JP5384312B2 - Flux-cored wire for gas shielded arc welding for weathering steel - Google Patents

Flux-cored wire for gas shielded arc welding for weathering steel Download PDF

Info

Publication number
JP5384312B2
JP5384312B2 JP2009287114A JP2009287114A JP5384312B2 JP 5384312 B2 JP5384312 B2 JP 5384312B2 JP 2009287114 A JP2009287114 A JP 2009287114A JP 2009287114 A JP2009287114 A JP 2009287114A JP 5384312 B2 JP5384312 B2 JP 5384312B2
Authority
JP
Japan
Prior art keywords
welding
flux
slag
oxide
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009287114A
Other languages
Japanese (ja)
Other versions
JP2011125904A (en
Inventor
竜太朗 千葉
州司郎 長島
Original Assignee
日鐵住金溶接工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鐵住金溶接工業株式会社 filed Critical 日鐵住金溶接工業株式会社
Priority to JP2009287114A priority Critical patent/JP5384312B2/en
Publication of JP2011125904A publication Critical patent/JP2011125904A/en
Application granted granted Critical
Publication of JP5384312B2 publication Critical patent/JP5384312B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、造船、橋梁構造物、鉄骨構造物等の各種分野に用いられる耐候性鋼を溶接する上で使用される耐候性鋼用ガスシールドアーク溶接用フラックス入りワイヤに関し、特に機械的性質を十分に満足し、かつ、全姿勢溶接の作業性が良好で、水平すみ肉溶接のビード止端部のビード形状が優れた耐候性鋼用ガスシールドアーク溶接用フラックス入りワイヤに関する。   The present invention relates to a flux-cored wire for gas shielded arc welding for weathering steel used for welding weathering steel used in various fields such as shipbuilding, bridge structures, steel structures, etc., and particularly has mechanical properties. The present invention relates to a flux-cored wire for gas shielded arc welding for weathering steel, which is sufficiently satisfied, has good workability for all-position welding, and has an excellent bead shape at the bead toe of horizontal fillet welding.

船舶、橋梁構造物、鉄骨構造物等に適用される長尺かつ大型の鋼材を高速度で水平すみ肉溶接する場合には、特にこの水平すみ肉溶接専用に設計されたフラックス入りワイヤを使用し、ワイヤの供給とトーチの操作とを自動的に行う自動溶接でこれを施工する場合が多い。一方、この水平すみ肉溶接とともに、立向上進溶接、立向下進溶接を行う箇所や、上向姿勢ですみ肉溶接する箇所が混在する場合には、ワイヤとシールドガスの供給を自動的に行うとともに溶接トーチの操作は作業者自らが行う半自動溶接が一般的に行われる。   When long and large steel materials that are applied to ships, bridge structures, steel structures, etc. are welded at high speed by horizontal fillet welding, use a flux-cored wire designed specifically for horizontal fillet welding. In many cases, this is performed by automatic welding in which the supply of the wire and the operation of the torch are automatically performed. On the other hand, if there is a place where vertical improvement welding, vertical downward welding, or a place where fillet welding is performed in an upward position together with this horizontal fillet welding, the supply of wire and shield gas is automatically performed. In addition, the welding torch is generally operated by semi-automatic welding performed by the operator himself.

この半自動溶接に使用するフラックス入りワイヤは、水平すみ肉溶接専用(下向可)と全姿勢溶接用の2タイプを使い分けて用いるのが現状である。その理由として、水平すみ肉溶接専用フラックス入りワイヤは、高速度の溶接施工条件で用いられるため、溶融スラグの粘性をあえて低くしている。このため、この低粘性の水平すみ肉溶接専用ワイヤを立向溶接姿勢や上向溶接姿勢で使用した場合にはメタルが垂れて溶接が困難になる。一方、全姿勢溶接用フラックス入りワイヤはTiO主体のスラグ形成剤を比較的多めに含有しているので、立向溶接や上向姿勢ですみ肉溶接する場合には、メタルが垂れにくく良好なビード形状が得られるが、水平すみ肉溶接では下板側止端部が膨らんだビード形状になりやすい。従って、各溶接箇所におけるそれぞれの溶接姿勢に対応させて、フラックス入りワイヤを使い分けることが必要となる。 The flux-cored wire used for this semi-automatic welding is currently used separately for two types of fillet welding for horizontal fillet (possible downward) and for all-position welding. The reason for this is that the flux-cored wire dedicated to horizontal fillet welding is used under high-speed welding conditions, so the viscosity of the molten slag is lowered. For this reason, when this low-viscosity horizontal fillet welding wire is used in a vertical welding posture or an upward welding posture, the metal drips and welding becomes difficult. On the other hand, the flux-cored wire for welding in all positions contains a relatively large amount of slag forming agent mainly composed of TiO 2, so that it is difficult for metal to sag when vertical welding or fillet welding in an upward position. A bead shape can be obtained, but in the case of horizontal fillet welding, a bead shape in which the bottom plate side toe portion swells easily is formed. Therefore, it is necessary to use the flux-cored wire properly in accordance with the respective welding postures at the respective welding locations.

しかしながら、各溶接箇所におけるそれぞれの溶接姿勢に応じてフラックス入りワイヤを交換するのは煩雑であり、溶接による作業性、ひいては構造物の施工性を著しく低下させる。このため、半自動溶接を行う場合に、その溶接姿勢に応じてフラックス入りワイヤを交換することなく、水平すみ肉溶接のみならず、立向溶接姿勢や上向溶接姿勢に対しても良好なすみ肉ビード形状が得られるフラックス入りワイヤの提供が強く求められている。このような要望に対し、特許文献1〜3には、水平すみ肉溶接および立向上進溶接の何れに対しても好適なフラックス入りワイヤの提案があり、自動高速すみ肉溶接と半自動立向上進すみ肉溶接が可能であることが開示されている。   However, it is cumbersome to replace the flux-cored wire in accordance with each welding position at each welding location, and the workability by welding and consequently the workability of the structure are remarkably lowered. For this reason, when semi-automatic welding is performed, good fillet for not only horizontal fillet welding, but also vertical and upward welding postures, without replacing the flux-cored wire according to the welding posture. There is a strong demand for the provision of a flux-cored wire that provides a bead shape. In response to such demands, Patent Documents 1 to 3 propose a flux-cored wire suitable for both horizontal fillet welding and vertical improvement welding. Automatic high-speed fillet welding and semi-automatic vertical improvement are proposed. It is disclosed that fillet welding is possible.

しかし、この種の水平すみ肉溶接専用と全姿勢溶接用との中間タイプのフラックス入りワイヤは、水平すみ肉溶接と、立向溶接姿勢並びに上向溶接姿勢の何れかに比重をおいて設計されているかが、実際に溶接を行う際に極めて重要な問題となる。このため、特に立向上進溶接姿勢における溶接作業性の優れた半自動溶接によるビード形状の改良が求められている。   However, this type of intermediate-type flux-cored wire dedicated for horizontal fillet welding and for all-position welding is designed with a specific weight in either horizontal fillet welding, vertical welding attitude, or upward welding attitude. However, this is a very important problem when actually welding. For this reason, the improvement of the bead shape by the semiautomatic welding excellent in the workability | operativity especially in the stand-up advance welding position is calculated | required.

ところで、船舶、橋梁構造物、鉄骨構造物等に適用されることを前提とする場合には、腐食を抑制する観点から耐候性鋼が用いられる。この耐候性鋼は、暴露状態であっても鋼材の表面が大気腐食により安定的に錆層を形成してこれが保護膜となり、それよりも深層への腐食を抑制する鋼材である。耐候性鋼用ガスシールドアーク溶接用フラックス入りワイヤは、JIS Z 3320規定されており、Ni、CrおよびCuを添加した各種溶接用フラックス入りワイヤが適用されている。   By the way, when it presupposes being applied to a ship, a bridge structure, a steel frame structure, etc., a weathering steel is used from a viewpoint of suppressing corrosion. This weather-resistant steel is a steel material in which the surface of the steel material stably forms a rust layer due to atmospheric corrosion and becomes a protective film even in an exposed state, and suppresses corrosion to deeper layers. The flux-cored wire for gas shielded arc welding for weathering steel is defined by JIS Z 3320, and various welding flux-cored wires to which Ni, Cr and Cu are added are applied.

