JP2021142547A - Flux-cored wire for gas shield arc-welding of sea water resistant steel - Google Patents

Flux-cored wire for gas shield arc-welding of sea water resistant steel Download PDF

Info

Publication number
JP2021142547A
JP2021142547A JP2020043525A JP2020043525A JP2021142547A JP 2021142547 A JP2021142547 A JP 2021142547A JP 2020043525 A JP2020043525 A JP 2020043525A JP 2020043525 A JP2020043525 A JP 2020043525A JP 2021142547 A JP2021142547 A JP 2021142547A
Authority
JP
Japan
Prior art keywords
flux
total
oxide
welding
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020043525A
Other languages
Japanese (ja)
Other versions
JP7321958B2 (en
Inventor
竜太朗 千葉
Ryutaro Chiba
竜太朗 千葉
聖人 笹木
Masahito Sasaki
聖人 笹木
舞 池田
Mai Ikeda
舞 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Welding and Engineering Co Ltd filed Critical Nippon Steel Welding and Engineering Co Ltd
Priority to JP2020043525A priority Critical patent/JP7321958B2/en
Publication of JP2021142547A publication Critical patent/JP2021142547A/en
Application granted granted Critical
Publication of JP7321958B2 publication Critical patent/JP7321958B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

To provide a flux-cored wire for gas shield arc-welding of sea water resistant steel having welding workability excellent in whole attitude welding of a pipe.SOLUTION: A flux-cored wire for gas shield arc-welding of sea water resistant steel contains, in mass% to wire total mass of the sum of steel sheath and flux, C of (0.03 to 0.12)%, Si of (0.1 to 1.0)%, Mn of (1.3 to 2.8)%, Cu of (0.01 to 0.7)%, Cr of (0.5 to 1.5)% and Al of (0.02 to 0.30)% and further contains, in mass% to wire total mass, in flux, the sum of TiO2 reduced value of (3.5 to 7.0)%, the sum of SiO2 reduced value of (0.1 to 0.6)%, the sum of ZrO2 reduced value of (0.1 to 1.0)%, the sum of Al2O3 reduced value of (0.01 to 0.50)%, the sum of Na reduced value and K reduced value of (0.01 to 0.30)%, Mg of (0.1 to 0.7)%, B of (0.001 to 0.010)% and the sum of F reduced value of (0.01 to 0.15)%.SELECTED DRAWING: None

Description

本発明は、海洋での耐食性を高めるために開発された耐食性鋼のガスシールドアーク溶接用フラックス入りワイヤに関し、スパッタ発生量が少なく、鋼管の全姿勢溶接性において優れた溶接作業性を有する耐海水性鋼のガスシールドアーク溶接用フラックス入りワイヤに関する。 The present invention relates to a flux-welded wire for gas shielded arc welding of corrosion-resistant steel, which was developed to enhance corrosion resistance in the ocean, and has a small amount of spatter and excellent welding workability in all-position weldability of steel pipes. Related to flux-welded wire for gas shielded arc welding of steel.

原油タンカーやFPSO(浮体式生産貯蔵積出設備)の荷油管、バラスト管などの固定管は、長期使用により管内面の塗膜が数年内に損傷し局部腐食が発生するため、船舶の寿命内に数回の補修あるいはパイプ部分の交換が必要となる。そのため炭素鋼に塗装を施すのではなく、経年変化による孔食や腐食減肉を抑える目的で従来から耐食性鋼材が適用されている。 Fixed pipes such as crude oil tankers, FPSO (floating production storage and shipping equipment) oil filling pipes, and ballast pipes are used for a long period of time because the coating film on the inner surface of the pipes is damaged and local corrosion occurs within the life of the ship. It requires several repairs or replacement of the pipe part. Therefore, instead of coating carbon steel, corrosion-resistant steel has been conventionally applied for the purpose of suppressing pitting corrosion and corrosion thinning due to aging.

一般的に全姿勢溶接用フラックス入りワイヤはTiO主体のスラグ形成剤を多く含有しているので、立向や上向姿勢溶接でメタルが垂れにくく良好なビード形状が得られるが、水平すみ肉溶接では下板側止端部が膨らんだビード形状になりやすい。そのため、半自動溶接で水平すみ肉溶接だけでなく立向や上向姿勢溶接でも良好なすみ肉ビード形状が得られるフラックス入りワイヤの提供が強く求められている。 Generally, flux-cored wire for all-position welding contains a large amount of slag-forming agent mainly composed of TiO 2, so metal does not easily drip in vertical or upward-position welding, and a good bead shape can be obtained. In welding, the toe on the lower plate side tends to have a bulging bead shape. Therefore, there is a strong demand for providing a flux-cored wire that can obtain a good fillet bead shape not only in horizontal fillet welding but also in vertical or upward posture welding by semi-automatic welding.

特許文献1は耐海水性鋼用被覆アーク溶接棒に関する技術であるが、被覆アーク溶接棒は、フラックス入りワイヤに比べ、溶着効率が劣るといった問題点があった。また、耐食性を向上させるため被覆アーク溶接棒中にMoを微量添加しているので溶接金属の靭性が安定しないという問題点があった。 Patent Document 1 is a technique relating to a shielded metal arc welding rod for seawater resistant steel, but the shielded metal arc welding rod has a problem that the welding efficiency is inferior to that of a wire containing flux. Further, since a small amount of Mo is added to the shielded metal arc welding rod in order to improve the corrosion resistance, there is a problem that the toughness of the weld metal is not stable.

耐候性鋼に適用する溶接作業性が良好なフラックス入りワイヤが、例えば特許文献2や特許文献3に開示されている。しかし、特許文献1はJIS Z3320に規定されるCu、Cr、Niを含有させることで鋼表面に安定さび層を形成させるタイプであり、特許文献2はCu−Ni−Ti系高耐候性鋼を対象としているため海水環境下での適用は耐食性が得られないという問題点があった。 Flux-filled wires having good welding workability applied to weathering steel are disclosed in, for example, Patent Document 2 and Patent Document 3. However, Patent Document 1 is a type in which a stable rust layer is formed on the steel surface by containing Cu, Cr, and Ni specified in JIS Z3320, and Patent Document 2 is a Cu—Ni—Ti-based high weathering steel. Since it is a target, there is a problem that corrosion resistance cannot be obtained when it is applied in a seawater environment.

特開昭50−80244号公報Japanese Unexamined Patent Publication No. 50-80244 特開2011−125904号公報Japanese Unexamined Patent Publication No. 2011-125904 特開2000−288781号公報Japanese Unexamined Patent Publication No. 2000-288781

そこで本発明は、上述した問題点に檻みて案出されたものであり、耐海水性鋼を溶接するにあたり、スパッタ発生量が少なく、鋼管の全姿勢溶接性において優れた溶接作業性を有する耐海水性鋼のガスシールドアーク溶接用フラックス入りワイヤを提供することを目的とする。 Therefore, the present invention has been devised in view of the above-mentioned problems. When welding seawater-resistant steel, the amount of spatter generated is small, and the welding workability is excellent in all-position weldability of steel pipes. It is an object of the present invention to provide a flux-containing wire for gas shielded arc welding of seawater steel.

