal dimension L0.

梁10(梁下部11及び梁上部12)には、梁主筋13及びせん断補強筋14などの鉄筋が配設されている。なお、図2に記載の鉄筋の配設態様は一例であり、他の態様にて鉄筋が配設されていてもよく、例えば、ずれ防止筋、付着補強筋などが配設されていてもよい。これら鉄筋は、JIS G3112 鉄筋コンクリート用棒鋼に規定されるもの、又は国土交通大臣の認定を受けたものを用いることが好ましい。そして、梁主筋の降伏点は295〜590N/mm2であることが好ましく、せん断補強筋、ずれ防止筋15、付着補強筋などの降伏点は295〜1275N/mm2であることが好ましい。 Reinforcing bars such as a beam main bar 13 and a shear reinforcing bar 14 are arranged on the beam 10 (beam lower part 11 and beam upper part 12). The arrangement mode of the reinforcing bars shown in FIG. 2 is an example, and the reinforcing bars may be arranged in other modes, for example, slip prevention bars, adhesive reinforcing bars, and the like may be arranged. .. As these reinforcing bars, those specified in JIS G3112 reinforced concrete steel bars or those approved by the Minister of Land, Infrastructure, Transport and Tourism are preferably used. The yield point of the beam main bar is preferably 295 to 590 N / mm 2 , and the yield point of the shear reinforcing bar, the slip prevention bar 15, the adhesive reinforcing bar and the like is preferably 295 to 1275 N / mm 2.

なお、ずれ防止筋15、図2に2点鎖線で示すように、せん断補強筋を除き、水平接合面の応力伝達(ずれ破壊防止)に寄与する補強筋であり、梁下部11と梁上部12をつなぐように配置される。具体的には、ずれ防止筋15は、下向きU字型の鉄筋であり、上端の水平部分を梁上部12の上端筋にかけ、垂直部分の下端は梁下部11内に一般的な定着長さ以上埋設される。ずれ防止筋15は、梁の梁下部11と梁上部12の水平接合面のずれを考慮したせん断耐力を算定したうえで、必要に応じて配筋される。 As shown by the alternate long and short dash line in FIG. 2, the slip prevention bar 15 is a reinforcing bar that contributes to stress transmission (prevention of slip failure) of the horizontal joint surface except for the shear reinforcing bar, and the lower beam 11 and the upper beam 12 It is arranged so as to connect. Specifically, the slip prevention bar 15 is a downward U-shaped reinforcing bar, the horizontal portion of the upper end is hung on the upper end bar of the beam upper portion 12, and the lower end of the vertical portion is equal to or longer than the general fixing length in the beam lower portion 11. It will be buried. The misalignment prevention bar 15 is arranged as necessary after calculating the shear strength in consideration of the misalignment of the horizontal joint surface between the beam lower portion 11 and the beam upper portion 12.

ここでは、梁下部11はプレキャストで形成された鉄筋コンクリートからなり、梁上部12及びスラブ20は現場打ちコンクリートにより形成されており、スラブ付き梁30はハーフプレキャスト梁となっている。ただし、梁下部11は現場打ちコンクリートによって形成されていてもよい。また、スラブ20は、リブ付プレキャストコンクリート板(FR板)スラブ工法、ボイドスラブ工法などによって形成されるものであってもよい。 Here, the lower part 11 of the beam is made of reinforced concrete formed by precast, the upper part 12 of the beam and the slab 20 are made of cast-in-place concrete, and the beam 30 with slab is a half precast beam. However, the lower part 11 of the beam may be formed of cast-in-place concrete. Further, the slab 20 may be formed by a ribbed precast concrete plate (FR plate) slab method, a void slab method, or the like.

国土交通省国土技術政策総合研究所他編「壁式ラーメン鉄筋コンクリート造設計施工指針(2003)」の51,52頁には、スラブ付き梁30のような構造体のせん断変形などを算定する際に、スラブ20の協力幅baを付け加えて、梁せいDが等しい等価な長方形断面に置き換えて算出する方法が示されている。 On pages 51 and 52 of the "Wall Rigid Frame Reinforced Concrete Design and Construction Guideline (2003)" edited by the National Land Technology Policy Research Institute, Ministry of Land, Infrastructure, Transport and Tourism, when calculating the shear deformation of structures such as beams 30 with slabs, etc. , The method of calculating by adding the cooperation width ba of the slab 20 and replacing it with an equivalent rectangular cross section having the same beam shear D is shown.

