JP2004169447A - Joint section structure of corrugated steel plate web composite girder of bridge - Google Patents

Joint section structure of corrugated steel plate web composite girder of bridge Download PDF

Info

Publication number
JP2004169447A
JP2004169447A JP2002337593A JP2002337593A JP2004169447A JP 2004169447 A JP2004169447 A JP 2004169447A JP 2002337593 A JP2002337593 A JP 2002337593A JP 2002337593 A JP2002337593 A JP 2002337593A JP 2004169447 A JP2004169447 A JP 2004169447A
Authority
JP
Japan
Prior art keywords
corrugated steel
bridge
web
composite girder
penetrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002337593A
Other languages
Japanese (ja)
Other versions
JP3996043B2 (en
Inventor
Nozomi Taniguchi
望 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2002337593A priority Critical patent/JP3996043B2/en
Publication of JP2004169447A publication Critical patent/JP2004169447A/en
Application granted granted Critical
Publication of JP3996043B2 publication Critical patent/JP3996043B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a joint section structure of a corrugated steel plate web composite girder of a bridge capable of increasing proof stress to behavior of deformation of a joint section of the corrugated steel plate web composite girder. <P>SOLUTION: The joint section structure of the corrugated steel plate web composite girder of the bridge is equipped with penetration horizontal reinforcements 103 arranged by passing through a corrugated steel plate web 101 so as to make at right angles to the direction of the bridge axis of the corrugated steel plate web 101 of the bridge and inclined penetration reinforcements 104 arranged by passing through the corrugated steel plate web 101 so as to incline to the direction of the bridge axis of the corrugated steel plate web 101. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、橋の波形鋼板ウェブ合成桁に係り、特にその接合部の構造に関するものである。
【0002】
【従来の技術】
従来、山岳地域などの複数径間連続に施工される橋長の本橋にはPC(プレストレストコンクリート)合成橋が構築される。この本橋は、PC合成橋のウェブに波形鋼板を使用した鋼コンクリート合成桁構造である。
【0003】
かかる波形鋼板ウェブ鉄道箱桁橋の面外繰り返し曲げ作用による耐疲労性状に関する静的載荷試験および疲労試験についての報告が下記〔非特許文献1〕になされている。
【0004】
また、波形鋼板ウェブを有するI形断面合成桁の埋込み接合部の疲労実験の報告が下記〔非特許文献2〕になされている。
【0005】
さらに、波形鋼板ウェブを持つ合成桁の簡易曲げ解析法に関する研究が下記〔非特許文献3〕になされている。
【0006】
図7はかかるPC合成橋の模式図、図8は合成橋の支間断面図、図9はその波形鋼板ウェブ合成桁の模式図である。
【0007】
図7および図8に示すように、この橋は三径間連続橋であり、1は脚部、2は波形鋼板ウェブ、3はコンクリート上床版、4はコンクリート下床版、5は波形鋼板ウェブ合成桁の接合部である。
【0008】
かかる波形鋼板ウェブ2は、(1)主桁自重の20%〜30%を占めるウェブに軽量な波形鋼板を用いることにより、主桁自重を軽減でき、スパンの長大化、コストの低減が可能となる。(2)鋼板を波形とすることにより、高いせん断座屈耐力が得られ、補鋼材(スティフナー)が不要となる。(3)軸力に抵抗しない波形鋼板のアコーディオン効果によって、コンクリート床版のみに効率よくプレストレスを導入できる。(4)コンクリートウェブが不要になるため、施工の合理化、工期の短縮を図ることができる。(5)主桁自重が軽量化され、下部工への荷重負担が軽減されることにより、下部構造をよりスレンダーにすることが可能になるなどの利点があり、よく用いられている。
【0009】
その波形鋼板ウェブ合成桁の接合部5には、一例として図9に示すような構造のものがある。かかる波形鋼板ウェブ合成桁の接合部5の波形鋼板ウェブ2には鋼板孔6が形成されており、その鋼板孔6を貫通して貫通横鉄筋7が配置されるとともに、波形鋼板ウェブ2に平行に2本の接合棒鋼8が配置されるようになっている。
【0010】
【非特許文献1】
鉄道総研報告;RTRI REPORT Vol.16,No.9,P.5−10,2002.9
【非特許文献2】
土木学会論文集 No.668/I−54,P.55−64,2001.1
【非特許文献3】
土木学会論文集 No.577/I−41,P.107−120,1997.10
【0011】
【発明が解決しようとする課題】
このように、従来の波形鋼板ウェブ合成桁の接合部5の貫通横鉄筋7は、橋軸方向に対して直角方向のみの配置であったので、破壊時の変形挙動に対する耐力が十分であるとは言えなかった。
【0012】
本発明は、かかる状況に鑑みて、波形鋼板ウェブ合成桁の接合部の変形挙動に対する耐力を増強することができる橋の波形鋼板ウェブ合成桁の接合構造を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明は、上記目的を達成するために、
〔1〕橋の波形鋼板ウェブ合成桁の接合部構造において、橋の波形鋼板ウェブの橋軸方向に対して直交するように前記波形鋼板ウェブを貫通して配置される貫通横鉄筋と、前記波形鋼板ウェブの橋軸方向に対して傾斜するように前記波形鋼板ウェブを貫通して配置される斜め貫通鉄筋とを具備することを特徴とする。
【0014】
〔2〕上記〔1〕記載の橋の波形鋼板ウェブ合成桁の接合部構造において、前記斜め貫通鉄筋は橋軸方向に対して傾斜する波形鋼板部に設けた貫通孔を貫通するように施工することを特徴とする。
【0015】
〔3〕橋の波形鋼板ウェブ合成桁の接合部構造において、橋の波形鋼板ウェブに橋軸方向に対して直交するように前記波形鋼板ウェブを貫通して配置される貫通横鉄筋と、この貫通横鉄筋のうち橋軸方向に対して傾斜する波形鋼板部に対応した位置にある貫通横鉄筋上に橋軸方向に平行に配置される補強拘束鉄筋とを具備することを特徴とする。
【0016】
〔4〕上記〔3〕記載の橋の波形鋼板ウェブ合成桁の接合部構造において、前記貫通横鉄筋のうち橋軸方向に対して傾斜する波形鋼板部に対応した位置にある貫通横鉄筋に固着するように前記補強拘束鉄筋を施工することを特徴とする。
【0017】
〔5〕橋の波形鋼板ウェブ合成桁の接合部構造において、橋の波形鋼板ウェブに橋軸方向に対して直交するように前記波形鋼板ウェブを貫通して配置される貫通横鉄筋と、接合部コンクリート側面間に配置される横締めPCケーブルとを具備することを特徴とする。
【0018】