本発明の要旨は、鋼製外皮にフラックスを充填してなる耐海水性鋼のガスシールドアーク溶接用フラックス入りワイヤにおいて、ワイヤ全質量に対する質量%で、鋼製外皮とフラックスの合計で、C:0.03〜0.12%、Si:0.1〜1.0%、Mn:1.3〜2.8%、Cu:0.01〜0.7%、Cr:0.5〜1.5%、Al:0.02〜0.30%を含有し、さらに、ワイヤ全質量に対する質量%で、フラックス中に、Ti酸化物のTiO換算値の合計:3.5〜7.0%、Si酸化物のSiO換算値の合計:0.1〜0.6%、Zr酸化物のZrO換算値の合計:0.1〜1.0%、Al酸化物のAl換算値の合計:0.01〜0.50%、Na酸化物、Na弗化物、K酸化物及びK弗化物の1種または2種類以上のNa換算値及びK換算値の合計:0.01〜0.30%、Mg:0.1〜0.7%、B:0.001〜0.010%、金属弗化物のF換算値の合計:0.01〜0.15%を含有し、残部が鋼製外皮のFe、フラックス中の鉄粉、鉄合金粉のFe分及び不可避不純物からなることを特徴とする。 The gist of the present invention is a wire containing a flux for gas shield arc welding of seawater-resistant steel obtained by filling a steel outer skin with flux, in which the mass% of the total weight of the wire is the total of the steel outer skin and the flux. 0.03 to 0.12%, Si: 0.1 to 1.0%, Mn: 1.3 to 2.8%, Cu: 0.01 to 0.7%, Cr: 0.5 to 1. Contains 5%, Al: 0.02 to 0.30%, and further, in mass% with respect to the total weight of the wire, the total TiO 2 conversion value of Ti oxide in the flux: 3.5 to 7.0%. , Si oxide total SiO 2 conversion value: 0.1-0.6%, Zr oxide ZrO 2 conversion value total: 0.1-1.0%, Al oxide Al 2 O 3 conversion Total value: 0.01 to 0.50%, Na oxide, Na fluoride, K oxide and K fluoride, one or more Na conversion values and K conversion value total: 0.01 to Contains 0.30%, Mg: 0.1 to 0.7%, B: 0.001 to 0.010%, total F conversion value of metal fluoride: 0.01 to 0.15%, and the balance Is characterized by being composed of Fe of a steel outer skin, iron powder in a flux, Fe content of an iron alloy powder, and unavoidable impurities.

また、ワイヤ全質量に対する質量%で、鋼製外皮とフラックスの合計で、Ni:0.02〜0.50%を含有することを特徴とする。 Further, it is characterized by containing 0.02 to 0.50% of Ni: 0.02 to 0.50% in total of the steel outer skin and the flux in mass% with respect to the total mass of the wire.

さらに、ワイヤ全質量に対する質量%で、鋼製外皮とフラックスの合計で、Ti:0.01〜0.10%を含有することを特徴とする耐海水性鋼のガスシールドアーク溶接用フラックス入りワイヤにある。 Further, a flux-cored wire for gas shielded arc welding of seawater-resistant steel, which contains Ti: 0.01 to 0.10% in total of the steel outer skin and the flux in mass% with respect to the total mass of the wire. It is in.

本発明の耐海水性鋼のガスシールドアーク溶接用フラックス入りワイヤによれば、耐海水性鋼を溶接するにあたり、スパッタ発生量が少なく、鋼管の全姿勢溶接性が良好で、溶接金属の安定した靭性を確保し、高品質な溶接金属が得られる耐海水性鋼のガスシールドアーク溶接用フラックス入りワイヤを提供することができる。 According to the flux-welded wire for gas shielded arc welding of seawater-resistant steel of the present invention, when welding seawater-resistant steel, the amount of spatter generated is small, the all-position weldability of the steel pipe is good, and the weld metal is stable. It is possible to provide a flux-filled wire for gas-shielded arc welding of seawater-resistant steel, which can secure toughness and obtain high-quality weld metal.

本発明者らは、耐海水性鋼のガスシールドアーク溶接用フラックス入りワイヤについて、スパッタ発生量が少なく、鋼管の全姿勢溶接性において優れた溶接作業性を得るべく種々検討を行った。 The present inventors have conducted various studies on a wire containing a flux for gas shielded arc welding of seawater-resistant steel in order to obtain a welding workability that is excellent in all-posture weldability of a steel pipe with a small amount of spatter.

その結果、本発明者らは、フラックスに添加するCu及びCr量を適量とし、Moを無添加とすることで、溶接金属と母材成分の成分バランスの最適化を図り、海水環境下での耐食性の確保と機械性能のバランスを図る方法を見出した。また、Niを適量添加することで耐食性がさらに向上することを見出した。 As a result, the present inventors have optimized the component balance between the weld metal and the base metal component by adjusting the amount of Cu and Cr added to the flux to an appropriate amount and not adding Mo, and in a seawater environment. We have found a way to balance corrosion resistance and mechanical performance. It was also found that the corrosion resistance is further improved by adding an appropriate amount of Ni.

また、本発明者らは、C、Ti酸化物、弗素化合物、Na化合物及びK化合物を適量とすることによってアークが安定してスパッタ発生量が少なくなり、Si、Mn、Ti酸化物、Si酸化物を適量とすることによって、ビード形状が良好になることを見出した。 Further, the present inventors stabilize the arc and reduce the amount of spatter generated by adjusting the appropriate amounts of C, Ti oxide, fluorine compound, Na compound and K compound, and Si, Mn, Ti oxide and Si oxidation. It was found that the bead shape is improved by adjusting the amount of the compound.

さらに、本発明者らは、Al、Ti酸化物、Zr酸化物、Al酸化物量を適量とすることによって、特に立向上進溶接時での溶接金属のメタル垂れを抑制することを得られると共にフラックス入りワイヤ中のC、Si、Mn、Mg及びBを適量とすることによって、機械的性能、特に靭性に優れた溶接金属が安定して得られることを見出した。また、Tiを適量添加することで溶接金属の靭性がさらに向上することを見出した。 Further, the present inventors can obtain that the metal sagging of the weld metal can be suppressed and the flux can be suppressed particularly at the time of vertical improvement welding by setting the amounts of Al, Ti oxide, Zr oxide and Al oxide to appropriate amounts. It has been found that a weld metal having excellent mechanical performance, particularly toughness, can be stably obtained by adjusting the amounts of C, Si, Mn, Mg and B in the incoming wire to an appropriate amount. It was also found that the toughness of the weld metal is further improved by adding an appropriate amount of Ti.

以下、本発明の耐海水性鋼のガスシールドアーク溶接用フラックス入りワイヤの成分組成及びその含有量と各成分組成の限定理由について説明する。なお、各成分の組成は、ワイヤ全質量に対する質量%で表すこととし、その質量%を表すときには単に%と記載して表すこととする。 Hereinafter, the component composition of the flux-cored wire for gas shielded arc welding of the seawater-resistant steel of the present invention, its content, and the reason for limiting each component composition will be described. The composition of each component is expressed in% by mass with respect to the total mass of the wire, and when the mass% is expressed, it is simply expressed as%.

[鋼製外皮とフラックスの合計でC:0.03〜0.12%]
Cは、アークを安定させて溶滴サイズを細粒化させる効果がある。Cが0.03%未満では、アークが不安定で溶滴の細粒化が困難となってスパッタ発生量が多くなる。一方、Cが0.12%を超えると、Cが溶接金属中に過剰に歩留まり靱性が低下する。したがって、Cは0.03〜0.12%とする。なお、Cは、鋼製外皮に含まれる成分の他、フラックスからの金属粉及び合金粉等から添加できる。
[Total of steel outer skin and flux C: 0.03 to 0.12%]
C has the effect of stabilizing the arc and making the droplet size finer. If C is less than 0.03%, the arc is unstable, it becomes difficult to atomize the droplets, and the amount of spatter generated increases. On the other hand, when C exceeds 0.12%, C is excessively retained in the weld metal and the toughness is lowered. Therefore, C is set to 0.03 to 0.12%. In addition to the components contained in the steel outer skin, C can be added from metal powder from flux, alloy powder, and the like.