本願発明者は、このように梁10の断面だけでなく梁10と一体化されたスラブ20の協力幅baの部分を含めた断面を考慮して、スラブ付き梁30のコンクリートの平均強度(等価平均強度)Fce[N/mm2]を、以下の式(1)によって求めることを提案する。ただし、梁下部11のコンクリート強度Fcdを上限とする。
Fce=(Fcd・Ad+αs・Fcu・Au)/(Ad+Au) ・・・ (1)
The inventor of the present application considers not only the cross section of the beam 10 but also the cross section including the portion of the cooperation width ba of the slab 20 integrated with the beam 10, and the average strength (equivalent) of the concrete of the beam 30 with the slab. It is proposed to obtain the average strength) Fce [N / mm 2 ] by the following formula (1). However, the upper limit is the concrete strength Fcd of the lower part 11 of the beam.
Fce = (Fcd / Ad + αs / Fcu / Au) / (Ad + Au) ・ ・ ・ (1)

ここで、スラブ20による割増係数αsは、以下の式(2)による。
αs=1+t1’・b1’+t2’・b2’ ・・・ (2)
Here, the premium coefficient αs by the slab 20 is based on the following equation (2).
αs = 1 + t1'・ b1'+ t2'・ b2' ・ ・ ・ (2)

そして、t1’=t1/Tu、t2’=t2/Tu、b1’=ba1/b、b2’=ba2/bである。なお、スラブ20が片側のスラブ21だけである場合、式(2)は式(3)のようになる。
αs=1+t1’・b1’ ・・・ (3)
Then, t1'= t1 / Tu, t2'= t2 / Tu, b1'= ba1 / b, b2'= ba2 / b. When the slab 20 is only the slab 21 on one side, the equation (2) becomes the equation (3).
αs = 1 + t1'・ b1' ・ ・ ・ (3)

このように、本願発明の評価方法によれば、第1に、基本として、梁下部11と梁上部12の断面積比による設計基準強度の平均値を等価平均強度Fceとしている。第2に、梁上部12のコンクリートの設計基準強度は、スラブ20の協力幅baを考慮した等価平均強度Fceとしている。そして、第3に、梁上部12のコンクリートの設計基準強度は、梁上部12とスラブ20の協力幅ba分の断面積と比に基づいた割増係数αsを乗じて割り増している。 As described above, according to the evaluation method of the present invention, first, basically, the average value of the design reference strength based on the cross-sectional area ratio of the lower beam 11 and the upper beam 12 is set as the equivalent average strength Fce. Secondly, the design standard strength of the concrete of the upper part 12 of the beam is set to the equivalent average strength Fce in consideration of the cooperation width ba of the slab 20. Thirdly, the design standard strength of the concrete of the beam upper part 12 is increased by multiplying the cross-sectional area of the beam upper part 12 and the slab 20 by the cooperation width ba and the premium coefficient αs based on the ratio.

本願発明における等価平均強度Fceは、スラブ付き梁30のコンクリート強度について理論的に検討し、後述するように実験で確認したうえで提案されている。そして、この等価平均強度Fceは、後述するように安全側であって、かつ、過大なせん断耐力を有した設計となることの抑制を図ることが可能となる。そして、これにより、必要なせん断耐力を確保しながら構築物100の構築コストの削減を図ることが可能となる。 The equivalent average strength Fce in the present invention has been proposed after theoretically examining the concrete strength of the beam 30 with a slab and confirming it by an experiment as described later. Then, as will be described later, this equivalent average strength Fce can be prevented from being designed on the safe side and having an excessive shear strength. As a result, it is possible to reduce the construction cost of the structure 100 while ensuring the required shear strength.