耐候性鋼溶接用フラックス入りワイヤは例えば特許文献4、5に種々提案されている。しかし、これら提案されている耐候性鋼溶接用フラックス入りワイヤは、何れも下向姿勢又は立向姿勢で使用されることを前提とした技術であって、これらをそのまま水平すみ肉溶接に使用した場合、溶接金属が垂れやすく凸ビードとなるという問題点があった。   For example, Patent Documents 4 and 5 propose various flux-cored wires for welding weatherproof steel. However, all of these proposed flux-cored wires for weathering steel welding are technologies based on the premise that they are used in a downward posture or a vertical posture, and these were used as they were for horizontal fillet welding. In this case, there is a problem in that the weld metal tends to sag and becomes a convex bead.

特開平8−281477号公報JP-A-8-281477 特開平9−94692号公報JP-A-9-94692 特開平9−94693号公報JP-A-9-94693 特開2000−102893号公報JP 2000-102893 A 特開2000−288781号公報Japanese Patent Laid-Open No. 2000-287881

そこで本発明は、上述した問題点を解決するために案出されたものであり、溶接金属の機械的性質を十分に満足し、かつ、全姿勢溶接に適用できることで従来技術の如く各溶接姿勢に対応させてフラックス入りワイヤを使い分ける必要を無くして溶接施工性を向上させ、しかも立向上進溶接姿勢、立向下進溶接姿勢並びに上向姿勢溶接を行う上でメタルが垂れることなく、水平すみ肉溶接時でのビード止端部のビード形状も優れた耐候性鋼用ガスシールドアーク溶接用フラックス入りワイヤを提供することを目的とする。   Therefore, the present invention has been devised to solve the above-mentioned problems, and sufficiently satisfies the mechanical properties of the weld metal and can be applied to all-position welding, so that each welding position as in the prior art. In order to improve the welding workability by eliminating the need to use different flux-cored wires in response to the An object of the present invention is to provide a flux-cored wire for gas shielded arc welding for weathering steel, which has an excellent bead shape at the toe of the bead at the time of meat welding.

半自動溶接で水平すみ肉溶接を行う場合、自動溶接のように一定の溶接速度で進行しないことから、目標脚長によってはウィービングを行うことによりアーク点や溶融プールを揺動させながら溶接を進行させる。このため、立板側ビード上脚部にアンダーカットが発生しやすくなるため、ある程度のスラグ生成量が必要になる。しかし、このスラグ生成量が多すぎると下脚側止端部が膨らんで下板とのなじみ性の劣化やピットが発生しやすくなる。   When horizontal fillet welding is performed by semi-automatic welding, the welding does not proceed at a constant welding speed as in automatic welding. Therefore, depending on the target leg length, welding is performed while swinging the arc point and the molten pool by performing weaving. For this reason, since an undercut is likely to occur in the upper leg portion of the standing plate side bead, a certain amount of slag generation is required. However, when the amount of slag generation is too large, the lower leg side toe portion swells, and the compatibility with the lower plate is easily deteriorated and pits are easily generated.

一方、半自動溶接で立向上進姿勢、立向下進姿勢および上向姿勢ですみ肉溶接を行う場合は、メタル垂れが発生しないように適度に粘性のある溶融スラグにして、スラグ生成量も多い方が有利である。なお、各姿勢溶接における良好なアーク安定性およびスラグ剥離性は必須条件である。   On the other hand, when performing fillet welding in semi-automatic welding in the vertical improvement posture, vertical downward posture, and upward posture, the molten slag is moderately viscous so that metal dripping does not occur, and the amount of slag generated is large Is more advantageous. In addition, good arc stability and slag peelability in each posture welding are essential conditions.

本発明者らは、上述した水平すみ肉溶接を行う場合における下板とのなじみ性の劣化やピットが発生の防止、立向上進姿勢等ですみ肉溶接を行う場合における良好なアーク安定性およびスラグ剥離性の確保といった、溶接姿勢に応じて相反する2つの課題を同時に実現する観点から、あくまで1タイプのNi、CrおよびCuを含む耐候性鋼用ガスシールドアーク溶接用フラックス入りワイヤで全姿勢溶接に適用可能とすることで上述した課題の解決を図ろうとした。そして、種々のフラックス入りワイヤを試作して、各姿勢溶接におけるすみ肉ビード形状改善について検討した。   The inventors of the present invention have achieved good arc stability when performing fillet welding in the above-described horizontal fillet welding, such as deterioration of conformability with the lower plate and prevention of occurrence of pits, stand-up improvement posture, etc. From the standpoint of simultaneously achieving two conflicting issues depending on the welding posture, such as ensuring slag peelability, all postures are made with a flux-cored wire for gas-shielded arc welding for weathering steel containing one type of Ni, Cr and Cu. An attempt was made to solve the above-mentioned problems by making it applicable to welding. Various types of flux-cored wires were prototyped and the improvement of fillet bead shape in each position welding was examined.

その結果、TiO、SiOおよびZrO量を適量にするとともにSi量を低くしMn/SiおよびAl量とFe酸化物のFeO換算値との比率Al/FeOを限定することによって、十分なスラグ被包性、耐ピット性および耐メタル垂れ性が得られ、全姿勢溶接に適用できることを見出した。 As a result, sufficient amounts of TiO 2 , SiO 2, and ZrO 2 are reduced, and the amount of Si is lowered, and the ratio of Mn / Si and Al amount to the FeO equivalent value of Fe oxide is limited to Al / FeO. It has been found that slag encapsulation, pit resistance and metal sag resistance can be obtained and can be applied to all-position welding.

本発明は、鋼製外皮にフラックスを充填してなる耐候性鋼用ガスシールドアーク溶接用フラックス入りワイヤにおいて、ワイヤ全質量に対する質量%で、Ti酸化物TiO2換算値4.5〜7.0%、Si酸化物SiO2換算値0.3〜0.6%、Zr酸化物ZrO2換算値0.1〜0.6%、Na化合物およびK化合物:Na2O換算値とK2O換算値との合計で0.05〜0.25%、金属弗化物F換算値0.02〜0.1%、C:0.03〜0.07%、Si:0.3〜0.6%、Mn:1.2〜2.0%、かつ、Mn/Si:3.0〜5.5、Al:0.3〜0.6%、Fe酸化物FeO換算値0.08〜0.58%、かつ、Al/FeO:1.0〜4.5、Mg:0.1〜0.5%、Ni:0.2〜0.6%、Cr:0.45〜0.75%、Cu:0.3〜0.6%含有し、残部は主に鋼製外皮のFe分、鉄粉および不可避不純物からなることを特徴とする。 The present invention provides a weather-resistant steel for gas shielded arc welding flux cored wire formed by filling the flux in the steel sheath, by mass% with respect to total mass of the wire, Ti oxides: in terms of TiO 2 value from 4.5 to 7 .0%, Si oxide: 0.3 to 0.6% in terms of SiO 2 values, Zr oxide 0.1-0.6% in the terms of ZrO 2 value, Na compounds and K compounds: Na 2 O in terms Value and K 2 O conversion value in total 0.05 to 0.25%, metal fluoride : F conversion value 0.02 to 0.1%, C: 0.03 to 0.07%, Si: 0.3-0.6%, Mn: 1.2-2.0%, and Mn / Si: 3.0-5.5, Al: 0.3-0.6%, Fe oxide : FeO from 0.08 to 0.58% in terms of value, and, Al / FeO: 1.0~4.5, Mg : 0.1~0.5%, Ni: 0.2~0.6 , Cr: 0.45~0.75%, Cu: contains 0.3 to 0.6%, the balance being mainly Fe content of the steel sheath, characterized by comprising the iron powder and unavoidable impurities.

このとき、更にBiおよびBi酸化物Bi換算値の合計0.01〜0.04%含有する耐候性鋼用ガスシールドアーク溶接用フラックス入りワイヤとしてもよい。 At this time, Bi and Bi oxide : It is good also as a flux-cored wire for gas shielded arc welding for weathering steel containing 0.01 to 0.04% of the total of Bi conversion value.