[鋼製外皮とフラックスの合計でSi:0.1〜1.0%]
Siは、溶接時に一部が溶接スラグとなってビード形状を良好にし、溶接作業性の向上に寄与する。Siが0.1%未満では、溶接ビード形状が不良となる。一方、Siが1.0%を超えると、Siが溶接金属中に過剰に歩留まり靱性が低下する。したがって、Siは0.1〜1.0%とする。なお、Siは、鋼製外皮に含まれる成分の他、フラックスからの金属Si、Fe−Si、Fe−Si−Mn等の合金粉末から添加できる。
[Total of steel outer skin and flux Si: 0.1 to 1.0%]
Part of Si becomes welding slag during welding to improve the bead shape and contribute to the improvement of welding workability. If Si is less than 0.1%, the weld bead shape becomes defective. On the other hand, when Si exceeds 1.0%, Si is excessively retained in the weld metal and the toughness is lowered. Therefore, Si is 0.1 to 1.0%. In addition to the components contained in the steel outer skin, Si can be added from alloy powders such as metal Si, Fe-Si, and Fe-Si-Mn from flux.

[鋼製外皮とフラックスの合計でMn:1.3〜2.8%]
Mnは、Siと同様、溶接時に一部が溶接スラグとなってビード形状を良好にし、溶接作業性の向上に寄与するとともに脱酸剤として作用し溶接金属の靭性を向上させる効果がある。Mnが1.3%未満では、溶接金属中にMnが十分に歩留まらず、溶接金属の靭性が低下するとともにビード形状が不良となる。一方、Mnが2.8%を超えると、Mnが溶接金属中に過剰に歩留まり、強度が高くなりすぎ、靱性が低下する。したがって、Mnは1.3〜2.8%とする。なお、Mnは、鋼製外皮に含まれる成分の他、フラックスからの金属Mn、Fe−Mn、Fe−Si−Mn等の合金粉末から添加される。
[Mn: 1.3 to 2.8% in total of steel outer skin and flux]
Similar to Si, Mn becomes a welding slag during welding to improve the bead shape, contributes to the improvement of welding workability, and acts as a deoxidizer to improve the toughness of the weld metal. If Mn is less than 1.3%, Mn does not sufficiently yield in the weld metal, the toughness of the weld metal decreases, and the bead shape becomes poor. On the other hand, when Mn exceeds 2.8%, Mn is excessively yielded in the weld metal, the strength becomes too high, and the toughness decreases. Therefore, Mn is set to 1.3 to 2.8%. In addition to the components contained in the steel outer skin, Mn is added from alloy powders such as metal Mn, Fe-Mn, and Fe-Si-Mn from flux.

[鋼製外皮とフラックスの合計でCu:0.01〜0.7%]
Cuは、さび層形成時にさび粒子の結晶化・粗大化を抑制し、さび層の緻密さを保持するために必須の元素である。Cuが0.01%未満では、この効果が十分に得られず、溶接金属の耐食性が低下する。一方、Cuが0.7%を超えると、高温割れが発生しやすく、溶接金属の靭性が低下する。したがって、Cuは0.01〜0.7%とする。なお、Cuは、鋼製外皮に含まれる成分の他、ワイヤ表面のCuめっき、フラックスからの金属Cu、Fe−Cu等の合金粉末から添加できる。
[Cu: 0.01-0.7% in total of steel outer skin and flux]
Cu is an essential element for suppressing the crystallization and coarsening of rust particles during the formation of the rust layer and maintaining the denseness of the rust layer. If Cu is less than 0.01%, this effect cannot be sufficiently obtained, and the corrosion resistance of the weld metal is lowered. On the other hand, when Cu exceeds 0.7%, high-temperature cracking is likely to occur and the toughness of the weld metal is lowered. Therefore, Cu is set to 0.01 to 0.7%. In addition to the components contained in the steel outer skin, Cu can be added from Cu plating on the wire surface, metal Cu from flux, and alloy powder such as Fe-Cu.

[鋼製外皮とフラックスの合計でCr:0.5〜1.5%]
Crは、溶接金属に耐食性を付与させるために必須の元素である。Crが0.5%未満では、この効果が十分に得られず、溶接金属の耐食性が低下する。一方、Crが1.5%を超えると、溶接金属の強度が高くなりすぎ、靭性が低下する。したがってCrは0.5〜1.5%とする。なお、Crは、鋼製外皮に含まれる成分の他、フラックスからの金属Cr、Fe−Cr等の合金粉末から添加できる。
[Total Cr: 0.5-1.5% of steel outer skin and flux]
Cr is an essential element for imparting corrosion resistance to the weld metal. If Cr is less than 0.5%, this effect cannot be sufficiently obtained, and the corrosion resistance of the weld metal is lowered. On the other hand, when Cr exceeds 1.5%, the strength of the weld metal becomes too high and the toughness decreases. Therefore, Cr is set to 0.5 to 1.5%. In addition to the components contained in the steel outer skin, Cr can be added from alloy powders such as metal Cr and Fe—Cr from flux.

[鋼製外皮とフラックスの合計でAl:0.02〜0.30%]
Alは、溶接時にAl酸化物として溶融スラグとなって溶接スラグの粘性や融点を調整し、特に立向上進溶接における溶融メタルが垂れ落ちるのを防ぐ効果がある。しかし、Alが0.02%未満では、この効果が十分に得られず、立向上進溶接時に溶融メタルが垂れやすくなる。一方、Alが0.30%を超えると、Al酸化物として過度に溶接金属に残留して溶接金属の靭性が低下する。したがって、Alは0.02〜0.30%とする。なお、Alは、鋼製外皮に含まれる成分の他、フラックスからの金属Al、Fe−Al、Al−Mg等の合金粉末から添加できる。
[Total of steel outer skin and flux Al: 0.02 to 0.30%]
Al becomes molten slag as Al oxide during welding, adjusts the viscosity and melting point of the welding slag, and has an effect of preventing molten metal from dripping, especially in vertical improvement welding. However, if Al is less than 0.02%, this effect cannot be sufficiently obtained, and the molten metal tends to drip during vertical improvement welding. On the other hand, when Al exceeds 0.30%, it remains excessively in the weld metal as an Al oxide and the toughness of the weld metal decreases. Therefore, Al is 0.02 to 0.30%. In addition to the components contained in the steel outer skin, Al can be added from alloy powders such as metal Al, Fe-Al, and Al-Mg from flux.

[フラックス中のTi酸化物のTiO換算値の合計:3.5〜7.0%]
Ti酸化物は、溶接時のアーク安定化に寄与するとともに、溶接スラグとなって溶接ビードの形状を良好にし、溶接作業性の向上に寄与する効果がある。特に、立向上進溶接においては、溶融スラグの粘性や融点を調整し、溶融メタルが垂れるのを防ぐ効果がある。また、一部が微細なTi酸化物として溶接金属中に残留して溶接金属のミクロ組織を微細化し、溶接金属の靱性を向上させる効果もある。Ti酸化物のTiO換算値の合計が3.5%未満では、これらの効果が十分に得られず、アークが不安定になってスパッタ発生量が多く、ビード形状が不良となる。また、Ti酸化物のTiO換算値の合計が3.5%未満では、立向上進溶接において溶融メタルが垂れ、溶接の継続が困難になり、さらに、溶接金属の靭性が低下する。一方、Ti酸化物のTiO換算値の合計が7.0%を超えると、アークが安定してスパッタ発生量が少なくなるが、Ti酸化物として溶接金属中に過剰に残存して靱性が低下する。したがって、Ti酸化物のTiO換算値の合計は3.5〜7.0%とする。なお、Ti酸化物は、フラックスからのルチールサンド、酸化チタン、チタンスラグ、イルミナイト等から添加できる。
[Total of TiO 2 conversion values of Ti oxide in flux: 3.5 to 7.0%]
The Ti oxide contributes to the stabilization of the arc during welding, and also has the effect of forming a welding slag to improve the shape of the welding bead and contributing to the improvement of welding workability. In particular, in vertical improvement welding, it has the effect of adjusting the viscosity and melting point of the molten slag and preventing the molten metal from dripping. In addition, a part of the Ti oxide remains in the weld metal as fine Ti oxide to refine the microstructure of the weld metal and improve the toughness of the weld metal. If the total of the TIO 2 conversion values of the Ti oxide is less than 3.5%, these effects cannot be sufficiently obtained, the arc becomes unstable, the amount of spatter generated is large, and the bead shape becomes poor. Further, if the total of the TiO 2 conversion values of the Ti oxide is less than 3.5%, the molten metal drips in the vertical improvement welding, it becomes difficult to continue the welding, and the toughness of the weld metal is lowered. On the other hand, when the total of the TIO 2 conversion values of the Ti oxide exceeds 7.0%, the arc becomes stable and the amount of spatter generated decreases, but the Ti oxide remains excessively in the weld metal and the toughness decreases. do. Therefore, the total TiO 2 conversion value of Ti oxide is 3.5 to 7.0%. The Ti oxide can be added from rutile sand from flux, titanium oxide, titanium slag, illuminate and the like.