〔6〕上記〔5〕記載の橋の波形鋼板ウェブ合成桁の接合部構造において、前記接合部コンクリート側面間に配置される前記横締めPCケーブルを前記接合部コンクリート側面に配置される締結具により締め付けるように施工することを特徴とする。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
【0020】
図1は本発明の第1実施例を示す斜め貫通鉄筋を施工する波形鋼板ウェブ合成桁の接合部の構成を示す斜視図、図2はその斜め貫通鉄筋を施工する波形鋼板ウェブ合成桁の接合部の模式図である。
【0021】
図1において、101は波形鋼板ウェブであり、101Aは波形鋼板ウェブ101において、橋軸方向に平行な鋼板部、101Bは橋軸方向に対して傾斜する鋼板部である。102はその波形鋼板ウェブ101に形成される鋼板孔であり、102Aはその橋軸に対して平行な鋼板部101Aに形成される鋼板孔、102Bはその橋軸に対して傾斜する鋼板部101Bに形成される鋼板孔である。
【0022】
また、103はその鋼板孔102Aに貫通される貫通横鉄筋、更に、104は鋼板孔102Bに貫通される斜め貫通鉄筋、105は波形鋼板ウェブ101上に橋軸方向に平行に配置される接合棒鋼(溶接固着)である。
【0023】
図2においては、波形鋼板ウェブ101および貫通横鉄筋103は破線で示されており、斜め貫通鉄筋104は実線で示されている。なお、106は接合部コンクリート側面、107はコンクリートの変形挙動を示している。
【0024】
このように第1実施例によれば、貫通横鉄筋103に加えて、斜め貫通鉄筋104が施工されるようにしたので、コンクリートの変形挙動107に対して耐力が向上した波形鋼板ウェブ合成桁の接合構造を構築することができる。
【0025】
更に、斜め貫通鉄筋104を有する波形鋼板ウェブ合成桁の接合部構造にしたので、橋の破壊時に生じる、床版の波形変形の抑制効果を奏することができる。
【0026】
次に、本発明の第2実施例について説明する。
【0027】
図3は本発明の第2実施例を示す補強拘束鉄筋を施工する波形鋼板ウェブ合成桁の接合部の構成を示す斜視図、図4はその補強拘束鉄筋を施工する波形鋼板ウェブ合成桁の接合部の平面模式図、図5はその補強拘束鉄筋を施工する波形鋼板ウェブ合成桁の接合部の側面模式図である。
【0028】
図3において、101は波形鋼板ウェブであり、101Aは橋軸方向に平行な鋼板部、101Bは橋軸方向に対して傾斜する鋼板部である。102はその波形鋼板ウェブに形成される鋼板孔、103はその鋼板孔102に貫通される貫通横鉄筋、111は傾斜する鋼板部101Bに対応した位置で、かつ橋軸方向に平行に配置される補強拘束鉄筋、105は波形鋼板ウェブ101上に橋軸方向に平行に配置される接合棒鋼(溶接固着)である。
【0029】
図4においては、波形鋼板ウェブ101および貫通横鉄筋103は破線で示されており、補強拘束鉄筋111は実線で示されている。
【0030】
また、図5においては、傾斜する鋼板部101Bに対応した位置の貫通横鉄筋103の鉄筋上部に鉄筋の貫通方向に対して直交方向(橋軸方向)に配置されるフックを設けた補強拘束鉄筋111が示されている。
【0031】
このように第2実施例においても、貫通横鉄筋103に加えて、補強拘束鉄筋111が施工されるようにしたので、コンクリートの変形挙動107に対して耐力が向上した波形鋼板ウェブ合成桁の接合構造を構築することができる。
【0032】
また、波形鋼板ウェブ合成桁のウェブ、フランジ接合部において、フックを設けた補強拘束鉄筋111を用い、貫通鉄筋を利用して橋軸方向に配置する。
【0033】
したがって、波形鋼板の、斜めパネル部の引張挙動によるのび変形を拘束するすることができ、その変形を抑制することによって、床版の破壊を防止することができる。
【0034】
次に、本発明の第3実施例について説明する。
【0035】
図6は本発明の第3実施例を示す横締めPCケーブルを施工する波形鋼板ウェブ合成桁の接合部の平面模式図である。
【0036】
図6においては、波形鋼板ウェブ101および貫通横鉄筋103は破線で示されており、横締めPCケーブル121を接合部コンクリート側面106間に施工するようにしている。横締めPCケーブル121は貫通横鉄筋103と平行に配置される。
【0037】
このように第3実施例においても、貫通横鉄筋103に加えて、横締めPCケーブル121を接合部コンクリート側面106間に施工するようにしたので、コンクリートの変形挙動107に対して耐力が向上した波形鋼板ウェブ合成桁の接合構造を構築することができる。
【0038】
また、波形鋼板ウェブ合成桁のウェブ、フランジ接合部において、床版横締めPCケーブルを波形の形状に合わせて配置する。配置個所は、波形鋼板の変形挙動により床版が広がる部分であり、この広がる挙動を拘束する。
【0039】
したがって、破壊時に生じる、床版の波形変形の抑制効果を奏することができる。
【0040】
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づいて種々の変形が可能であり、これらを本発明の範囲から排除するものではない。
【0041】
【発明の効果】
以上、詳細に説明したように、本発明によれば、以下のような効果を奏することができる。
【0042】
(A)貫通横鉄筋に加えて、斜め貫通鉄筋が施工されるようにしたので、コンクリートの変形挙動に対して耐力が向上した波形鋼板ウェブ合成桁の接合構造を構築することができる。
【0043】
(B)貫通横鉄筋に加えて、補強拘束鉄筋が施工されるようにしたので、コンクリートの変形挙動に対して耐力が向上した波形鋼板ウェブ合成桁の接合構造を構築することができる。
【0044】
(C)貫通横鉄筋に加えて、横締めPCケーブルを接合部コンクリート側面間に施工するようにしたので、コンクリートの変形挙動に対して耐力が向上した波形鋼板ウェブ合成桁の接合構造を構築することができる。
【図面の簡単な説明】
【図1】本発明の第1実施例を示す斜め貫通鉄筋を施工する波形鋼板ウェブ合成桁の接合部の構成を示す斜視図である。
【図2】本発明の第1実施例を示す斜め貫通鉄筋を施工する波形鋼板ウェブ合成桁の接合部の模式図である。
【図3】本発明の第2実施例を示す補強拘束鉄筋を施工する波形鋼板ウェブ合成桁の接合部の構成を示す斜視図である。
【図4】本発明の第2実施例を示す補強拘束鉄筋を施工する波形鋼板ウェブ合成桁の接合部の平面模式図である。
【図5】本発明の第2実施例を示す補強拘束鉄筋を施工する波形鋼板ウェブ合成桁の接合部の側面模式図である。
【図6】本発明の第3実施例を示す横締めPCケーブルを施工する波形鋼板ウェブ合成桁の接合部の平面模式図である。
【図7】従来のPC連続橋の模式図である。
【図8】従来の合成橋の支間断面図である。
【図9】従来の波形鋼板ウェブ合成桁の模式図である。
【符号の説明】
101 波形鋼板ウェブ
101A 橋軸方向に平行な鋼板部
101B 橋軸方向に対して傾斜する鋼板部
102 波形鋼板ウェブに形成される鋼板孔
102A 橋軸方向に平行な鋼板部に形成される鋼板孔
102B 橋軸方向に対して傾斜する鋼板部に形成される鋼板孔
103 鋼板孔に貫通される貫通横鉄筋
104 橋軸方向に対して傾斜する鋼板部の鋼板孔に貫通される斜め貫通鉄筋
105 波形鋼板ウェブ上に橋軸方向に平行に配置される接合棒鋼
106 接合部コンクリート側面
107 コンクリートの変形挙動
111 傾斜する鋼板部に対応した位置で、かつ橋軸方向に平行に配置される補強拘束鉄筋
121 横締めPCケーブル
122 締結具
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a corrugated steel web composite girder for a bridge, and more particularly to a structure of a joint thereof.
[0002]
[Prior art]
Conventionally, a PC (prestressed concrete) composite bridge is constructed on a main bridge of a bridge length constructed continuously for a plurality of spans in a mountain area or the like. This bridge is a steel-concrete composite girder structure using corrugated steel sheets for the web of a PC composite bridge.
[0003]
The following [Non-Patent Document 1] reports on a static loading test and a fatigue test on the fatigue resistance properties of such a corrugated steel web railway box girder bridge due to the out-of-plane repetitive bending action.