図3は、曲げ破壊前にせん断破壊した試験体における余裕度の関係を示すグラフである。X軸は、トラス・アーチ理論に基づくせん断終局強度Qsuを、式(4)に示す曲げ強度Muの略算式を用いて式(5)で算出した曲げ耐力時における梁10のせん断強度である曲げ強度Qfuで除して求めたせん断余裕度Qsu/Qfuを示している。Y軸は、試験体がせん断破壊又は付着割劣した際の最大耐力Qmaxをせん断強度Qfuで除して求めた余裕度Qmax/Qfuを示している。なお、せん断終局強度Qsuを求める際に、コンクリート強度として等価平均強度Fceを用いる。また、atは引張鉄筋の断面積、σyは主筋の降伏強度、dは梁10の有効せいである。
Mu=0.9・at・σy・d ・・・ (4)
Qfu=2・Mu/L0 ・・・ (5)
FIG. 3 is a graph showing the relationship between the margins in the test piece that was shear-fractured before bending fracture. The X-axis is the bending strength of the beam 10 at the time of bending strength calculated by the formula (5) using the approximate formula of the bending strength Mu shown in the formula (4) for the ultimate shear strength Qsu based on the truss arch theory. The shear margin Qsu / Qfu obtained by dividing by the strength Qfu is shown. The Y-axis shows the margin Qmax / Qfu obtained by dividing the maximum proof stress Qmax when the test piece is sheared or inferior in adhesion by the shear strength Qfu. When determining the ultimate shear strength Qsu, the equivalent average strength Fce is used as the concrete strength. Further, at is the cross-sectional area of the tensile reinforcing bar, σy is the yield strength of the main reinforcing bar, and d is the effectiveness of the beam 10.
Mu = 0.9 ・ at ・ σy ・ d ・ ・ ・ (4)
Qfu = 2 ・ Mu / L0 ・ ・ ・ (5)

なお、図3において、×印及び四角印は試験体がせん断破壊したことを、白丸印及び斜線丸印は試験体が付着割劣したことを示している。そして、四角印及び斜線丸印は本願発明者が実際に行った試験結果を示し、×印及び白丸印は既往文献に記載の実験データを示している。 In FIG. 3, the x mark and the square mark indicate that the test piece was shear-broken, and the white circle mark and the diagonal line mark indicate that the test piece was poorly adhered. The square mark and the diagonal circle mark indicate the test results actually performed by the inventor of the present application, and the x mark and the white circle mark indicate the experimental data described in the prior literature.

図4は、曲げ破壊した試験体における余裕度の関係を示すグラフである。図3と同じように、X軸はせん断余裕度Qsu/Qfuを、Y軸は余裕度Qmax/Qfuを示している。ただし、Qmaxは試験体がせん断破壊又は付着割劣した場合に加えて、曲げ破壊した場合の最大耐力を含んでいる。 FIG. 4 is a graph showing the relationship between the margins of the test piece that has been bent and broken. Similar to FIG. 3, the X-axis shows the shear margin Qsu / Qfu, and the Y-axis shows the margin Qmax / Qfu. However, Qmax includes the maximum proof stress in the case of bending fracture in addition to the case where the test piece is sheared or inferior in adhesion.

なお、図4において、白四角印及び斜線四角印は試験体が降伏後にせん断破壊したことを、+印及び黒四角内+印は試験体が降伏後に付着割劣したことを、白菱形印及び斜線菱形印は試験体が曲がったことを示している。そして、斜線四角印、黒四角内+印及び斜線菱形印は本願発明者が実際に行った試験結果を示し、白四角印、+印及び白菱形印は既往文献に記載の実験データを示している。 In FIG. 4, the white square mark and the diagonal line square mark indicate that the test piece was shear-broken after yielding, and the + mark and the + mark in the black square indicate that the test piece was poorly adhered after yielding. The diagonal diamonds indicate that the specimen is bent. The diagonal square mark, the black square + mark, and the diagonal rhombus mark indicate the test results actually performed by the inventor of the present application, and the white square mark, + mark, and white rhombus mark indicate the experimental data described in the prior literature. There is.

図3及び図4を参照して、せん断余裕度Qsu/Qfuが1以上である領域においては、せん断終局強度Qsuが曲げ強度Qfuよりも大きく、理論上、せん断破壊ではなく曲げ破壊が生じる。 With reference to FIGS. 3 and 4, in the region where the shear margin Qsu / Qfu is 1 or more, the ultimate shear strength Qsu is larger than the bending strength Qfu, and theoretically, bending fracture occurs instead of shear fracture.