[フラックス中のSi酸化物のSiO換算値の合計:0.1〜0.6%]
Si酸化物は、溶融スラグの粘性や融点を調整してスラグ被包性を向上させる効果がある。Si酸化物のSiO換算値の合計が0.1%未満では、この効果が十分に得られずビード形状が不良となる。一方、Si酸化物のSiO換算値の合計が0.6%を超えると、溶融スラグの塩基度が低下して溶接金属の酸素量が増加して靭性が低下する。したがって、Si酸化物のSiO換算値は0.1〜0.6%とする。なお、Si酸化物は、フラックスからの珪砂、カリ長石、珪酸ナトリウム、ジルコンサンド等から添加できる。
[Total SiO 2 conversion value of Si oxide in flux: 0.1-0.6%]
The Si oxide has the effect of adjusting the viscosity and melting point of the molten slag to improve the slag encapsulation property. If the total SiO 2 conversion value of the Si oxide is less than 0.1%, this effect cannot be sufficiently obtained and the bead shape becomes poor. On the other hand, when the total SiO 2 conversion value of the Si oxide exceeds 0.6%, the basicity of the molten slag decreases, the amount of oxygen in the weld metal increases, and the toughness decreases. Therefore, the SiO 2 conversion value of the Si oxide is set to 0.1 to 0.6%. The Si oxide can be added from silica sand from flux, potassium feldspar, sodium silicate, zircon sand and the like.

[フラックス中のZr酸化物のZrO換算値の合計:0.1〜1.0%]
Zr酸化物は、溶融スラグの粘性や融点を調整し、特に立向上進溶接における溶融メタルが垂れるのを防ぐ効果がある。Zr酸化物のZrO換算値の合計が0.1%未満では、この効果が十分に得られず、立向上進溶接時に溶融メタルが垂れやすくなる。一方、Zr酸化物のZrO換算値の合計が1.0%を超えると、スラグの剥離性が不良になる。したがって、Zr酸化物のZrO換算値の合計は0.1〜1.0%とする。なお、Zr酸化物は、フラックスからの酸化ジルコニウム、ジルコンサンド等から添加できると共にTi酸化物に微量含有される。
Total of ZrO 2 conversion value of Zr oxides in the flux: 0.1% to 1.0%]
The Zr oxide has the effect of adjusting the viscosity and melting point of the molten slag and preventing the molten metal from dripping, especially in the vertical welding. If the total of the ZrO 2 conversion values of the Zr oxide is less than 0.1%, this effect cannot be sufficiently obtained, and the molten metal tends to drip during the vertical welding. On the other hand, if the total of the ZrO 2 conversion values of the Zr oxide exceeds 1.0%, the peelability of the slag becomes poor. Therefore, the sum of ZrO 2 conversion value of Zr oxide is 0.1 to 1.0%. Zr oxide can be added from zirconium oxide from flux, zircon sand, etc., and is contained in a small amount in Ti oxide.

[フラックス中のAl酸化物のAl換算値の合計:0.01〜0.50%]
Al酸化物は、溶融スラグの粘性や融点を調整し、特に立向上進溶接における溶融メタルが垂れるのを防ぐ効果がある。Al酸化物のAl換算値の合計が0.01%未満では、この効果が十分に得られず、立向上進溶接時に溶融メタルが垂れやすくなる。一方、Al酸化物のAl換算値の合計が0.50%を超えると、溶接時に溶融プールからAl酸化物が浮上分離できなくなって取り残されスラグ巻き込みとなる。したがって、Al酸化物のAl換算値の合計は0.01〜0.50%とする。なお、Al酸化物はフラックスからのアルミナ、カリ長石等から添加できる。
[Total Al 2 O 3 conversion value of Al oxide in flux: 0.01 to 0.50%]
The Al oxide has the effect of adjusting the viscosity and melting point of the molten slag and preventing the molten metal from dripping, especially in the vertical welding. If the total of the Al 2 O 3 conversion values of the Al oxide is less than 0.01%, this effect cannot be sufficiently obtained, and the molten metal tends to drip during the vertical welding. On the other hand, if the total of the Al 2 O 3 conversion values of the Al oxide exceeds 0.50%, the Al oxide cannot float and separate from the molten pool during welding and is left behind, resulting in slag entrainment. Therefore, the total of Al 2 O 3 conversion values of Al oxide is 0.01 to 0.50%. Al oxide can be added from alumina from flux, potassium feldspar, and the like.

[フラックス中のNa酸化物、Na弗化物、K酸化物及びK弗化物の1種または2種類以上のNa換算値とK換算値の合計:0.01〜0.30%]
Na酸化物、Na弗化物、K酸化物及びK弗化物は、アークを安定にする効果がある。Na酸化物、Na弗化物、K酸化物及びK弗化物のNa換算値とK換算値の合計が0.01%未満では、その効果は十分に得られず、アークが不安定となる。一方、Na酸化物、Na弗化物、K酸化物及びK弗化物のNa換算値とK換算値の合計が0.30%を超えると、スラグ剥離性及びビード形状が不良となり、スパッタ発生量が多くなる。したがって、Na酸化物、Na弗化物、K酸化物及びK弗化物の1種または2種類以上のNa換算値とK換算値の合計は0.01〜0.3%とする。なお、Na酸化物、Na弗化物、K酸化物及びK弗化物は、珪酸ソーダ、珪酸カリからなる水ガラスの固質分及びフラックスからのカリ長石、NaF、KF、KSiF等から添加でき、Na換算値及びK換算値はこれらに含有されるNa及びK量の合計である。
[Total of Na-equivalent value and K-equivalent value of one or more kinds of Na oxide, Na fluoride, K oxide and K fluoride in flux: 0.01 to 0.30%]
Na oxide, Na fluoride, K oxide and K fluoride have the effect of stabilizing the arc. If the sum of the Na conversion value and the K conversion value of Na oxide, Na fluoride, K oxide and K fluoride is less than 0.01%, the effect cannot be sufficiently obtained and the arc becomes unstable. On the other hand, if the sum of the Na-equivalent value and the K-equivalent value of Na oxide, Na fluoride, K oxide and K fluoride exceeds 0.30%, the slag peelability and the bead shape become poor, and the amount of spatter generated becomes poor. More. Therefore, the sum of the Na-equivalent value and the K-equivalent value of one or more kinds of Na oxide, Na fluoride, K oxide and K fluoride is 0.01 to 0.3%. Incidentally, Na oxide, Na fluoride, K oxides and K fluorides, added from sodium silicate, potassium feldspar from the solid matter content and flux of water glass consisting of potassium silicate, NaF, KF, K 2 SiF 6, etc. The Na conversion value and the K conversion value are the total amount of Na and K contained therein.