[0004]
In addition, the following [Non-Patent Document 2] reports a fatigue test of an embedded joint of an I-shaped composite girder having a corrugated steel sheet web.
[0005]
Further, a study on a simple bending analysis method of a composite girder having a corrugated steel sheet web has been made in the following [Non-Patent Document 3].
[0006]
FIG. 7 is a schematic view of such a PC composite bridge, FIG. 8 is a cross-sectional view of a span of the composite bridge, and FIG. 9 is a schematic view of the corrugated steel web composite girder.
[0007]
As shown in FIGS. 7 and 8, this bridge is a three-span continuous bridge, 1 is a leg, 2 is a corrugated steel web, 3 is a concrete upper slab, 4 is a concrete lower slab, and 5 is a corrugated steel web. This is the joint of the composite girder.
[0008]
Such a corrugated steel sheet web 2 can (1) reduce the weight of the main girder by using a lightweight corrugated steel sheet for the web occupying 20% to 30% of the main girder's own weight, and increase the span and cost. Become. (2) Since the steel sheet is corrugated, high shear buckling strength is obtained, and a steel stiffener is not required. (3) Due to the accordion effect of the corrugated steel sheet that does not resist axial force, prestress can be efficiently introduced only into the concrete slab. (4) Since a concrete web is not required, the construction can be rationalized and the construction period can be shortened. (5) The weight of the main girder is reduced in weight, and the load on the substructure is reduced, so that the substructure can be made more slender.
[0009]
The joint 5 of the corrugated steel web composite girder has a structure as shown in FIG. 9 as an example. A steel sheet hole 6 is formed in the corrugated steel sheet web 2 of the joint portion 5 of such a corrugated steel sheet web, and a penetrating horizontal reinforcing bar 7 is disposed through the steel sheet hole 6 and is parallel to the corrugated steel sheet web 2. , Two connecting steel bars 8 are arranged.
[0010]
[Non-patent document 1]
RTRI report; RTRI REPORT Vol. 16, No. 9, p. 5-10, 2002.9
[Non-patent document 2]
Journal of Japan Society of Civil Engineers 668 / I-54, p. 55-64, 2001.1.
[Non-Patent Document 3]
Journal of Japan Society of Civil Engineers 577 / I-41, p. 107-120, 1997.10
[0011]
[Problems to be solved by the invention]
As described above, since the penetrating transverse reinforcing bars 7 of the joints 5 of the conventional corrugated steel web composite girder are arranged only in the direction perpendicular to the bridge axis direction, if the proof strength against the deformation behavior at the time of fracture is sufficient. I couldn't say.
[0012]
In view of such circumstances, an object of the present invention is to provide a joint structure of a corrugated steel web composite girder of a bridge, which can enhance the resistance to the deformation behavior of the joint of the corrugated steel web composite girder.
[0013]
[Means for Solving the Problems]
The present invention, in order to achieve the above object,
[1] In a joint structure of a corrugated steel web composite girder of a bridge, a penetrating transverse reinforcing bar disposed through the corrugated steel web so as to be orthogonal to a bridge axis direction of the corrugated steel web of the bridge; And a diagonally penetrating reinforcing bar disposed through the corrugated steel sheet web so as to be inclined with respect to the bridge axis direction of the steel sheet web.
[0014]
[2] In the joint structure of the corrugated steel web composite girder of the bridge according to [1], the diagonally penetrating reinforcing bar is constructed so as to penetrate through holes provided in the corrugated steel plate portion inclined with respect to the bridge axis direction. It is characterized by the following.
[0015]