さらに、せん断余裕度Qsu/Qfuが1未満である領域において、余裕度Qmax/Qfuはせん断余裕度Qsu/Qfuよりも大きいので、せん断破壊又は付着割劣した際の最大耐力Qmaxは理論上のせん断終局強度Qsuよりも大きい。これにより、式(1)で算出した等価平均強度Fceは実際の梁10がせん断破壊するせん断強度よりも安全側に評価されていることがわかる。 Further, in the region where the shear margin Qsu / Qfu is less than 1, the margin Qmax / Qfu is larger than the shear margin Qsu / Qfu, so that the maximum proof stress Qmax at the time of shear failure or poor adhesion is the theoretical shear. Ultimate strength greater than Qsu. From this, it can be seen that the equivalent average strength Fce calculated by the equation (1) is evaluated on the safer side than the shear strength at which the actual beam 10 undergoes shear failure.

また、せん断余裕度Qsu/Qfuが1以上である領域において、余裕度Qmax/Qfuは1以上であるので、曲げ破壊した際の最大耐力Qmaxは曲げ強度Qfuよりも大きい。これにより、式(1)で算出した等価平均強度Fceは実際の梁10が曲げ破壊する曲げ強度よりも安全側に評価されていることがわかる。 Further, in the region where the shear margin Qsu / Qfu is 1 or more, the margin Qmax / Qfu is 1 or more, so that the maximum proof stress Qmax at the time of bending fracture is larger than the bending strength Qfu. From this, it can be seen that the equivalent average strength Fce calculated by the equation (1) is evaluated on the safer side than the bending strength at which the actual beam 10 bends and breaks.

なお、等価平均強度Fceを算出する際には、以下のようにみなして算出することが好ましい。 When calculating the equivalent average intensity Fce, it is preferable to consider it as follows.

第1に、図5に示すスラブ付き梁30Aのように、梁上部12の天端がスラブ20の天端よりも上方に位置する場合、梁上部12はスラブ20の天端よりも高い位置に存在する部分(図5の斜線部)を除いたものとしてみなして、等価平均強度Fceを算出する。 First, when the top end of the beam upper portion 12 is located above the top end of the slab 20, as in the beam 30A with a slab shown in FIG. 5, the beam upper portion 12 is located higher than the top end of the slab 20. The equivalent average intensity Fce is calculated assuming that the existing portion (shaded portion in FIG. 5) is excluded.

第2に、図6に示すスラブ付き梁30Bのように、梁下部11と梁上部12との水平接合面Aがスラブ20の底端よりも上方に位置する場合、水平接合面Aよりも低い位置に存在するスラブ20の部分(図6の斜線部)を除いたものとしてみなして、等価平均強度Fceを算出する。 Secondly, when the horizontal joint surface A between the lower beam 11 and the upper beam 12 is located above the bottom end of the slab 20, as in the beam 30B with a slab shown in FIG. 6, it is lower than the horizontal joint surface A. The equivalent average intensity Fce is calculated assuming that the portion of the slab 20 existing at the position (the shaded portion in FIG. 6) is excluded.

第3に、図7に示すスラブ付き梁30Cのように、梁上部12において第1のコンクリートを用いて形成されている部分がある場合、その部分(図7の梁下部11と同じハッチングの部分)は梁下部11ではなく、梁上部12とみなして、等価平均強度Fceを算出する。すなわち、梁下部11とみなす部分は水平断面において全て第1のコンクリートから形成れている部分に限定される。 Thirdly, when there is a portion formed by using the first concrete in the beam upper portion 12 like the beam 30C with a slab shown in FIG. 7, that portion (the same hatched portion as the beam lower portion 11 in FIG. 7). ) Is regarded as the upper beam 12 instead of the lower beam 11, and the equivalent average strength Fce is calculated. That is, the portion regarded as the lower portion 11 of the beam is limited to the portion formed of the first concrete in the horizontal cross section.

第4に、図7に示すスラブ付き梁30Cのように、スラブ20において第1のコンクリートなど第2のコンクリートより設計基準強度が高いコンクリートなどを用いて形成されている部分がある場合、その部分(図7の梁下部11と同じハッチングの部分)を含めて、スラブ20は第2のコンクリートからなるものとみなして、等価平均強度Fceを算出する。例えば、スラブ20の一部がプレキャストコンクリートから形成されている場合である。 Fourth, if there is a part of the slab 20, such as the first concrete, which has a higher design standard strength than the second concrete, such as the beam 30C with a slab shown in FIG. 7, that part. The equivalent average strength Fce is calculated by assuming that the slab 20 is made of the second concrete including (the same hatching portion as the beam lower portion 11 in FIG. 7). For example, a part of the slab 20 is made of precast concrete.