[フラックス中のMg:0.1〜0.7%]
Mgは、強脱酸剤であり溶接金属中の酸素を低減し、溶接金属の靱性を高める効果がある。Mgが0.1%未満では、この効果が十分に得られず、溶接金属の靭性が低下する。一方、Mgが0.7%を超えると、溶接時にアーク中で激しく酸素と反応してスパッタ発生量が多くなって溶接作業性が不良となる。したがって、Mgは0.1〜0.7%とする。なお、Mgは、フラックスからの金属Mg、Al−Mg等の合金粉末から添加できる。
[Mg in flux: 0.1 to 0.7%]
Mg is a strong deoxidizer and has the effect of reducing oxygen in the weld metal and increasing the toughness of the weld metal. If Mg is less than 0.1%, this effect cannot be sufficiently obtained and the toughness of the weld metal is lowered. On the other hand, if Mg exceeds 0.7%, it reacts violently with oxygen in the arc during welding, and the amount of spatter generated increases, resulting in poor welding workability. Therefore, Mg is set to 0.1 to 0.7%. In addition, Mg can be added from alloy powders such as metal Mg and Al-Mg from flux.

[鋼製外皮とフラックスの合計でB:0.001〜0.010%]
Bは、微量の添加により溶接金属のミクロ組織を微細化し、溶接金属の靭性を向上させる効果がある。Bが0.001%未満では、この効果が十分に得られず、溶接金属の靭性が低下する。一方、Bが0.010%を超えると、溶接金属の強度が高くなりすぎ、靭性が低下するとともに、溶接金属に高温割れが発生しやすくなる。したがって、Bは0.001〜0.010%とする。なお、Bは、鋼製外皮に含まれる成分の他、フラックスからのFe−B、Fe−Mn−B等の合金粉末から添加できる
[Total of steel outer skin and flux B: 0.001 to 0.010%]
B has the effect of improving the toughness of the weld metal by making the microstructure of the weld metal finer by adding a small amount. If B is less than 0.001%, this effect cannot be sufficiently obtained and the toughness of the weld metal is lowered. On the other hand, when B exceeds 0.010%, the strength of the weld metal becomes too high, the toughness decreases, and high-temperature cracking easily occurs in the weld metal. Therefore, B is 0.001 to 0.010%. In addition to the components contained in the steel outer skin, B can be added from alloy powders such as Fe-B and Fe-Mn-B from flux.

[フラックス中の金属弗化物のF換算値の合計:0.01〜0.15%]
金属弗化物はアークを安定させる効果がある。金属弗化物のF換算値の合計が0.01%未満では、この効果が十分に得られずアークが不安定となる。一方、金属弗化物のF換算値の合計が0.15%を超えると、アークが不安定になりスパッタ発生量が多く発生する。また、立向上進溶接で溶融メタル垂れが発生しやすくなる。また、金属弗化物のF換算値の合計が0.15%を超えると、ビード底部にスラグ成分が取り残されたまま溶接金属が凝固してしまうためスラグ巻込みが発生する。したがって、金属弗化物のF換算値の合計は0.01〜0.15%とする。なお、金属弗化物は、フラックスからのCaF、NaF、KF、LiF、MgF、KSiF、AlF等から添加でき、F換算値はこれらに含有されるF量の合計である。
[Total F conversion value of metal fluoride in flux: 0.01 to 0.15%]
Metal fluoride has the effect of stabilizing the arc. If the total F conversion value of the metal fluoride is less than 0.01%, this effect cannot be sufficiently obtained and the arc becomes unstable. On the other hand, when the total F conversion value of the metal fluoride exceeds 0.15%, the arc becomes unstable and a large amount of spatter is generated. In addition, molten metal dripping is likely to occur in the vertical welding. Further, when the total F conversion value of the metal fluoride exceeds 0.15%, the weld metal solidifies while the slag component is left behind at the bottom of the bead, so that slag entrainment occurs. Therefore, the total F conversion value of the metal fluoride is 0.01 to 0.15%. The metal fluoride can be added from CaF 2 , NaF, KF, LiF, MgF 2 , K 2 SiF 6 , AlF 3, etc. from the flux, and the F conversion value is the total amount of F contained therein.

[鋼製外皮とフラックスの合計でNi:0.02〜0.50%]
Niは、溶接金属の耐食性をさらに向上させる効果がある。Niが0.02%未満では、この効果が十分に得られない。一方、Niが0.50%を超えると、溶接金属の強度が高くなりすぎて、靭性が低下する。したがって、Niは0.02〜0.50%とする。なお、Niは、鋼製外皮に含まれる成分の他、フラックスからの金属Ni、Fe−Ni、Ni−Mg等の合金粉末から添加できる。
[Total of steel outer skin and flux Ni: 0.02 to 0.50%]
Ni has the effect of further improving the corrosion resistance of the weld metal. If Ni is less than 0.02%, this effect cannot be sufficiently obtained. On the other hand, if Ni exceeds 0.50%, the strength of the weld metal becomes too high and the toughness decreases. Therefore, Ni is set to 0.02 to 0.50%. In addition to the components contained in the steel outer skin, Ni can be added from alloy powders such as metal Ni, Fe-Ni, and Ni-Mg from flux.

[鋼製外皮とフラックスの合計でTi:0.01〜0.10%]
Tiは、溶接金属の組織を微細化して靭性をさらに向上させる効果がある。Tiが0.01%未満では、溶接金属の靭性を向上させる効果が得られない。一方、Tiが0.10%を超えると、溶接金属の靭性を阻害する上部ベイナイト組織を生成し靭性が低くなる。したがって、Tiは0.01〜0.10%とする。なお、Tiは、鋼製外皮に含まれる成分の他、フラックスからの金属Ti、Fe−Ti等の合金粉末から添加できる。
[Total of steel outer skin and flux Ti: 0.01-0.10%]
Ti has the effect of refining the structure of the weld metal to further improve toughness. If Ti is less than 0.01%, the effect of improving the toughness of the weld metal cannot be obtained. On the other hand, when Ti exceeds 0.10%, an upper bainite structure that inhibits the toughness of the weld metal is formed and the toughness becomes low. Therefore, Ti is set to 0.01 to 0.10%. In addition to the components contained in the steel outer skin, Ti can be added from alloy powders such as metal Ti and Fe-Ti from flux.

本発明に係る耐海水性鋼のガスシールドアーク溶接用フラックス入りワイヤは、鋼製外皮をパイプ状に成形し、その内部にフラックスを充填した構造である。ワイヤの種類としては、成形した鋼製外皮の合わせ目を溶接して得られる鋼製外皮に継ぎ目の無いワイヤと、鋼製外皮の合わせ目の溶接を行わないままとした鋼製外皮に継ぎ目を有するワイヤとに大別できる。本発明においては、何れの構造のワイヤを採用してもよい。但し、鋼製外皮に継ぎ目が無いワイヤは、ワイヤ中の水分量を低減することを目的に焼鈍が可能であり、また製造後のフラックスの吸湿が無いため、溶接金属の拡散性水素量を低減し、耐低温割れ性の向上を図ることができるので、鋼製外皮に継ぎ目が無いワイヤを用いるのが好ましい。 The flux-cored wire for gas shielded arc welding of seawater-resistant steel according to the present invention has a structure in which a steel outer skin is formed into a pipe shape and the inside thereof is filled with flux. As for the types of wires, seamless wires are used for the steel outer skin obtained by welding the seams of the molded steel outer skin, and seams are used for the steel outer skin without welding the seams of the steel outer skin. It can be roughly divided into the wires it has. In the present invention, a wire having any structure may be adopted. However, a wire with a seamless steel outer skin can be annealed for the purpose of reducing the amount of water in the wire, and since there is no moisture absorption of the flux after manufacturing, the amount of diffusible hydrogen in the weld metal is reduced. However, since it is possible to improve the low temperature cracking resistance, it is preferable to use a seamless wire on the steel outer skin.