[3] In the joint structure of the corrugated steel web composite girder of the bridge, a penetrating transverse reinforcing bar arranged to penetrate the corrugated steel web of the bridge so as to be orthogonal to the bridge axis direction, and It is characterized in that a reinforcing constraining reinforcing bar arranged parallel to the bridge axis direction is provided on the penetrating horizontal reinforcing bar located at a position corresponding to the corrugated steel plate portion inclined with respect to the bridge axis direction among the horizontal bars.
[0016]
[4] In the joint structure of the corrugated steel web composite girder of the bridge according to the above [3], the corrugated steel web is bonded to the penetrating horizontal reinforcing bar at a position corresponding to the corrugated steel plate portion inclined with respect to the bridge axis direction among the crossing horizontal reinforcing bars. The reinforcing constraining rebar is constructed so as to perform
[0017]
[5] In the joint structure of the corrugated steel sheet web composite girder of the bridge, a penetrating transverse reinforcing bar arranged to penetrate the corrugated steel sheet web of the bridge so as to be perpendicular to the bridge axis direction, and a joint part. And a laterally tightened PC cable disposed between the side surfaces of the concrete.
[0018]
[6] In the joint structure of the corrugated steel web composite girder of the bridge according to [5], the laterally tightened PC cable arranged between the joint concrete side surfaces is connected to a fastener arranged on the joint concrete side surface. It is characterized by being constructed so as to be tightened.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0020]
FIG. 1 is a perspective view showing a configuration of a joint portion of a corrugated steel sheet web composite girder constructing a diagonally penetrating reinforcing bar according to a first embodiment of the present invention, and FIG. It is a schematic diagram of a part.
[0021]
In FIG. 1, 101 is a corrugated steel sheet web, 101A is a steel sheet part parallel to the bridge axis direction in the corrugated steel sheet web 101, and 101B is a steel sheet part inclined with respect to the bridge axis direction. 102 is a steel plate hole formed in the corrugated steel sheet web 101, 102A is a steel plate hole formed in the steel plate part 101A parallel to the bridge axis, and 102B is a steel plate part 101B inclined with respect to the bridge axis. It is a steel plate hole to be formed.
[0022]
Reference numeral 103 denotes a penetrating horizontal reinforcing bar penetrated through the steel plate hole 102A, reference numeral 104 denotes an oblique penetrating reinforcing bar penetrating through the steel plate hole 102B, and reference numeral 105 denotes a connecting bar steel bar arranged on the corrugated steel web 101 in the bridge axis direction. (Weld fixation).
[0023]
In FIG. 2, the corrugated steel sheet web 101 and the penetrating transverse reinforcing bar 103 are indicated by broken lines, and the oblique penetrating reinforcing bars 104 are indicated by solid lines. In addition, reference numeral 106 denotes a joint side surface of the joint, and 107 denotes a deformation behavior of the concrete.
[0024]
As described above, according to the first embodiment, since the oblique penetrating reinforcing bars 104 are constructed in addition to the penetrating horizontal reinforcing bars 103, the corrugated steel sheet web composite girder having improved proof stress against the deformation behavior 107 of concrete is provided. A joint structure can be constructed.
[0025]
Further, since the joint structure of the corrugated steel web composite girder having the oblique penetrating reinforcing bar 104 is employed, the effect of suppressing the corrugated deformation of the floor slab, which is generated when the bridge is broken, can be obtained.
[0026]