第5に、図8に示すスラブ付き梁30Dのように、スラブ20にボイド(空隙)23が存在している場合、梁上部12から最も近いボイド23から外側のスラブ20の部分(図8の斜線部)は、スラブ20は協力幅baに含まないで、等価平均強度Fceを算出する。すなわち、梁上部12の側端面から最も近いボイド23の存在する位置までのスラブ20を協力幅baとする。 Fifth, when a void (void) 23 is present in the slab 20 as in the beam 30D with a slab shown in FIG. 8, the portion of the slab 20 outside the void 23 closest to the beam upper portion 12 (FIG. 8). The shaded area) does not include the slab 20 in the cooperation width ba, and the equivalent average strength Fce is calculated. That is, the cooperation width ba is defined as the slab 20 from the side end surface of the beam upper portion 12 to the position where the nearest void 23 exists.

なお、本発明は、上述したスラブ付き梁30のせん断強度評価方法及びこれを用いて評価したスラブ付き梁を備えた構築物に限定されるものではなく、適宜変更することができる。 The present invention is not limited to the above-described method for evaluating the shear strength of the beam with slab 30 and the structure provided with the beam with slab evaluated using the method, and can be appropriately modified.

10…梁、 11…梁下部、 12…梁上部、 13…梁主筋、 14…せん断補強筋、 15…ずれ防止筋、 20…スラブ、 21…一方のスラブ、 22…他方のスラブ、 24…ボイド、 30,30A,30B,30C…スラブ付き梁、 40…柱、 100…構築物、 A…水平接合面。 10 ... beam, 11 ... lower beam, 12 ... upper beam, 13 ... beam main bar, 14 ... shear reinforcement, 15 ... slip prevention bar, 20 ... slab, 21 ... one slab, 22 ... other slab, 24 ... void , 30, 30A, 30B, 30C ... Beams with slabs, 40 ... Pillars, 100 ... Structures, A ... Horizontal joint surfaces.

Claims (2)

第1のコンクリートを用いて形成された梁下部と、前記梁下部と一体化され、第1のコンクリートと異なる第2のコンクリートを用いて形成された梁上部及びスラブとからなるスラブ付き梁のせん断強度評価方法であって、
前記第1のコンクリートの設計基準強度をFcd[N/mm2]、前記第2のコンクリートの設計基準強度をFcu[N/mm2]、前記梁下部の断面積をAd[mm2]、前記梁上部の断面積をAu [mm2]、前記スラブの協力幅をba[mm]、前記スラブの厚さをt[mm]、前記梁上部の高さをTu[mm]、前記梁下部及び前記梁上部の幅をb[mm]としたとき、前記スラブ付き梁のせん断強度を評価する際のコンクリートの平均強度Fce[N/mm2]は、式(1)で表され、
Fce=(Fcd・Ad+αs・Fcu・Au)/(Ad+Au) ・・・ (1)
式(1)における割増係数αsは、式(2)で表され、
αs=1+t’・b’ ・・・ (2)
ここで、t’=t/Tu、b’=ba/bであることを特徴とするスラブ付き梁のせん断強度評価方法。
Shearing of a beam with a slab consisting of a beam lower part formed using the first concrete and a beam upper part and a slab integrated with the beam lower part and formed using a second concrete different from the first concrete. It is a strength evaluation method
The design standard strength of the first concrete is Fcd [N / mm 2 ], the design standard strength of the second concrete is Fcu [N / mm 2 ], the cross-sectional area of the lower part of the beam is Ad [mm 2 ], and the above. The cross-sectional area of the upper part of the beam is Au [mm 2 ], the cooperative width of the slab is ba [mm], the thickness of the slab is t [mm], the height of the upper part of the beam is Tu [mm], the lower part of the beam and the beam. When the width of the upper part of the beam is b [mm], the average strength Fce [N / mm 2 ] of concrete when evaluating the shear strength of the beam with a slab is expressed by the equation (1).
Fce = (Fcd / Ad + αs / Fcu / Au) / (Ad + Au) ・ ・ ・ (1)
The premium coefficient αs in the equation (1) is expressed by the equation (2).
αs = 1 + t'・ b'・ ・ ・ (2)
Here, a method for evaluating the shear strength of a beam with a slab, characterized in that t'= t / Tu and b'= ba / b.
請求項1に記載のスラブ付き梁のせん断強度評価方法を用いてせん断強度を評価して形成したことを特徴とするスラブ付き梁を備えた構築物。 A structure including a beam with a slab, which is formed by evaluating the shear strength using the method for evaluating the shear strength of a beam with a slab according to claim 1.
JP2020054817A 2020-03-25 2020-03-25 Method for evaluating shear strength of beam with slab and structure Pending JP2021155941A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020054817A JP2021155941A (en) 2020-03-25 2020-03-25 Method for evaluating shear strength of beam with slab and structure
JP2024020703A JP2024040450A (en) 2020-03-25 2024-02-14 Method for evaluating shear strength of beam with slab and structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020054817A JP2021155941A (en) 2020-03-25 2020-03-25 Method for evaluating shear strength of beam with slab and structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024020703A Division JP2024040450A (en) 2020-03-25 2024-02-14 Method for evaluating shear strength of beam with slab and structure

Publications (1)

Publication Number Publication Date
JP2021155941A true JP2021155941A (en) 2021-10-07

Family

ID=77919137

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020054817A Pending JP2021155941A (en) 2020-03-25 2020-03-25 Method for evaluating shear strength of beam with slab and structure
JP2024020703A Pending JP2024040450A (en) 2020-03-25 2024-02-14 Method for evaluating shear strength of beam with slab and structure

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024020703A Pending JP2024040450A (en) 2020-03-25 2024-02-14 Method for evaluating shear strength of beam with slab and structure

Country Status (1)

Country Link
JP (2) JP2021155941A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006097320A (en) * 2004-09-29 2006-04-13 Taisei Corp Shear strength evaluating method of reinforced concrete beam and reinforced concrete beam structure
JP2006225894A (en) * 2005-02-15 2006-08-31 Ohbayashi Corp Method for calculating shear strength of reinforced concrete beam, design method using the same, reinforced concrete beam designed by the design method, and structure of reinforced concrete beam and floor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006097320A (en) * 2004-09-29 2006-04-13 Taisei Corp Shear strength evaluating method of reinforced concrete beam and reinforced concrete beam structure
JP2006225894A (en) * 2005-02-15 2006-08-31 Ohbayashi Corp Method for calculating shear strength of reinforced concrete beam, design method using the same, reinforced concrete beam designed by the design method, and structure of reinforced concrete beam and floor

Also Published As

Publication number Publication date
JP2024040450A (en) 2024-03-25

Similar Documents

Publication Publication Date Title
JP6338473B2 (en) Precast structure joining method
JP4412196B2 (en) Calculation method of shear strength of reinforced concrete beam, design method using this calculation method, reinforced concrete beam designed by this design method and beam / floor structure of reinforced concrete
JP5833616B2 (en) Construction method of joint structure of concrete precast slab for bridge
JP6646206B2 (en) Joint structure of RC members
JP2021155941A (en) Method for evaluating shear strength of beam with slab and structure
JP6432779B2 (en) Joint structure of reinforced concrete column and steel beam
JP2008088634A (en) Composite steel-concrete floor slab
JP5083808B2 (en) Concrete earthquake-resistant wall floor structure
JP6573111B2 (en) Beam-column joint structure
JP2006299554A (en) Structure near intermediate supporting point of continuous i-beam bridge
JP4581729B2 (en) Calculation method of shear stress of reinforced concrete beam, design method of reinforced concrete beam, reinforced concrete beam
KR102060342B1 (en) Filler-supported Reinforcement Truss Girder apllied to Truss integrated Deck Plate
JP3620651B2 (en) Joining structure of members
JP4432421B2 (en) Concrete plate member
JP4137037B2 (en) Shear strength evaluation method of reinforced concrete beam and reinforced concrete beam structure
Fanaei et al. Analytical Shape Optimization of Metal Deck with respect to Bending Capacity
JP3950748B2 (en) Bridge girder
JP2004169447A (en) Joint section structure of corrugated steel plate web composite girder of bridge
JP2023116120A (en) Joint structure of floor slab
JP2762906B2 (en) RC frame
JP6370508B1 (en) Bridge PC floor slab with fiber reinforced concrete
KR101087586B1 (en) Steel concrete composite beam and manufacturing method of the same
JP2023132784A (en) Joint structure
JP2019214928A (en) Junction structure of concrete member and joint structure of steel bar
JP2023132814A (en) floor slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20230719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230724

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20231101

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20231127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231128

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20231208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20231127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240214

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240222

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20240329