本発明の耐海水性鋼のガスシールドアーク溶接用フラックス入りワイヤの残部は、鋼製外皮のFe、成分調整のためにフラックスから添加する鉄粉中のFe、Fe−Mn、Fe−Si合金等の鉄合金粉のFe分及び不可避不純物である。また、特に制限はしないが、フラックス充填率は生産性の観点から、ワイヤ全質量に対して8〜20%とし、V、Nbは機械性能の強度の観点から、V:0.05%以下、Nb:0.05%以下とするのが好ましい。 The rest of the flux-containing wire for gas shield arc welding of the seawater-resistant steel of the present invention is Fe of the steel outer skin, Fe, Fe-Mn, Fe-Si alloy, etc. in iron powder added from the flux for component adjustment. Fe content and unavoidable impurities of the iron alloy powder. Further, although not particularly limited, the flux filling rate is set to 8 to 20% with respect to the total mass of the wire from the viewpoint of productivity, and V and Nb are V: 0.05% or less from the viewpoint of the strength of mechanical performance. Nb: preferably 0.05% or less.

以下、本発明の効果を実施例により具体的に説明する。 Hereinafter, the effects of the present invention will be specifically described with reference to Examples.

まず、鋼製外皮にJIS G3141 SPCC(C:0.002〜0.06質量%)を使用し、該鋼製外皮をU字型に成形、フラックスを充填率8〜20%で充填してC字型に成形した後、鋼製外皮の合わせ目を溶接して造管、伸線し、表1及び表2に示す各種成分のフラックス入りワイヤを試作した。なお、試作したワイヤ径は1.2mmとした。 First, JIS G3141 SPCC (C: 0.002 to 0.06% by mass) is used for the steel outer skin, the steel outer skin is formed into a U shape, and the flux is filled with a filling rate of 8 to 20% to C. After forming into a shape, the seams of the steel outer skin were welded to form a pipe and wire, and flux-cored wires having various components shown in Tables 1 and 2 were prototyped. The prototype wire diameter was 1.2 mm.

Figure 2021142547
Figure 2021142547

Figure 2021142547
Figure 2021142547

これら試作ワイヤを用い、水平すみ肉溶接及び立向上進溶接による溶接作業性を調査した。 Using these prototype wires, the welding workability by horizontal fillet welding and vertical improvement welding was investigated.

溶接作業性は、板厚16mmのJIS G 3106 SM490AをT字に組んだ試験体に、表3に示す溶接条件で、水平すみ肉溶接及び立向上進溶接を行い、その際のアーク状態、スパッタ発生状態、スラグ剥離性、ビード形状の良否、メタル垂れの有無を目視確認で調査した。 Welding workability is as follows: Horizontal fillet welding and vertical lead welding are performed on a T-shaped test piece of JIS G 3106 SM490A with a plate thickness of 16 mm under the welding conditions shown in Table 3, and the arc state and spatter at that time. The state of occurrence, slag peelability, quality of bead shape, and presence or absence of metal dripping were visually confirmed.

Figure 2021142547
Figure 2021142547

溶着金属試験は、板厚20mmのJIS G 3106 SM490Aに2層バタリング溶接後、開先加工したバタリング鋼板を用い、JIS Z 3111に準じて溶接を行い、溶着金属の板厚方向中心から引張試験片(A0号)及び衝撃試験片(2mmVノッチ試験片)を採取して機械試験を実施した。引張試験の評価は、引張強さが550〜650MPaを良好とした。衝撃試験の評価は、0℃におけるシャルピー衝撃試験を行い、繰返し3本の吸収エネルギーの平均が70J以上を良好とした。その際、初層溶接時に高温割れの有無を目視確認し、耐食性を調査した。これら結果を表4及び表5にまとめて示す。 In the weld metal test, two-layer buttering welding is performed on JIS G 3106 SM490A with a plate thickness of 20 mm, and then welding is performed according to JIS Z 3111 using a buttering steel plate with groove processing, and a tensile test piece is performed from the center of the weld metal in the plate thickness direction. (A0) and an impact test piece (2 mm V notch test piece) were collected and subjected to a mechanical test. In the evaluation of the tensile test, the tensile strength was good at 550 to 650 MPa. The impact test was evaluated by performing a Charpy impact test at 0 ° C., and the average absorbed energy of the three repetitive lines was 70 J or more. At that time, the presence or absence of high temperature cracks was visually confirmed during the initial layer welding, and the corrosion resistance was investigated. These results are summarized in Tables 4 and 5.

X線透過試験は、スラグ巻き込み、ブローホール、溶け込み不良が認められた場合、その欠陥の種類を表記し、継手溶接長500mmにおいて上述の欠陥が認められない場合は無欠陥とした。 In the X-ray transmission test, when slag entrainment, blow hole, and poor penetration were found, the type of the defect was indicated, and when the above-mentioned defect was not found at the joint welding length of 500 mm, it was regarded as no defect.

耐食性の試験は、溶着金属試験を調査した試験片から余盛りを研削し、溶接ビードを長手方向とした厚さ20mm、幅100mm、長さ200mmの短冊状にしたものを試験片とし、千葉県富津市臨海部にて暴露試験を3年間行った。なお、暴露地点は離岸距離が5m(飛来海塩粒子量1日平均1.3mg/dm)とした。評価は溶接金属部の片面(表側)における平均板厚減少量を測定し、0.2mm以下を良好とした。 For the corrosion resistance test, the surplus is ground from the test piece investigated for the weld metal test, and a strip of 20 mm thick, 100 mm wide, and 200 mm long with the weld bead in the longitudinal direction is used as the test piece. An exposure test was conducted for 3 years in the coastal area of Futtsu City. The exposure point was set to a berthing distance of 5 m (daily average amount of flying sea salt particles of 1.3 mg / dm 2 ). For the evaluation, the average plate thickness reduction amount on one side (front side) of the weld metal part was measured, and 0.2 mm or less was regarded as good.

Figure 2021142547
Figure 2021142547

Figure 2021142547
Figure 2021142547

表1及び表4のワイヤ記号W1〜W16は本発明例、表2及び表5のワイヤ記号W17〜W31は比較例である。本発明例であるワイヤ記号W1〜W16は、フラックス入りワイヤ中の鋼製外皮とフラックスの合計でC、Si、Mn、Cu、Cr、Al、フラックス中のTi酸化物のTiO換算値の合計、Si酸化物のSiO換算値の合計、Zr酸化物のZrO換算値の合計、Al酸化物のAl換算値の合計、Na酸化物、Na弗化物、K酸化物及びK弗化物の1種または2種類以上のNa換算値及びK換算値の合計、Mg、B、金属弗化物のF換算値の合計が適正であるので、アークが安定してスパッタ発生量が少なく、立向上進溶接で溶融メタル垂れがなく、各姿勢溶接でスラグ剥離性及びビード形状が良好で、高温割れ及びX線透過試験での欠陥は発生しなかった。また、溶着金属の引張強さ及び吸収エネルギーも良好であり、耐食性も良好であった。 The wire symbols W1 to W16 in Tables 1 and 4 are examples of the present invention, and the wire symbols W17 to W31 in Tables 2 and 5 are comparative examples. The wire symbols W1 to W16, which are examples of the present invention, are the sum of the steel outer skin and the flux in the flux-cored wire, and the sum of the TIO 2 conversion values of C, Si, Mn, Cu, Cr, Al, and the Ti oxide in the flux. , Si oxide total SiO 2 conversion value, Zr oxide ZrO 2 conversion value total, Al oxide Al 2 O 3 conversion value total, Na oxide, Na fluoride, K oxide and K flux Since the total of Na conversion value and K conversion value of one or more kinds of compounds and the F conversion value of Mg, B, and metal flux are appropriate, the arc is stable and the amount of spatter generated is small, and it stands up. There was no dripping of molten metal in the improved welding, the slag peelability and bead shape were good in each posture welding, and no high-temperature cracking or defects in the X-ray transmission test occurred. In addition, the tensile strength and absorption energy of the weld metal were also good, and the corrosion resistance was also good.

なお、ワイヤ記号W2、W4、W10、W12〜W14はNiが適量添加されているので溶着金属の耐食性の試験で平均板厚減少量が0.1mm未満と極めて良好だった。 Since an appropriate amount of Ni was added to the wire symbols W2, W4, W10, and W12 to W14, the average plate thickness reduction amount was less than 0.1 mm, which was extremely good in the corrosion resistance test of the weld metal.

さらに、ワイヤ記号W4、W5、W7、W8、W12、W13はTiが適量添加されているので吸収エネルギーの平均が80J以上得られた。 Further, since the wire symbols W4, W5, W7, W8, W12, and W13 have an appropriate amount of Ti added, an average absorbed energy of 80 J or more was obtained.

比較例中ワイヤ記号W17は、Cが少ないので、アークが不安定になりスパッタ発生量が多くなった。また、Ti酸化物のTiO換算値の合計が多いので、溶着金属の吸収エネルギーが低かった。 In the comparative example, the wire symbol W17 has a small amount of C, so that the arc becomes unstable and the amount of spatter generated increases. Moreover, since the total of the TIO 2 conversion values of the Ti oxide was large, the absorbed energy of the weld metal was low.

ワイヤ記号W18は、Cが多いので、溶着金属の吸収エネルギーが低かった。また、Si酸化物のSiO換算値の合計が少ないので、ビード形状が不良となった。なお、Tiが添加されているが溶着金属の吸収エネルギーの目標値である70J以上へと向上させる効果が得られなかった。 Since the wire symbol W18 has a large amount of C, the absorbed energy of the weld metal was low. Further, since the total value of Si oxides converted to SiO 2 is small, the bead shape is defective. Although Ti was added, the effect of improving the absorbed energy of the weld metal to 70 J or more, which is the target value, could not be obtained.

ワイヤ記号W19は、Siが少ないので、ビード形状が不良となった。また、Si酸化物のSiO換算値の合計が多いので、溶着金属の吸収エネルギーが低かった。 Since the wire symbol W19 has a small amount of Si, the bead shape is poor. Further, since the total value of the Si oxide in terms of SiO 2 is large, the absorbed energy of the weld metal is low.

ワイヤ記号W20は、Siが多いので、溶着金属の吸収エネルギーが低かった。また、Zr酸化物のZrO換算値の合計が少ないので、立向上進溶接においてメタル垂れが発生した。 Since the wire symbol W20 contains a large amount of Si, the absorbed energy of the weld metal was low. Further, since the total of the ZrO 2 conversion values of the Zr oxide is small, metal sagging occurred in the vertical welding.

ワイヤ記号W21は、Mnが少ないので、ビード形状が不良になり、溶着金属の吸収エネルギーが低かった。また、Cuが少ないので、溶着金属の耐食性が不良であった。なお、Niが少ないので、溶着金属の耐食性を改善する効果は得られなかった。 Since the wire symbol W21 has a small amount of Mn, the bead shape is poor and the absorbed energy of the weld metal is low. Further, since the amount of Cu is small, the corrosion resistance of the weld metal is poor. Since the amount of Ni is small, the effect of improving the corrosion resistance of the weld metal could not be obtained.

ワイヤ記号W22は、Mnが多いので、溶着金属の引張強さが高く、吸収エネルギーが低かった。また、Zr酸化物のZrO換算値が多いので、スラグ剥離性が不良であった。 Since the wire symbol W22 has a large amount of Mn, the tensile strength of the weld metal is high and the absorbed energy is low. Further, since the Zr oxide has a large ZrO 2 conversion value, the slag peelability was poor.

ワイヤ記号W23は、Cuが多いでの、溶接部初層に高温割れが発生し、溶着金属の吸収エネルギーが低かった。また、Al酸化物のAl換算値が少ないので、立向上進溶接において溶融メタル垂れが発生した。なお、Tiが添加されているが溶着金属の吸収エネルギーの目標値である70J以上へと向上させる効果が得られなかった。 The wire symbol W23 had a large amount of Cu, so high-temperature cracking occurred in the initial layer of the welded portion, and the absorbed energy of the weld metal was low. In addition, since the Al 2 O 3 conversion value of Al oxide is small, molten metal sagging occurred in the vertical welding. Although Ti was added, the effect of improving the absorbed energy of the weld metal to 70 J or more, which is the target value, could not be obtained.

ワイヤ記号W24は、Crが少ないので、溶着金属の耐食性が不良であった。また、Ti酸化物のTiO換算値の合計が少ないので、アークが不安定でスパッタ発生量が多く、ビード形状が不良になり、溶着金属の吸収エネルギーが低かった。さらに、立向上進溶接において溶融メタル垂れが発生した。なお、Niが添加されているが溶着金属の耐食性を向上させる効果は得られなかった。 Since the wire symbol W24 has a small amount of Cr, the corrosion resistance of the weld metal is poor. Further, since the total of the TIO 2 conversion values of the Ti oxide was small, the arc was unstable, the amount of spatter generated was large, the bead shape was poor, and the absorbed energy of the weld metal was low. Further, molten metal sagging occurred in the vertical welding. Although Ni was added, the effect of improving the corrosion resistance of the weld metal could not be obtained.

ワイヤ記号W25は、Crが多いので、溶着金属の引張強さが高く、吸収エネルギーが低かった。また、Al酸化物のAl換算値が多いので、スラグ巻き込みが発生した。さらに、Na酸化物、Na弗化物、K酸化物及びK弗化物の1種または2種類以上のNa換算値及びK換算値の合計が少ないので、アークが不安定になった。 Since the wire symbol W25 has a large amount of Cr, the tensile strength of the weld metal is high and the absorbed energy is low. Further, since the Al 2 O 3 conversion value of the Al oxide is large, slag entrainment occurred. Furthermore, since the sum of the Na-equivalent value and the K-equivalent value of one or more kinds of Na oxide, Na fluoride, K oxide and K fluoride is small, the arc becomes unstable.

ワイヤ記号W26は、Alが少ないので、立向上進溶接において溶融メタル垂れが発生した。また、Mgが少ないので、溶着金属の吸収エネルギーが低かった。なお、Tiが少ないので、溶着金属の吸収エネルギーを改善する効果は得られなかった。 Since the wire symbol W26 has a small amount of Al, molten metal sagging occurred in the vertical welding. Moreover, since the amount of Mg was small, the absorbed energy of the weld metal was low. Since the amount of Ti is small, the effect of improving the absorbed energy of the weld metal could not be obtained.

ワイヤ記号W27は、Alが多いので、溶着金属の吸収エネルギーが低かった。また、Na酸化物、Na弗化物、K酸化物及びK弗化物の1種または2種類以上のNa換算値及びK換算値の合計が多いので、スパッタ発生量が多く、スラグ剥離性及びビード形状が不良となった。 Since the wire symbol W27 contains a large amount of Al, the absorbed energy of the weld metal was low. Further, since the total of one or more Na-equivalent values and K-equivalent values of one or more kinds of Na oxide, Na fluoride, K oxide and K fluoride is large, the amount of spatter generated is large, and the slag peelability and bead shape Became defective.

ワイヤ記号W28は、Mgが多いので、スパッタ発生量が多かった。また、Bが少ないので、溶着金属の吸収エネルギーが低かった。なお、Tiが添加されているが溶着金属の吸収エネルギーの目標値である70J以上へと向上させる効果は得られなかった。 Since the wire symbol W28 contains a large amount of Mg, the amount of spatter generated is large. Moreover, since the amount of B was small, the absorbed energy of the weld metal was low. Although Ti was added, the effect of improving the absorbed energy of the weld metal to 70 J or more, which is the target value, could not be obtained.

ワイヤ記号W29は、Bが多いので、溶接部初層に高温割れが発生し、溶着金属の引張強さが高く、吸収エネルギーが低かった。また、金属弗化物のF換算値の合計が少ないので、アークが不安定となった。 Since the wire symbol W29 has a large amount of B, high-temperature cracking occurred in the initial layer of the welded portion, the tensile strength of the weld metal was high, and the absorbed energy was low. Moreover, since the total F-converted value of the metal fluoride was small, the arc became unstable.

ワイヤ記号W30は、金属弗化物のF換算値の合計が多いので、アークが不安定になりスパッタ発生量が多く、立向上進溶接において溶融メタル垂れが発生した。さらに、スラグ巻き込みが発生した。また、Niが多いので、溶着金属の引張強さが高く、吸収エネルギーが低かった。 Since the wire symbol W30 has a large total F-converted value of the metal fluoride, the arc becomes unstable and the amount of spatter generated is large, and molten metal sagging occurs in the vertical welding. In addition, slag entrainment occurred. Further, since the amount of Ni was large, the tensile strength of the weld metal was high and the absorbed energy was low.

ワイヤ記号W31は、Mgが多いので、スパッタ発生量が多かった。また、Tiが多いので、溶着金属の吸収エネルギーが低かった。 Since the wire symbol W31 contains a large amount of Mg, the amount of spatter generated is large. Moreover, since the amount of Ti was large, the absorbed energy of the weld metal was low.

Claims (3)

鋼製外皮にフラックスを充填してなる耐海水性鋼のガスシールドアーク溶接用フラックス入りワイヤにおいて、
ワイヤ全質量に対する質量%で、鋼製外皮とフラックスの合計で、
C:0.03〜0.12%、
Si:0.1〜1.0%、
Mn:1.3〜2.8%、
Cu:0.01〜0.7%、
Cr:0.5〜1.5%、
Al:0.02〜0.30%を含有し、
さらに、ワイヤ全質量に対する質量%で、フラックス中に、
Ti酸化物のTiO換算値の合計:3.5〜7.0%、
Si酸化物のSiO換算値の合計:0.1〜0.6%、
Zr酸化物のZrO換算値の合計:0.1〜1.0%、
Al酸化物のAl換算値の合計:0.01〜0.50%、
Na酸化物、Na弗化物、K酸化物及びK弗化物の1種または2種類以上のNa換算値及びK換算値の合計:0.01〜0.30%、
Mg:0.1〜0.7%、
B:0.001〜0.010%、
金属弗化物のF換算値の合計:0.01〜0.15%を含有し、
残部が鋼製外皮のFe、フラックス中の鉄粉、鉄合金粉のFe分及び不可避不純物からなることを特徴とする耐海水性鋼のガスシールドアーク溶接用フラックス入りワイヤ。
In a flux-cored wire for gas shielded arc welding of seawater-resistant steel, which is made by filling a steel outer skin with flux.
Mass% of total wire mass, total of steel skin and flux,
C: 0.03 to 0.12%,
Si: 0.1 to 1.0%,
Mn: 1.3 to 2.8%,
Cu: 0.01-0.7%,
Cr: 0.5-1.5%,
Al: Containing 0.02 to 0.30%,
In addition, in the flux, in mass% of the total mass of the wire,
Total of TiO 2 conversion values of Ti oxide: 3.5 to 7.0%,
Total SiO 2 conversion value of Si oxide: 0.1-0.6%,
Total ZrO 2 conversion value of Zr oxide: 0.1 to 1.0%,
Total Al 2 O 3 conversion value of Al oxide: 0.01 to 0.50%,
Total of one or more Na-equivalent values and K-equivalent values of Na oxide, Na fluoride, K oxide and K fluoride: 0.01 to 0.30%,
Mg: 0.1 to 0.7%,
B: 0.001 to 0.010%,
Total F conversion value of metal fluoride: Contains 0.01-0.15%,
A flux-containing wire for gas shielded arc welding of seawater-resistant steel, wherein the balance is composed of Fe of a steel outer skin, iron powder in a flux, Fe content of iron alloy powder, and unavoidable impurities.
ワイヤ全質量に対する質量%で、鋼製外皮とフラックスの合計で、Ni:0.02〜0.50%を含有することを特徴とする請求項1に記載の耐海水性鋼のガスシールドアーク溶接用フラックス入りワイヤ。 The gas shielded arc welding of the seawater resistant steel according to claim 1, which contains 0.02 to 0.50% of Ni: 0.02 to 0.50% in total of the steel outer skin and the flux in mass% with respect to the total mass of the wire. For flux-cored wire. ワイヤ全質量に対する質量%で、鋼製外皮とフラックスの合計で、Ti:0.01〜0.10%を含有することを特徴とする請求項1または請求項2に記載の耐海水性鋼のガスシールドアーク溶接用フラックス入りワイヤ。 The seawater-resistant steel according to claim 1 or 2, characterized in that it contains Ti: 0.01 to 0.10% in total of the steel outer skin and the flux in% by mass with respect to the total mass of the wire. Flux-filled wire for gas shielded arc welding.
JP2020043525A 2020-03-12 2020-03-12 Flux-cored wire for gas-shielded arc welding of seawater-resistant steel Active JP7321958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020043525A JP7321958B2 (en) 2020-03-12 2020-03-12 Flux-cored wire for gas-shielded arc welding of seawater-resistant steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020043525A JP7321958B2 (en) 2020-03-12 2020-03-12 Flux-cored wire for gas-shielded arc welding of seawater-resistant steel

Publications (2)

Publication Number Publication Date
JP2021142547A true JP2021142547A (en) 2021-09-24
JP7321958B2 JP7321958B2 (en) 2023-08-07

Family

ID=77765583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020043525A Active JP7321958B2 (en) 2020-03-12 2020-03-12 Flux-cored wire for gas-shielded arc welding of seawater-resistant steel

Country Status (1)

Country Link
JP (1) JP7321958B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5384312B2 (en) 2009-12-18 2014-01-08 日鐵住金溶接工業株式会社 Flux-cored wire for gas shielded arc welding for weathering steel
JP2013151001A (en) 2012-01-25 2013-08-08 Nippon Steel & Sumikin Welding Co Ltd Flux-cored wire for gas-shielded arc welding for weather-resistant steel

Also Published As

Publication number Publication date
JP7321958B2 (en) 2023-08-07

Similar Documents

Publication Publication Date Title
JP4986562B2 (en) Flux-cored wire for titania-based gas shielded arc welding
JP5704573B2 (en) Flux-cored wire for gas shielded arc welding of crude oil tank steel
JP5384312B2 (en) Flux-cored wire for gas shielded arc welding for weathering steel
JP2014113615A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP6786427B2 (en) Flux-filled wire for gas shielded arc welding
JP6250475B2 (en) Ni-based alloy flux cored wire
JP2015217393A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP6033755B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding
JP2013226578A (en) Flux cored wire for horizontal fillet gas shielded arc welding of crude oil tank steel
JP2008221231A (en) Flux cored wire for gas-shielded arc welding
JP6437419B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP4300153B2 (en) Flux-cored wire for gas shielded arc welding
JP5014189B2 (en) Two-electrode fillet gas shielded arc welding method
JP6669613B2 (en) Flux-cored wire for gas shielded arc welding
JP4838100B2 (en) Flux-cored wire for horizontal corner gas shielded arc welding for weathering steel
JP6815157B2 (en) Flux-cored wire for gas shielded arc welding of crude oil tank steel
JP7364448B2 (en) Flux Cored Wire for Gas Shielded Arc Welding for Beach Weathering Steel
JP6772108B2 (en) Flux-cored wire for gas shielded arc welding of low temperature steel
JP2020168651A (en) COATED ARC WELDING ELECTRODE FOR 9% Ni STEEL WELDING
JP2017164772A (en) Flux-cored wire for carbon dioxide gas shield arc welding
JP7257189B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding of weathering steel
JP7321958B2 (en) Flux-cored wire for gas-shielded arc welding of seawater-resistant steel
JP6951313B2 (en) Flux-filled wire for gas shielded arc welding
CN113613829A (en) Ni-based alloy flux-cored wire
JP2020189302A (en) Arc welding rod coated with low hydrogen-based coating agent for crude oil tank steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230726

R150 Certificate of patent or registration of utility model

Ref document number: 7321958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150