Next, a second embodiment of the present invention will be described.
[0027]
FIG. 3 is a perspective view showing a configuration of a joint portion of a corrugated steel web composite girder for constructing a reinforcing constraining reinforcing bar according to a second embodiment of the present invention, and FIG. FIG. 5 is a schematic side view of a joint portion of a corrugated steel web composite girder on which the reinforcing constraining reinforcing steel is to be constructed.
[0028]
In FIG. 3, 101 is a corrugated steel sheet web, 101A is a steel sheet part parallel to the bridge axis direction, and 101B is a steel sheet part inclined with respect to the bridge axis direction. 102 is a steel sheet hole formed in the corrugated steel sheet web, 103 is a penetrating transverse reinforcing bar penetrated through the steel sheet hole 102, 111 is a position corresponding to the inclined steel sheet portion 101B, and is arranged in parallel with the bridge axis direction. Reference numeral 105 denotes a reinforcing steel bar, which is a connecting bar (weld-fastened) disposed on the corrugated steel sheet web 101 in parallel to the bridge axis direction.
[0029]
In FIG. 4, the corrugated steel sheet web 101 and the penetrating horizontal reinforcing bar 103 are indicated by broken lines, and the reinforcing constraining reinforcing bar 111 is indicated by solid lines.
[0030]
Further, in FIG. 5, a reinforcing restrained reinforcing bar provided with a hook disposed at a position corresponding to the inclined steel plate portion 101B and at an upper portion of the reinforcing bar of the penetrating horizontal reinforcing bar 103 in a direction perpendicular to the direction of penetration of the reinforcing bar (bridge axis direction). 111 is shown.
[0031]
As described above, also in the second embodiment, in addition to the penetrating horizontal reinforcing bar 103, the reinforcing constraining reinforcing bar 111 is applied, so that the joining of the corrugated steel web composite girder having improved strength against the deformation behavior 107 of the concrete. The structure can be built.
[0032]
Further, at the web-flange joint of the corrugated steel web composite girder, a reinforcing constraining reinforcing bar 111 provided with a hook is used, and the reinforcing bar 111 is arranged in the bridge axis direction using a penetrating rebar.
[0033]
Therefore, it is possible to restrict the extension deformation of the corrugated steel sheet due to the tensile behavior of the oblique panel portion, and it is possible to prevent the floor slab from being broken by suppressing the deformation.
[0034]
Next, a third embodiment of the present invention will be described.
[0035]
FIG. 6 is a schematic plan view of a joint portion of a corrugated steel web composite girder to which a horizontally tightened PC cable according to a third embodiment of the present invention is applied.
[0036]
In FIG. 6, the corrugated steel sheet web 101 and the penetrating horizontal reinforcing bar 103 are shown by broken lines, and the laterally tightened PC cable 121 is installed between the joint concrete side surfaces 106. The laterally tightened PC cable 121 is arranged in parallel with the penetrating horizontal reinforcing bar 103.
[0037]
As described above, also in the third embodiment, in addition to the penetrating transverse reinforcing bar 103, the laterally tightened PC cable 121 is installed between the joint concrete side surfaces 106, so that the resistance to the deformation behavior 107 of the concrete is improved. The joining structure of the corrugated steel web composite girder can be constructed.
[0038]
Also, at the web and flange joints of the corrugated steel sheet web composite girder, the floor slab side-tightening PC cable is arranged in accordance with the corrugated shape. The arrangement location is a portion where the floor slab spreads due to the deformation behavior of the corrugated steel sheet, and restricts the spreading behavior.