本発明の耐候性鋼用ガスシールドアーク溶接用フラックス入りワイヤによれば、溶接金属の機械的性質が十分に得られ、水平すみ肉溶接のビード形状が良好で、同一ワイヤを使用して立向上進溶接姿勢、立向下進溶接姿勢および上向溶接姿勢においても良好なビード形状が得られ、溶接品質の向上を図ることができる。これに加えて、船舶、橋梁構造物、鉄骨構造物等に用いられる耐候性鋼の溶接部を溶接する際に、従来技術の如く各溶接姿勢に対応させてフラックス入りワイヤを使い分けることが必要も無くなることから溶接施工性の向上を図ることができる。   According to the flux-cored wire for gas shielded arc welding for weatherproof steel of the present invention, the mechanical properties of the weld metal are sufficiently obtained, the bead shape of horizontal fillet welding is good, and the standing improvement is achieved by using the same wire. A good bead shape can be obtained even in the forward welding posture, the vertical downward welding posture, and the upward welding posture, and the welding quality can be improved. In addition to this, when welding weather-resistant steel welds used in ships, bridge structures, steel structures, etc., it is necessary to use different flux-cored wires according to each welding position as in the prior art. Since it disappears, the weldability can be improved.

以下、本発明を実施するための形態として、耐候性鋼用ガスシールドアーク溶接用フラックス入りワイヤについて詳細に説明をする。   Hereinafter, a flux-cored wire for gas shielded arc welding for weatherproof steel will be described in detail as a mode for carrying out the present invention.

先ず本発明の耐候性鋼用ガスシールドアーク溶接用フラックス入りワイヤの成分組成および含有量の限定理由について説明する。なお、各成分組成の含有量は、ワイヤ全質量に対する質量%で示す。   First, the reasons for limiting the component composition and the content of the flux-cored wire for gas shielded arc welding for weathering steel according to the present invention will be described. In addition, content of each component composition is shown by the mass% with respect to the wire total mass.

[Ti酸化物TiO2換算値4.5〜7.0%]
TiO2はスラグ形成剤の主成分であり、Ti酸化物のルチール、酸化チタン、チタン酸ソーダ、チタンスラグ、イルナイト等から添加され、溶融スラグの粘性を高めスラグ被包性を向上させる作用を有する。Ti酸化物TiO2換算値4.5%未満であると、スラグ被包性が不十分となり水平すみ肉溶接で立板にアンダーカットが発生しやすく、スラグ焼き付きによりスラグ剥離性も不良となる。立向上進溶接や上向すみ肉溶接では溶融スラグの粘性が足りず、メタル垂れが発生しやすく平滑なビード形状が得られずスラグ剥離も不良になる。一方、Ti酸化物TiO2換算値7.0%を超えると、溶融スラグの粘性が過大となり、水平すみ肉溶接でビードの下板側止端部が膨らみビード形状が不良となり、ピットも発生しやすくなる。したがって、Ti酸化物TiO2換算値4.5〜7.0%とする。
[Ti oxide : 4.5 to 7.0% in terms of TiO 2 ]
TiO 2 is a main component of the slag-forming agent, rutile of Ti oxide, titanium oxide, titanium sodium is added titanium slag yl Mi night, etc., it acts to improve the viscosity enhanced slag encapsulated molten slag Have When Ti oxide is less than 4.5% in terms of TiO 2 values, slag encapsulated undercut the standing plate in the horizontal fillet welding becomes insufficient easily generated, the slag removability by conditioned slag grilled be defective Become. In vertical welding or upward fillet welding, the viscosity of the molten slag is insufficient, metal dripping is likely to occur, and a smooth bead shape cannot be obtained, resulting in poor slag peeling. On the other hand, if the Ti oxide is more than 7.0% in terms of TiO 2 values, the viscosity of the molten slag becomes excessive, it is poor bead shape bulging lower plate-side toe of the bead in horizontal fillet welding, also pit It tends to occur. Therefore, Ti oxide and 4.5 to 7.0% in terms of TiO 2 value.

[Si酸化物SiO2換算値0.3〜0.6%]
SiO2は、珪砂やジルコンサンド、珪砂ソーダ等より添加され、溶融スラグの粘性を高めスラグ被包性を向上させる作用を有する。また、厚みのあるスラグにしてスラグ剥離性を改善する作用を有する。Si酸化物SiO2換算値0.3%未満では溶融スラグの粘性が不足して、水平すみ肉溶接でビード上脚部のスラグ被包性が不十分となりアンダーカットが発生しやすく、スラグ剥離性も不良となる。一方、Si酸化物SiO2換算値0.6%を超えると水平すみ肉溶接でピットが発生しやすく、立向下進溶接や上向すみ肉溶接で溶融スラグの凝固が遅れメタル垂れが発生してビード形状およびスラグ剥離性が不良となる。したがって、Si酸化物SiO2換算値0.3〜0.6%とする。
[Si oxide : 0.3 to 0.6% in terms of SiO 2 ]
SiO 2 is added from silica sand, zircon sand, silica sand soda or the like, and has an action of increasing the viscosity of the molten slag and improving the slag encapsulation. Moreover, it has the effect | action which makes slag thick and improves slag peelability. Si oxide is insufficient viscosity of the molten slag is less than 0.3% in terms of SiO 2 values, undercut easily occurs becomes slag encapsulated bead on the legs in the horizontal fillet welding is unsatisfactory, slag The peelability is also poor. On the other hand, Si oxide pits tend to occur in more than 0.6% when the horizontal fillet welding in terms of SiO 2 value, is delayed metal dripping solidification of the molten slag in the vertical downward advancing welding or upward fillet weld It occurs and the bead shape and slag peelability are poor. Therefore, Si oxide is 0.3 to 0.6 percent in terms of SiO 2 values.

[Zr酸化物ZrO2換算値0.1〜0.6%]
ZrO2は、ジルコンサンドおよび酸化ジルコニウム等より添加され、溶融スラグの凝固温度を高くして立向上進、立向下進および上向すみ肉溶接でメタルを垂れにくくし、水平すみ肉溶接でスラグ被包性を高めてビード形状を平滑にする作用を有する。Zr酸化物ZrO2換算値0.1%未満では、水平すみ肉溶接でビード形状が平滑にならず、立向上進溶接、立向下進溶接および上向すみ肉溶接でメタルの垂れが発生しやすくなり、凸状のビード形状となるとともにスラグ剥離性が不良になる。一方、Zr酸化物ZrO2換算値0.6%を超えると、水平すみ肉溶接のビード形状が凸状になり、立向上進溶接、立向下進溶接および上向すみ肉溶接でメタルの垂れが発生しやすくビード形状が不良となる。また、各姿勢溶接でスラグが緻密で固くなり剥離性が劣化する。したがって、Zr酸化物ZrO2換算値0.1〜0.6%とする。
[Zr oxide : 0.1 to 0.6% in terms of ZrO 2 ]
ZrO 2 is added from zircon sand, zirconium oxide, etc., increasing the solidification temperature of the molten slag to make it difficult to sag the metal with vertical rise, vertical down and fillet welding, and slag with horizontal fillet welding It has the effect of enhancing the encapsulation and smoothing the bead shape. If it is less than 0.1% Zr oxide in terms of ZrO 2 value, not to the bead shape in the horizontal fillet welding smooth, vertical upward proceeds welding, the metal sag in vertical downward advancing welding and upward fillet weld It becomes easy to generate | occur | produce, and it becomes a convex bead shape, and slag peelability becomes bad. On the other hand, when the Zr oxide is more than 0.6% in terms of ZrO 2 value, the bead shape in the horizontal fillet welding becomes convex, vertical upward proceeds welding, metal in vertical downward advancing welding and upward fillet weld The bead shape tends to be poor. In addition, the slag becomes dense and hard in each posture welding, and the peelability deteriorates. Therefore, the Zr oxide is 0.1 to 0.6% in terms of ZrO 2 .