[0039]
Therefore, the effect of suppressing the waveform deformation of the floor slab, which is generated at the time of destruction, can be obtained.
[0040]
It should be noted that the present invention is not limited to the above embodiment, and various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.
[0041]
【The invention's effect】
As described above, according to the present invention, the following effects can be obtained.
[0042]
(A) Since the oblique penetrating rebar is constructed in addition to the penetrating horizontal rebar, it is possible to construct a joint structure of a corrugated steel web composite girder having improved strength against the deformation behavior of concrete.
[0043]
(B) In addition to the penetrating transverse rebar, the reinforcing constraining rebar is constructed, so that it is possible to construct a joint structure of a corrugated steel web composite girder having improved resistance to the deformation behavior of concrete.
[0044]
(C) In addition to the penetrating horizontal reinforcing bars, a laterally tightened PC cable is installed between the concrete side surfaces of the joint, so that a joint structure of a corrugated steel web composite girder having improved resistance to the deformation behavior of concrete is constructed. be able to.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a configuration of a joint portion of a corrugated steel sheet web composite girder for constructing an oblique penetrating rebar according to a first embodiment of the present invention.
FIG. 2 is a schematic view of a joint portion of a corrugated steel web composite girder on which a diagonally penetrating reinforcing bar according to the first embodiment of the present invention is installed.
FIG. 3 is a perspective view showing a configuration of a joint portion of a corrugated steel sheet web composite girder on which a reinforcing restraint bar according to a second embodiment of the present invention is constructed.
FIG. 4 is a schematic plan view of a joint of a web composite girder of corrugated steel sheet on which a reinforcing restraint bar according to a second embodiment of the present invention is installed.
FIG. 5 is a schematic side view of a joint of a web composite girder of a corrugated steel sheet on which a reinforcing constraining reinforcing bar is to be constructed, showing a second embodiment of the present invention.
FIG. 6 is a schematic plan view of a joint portion of a web composite girder of a corrugated steel sheet on which a laterally tightened PC cable according to a third embodiment of the present invention is installed.
FIG. 7 is a schematic view of a conventional PC continuous bridge.
FIG. 8 is a cross-sectional view of a span of a conventional composite bridge.
FIG. 9 is a schematic view of a conventional corrugated steel sheet web composite girder.
[Explanation of symbols]
101 Corrugated steel sheet web 101A Steel sheet part 101B parallel to the bridge axis direction Steel sheet part 102 inclined with respect to the bridge axis direction Steel sheet hole 102A formed in the corrugated steel sheet web 102A Steel sheet hole 102B formed in the steel sheet part parallel to the bridge axis direction Steel plate hole 103 formed in a steel plate portion inclined with respect to the bridge axis direction Penetrating horizontal rebar 104 penetrated in the steel plate hole Diagonal penetrating reinforcing bar 105 penetrated in a steel plate hole of the steel plate portion inclined with respect to the bridge axis direction Jointed steel bars 106 arranged parallel to the bridge axis direction on the web Joint concrete side surface 107 Deformation behavior 111 of concrete Reinforcement restraining reinforcing bars 121 arranged at positions corresponding to the inclined steel plate portions and parallel to the bridge axis direction Fastening PC cable 122 Fastener

Claims (6)

(a)橋の波形鋼板ウェブの橋軸方向に対して直交するように前記波形鋼板ウェブを貫通して配置される貫通横鉄筋と、
(b)前記波形鋼板ウェブの橋軸方向に対して傾斜するように前記波形鋼板ウェブを貫通して配置される斜め貫通鉄筋とを具備することを特徴とする橋の波形鋼板ウェブ合成桁の接合部構造。
(A) a penetrating transverse reinforcing bar disposed through the corrugated steel sheet web so as to be orthogonal to the bridge axis direction of the corrugated steel sheet web of the bridge;
(B) joining a corrugated steel web composite girder of a bridge, comprising: a diagonally penetrating reinforcing bar disposed through the corrugated steel web so as to be inclined with respect to the bridge axis direction of the corrugated steel web. Part structure.
請求項1記載の橋の波形鋼板ウェブ合成桁の接合部構造において、前記斜め貫通鉄筋は橋軸方向に対して傾斜する波形鋼板部に設けた貫通孔を貫通するように施工することを特徴とする橋の波形鋼板ウェブ合成桁の接合部構造。The joint structure of a corrugated steel web composite girder of a bridge according to claim 1, wherein the obliquely penetrating rebar is constructed so as to penetrate through holes provided in a corrugated steel plate portion inclined with respect to a bridge axis direction. Structure of web composite girder of corrugated steel sheet of bridge. (a)橋の波形鋼板ウェブに橋軸方向に対して直交するように前記波形鋼板ウェブを貫通して配置される貫通横鉄筋と、
(b)該貫通横鉄筋のうち橋軸方向に対して傾斜する波形鋼板部に対応した位置にある貫通横鉄筋上に橋軸方向に平行に配置される補強拘束鉄筋とを具備することを特徴とする橋の波形鋼板ウェブ合成桁の接合部構造。
(A) a penetrating transverse reinforcing bar disposed through the corrugated steel sheet web so as to be orthogonal to the bridge axis direction with respect to the corrugated steel sheet web of the bridge;
(B) a reinforcing constraining reinforcing bar disposed in parallel with the bridge axis direction on the penetrating horizontal bar located at a position corresponding to the corrugated steel plate portion inclined with respect to the bridge axis direction in the penetrating horizontal bars. The joint structure of the corrugated steel web composite girder of the bridge.
請求項3記載の橋の波形鋼板ウェブ合成桁の接合部構造において、前記貫通横鉄筋のうち橋軸方向に対して傾斜する波形鋼板部に対応した位置にある貫通横鉄筋に固着するように前記補強拘束鉄筋を施工することを特徴とする橋の波形鋼板ウェブ合成桁の接合部構造。The joint structure of a corrugated steel web composite girder of a bridge according to claim 3, wherein the penetrating horizontal reinforcing bar is fixed to a penetrating horizontal reinforcing bar at a position corresponding to a corrugated steel plate portion inclined with respect to a bridge axis direction among the penetrating horizontal reinforcing bars. The joint structure of the corrugated steel web composite girder of the bridge, characterized by the construction of reinforced restraint bars. (a)橋の波形鋼板ウェブに橋軸方向に対して直交するように前記波形鋼板ウェブを貫通して配置される貫通横鉄筋と、
(b)接合部コンクリート側面間に配置される横締めPCケーブルとを具備することを特徴とする橋の波形鋼板ウェブ合成桁の接合部構造。
(A) a penetrating transverse reinforcing bar disposed through the corrugated steel sheet web so as to be orthogonal to the bridge axis direction with respect to the corrugated steel sheet web of the bridge;
(B) a joint structure of a corrugated steel web composite girder of a bridge, comprising: a laterally tightened PC cable disposed between the joint side surfaces of the concrete;
請求項5記載の橋の波形鋼板ウェブ合成桁の接合部構造において、前記接合部コンクリート側面間に配置される前記横締めPCケーブルを前記接合部コンクリート側面に配置される締結具により締め付けるように施工することを特徴とする橋の波形鋼板ウェブ合成桁の接合部構造。The joint structure of the corrugated steel web composite girder of the bridge according to claim 5, wherein the laterally tightened PC cable arranged between the joint concrete side surfaces is tightened by a fastener arranged on the joint concrete side surface. A joint structure of a corrugated steel web composite girder of a bridge.
JP2002337593A 2002-11-21 2002-11-21 Joint structure of bridge corrugated steel web composite girder Expired - Fee Related JP3996043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002337593A JP3996043B2 (en) 2002-11-21 2002-11-21 Joint structure of bridge corrugated steel web composite girder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002337593A JP3996043B2 (en) 2002-11-21 2002-11-21 Joint structure of bridge corrugated steel web composite girder