[Na化合物およびK化合物:NaO換算値とKO換算値との合計で0.05〜0.25%]
NaおよびKは、カリ長石または珪酸ソーダや珪酸カリからなる水ガラスの固質成分、弗化ソーダや珪酸化カリなどの弗素化合物より添加され、アーク安定剤およびスラグ形成剤として作用する。NaやKの化合物、すなわち酸化物、弗化物などのNaO換算値およびKO換算値の合計が0.05%未満では、アークが不安定でスパッタが増加する。また、平滑なビード形状が得られない。一方、NaO換算値およびKO換算値の合計が0.25%を超えると、水平すみ肉溶接でビード上脚部にアンダーカットが発生しやすく、スパッタの発生量も増加する。また、立向下進溶接や上向すみ肉溶接でメタル垂れが発生しやすくなりビード形状およびスラグ剥離性が不良となる。したがって、Na化合物およびK化合物におけるNaO換算値とKO換算値との合計は0.05〜0.25%とする。
[Na compound and K compound: 0.05 to 0.25% in total of Na 2 O converted value and K 2 O converted value]
Na and K are added from potassium feldspar, a solid component of water glass made of sodium silicate or potassium silicate, or a fluorine compound such as sodium fluoride or potassium silicate, and act as an arc stabilizer and a slag forming agent. The compounds of Na and K, i.e. oxides, the total is less than 0.05% of the terms of Na 2 O values and K 2 O converted value such as fluorides, arc unstable sputter is increased. In addition, a smooth bead shape cannot be obtained. On the other hand, if the total of Na 2 O converted value and K 2 O converted value exceeds 0.25%, undercut is likely to occur in the upper leg portion of the bead during horizontal fillet welding, and the amount of spatter generated also increases. Further, metal dripping is likely to occur during vertical downward welding or upward fillet welding, resulting in poor bead shape and slag peelability. Therefore, the sum of the Na 2 O equivalent value and the K 2 O equivalent value in the Na compound and K compound is 0.05 to 0.25%.

[金属弗化物F換算値0.02〜0.1%]
Fは、弗化ソーダや珪弗化カリ等より添加され、アークの指向性を高めて安定した溶融プールにするとともにスラグの粘性を調整してビード形状を平滑にする作用を有する。弗素化合物F換算値0.02%未満では、アーク長が長くアーク力の弱いアーク状態となり、水平すみ肉溶接で立板側上脚部にアンダーカットが発生しやすくなる。また、下板側下脚部のなじみ性が不良で、さらにピットが発生しやすくなる。また、立向下進溶接や上向すみ肉溶接でメタル垂れが発生してビード形状およびスラグ剥離性が不良となる。一方、弗素化合物F換算値0.1%を超えると、スラグの粘性が低下して水平すみ肉溶接でビード上脚部に除去しにくい薄いスラグが残りスラグ剥離性が不良となり、ビード形状は凸状になる。また立向上進溶接、立向下進溶接および上向すみ肉溶接ではメタル垂れが発生してビード形状およびスラグ剥離性が不良となる。したがって、弗素化合物F換算値0.02〜0.1%とする。
[Metal fluoride : 0.02 to 0.1% in terms of F]
F is added from sodium fluoride, potassium silicofluoride or the like, and has an action of increasing the directivity of the arc to form a stable molten pool and adjusting the viscosity of the slag to smooth the bead shape. Is less than 0.02% fluorine compounds with F converted value, the arc length becomes weak arc condition of long arc force, undercutting is likely to occur on the upright plate side upper leg portion in the horizontal fillet welding. Further, the conformability of the lower leg portion on the lower plate side is poor, and pits are more likely to occur. In addition, metal dripping occurs during vertical downward welding or upward fillet welding, resulting in poor bead shape and slag peelability. On the other hand, when the fluorine compound exceeds 0.1% by F converted value, slag viscosity is lowered horizontal corner thin slag difficult to remove the bead on the legs in weld equal the remaining slag removability poor bead shape Becomes convex. In addition, in vertical improvement welding, vertical downward welding and upward fillet welding, metal dripping occurs, resulting in poor bead shape and slag peelability. Therefore, the fluorine compound is 0.02 to 0.1% in terms of F.

[C:0.03〜0.07%]
Cは、鋼製外皮、Fe−Mnおよびグラファイト等より添加され、固溶強化により溶接金属の強度を調整する重要な元素の1つである。Cが0.03%未満では、溶接金属の強度および靭性が低下する。一方、0.07%を超えると、アークが強くなり、アークが不安定になる。また、溶接金属の強度が高くなり過ぎて却って靭性が低下する。したがって、Cは0.03〜0.07%とする。
[C: 0.03-0.07%]
C is added from a steel outer shell, Fe-Mn, graphite and the like, and is one of important elements for adjusting the strength of the weld metal by solid solution strengthening. If C is less than 0.03%, the strength and toughness of the weld metal are lowered. On the other hand, if it exceeds 0.07%, the arc becomes strong and the arc becomes unstable. In addition, the strength of the weld metal becomes too high, and the toughness decreases. Therefore, C is 0.03 to 0.07%.

[Si:0.3〜0.6%]
Siは、鋼製外皮、金属Si、Fe-SiおよびFe-Si-Mn等の合金形態より添加され、脱酸剤として作用して溶接金属の強度および靭性を確保するために添加する。Siが0.3%未満では、脱酸不足となりピットが発生する。また、溶接金属の強度および靭性が低下する。一方、0.6%を超えると溶接金属の強度および靭性が高くなり吸収エネルギーが低下する。したがって、Siは0.3〜0.6%とする。
[Si: 0.3-0.6%]
Si is added in the form of an alloy such as a steel outer shell, metal Si, Fe—Si, and Fe—Si—Mn, and is added in order to act as a deoxidizer and ensure the strength and toughness of the weld metal. If Si is less than 0.3%, deoxidation is insufficient and pits are generated. Moreover, the strength and toughness of the weld metal are reduced. On the other hand, if it exceeds 0.6%, the strength and toughness of the weld metal increase and the absorbed energy decreases. Therefore, Si is 0.3 to 0.6%.

[Mn:1.2〜2.0%]
Mnは、鋼製外皮、金属MnおよびFe−Mn等より添加され、脱酸剤として作用するとともに溶接金属の強度および靭性を確保するために添加する。Mnが1.2%未満では、脱酸不足となりピットが発生し、溶接金属の強度・靭性が確保できなくなる。一方、Mnが2.0%を超えると、溶接金属の強度が高くなり過ぎて却って靭性が低下する。したがって、Mnは1.2〜2.0%とする。
[Mn: 1.2 to 2.0%]
Mn is added from a steel outer shell, metal Mn, Fe-Mn, and the like, and acts to act as a deoxidizer and to ensure the strength and toughness of the weld metal. If Mn is less than 1.2%, deoxidation is insufficient and pits are generated, making it impossible to ensure the strength and toughness of the weld metal. On the other hand, if Mn exceeds 2.0%, the strength of the weld metal becomes too high and the toughness is lowered. Therefore, Mn is set to 1.2 to 2.0%.

[Mn/Si:3.0〜5.5]
Mn/Siは、溶接金属の粘性に影響する。Mn/Siが大きくなれば溶接金属の粘性が低下し、逆にMn/Siが小さくなると溶接金属の粘性は高くなる。溶接金属の粘性を低くすると溶接金属中から発生するガスを早く抜けさせるので、耐ピット性を向上させることができる。Mn/Siが3.0未満であると、Siに対するMn量が少なくなるので溶接金属の靭性が劣化する。またMn/Siが3.0未満であると溶接金属の粘性が高くなるので、ガスが抜けにくくなり、耐ピット性が悪くなる。一方、5.5を超えると、溶接金属の粘性が低くなりすぎてビード形状が凸状になる。したがって、Mn/Siは3.0〜5.5とする。
[Mn / Si: 3.0 to 5.5]
Mn / Si affects the viscosity of the weld metal. As Mn / Si increases, the viscosity of the weld metal decreases. Conversely, when Mn / Si decreases, the viscosity of the weld metal increases. When the viscosity of the weld metal is lowered, the gas generated from the weld metal is quickly released, so that the pit resistance can be improved. When Mn / Si is less than 3.0, the amount of Mn with respect to Si decreases, and the toughness of the weld metal deteriorates. On the other hand, if Mn / Si is less than 3.0, the viscosity of the weld metal increases, so that the gas is difficult to escape and the pit resistance is deteriorated. On the other hand, if it exceeds 5.5, the viscosity of the weld metal becomes too low and the bead shape becomes convex. Therefore, Mn / Si is set to 3.0 to 5.5.

[Al:0.3〜0.6%]
Alは、鋼製外皮、金属Al、Fe−AlおよびAl−Mg等より添加され、脱酸剤として作用するとともにAl酸化物となってスラグの粘性を高めて立向上進溶接、立向下進溶接および上向すみ肉溶接で耐メタル垂れ性を向上させ、また水平すみ肉溶接で溶融プールの後退を抑制し十分なスラグ被包性を保持する作用を有する。Alが0.3%未満では、立向上進溶接や上向すみ肉溶接でメタル垂れが発生し良好なビード形状が得られず、スラグ剥離性も不良となる。また、水平すみ肉溶接でビードの凸状化とともに上脚部にアンダーカットやスラグ焼き付きが発生する。一方、Alが0.6%を超えると、水平すみ肉溶接でビードの滑らかさがなくなり止端部が膨らんだ形状となり、ピットが発生しやすくなる。また、溶融スラグの凝固むらが生じてスラグ剥離性が不良となる。立向下進すみ肉溶接ではメタル垂れが発生し良好なビード形状が得られずスラグ剥離性も不良となる。したがって、Alは0.3〜0.6%とする。
[Al: 0.3 to 0.6%]
Al is added from steel outer shell, metal Al, Fe-Al, Al-Mg, etc., and acts as a deoxidizer and also becomes Al oxide to increase the viscosity of slag and improve vertical welding, vertical downward Metal sagging resistance is improved by welding and upward fillet welding, and horizontal fillet welding has the effect of suppressing the recession of the molten pool and maintaining sufficient slag encapsulation. If Al is less than 0.3%, metal sag occurs during vertical improvement welding or upward fillet welding, and a good bead shape cannot be obtained, resulting in poor slag peelability. Moreover, undercut or slag seizure occurs in the upper leg portion along with the convexity of the bead due to horizontal fillet welding. On the other hand, when Al exceeds 0.6%, the smoothness of the bead is lost by horizontal fillet welding, and the toe portion is swollen, and pits are likely to be generated. Moreover, solidification unevenness of the molten slag occurs, resulting in poor slag peelability. In vertical down fillet welding, metal sagging occurs, and a good bead shape cannot be obtained, resulting in poor slag peelability. Therefore, Al is 0.3 to 0.6%.

[Fe酸化物FeO換算値0.08〜0.58%]
Fe酸化物は、酸化鉄、ミルスケールおよび鉄粉表面の酸化鉄等より添加され、溶融スラグの粘性および凝固温度を調整して、水平すみ肉溶接のビード形状を良好にし、下板とのなじみ性を良好にする作用を有する。Fe酸化物FeO換算値0.08%未満では、水平すみ肉溶接でビードの止端部の不揃いや下板とのなじみ性の不良が生じ、ピットが発生しやすくなる。一方、Fe酸化物FeO換算値0.58%を超えると、立向上進溶接、立向下進溶接および上向すみ肉溶接ではスラグの凝固が遅れてメタル垂れが発生し良好なビード形状が得られない。また、スラグ剥離性も不良となる。したがって、Fe酸化物FeO換算値0.08〜0.58%とする。
[Fe oxide : 0.08 to 0.58% in terms of FeO]
Fe oxide is added from iron oxide, mill scale and iron oxide on the iron powder surface, etc., adjusting the viscosity and solidification temperature of the molten slag to improve the bead shape of horizontal fillet welding, and familiar with the lower plate Has the effect of improving the properties. If it is less than 0.08% Fe oxide in FeO converted value, the conformability failure occurs with irregular and lower plate of the toe portion of the bead in horizontal fillet welding, pits are likely to occur. On the other hand, if the Fe oxide is more than 0.58 percent FeO converted value, vertical upward proceeds welding, good bead shape metal sagging occurs a delay in solidification of the slag in the vertical downward advancing welding and upward fillet weld Cannot be obtained. Moreover, slag peelability also becomes poor. Therefore, the Fe oxide is 0.08 to 0.58% in terms of FeO.

[Al/FeO:1.0〜4.5]
水平すみ肉溶接ならびに立向上進溶接、立向下進溶接および上向姿勢すみ肉溶接の両方ともビード形状を良好にするためには、AlとFe酸化物のFeO換算値の比Al/FeOが重要である。Al/FeOが1.0未満では、立向上進溶接、立向下進溶接および上向すみ肉溶接でメタル垂れが発生し、ビード形状およびスラグ剥離性が不良となる。一方、Al/FeOが4.5を超えると、水平すみ肉溶接でビード形状および耐気孔性が不良となる。したがって、Al/FeOは1.0〜4.5とする。
[Al / FeO: 1.0 to 4.5]
In order to improve the bead shape for both horizontal fillet welding and vertical improvement welding, vertical downward welding and upward posture fillet welding, the ratio Al / FeO of the FeO equivalent value of Al and Fe oxide is: is important. When Al / FeO is less than 1.0, metal sag occurs in vertical improvement welding, vertical downward welding and upward fillet welding, resulting in poor bead shape and slag peelability. On the other hand, if Al / FeO exceeds 4.5, the bead shape and the porosity resistance become poor in horizontal fillet welding. Therefore, Al / FeO is set to 1.0 to 4.5.

[Mg:0.1〜0.5%]
Mgは、金属Mg、Al-Mg等から添加され、脱酸剤として作用して溶着金属中の酸素量を低減するとともにSi、Mnの溶接金属への歩留まりを上げて引張強さおよび吸収エネルギーを調整する効果を有する。これに加えて、Mgは、アークの広がり及び溶融金属の流動性調整等の効果がある。Mgが0.1%未満であると、脱酸剤としての効果がなくピットが発生する。一方、0.5%を超えると、アークが荒くなりスパッタ発生量が多くなる。したがって、Mgは0.1〜0.5%とする。
[Mg: 0.1 to 0.5%]
Mg is added from the metals Mg, Al-Mg, etc., and acts as a deoxidizer to reduce the amount of oxygen in the deposited metal and increase the yield of Si and Mn to the weld metal to increase the tensile strength and absorbed energy. Has the effect of adjusting. In addition, Mg has effects such as arc spreading and molten metal fluidity adjustment. If Mg is less than 0.1%, there is no effect as a deoxidizer and pits are generated. On the other hand, if it exceeds 0.5%, the arc becomes rough and the amount of spatter generated increases. Therefore, Mg is 0.1 to 0.5%.

[Ni:0.2〜0.6%、Cr:0.45〜0.75%、Cu:0.3〜0.6%]
Ni、Cr、Cuは金属Ni、金属Cr、Fe−Cr、金属Cuおよびワイヤ表面の銅めっき等より添加され、溶接金属が耐候性の性能を有するために必須の成分である。Niが0.2%未満、Crが0.45%未満、Cuが0.3%未満であると、耐候性の性能を満足することができない。一方、Niが0.6%超、Crが0.75%超、Cuが0.6%を超えると、引張強さが高くなりすぎる。また、耐候性の効果も飽和してしまうとともに、添加量の向上によるコストが高くなりすぎ経済性に劣ることになる。このため、Niは、0.2〜0.6%、Crは、0.45〜0.75%、Cuは、0.3〜0.6%とする。
[Ni: 0.2-0.6%, Cr: 0.45-0.75%, Cu: 0.3-0.6%]
Ni, Cr, and Cu are added from metal Ni, metal Cr, Fe—Cr, metal Cu, copper plating on the surface of the wire, and the like, and are essential components for the weld metal to have weather resistance performance. When Ni is less than 0.2%, Cr is less than 0.45%, and Cu is less than 0.3%, the weather resistance performance cannot be satisfied. On the other hand, if Ni exceeds 0.6%, Cr exceeds 0.75%, and Cu exceeds 0.6%, the tensile strength becomes too high. In addition, the effect of weather resistance is saturated, and the cost due to the improvement of the addition amount becomes too high, resulting in poor economic efficiency. For this reason, Ni is 0.2 to 0.6%, Cr is 0.45 to 0.75%, and Cu is 0.3 to 0.6%.

[BiおよびBi酸化物Bi換算値の合計0.01〜0.04%]
Biは、金属Biや酸化Bi等により添加され、スラグ剥離性を向上させる作用を有する。本発明の耐候性鋼用ガスシールドアーク溶接用フラックス入りワイヤは、薄鋼板(6〜10mm程度)のすみ肉溶接に使用した場合でもスラグ剥離性が劣化しないようにBiを含有させることができる。BiおよびBi酸化物Bi換算値の合計0.01%未満では、その効果が認められず、0.04%を超えると、水平すみ肉溶接でスラグ被包性が劣化し、ビード上脚部にアンダーカットも発生しやくなる。したがって、BiおよびBi酸化物Bi換算値の合計0.01〜0.04%が好ましい。
[Bi and Bi oxide : 0.01 to 0.04% in total in terms of Bi]
Bi is added by metal Bi, oxidized Bi, or the like, and has an effect of improving slag peelability. The flux-cored wire for gas shielded arc welding for weathering steel of the present invention can contain Bi so that the slag peelability does not deteriorate even when used for fillet welding of thin steel plates (about 6 to 10 mm). If it is less than 0.01% Bi and Bi oxides in a total of Bi converted value, the effect is not observed, and when it exceeds 0.04%, slag encapsulated is degraded in the horizontal fillet welding, a bead on the legs Undercuts are likely to occur in the part. Therefore, Bi and Bi oxide are preferably 0.01 to 0.04% in total in terms of Bi.

本発明の耐候性鋼用ガスシールドアーク溶接用フラックス入りワイヤは、フラックス充填後の伸線加工性が良好な軟鋼および低合金鋼の外皮内に、前記限定した成分のフラックスをワイヤ全質量に対して8〜18%程度充填後、孔ダイス伸線やカセットローラ圧延加工により所定のワイヤ径(0.9〜1.6mm)に縮径して製造する鋼製外皮に貫通した隙間がないか、又は隙間があるタイプのワイヤである。   The flux-cored wire for gas shielded arc welding of the weathering steel according to the present invention has a flux of the above-mentioned limited component in the outer shell of mild steel and low alloy steel with good wire drawing workability after flux filling. After about 8 to 18% filling, there is no gap penetrated through the steel outer shell manufactured by reducing the diameter to a predetermined wire diameter (0.9 to 1.6 mm) by hole die drawing or cassette roller rolling, Or it is a type of wire with a gap.

なお本発明を適用したガスシールドアーク溶接用フラックス入りワイヤは、造船、橋梁構造物、鉄骨構造物等の各種分野に用いられる耐候性鋼を溶接する上で使用される。この耐候性鋼とは、鋼表面に保護性錆を形成するように設計された低鉄合金鋼であり、耐候性鋼の耐食性は、表面の錆によって得られる。耐候性鋼の基本成分は、Fe-Cu-Cr-Ni-P、またはFe-Cu-Cr-Ni等である。   The flux-cored wire for gas shield arc welding to which the present invention is applied is used for welding weathering steel used in various fields such as shipbuilding, bridge structures, steel structures and the like. This weather resistant steel is a low iron alloy steel designed to form protective rust on the steel surface, and the corrosion resistance of the weather resistant steel is obtained by rust on the surface. The basic component of the weathering steel is Fe-Cu-Cr-Ni-P, Fe-Cu-Cr-Ni, or the like.

上述した構成からなる本発明を適用した耐候性鋼用ガスシールドアーク溶接用フラックス入りワイヤの実施例について詳細に説明をする。   Examples of the flux-cored wire for gas shielded arc welding for weathering steel to which the present invention having the above-described configuration is applied will be described in detail.

先ず供試材として、軟鋼外皮にフラックスを充填後、縮径して(外皮の軟化および脱水素のため中間焼鈍を1回実施)、表1に示すフラックス充填率13.5%、ワイヤ径1.2mmのシームレスタイプ、すなわち、鋼製外皮に貫通した隙間がないタイプのフラックス入りワイヤを各種試作した。   First, as a test material, a flux was filled in a mild steel skin and then reduced in diameter (intermediate annealing was performed once for softening and dehydrogenation of the skin), and the flux filling rate shown in Table 1 was 13.5% and the wire diameter was 1 Various types of flux-cored wires of 2 mm seamless type, that is, a type without a gap penetrating the steel outer skin, were manufactured.

Figure 0005384312
Figure 0005384312

表1に示す成分からなる試作ワイヤについて、板厚12mmの耐候性鋼板(JIS G3114 SMA490BW)をT字すみ肉試験体とし、表2に示す、水平すみ肉、立向上進、立向下進および上向の各姿勢の溶接条件で半自動によるすみ肉溶接試験を行った。   With respect to the prototype wire composed of the components shown in Table 1, a weather-resistant steel plate (JIS G3114 SMA490BW) having a thickness of 12 mm was used as a T-shaped fillet specimen, and the horizontal fillet, standing up, down and up shown in Table 2 A semi-automated fillet welding test was conducted under the welding conditions of each upward position.

Figure 0005384312
Figure 0005384312

調査項目は、アーク安定性、スラグ被包性、スラグ剥離性、ビード形状、溶接欠陥としてアンダーカットおよび耐ピット性、耐メタル垂れ性を評価した。評価基準については表3に示す通りである。   The survey items were arc stability, slag encapsulation, slag peelability, bead shape, undercut and pit resistance as weld defects, and metal sag resistance. The evaluation criteria are as shown in Table 3.

Figure 0005384312
Figure 0005384312

さらに、JIS Z 3320に準じて板厚20mmの耐候性鋼板(JIS G3114 SMA490BW)を用いて溶着金属試験を表2に示す溶着金属試験溶接条件で行い、引張試験片と衝撃試験片を採取して試験した。なお、引張強さは490MPa以上、吸収エネルギーは試験温度0℃で3本の平均値が85J以上を良好とした。それらの結果を表4にまとめて示す。表4における“○”は、表3における判断区分の“○”に相当し、表4における“×”は、表3における判断区分の“×”に相当する。   Further, a weld metal test was conducted using a weather resistant steel plate (JIS G3114 SMA490BW) having a thickness of 20 mm according to JIS Z 3320 under the weld metal test welding conditions shown in Table 2, and a tensile test piece and an impact test piece were collected. Tested. The tensile strength was 490 MPa or more, and the absorbed energy was a test temperature of 0 ° C., and the average value of three samples was 85 J or more. The results are summarized in Table 4. “◯” in Table 4 corresponds to “◯” in the judgment category in Table 3, and “x” in Table 4 corresponds to “x” in the judgment category in Table 3.

Figure 0005384312
Figure 0005384312

表1および表4中ワイヤNo.1〜8は本発明例、ワイヤNo.9〜22は比較例である。なお表1では、比較例中のワイヤNo.9〜22において、本発明において規定した成分から逸脱しているものには下線を入れている。本発明例であるワイヤNo.1〜8は、Ti酸化物、Si酸化物、Zr酸化物、Na化合物およびK化合物、金属弗化物、C、Si、Mn、Mn/Si、Al、Fe酸化物、Al/FeO、Mg、Ni、Cr、Cuの含有量も適正であるので、アークも安定し、スラグ被包性、スラグ剥離性、ビード形状、アンダーカット、耐ピット性、耐メタル垂れ性がいずれも良好で、機械試験結果も良好であるなど極めて満足な結果であった。なお、BiおよびBi酸化物を含むワイヤNo.1〜No.3、No.6およびNo.7はスラグが自然剥離した。 In Table 1 and Table 4, the wire No. 1-8 are examples of the present invention, wire Nos. 9-22 are comparative examples. In Table 1, the wire No. In 9-22, what deviates from the component prescribed | regulated in this invention is underlined. Wire No. which is an example of the present invention. 1 to 8 are Ti oxide , Si oxide , Zr oxide , Na compound and K compound , metal fluoride, C, Si, Mn, Mn / Si, Al, Fe oxide , Al / FeO, Mg, Ni , Cr, Cu content is also appropriate, arc is stable, slag encapsulation, slag peelability, bead shape, undercut, pit resistance, metal sag resistance are all good, mechanical test results The results were very satisfactory. In addition, wire No. containing Bi and Bi oxide . 1-No. 3, no. 6 and no. In No. 7, the slag spontaneously peeled off.

比較例中ワイヤNo.9は、Ti酸化物TiO2換算値4.22%であり少ないので水平すみ肉溶接でスラグ被包性および剥離性が不良となり、アンダーカットも発生した。また、Alが0.20%であり少ないので立向上進溶接および上向すみ肉溶接においてメタル垂れが生じてスラグ剥離性およびビード形状も不良であった。 In the comparative example, the wire No. 9, Ti oxide because it less 4.22% for TiO 2 converted value becomes slag encapsulated and release properties in the horizontal fillet welding is poor, even occurred undercut. In addition, since Al is 0.20% and is small, metal sag occurred in vertical welding and upward fillet welding, resulting in poor slag peelability and bead shape.

ワイヤNo.10は、Ti酸化物TiO2換算値7.38%であり多いので水平すみ肉溶接でビード形状が不良でピットが発生した。また、BiおよびBi酸化物もBi換算値0.044%であり多いのでアンダーカットも生じた。 Wire No. 10, Ti oxide because it often 7.38% in terms of TiO 2 value pits a poor bead shape in horizontal fillet welding has occurred. Further, also caused undercut because Bi and Bi oxide is also often 0.044 percent Bi converted value.

ワイヤNo.11は、Si酸化物がSiO2 換算値で0.16%であり少ないので水平すみ肉溶接でスラグ被包性が不十分でアンダーカットが発生した。また、Mnが1.08%であり少ないのでピットが生じ、溶接金属の引張強さおよび吸収エネルギーが低かった。 Wire No. No. 11 had a Si oxide content of 0.16% in terms of SiO 2 and was low, so that horizontal fillet welding had insufficient slag encapsulation and undercut occurred. Moreover, since Mn was as low as 1.08%, pits were generated, and the tensile strength and absorbed energy of the weld metal were low.

ワイヤNo.12は、Si酸化物がSiO2 換算値で0.83%であり多いので水平すみ肉溶接でピットが発生し、立向下進溶接や上向すみ肉溶接においてメタル垂れが生じてスラグ剥離およびビード形状も不良であった。また、Mnが2.16%であり多いので引張強さが高くなり、吸収エネルギーが低くなった。 Wire No. No. 12, since Si oxide is 0.83% in terms of SiO 2 , pits are generated in horizontal fillet welding, metal sag occurs in vertical down welding and upward fillet welding, and slag peeling and The bead shape was also poor. Moreover, since Mn is 2.16% and much, tensile strength became high and absorbed energy became low.

ワイヤNo.13は、Zr酸化物がZrO2 換算値で0.05%であり少ないので立向上進溶接、立向下進溶接および上向すみ肉溶接においてメタル垂れが生じてスラグ剥離およびビード形状も不良であった。また、Alが0.68%であり多いので水平すみ肉溶接でビード形状およびスラグ剥離性が不良でピットも発生した。 Wire No. No. 13 has a Zr oxide content of 0.05% in terms of ZrO 2, so metal dripping occurs in vertical welding, vertical downward welding, and fillet welding, resulting in poor slag peeling and bead shape. there were. In addition, since Al was 0.68%, the bead shape and slag peelability were poor in horizontal fillet welding, and pits were generated.

ワイヤNo.14は、Zr酸化物がZrO2 換算値で0.78%であり多いので立向上進溶接、立向下進溶接および上向すみ肉溶接においてメタル垂れが生じてスラグ剥離およびビード形状も不良であった。また、Siが0.24%であり少ないので水平すみ肉溶接でピットが生じ溶接金属の引張強さおよび吸収エネルギーが低かった。 Wire No. No. 14, Zr oxide is 0.78% in terms of ZrO 2, so metal sag occurs in vertical improvement advance welding, vertical downward welding and upward fillet welding, resulting in poor slag peeling and bead shape. there were. Moreover, since Si was 0.24% and was low, pits were generated by horizontal fillet welding, and the tensile strength and absorbed energy of the weld metal were low.

ワイヤNo.15は、Na化合物およびK化合物がNa2O換算値およびK2O換算値の合計0.02であり少ないので各溶接姿勢ともアークが不安定となり、水平すみ肉溶接でビード形状が不良であった。また、Cが0.02%であり少ないので溶接金属の引張強さおよび吸収エネルギーが低かった。 Wire No. In No. 15, Na compound and K compound are 0.02 % in total of Na 2 O conversion value and K 2 O conversion value, so the arc is unstable in each welding position, and the bead shape is poor in horizontal fillet welding Met. Moreover, since C was 0.02% and was small, the tensile strength and absorbed energy of the weld metal were low.

ワイヤNo.16は、Na化合物およびK化合物がNa2O換算値およびK2O換算値の合計0.29%であり多いので水平すみ肉溶接でアンダーカットが発生し、立向下進溶接および上向すみ肉溶接においてメタル垂れが生じてスラグ剥離およびビード形状も不良であった。また、Mgが0.04%であり少ないので水平すみ肉溶接でピットが発生した。 Wire No. In No. 16, Na compound and K compound are 0.29% in total of Na 2 O conversion value and K 2 O conversion value, so undercut occurs in horizontal fillet welding, vertical downward welding and upward Metal sagging occurred during fillet welding, resulting in poor slag peeling and bead shape. Moreover, since Mg was 0.04% and was small, pits were generated in horizontal fillet welding.

ワイヤNo.17は、金属弗化物F換算値0.01%であり少ないので水平すみ肉溶接でアンダーカットおよびピットが発生した。立向下進溶接および上向すみ肉溶接においてメタル垂れが生じてスラグ剥離およびビード形状も不良であった。また、Cが0.09%であり多いので各溶接姿勢ともアークが不安定で、溶接金属の引張強さが高くなり吸収エネルギーが低かった。 Wire No. 17, metal fluorides undercuts and pits generated in the horizontal fillet welding since it less 0.01% in the F converted value. Metal sag occurred in vertical downward welding and upward fillet welding, resulting in poor slag peeling and bead shape. Further, since C was 0.09% and the arc was unstable in each welding position, the tensile strength of the weld metal was increased and the absorbed energy was low.

ワイヤNo.18は、金属弗化物F換算値0.16%であり多いので水平すみ肉溶接でスラグ剥離性が不良であった。また、立向下進溶接、立向下進溶接および上向すみ肉溶接においてメタル垂れが生じてスラグ剥離およびビード形状も不良であった。また、Siが0.63%であり多いので溶接金属の引張強さが高くなり吸収エネルギーが低かった。 Wire No. No. 18 had a metal fluoride content of 0.16% in terms of F, so the slag peelability was poor in horizontal fillet welding. Further, metal sag occurred in vertical downward welding, vertical downward welding and upward fillet welding, and slag peeling and bead shape were also poor. Moreover, since Si was 0.63%, the tensile strength of the weld metal was high and the absorbed energy was low.

ワイヤNo.19は、Mn/Siが2.46であり低いので溶接金属の吸収エネルギーが低かった。また、Fe酸化物FeO換算値0.59%であり多いので立向上進溶接、立向下進溶接および上向すみ肉溶接においてメタル垂れが生じてスラグ剥離およびビード形状も不良であった。 Wire No. No. 19 had a low Mn / Si of 2.46, so the weld metal absorbed energy was low. Further, since the Fe oxide is often 0.59% on FeO converted value vertical upward proceeds welding, metal hanging in vertical downward advancing welding and upward fillet weld slag removability and the bead shape was not good occurs .

ワイヤNo.20は、Mn/Siが5.91であり高いので水平すみ肉溶接でビード形状が不良であった。また、Fe酸化物FeO換算値0.07%であり少ないのでピットも発生した。 Wire No. No. 20 had a high Mn / Si of 5.91, so the bead shape was poor in horizontal fillet welding. Also, pits were also occurred because Fe oxide is less 0.07 percent FeO converted value.

ワイヤNo.21は、Al/FeOが0.79であり低いので立向上進溶接、立向下進溶接および上向すみ肉溶接においてメタル垂れが起こりスラグ剥離およびビード形状も不良であった。   Wire No. No. 21 had a low Al / FeO of 0.79, so that metal sag occurred in vertical improvement welding, vertical downward welding and upward fillet welding, and slag peeling and bead shape were also poor.

ワイヤNo.22は、Al/FeOが4.89であり高いので水平すみ肉溶接においてビード形状が不良となりピットも発生した。また、Mgが0.56%であり多いので各溶接姿勢ともアークが不安定になった。   Wire No. No. 22 had a high Al / FeO of 4.89, so that the bead shape was poor and pits were generated in horizontal fillet welding. Moreover, since Mg was 0.56% and was large, the arc became unstable in each welding posture.

Claims (2)

鋼製外皮にフラックスを充填してなる耐候性鋼用ガスシールドアーク溶接用フラックス入りワイヤにおいて、
ワイヤ全質量に対する質量%で、
Ti酸化物TiO2換算値4.5〜7.0%、
Si酸化物SiO2換算値0.3〜0.6%、
Zr酸化物ZrO2換算値0.1〜0.6%、
Na化合物およびK化合物:Na2O換算値とK2O換算値との合計で0.05〜0.25%、
金属弗化物F換算値0.02〜0.1%、
C:0.03〜0.07%、
Si:0.3〜0.6%、
Mn:1.2〜2.0%、
かつ、Mn/Si:3.0〜5.5、
Al:0.3〜0.6%、
Fe酸化物FeO換算値0.08〜0.58%、
かつ、Al/FeO:1.0〜4.5、
Mg:0.1〜0.5%、
Ni:0.2〜0.6%、
Cr:0.45〜0.75%、
Cu:0.3〜0.6%含有し、残部は主に鋼製外皮のFe分、鉄粉および不可避不純物からなることを特徴とする耐候性鋼用ガスシールドアーク溶接用フラックス入りワイヤ。
In the flux-cored wire for gas shielded arc welding for weathering steel, which is formed by filling the steel outer shell with flux,
% By mass relative to the total mass of the wire
Ti oxide : 4.5 to 7.0% in terms of TiO 2 ,
Si oxide : 0.3 to 0.6% in terms of SiO 2
Zr oxide : 0.1 to 0.6% in terms of ZrO 2 ,
Na compound and K compound: 0.05 to 0.25% in total of Na 2 O converted value and K 2 O converted value,
Metal fluoride : 0.02 to 0.1% in terms of F,
C: 0.03 to 0.07%,
Si: 0.3-0.6%
Mn: 1.2 to 2.0%,
And Mn / Si: 3.0-5.5,
Al: 0.3 to 0.6%,
Fe oxide : 0.08 to 0.58% in terms of FeO,
And Al / FeO: 1.0-4.5,
Mg: 0.1 to 0.5%,
Ni: 0.2 to 0.6%,
Cr: 0.45-0.75%,
A flux-cored wire for gas shielded arc welding for weathering steel, characterized by containing Cu: 0.3 to 0.6%, and the balance mainly consisting of Fe content of steel outer shell, iron powder and inevitable impurities.
BiおよびBi酸化物Bi換算値の合計0.01〜0.04%含有することを特徴とする請求項1記載の耐候性鋼用ガスシールドアーク溶接用フラックス入りワイヤ。 Bi and Bi oxide : The flux-cored wire for gas-shielded arc welding for weather-resistant steel according to claim 1, wherein the total content of Bi is 0.01 to 0.04%.
JP2009287114A 2009-12-18 2009-12-18 Flux-cored wire for gas shielded arc welding for weathering steel Active JP5384312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009287114A JP5384312B2 (en) 2009-12-18 2009-12-18 Flux-cored wire for gas shielded arc welding for weathering steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009287114A JP5384312B2 (en) 2009-12-18 2009-12-18 Flux-cored wire for gas shielded arc welding for weathering steel

Publications (2)

Publication Number Publication Date
JP2011125904A JP2011125904A (en) 2011-06-30
JP5384312B2 true JP5384312B2 (en) 2014-01-08

Family

ID=44289073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009287114A Active JP5384312B2 (en) 2009-12-18 2009-12-18 Flux-cored wire for gas shielded arc welding for weathering steel

Country Status (1)

Country Link
JP (1) JP5384312B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5845168B2 (en) * 2012-12-28 2016-01-20 株式会社神戸製鋼所 Flux-cored wire for gas shielded arc welding and gas shielded arc welding method
KR101560940B1 (en) 2013-12-24 2015-10-15 주식회사 포스코 Light weight steel sheet having excellent strength and ductility
CN104289825A (en) * 2014-08-27 2015-01-21 洛阳双瑞特种合金材料有限公司 Steel seamless flux-cored wire used in mixed gas of AR and CO2
JP2016187828A (en) * 2015-03-30 2016-11-04 株式会社神戸製鋼所 Flux-cored wire for gas shield arc welding
JP6509007B2 (en) 2015-03-30 2019-05-08 株式会社神戸製鋼所 Method of manufacturing flux-cored wire for gas shielded arc welding
JP6385879B2 (en) * 2015-04-15 2018-09-05 日鐵住金溶接工業株式会社 Flux-cored wire for gas shielded arc welding
WO2018087812A1 (en) * 2016-11-08 2018-05-17 新日鐵住金株式会社 Flux-cored wire, method of manufacturing welded joint, and welded joint
CN106695170B (en) * 2016-12-14 2019-02-19 安徽华众焊业有限公司 Stainless steel welded gas-shielded flux-cored wire
JP6958139B2 (en) * 2017-09-05 2021-11-02 日本製鉄株式会社 Flux-cored wire for gas shielded arc welding and welding joint manufacturing method
JP7231499B2 (en) * 2019-06-20 2023-03-01 株式会社神戸製鋼所 Flux-cored wire and welding method
CN110977240A (en) * 2019-11-18 2020-04-10 天津大桥焊材集团有限公司 Welding rod special for 80 kg-grade weathering steel and production method thereof
JP7321958B2 (en) 2020-03-12 2023-08-07 日鉄溶接工業株式会社 Flux-cored wire for gas-shielded arc welding of seawater-resistant steel
CN115008066A (en) * 2022-07-06 2022-09-06 武汉铁锚焊接材料股份有限公司 Self-protection flux-cored wire for weathering resistant steel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09277088A (en) * 1996-04-16 1997-10-28 Nippon Steel Corp Flux cored wire for gas shielded metal-arc welding
JP4209913B2 (en) * 2006-12-15 2009-01-14 株式会社神戸製鋼所 Flux-cored wire for gas shielded arc welding

Also Published As

Publication number Publication date
JP2011125904A (en) 2011-06-30

Similar Documents

Publication Publication Date Title
JP5384312B2 (en) Flux-cored wire for gas shielded arc welding for weathering steel
JP4986562B2 (en) Flux-cored wire for titania-based gas shielded arc welding
JP5704573B2 (en) Flux-cored wire for gas shielded arc welding of crude oil tank steel
JP5717688B2 (en) Flux-cored wire for horizontal fillet gas shielded arc welding of crude oil tank steel
JP5557790B2 (en) Flux-cored wire for 2-electrode horizontal fillet CO2 gas shielded arc welding
JP5014189B2 (en) Two-electrode fillet gas shielded arc welding method
JP4300153B2 (en) Flux-cored wire for gas shielded arc welding
JP4838100B2 (en) Flux-cored wire for horizontal corner gas shielded arc welding for weathering steel
JP5662086B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding
JP6385879B2 (en) Flux-cored wire for gas shielded arc welding
JP4425756B2 (en) Flux-cored wire for horizontal fillet welding
JP6322096B2 (en) Flux-cored wire for gas shielded arc welding
WO2019186811A1 (en) Method for manufacturing flux-cored wire, flux-cored wire and method for manufacturing welded joint
JP4259887B2 (en) Flux-cored wire for gas shielded arc welding for corrosion resistant steel
JP5361797B2 (en) Flux-cored wire for horizontal fillet gas shielded arc welding
JP5938375B2 (en) Flux-cored wire for 2-electrode horizontal fillet CO2 gas shielded arc welding
JP2006224178A (en) Flux-cored wire for gas-shielded arc fillet welding
JP2019171473A (en) Flux-cored wire
JP5863570B2 (en) Flux-cored wire for gas shielded arc welding
JP5409132B2 (en) Flux-cored wire for gas shielded arc welding
JP2010194571A (en) Flux-cored wire for two-electrode horizontal fillet gas shield arc welding
JP2021090980A (en) Flux-cored wire for gas shielded arc welding for coastal weather-resistant steel
WO2019186797A1 (en) Method for manufacturing flux-cored wire, flux-cored wire and method for manufacturing welded joint
JP2021115596A (en) Flux cored wire for welding galvanized steel sheet
JP6463234B2 (en) Flux-cored wire for two-electrode horizontal fillet gas shielded arc welding of crude oil tank steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111007

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131002

R150 Certificate of patent or registration of utility model

Ref document number: 5384312

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250