Publications (2)

Publication Number Publication Date
JP2004169447A true JP2004169447A (en) 2004-06-17
JP3996043B2 JP3996043B2 (en) 2007-10-24

Family

ID=32701058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002337593A Expired - Fee Related JP3996043B2 (en) 2002-11-21 2002-11-21 Joint structure of bridge corrugated steel web composite girder

Country Status (1)

Country Link
JP (1) JP3996043B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100794443B1 (en) 2006-10-20 2008-01-16 원대연 Composite truss girder with multi-composite concept and improved structural performance at the junction
JP2013060733A (en) * 2011-09-13 2013-04-04 Sumitomo Mitsui Construction Co Ltd Bridge girder
CN103422435A (en) * 2013-07-18 2013-12-04 浙江中隧桥波形钢腹板有限公司 Corrugated plate steel mold integrated composite structure bridge deck system and construction technology thereof
KR101347555B1 (en) 2012-01-09 2014-01-06 권희재 Method for continuous supporting structure of Corrugated steel plate web-PSC composite beam
CN111021227A (en) * 2019-11-29 2020-04-17 东南大学 Steel-concrete composite structure continuous box girder and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100794443B1 (en) 2006-10-20 2008-01-16 원대연 Composite truss girder with multi-composite concept and improved structural performance at the junction
JP2013060733A (en) * 2011-09-13 2013-04-04 Sumitomo Mitsui Construction Co Ltd Bridge girder
KR101347555B1 (en) 2012-01-09 2014-01-06 권희재 Method for continuous supporting structure of Corrugated steel plate web-PSC composite beam
CN103422435A (en) * 2013-07-18 2013-12-04 浙江中隧桥波形钢腹板有限公司 Corrugated plate steel mold integrated composite structure bridge deck system and construction technology thereof
CN103422435B (en) * 2013-07-18 2015-11-18 浙江中隧桥波形钢腹板有限公司 Corrugated sheet punching block integrated combination structure bridge deck and construction technology thereof
CN111021227A (en) * 2019-11-29 2020-04-17 东南大学 Steel-concrete composite structure continuous box girder and manufacturing method thereof

Also Published As

Publication number Publication date
JP3996043B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
JP3660826B2 (en) Rigid structure of upper and lower composite members
JP2006316580A (en) Corrugated steel plate web pc composite beam and construction method of bridge using corrugated steel plate web pc composite beam
JP2008063803A (en) Composite floor slab formed of shape steel with inner rib, composite floor slab bridge, or composite girder bridge
JP4735501B2 (en) Half precast type composite structural member
JP2008156967A (en) Composite truss girder structure
JP2003119718A (en) Bridge
KR101347939B1 (en) Composite structure of corrugated steel plate web-PSC composite beam structure which combined corrugated steel plate and concrete plate with L shape steel
JP2004169447A (en) Joint section structure of corrugated steel plate web composite girder of bridge
JP5158947B2 (en) Composite structural beam and building structure having composite structural beam
JP2004218429A (en) Bridge structure
JP2000355906A (en) Connecting section structure of corrugated steel plate and concrete floor slab in corrugated steel-plate web pc box girder bridge
JP4508293B2 (en) Structure near the intermediate fulcrum of continuous I-girder bridge
JP4644146B2 (en) PC box girder bridge
JP2008088634A (en) Composite steel-concrete floor slab
JP4492422B2 (en) Structure near the intermediate fulcrum of continuous I-girder bridge
JP2005344402A (en) Precast concrete floor slab, and composite floor panel using the same
JP2958852B2 (en) Steel concrete composite plate
JPH11293626A (en) Bridge structure
JP4654138B2 (en) Joint structure of steel main girder and substructure
JP7206060B2 (en) Composite panel construction
JP3950748B2 (en) Bridge girder
JP3950747B2 (en) Bridge girder
JP4432421B2 (en) Concrete plate member
JP6325286B2 (en) Bridge reinforcement structure and bridge reinforcement method
JP2004232229A (en) Precast concrete slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Effective date: 20070801

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110810

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110810

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees