JP2021135141A - Device and method of preparing particle evaluation specimen - Google Patents

Device and method of preparing particle evaluation specimen Download PDF

Info

Publication number
JP2021135141A
JP2021135141A JP2020030714A JP2020030714A JP2021135141A JP 2021135141 A JP2021135141 A JP 2021135141A JP 2020030714 A JP2020030714 A JP 2020030714A JP 2020030714 A JP2020030714 A JP 2020030714A JP 2021135141 A JP2021135141 A JP 2021135141A
Authority
JP
Japan
Prior art keywords
substrate
sample
sample liquid
phase transition
particle evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020030714A
Other languages
Japanese (ja)
Inventor
高志 時崎
Takashi Tokisaki
高志 時崎
知夫 重藤
Tomoo Shigefuji
知夫 重藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2020030714A priority Critical patent/JP2021135141A/en
Publication of JP2021135141A publication Critical patent/JP2021135141A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

To prepare a supercooled nanoparticle specimen liquid thin film in a manner simpler and enabling maintaining high quality stably for a long period of time to form a particle evaluation specimen for an electron microscope and an atomic force microscope.SOLUTION: A device of preparing a particle evaluation specimen according to the present invention includes: a flat substrate 5 to which a hydrophilization process is performed to make a contact angle 10° or less with respect to specimen liquid S in which particles for evaluation are mixed and dispersed, a sealed container 2 that stores the flat substrate 5 and shuts it off from outside air, a cooler 1 that cools the specimen liquid S dropped on the flat substrate 5 to a solidification temperature or lower to make it supercooled, and a vibrating device 3 that applies impact to the substrate, transitions it from the supercooled state and freezes the specimen liquid S. After freezing the specimen liquid S, outside air in the sealed container 2 is sucked by a vacuum pump 8, the frozen specimen liquid S is sublimated, and water content in the specimen liquid S is dried to prepare the particle evaluation specimen.SELECTED DRAWING: Figure 1

Description

本発明は、電子顕微鏡、原子間力顕微鏡によって粒子形状などを評価するための粒子評価用標本の作製装置及び作製方法に関し、特に、ナノ粒子の大きさ、形状の分布を評価するため、ナノ粒子を水等の液体に混入し、氷薄膜に固定させた状態から標本を作製するための標本作製装置及び作製方法に関するものである。 The present invention relates to an apparatus and a method for preparing a particle evaluation sample for evaluating particle shape and the like by an electron microscope and an atomic force microscope, and particularly for evaluating the size and shape distribution of nanoparticles. The present invention relates to a sample preparation device and a preparation method for preparing a sample from a state in which the particles are mixed with a liquid such as water and fixed to an ice thin film.

このような粒子評価で用いられる試料は、一般には水または有機溶媒中にナノ粒子を分散した懸濁液をシリコン基板などの平坦基板上に滴下し、その後に自然乾燥して作製される。この自然乾燥法の乾燥過程においてナノ粒子が移動するため、多数のナノ粒子がリング状に堆積した構造(コーヒーリング)が形成されてしまう。
そのため、リング内側のナノ粒子が薄く分散した領域などを観察することで、粒子径、粒子径分布や形状評価がなされてきた。
一方、凍結真空乾燥法では、ナノ粒子懸濁液に対して液体窒素(-196℃)と高熱伝導特殊平坦基板(金メッキされた平坦銅ブロック)を用いて、超高速で凍結させて均一分散を得る手法が知られている。
The sample used in such particle evaluation is generally prepared by dropping a suspension in which nanoparticles are dispersed in water or an organic solvent onto a flat substrate such as a silicon substrate, and then air-drying. Since the nanoparticles move during the drying process of this natural drying method, a structure (coffee ring) in which a large number of nanoparticles are deposited in a ring shape is formed.
Therefore, the particle size, particle size distribution, and shape have been evaluated by observing a region in which nanoparticles inside the ring are thinly dispersed.
On the other hand, in the freeze-vacuum drying method, liquid nitrogen (-196 ° C) and a high thermal conductivity special flat substrate (gold-plated flat copper block) are used for the nanoparticle suspension to freeze at ultra-high speed for uniform dispersion. The method of obtaining is known.

また、細胞等の観察においても極低温を用いた急速凍結法が用いられている。
一方、生命工学で用いられる急速凍結の別の方法としては、特許文献1に示されるような試料懸濁液の過冷却を用いた手法も提案されている。
これに対して、発明者らは、特許文献2により、試料分散液滴を低温下にあるシリコン平坦基板に衝突させて、ナノ粒子が均一に分散した氷薄膜を作製する方法を提案している。
In addition, a quick freezing method using an extremely low temperature is also used for observing cells and the like.
On the other hand, as another method of quick freezing used in biotechnology, a method using supercooling of a sample suspension as shown in Patent Document 1 has also been proposed.
On the other hand, in Patent Document 2, the inventors have proposed a method of colliding a sample-dispersed droplet with a silicon flat substrate at a low temperature to prepare an ice thin film in which nanoparticles are uniformly dispersed. ..

また、類似の氷薄膜作製方法として、特許文献3では、2枚のシリコン平坦基板で挟んだ試料液を急速凍結させる方法が提案されている。これらの手法では共通して、瞬間的に試料液膜を凍結させて氷薄膜を作製することがキーポイントとなっており、より薄い試料液膜から凍結を行うことにより、凍結速度の向上が期待される。 Further, as a similar method for producing an ice thin film, Patent Document 3 proposes a method of rapidly freezing a sample liquid sandwiched between two flat silicon substrates. In common with these methods, the key point is to instantly freeze the sample liquid film to prepare an ice thin film, and it is expected that the freezing rate will be improved by freezing from a thinner sample liquid film. Will be done.

特開2009−31272号公報Japanese Unexamined Patent Publication No. 2009-31272 WO2018/020877WO2018 / 020877 特開2017−194307号公報Japanese Unexamined Patent Publication No. 2017-194307

自然乾燥法は実用上簡易な方法であるが、ナノ粒子濃度が基板上の場所で大きく異なり、評価位置によりナノ粒子の直径や形状などが一致している保証がない。
また、従来の凍結真空乾燥法では液体窒素(-196℃)や高熱伝導特殊平坦基板が必要で、実用面での課題があった。
一方、特許文献3に示された凍結真空乾燥法では、比較的低い温度(-30℃以下)にシリコン平坦基板を保つこと、および液滴を高速で基板に衝突させる装置が必要であった。そのために装置が複雑、かつ作製された試料の質の安定性が低くなる課題があった。
The natural drying method is a simple method in practice, but the nanoparticle concentration varies greatly depending on the location on the substrate, and there is no guarantee that the diameter and shape of the nanoparticles will match depending on the evaluation position.
In addition, the conventional freeze-vacuum drying method requires liquid nitrogen (-196 ° C) and a special flat substrate with high thermal conductivity, which poses a problem in practical use.
On the other hand, in the freeze-vacuum drying method shown in Patent Document 3, a device for keeping a silicon flat substrate at a relatively low temperature (-30 ° C or lower) and for causing droplets to collide with the substrate at high speed is required. Therefore, there is a problem that the apparatus is complicated and the quality stability of the prepared sample becomes low.

氷薄膜の作製方法として、水を基板で挟んで凍結する方法が提案されているが、氷膜厚の膜厚及びその分布の制御が難しく、条件によっては、瞬間的に氷膜を形成できない場合も想定される。
さらに、従来の過冷却を用いた試料作製法においても一般に不純物が多いほど過冷却が困難になることが知られており、試料液中のナノ粒子濃度が高い場合、安定した過冷却状態を維持することができず、過冷却状態から制御された状態で氷薄膜を作製することは困難であった。ここで、制御された状態で氷薄膜を作製するとは、人為的な操作により瞬間的に試料液の薄膜を凍結させることを指す。
As a method for producing an ice thin film, a method of sandwiching water between substrates and freezing has been proposed, but when it is difficult to control the thickness and distribution of the ice film thickness and it is not possible to form an ice film instantaneously depending on the conditions. Is also assumed.
Furthermore, it is generally known that supercooling becomes more difficult as the amount of impurities increases even in the conventional sample preparation method using supercooling, and when the concentration of nanoparticles in the sample liquid is high, a stable supercooled state is maintained. It was difficult to prepare an ice thin film in a controlled state from a supercooled state. Here, to produce an ice thin film in a controlled state means to momentarily freeze the thin film of the sample liquid by an artificial operation.

そこで、本発明の目的は、より簡便で、しかも、高品質を長時間にわたり安定して維持できる過冷却状態の試料液薄膜を作製し、その状態を維持した状態で氷薄膜を作製し、粒子評価用標本を形成することにある。 Therefore, an object of the present invention is to prepare a sample liquid thin film in a supercooled state, which is simpler and can stably maintain high quality for a long period of time, and to prepare an ice thin film in the state of maintaining the state, to prepare particles. It is to form an evaluation sample.

この課題を解決するため、本発明の粒子評価用標本作製装置は、評価対象の粒子が分散した状態で混入された試料液に対し、接触角が10°以下となるよう超親水化処理された平坦な基板と、基板を収納し、外気から遮断する密閉容器と、基板に滴下された試料液を凝固温度以下に冷却し、過冷却状態とする冷却装置と、基板に対し衝撃を与えて過冷却状態から遷移させ、試料液を凍結あるいは凝固させる相転移装置と、密閉容器内の外気を吸引し、相転移した試料液を昇華させて、試料液中の水分を乾燥させる真空乾燥装置から構成される。
また、本発明の粒子評価用標本の作製方法は、評価対象の粒子が分散した状態で混入された試料液に対し、接触角が10°以下となるよう超親水化処理された基板を準備する第1の工程と、基板に対し、制限された量の試料液を滴下する第2の工程と、基板を冷却し、滴下された試料液を凝固温度以下の過冷却状態に維持する第3の工程と、基板に対し相転移装置により衝撃を与えて過冷却状態から遷移させ、試料液を凍結(凝固)させ相転移させる第4の工程と、相転移して液相となった試料液を真空乾燥装置を用いて瞬時に乾燥させる第5の工程から構成される。
In order to solve this problem, the sample preparation device for particle evaluation of the present invention was supercooled so that the contact angle was 10 ° or less with respect to the sample liquid mixed in a state in which the particles to be evaluated were dispersed. A flat substrate, a closed container that stores the substrate and shuts it out from the outside air, a cooling device that cools the sample liquid dropped on the substrate below the solidification temperature to make it supercooled, and an impact on the substrate. Consists of a phase transition device that transitions from the cooled state and freezes or solidifies the sample liquid, and a vacuum drying device that sucks the outside air in the closed container to sublimate the phase-transitioned sample liquid and dry the moisture in the sample liquid. Will be done.
Further, in the method for preparing a sample for particle evaluation of the present invention, a substrate that has been supercooled so that the contact angle is 10 ° or less with respect to the sample liquid mixed in a state in which the particles to be evaluated are dispersed is prepared. The first step, the second step of dropping a limited amount of the sample liquid onto the substrate, and the third step of cooling the substrate and maintaining the dropped sample liquid in a supercooled state below the solidification temperature. The process, the fourth step in which the substrate is impacted by a phase transition device to transition from the supercooled state, and the sample liquid is frozen (solidified) to undergo a phase transition, and the sample liquid that has undergone a phase transition to become a liquid phase It consists of a fifth step of instantly drying using a vacuum drying device.

本発明によれば、従来技術では得られない均一で薄い氷膜を実用的で簡便な装置と作製条件で得ることが可能となり、材料開発分野ではナノ粒子等の顕微評価用標本を低コスト、短時間で作製することが可能となる。 According to the present invention, it is possible to obtain a uniform and thin ice film that cannot be obtained by the prior art with a practical and simple device and manufacturing conditions, and in the field of material development, a specimen for microscopic evaluation such as nanoparticles can be obtained at low cost. It can be manufactured in a short time.

図1は、本発明に基づく粒子評価用標本作製装置の実施例を示す全体構成図である。FIG. 1 is an overall configuration diagram showing an example of a particle evaluation sample preparation device based on the present invention. 図2は、過冷却状態の液滴が広がって静止している状態のカメラ画像である。FIG. 2 is a camera image of a supercooled droplet spreading and standing still. 図3は、シリコン平坦基板上での過冷却状態の試料液が瞬時に凍結した際のカメラ画像である。FIG. 3 is a camera image when the sample liquid in the supercooled state on the silicon flat substrate is instantly frozen. 図4は、真空乾燥後のシリコン表面からの光散乱を観察したカメラ画像である。FIG. 4 is a camera image of observing light scattering from the silicon surface after vacuum drying. 図5は、試料に対して推定される氷膜厚の分布を示す断面グラフである。FIG. 5 is a cross-sectional graph showing the estimated distribution of ice film thickness with respect to the sample.

図1に、本発明に基づく粒子評価用標本作製装置の実施例を示す。
冷却器1の凹部には、密閉容器2が収納されており、密閉容器2の内部には、加振装置3が設置されている。加振装置3の表面には、所定の熱容量を備えた銅板等の蓄熱板4が設置されており、この蓄熱板4の表面に、ナノ粒子等が混入された試料液Sが滴下される平坦基板5が載置される。また、密閉容器2の上部には、外気を遮断する断熱用キャップ6、バルブ7を介して、真空ポンプ8が接続されている。
なお、試料液Sは、ナノ粒子を分散させる分散剤を含有させた水を主成分としたものである。また、平坦基板5の材質、それ自体の熱容量によっては、必ずしも蓄熱板4を設ける必要はない。
FIG. 1 shows an example of a sample preparation device for particle evaluation based on the present invention.
A closed container 2 is housed in the recess of the cooler 1, and a vibration exciter 3 is installed inside the closed container 2. A heat storage plate 4 such as a copper plate having a predetermined heat capacity is installed on the surface of the vibration exciter 3, and a flat sample liquid S mixed with nanoparticles or the like is dropped on the surface of the heat storage plate 4. The substrate 5 is placed. Further, a vacuum pump 8 is connected to the upper part of the closed container 2 via a heat insulating cap 6 and a valve 7 for blocking the outside air.
The sample liquid S contains water containing a dispersant for dispersing nanoparticles as a main component. Further, depending on the material of the flat substrate 5 and the heat capacity of itself, it is not always necessary to provide the heat storage plate 4.

平坦基板5は、例えば、シリカ平坦基板あるいは通常の板ガラス(ソーダガラス製等)から形成された、いわゆるプレパラートである。その試料滴下表面は、既存のオゾン/UV表面処理装置等を用いて、試料液Sとの接触角が10°以下となるよう親水化処理(以下、これを「超親水化処理」という。)がなされている。 The flat substrate 5 is, for example, a so-called preparation formed from a silica flat substrate or ordinary flat glass (made of soda glass or the like). The sample dropping surface is hydrophilized using an existing ozone / UV surface treatment device or the like so that the contact angle with the sample liquid S is 10 ° or less (hereinafter, this is referred to as “superhydrophilic treatment”). Has been made.

試料液S中に所定の濃度で混入されたナノ粒子を評価するための標本を作製する際には、まず、大気開放された密閉容器2内において、後述するように、予め冷却器1により冷却(-10℃〜-20℃)された平坦基板5の表面に、ピペットあるいは密閉容器2に接続された滴下装置により、予め定められた量の試料液Sを滴下する。その後、密閉容器2を大気圧状態で封止する。
平坦基板5の表面は超親水化処理がなされているため、試料液は滴下直後に表面に広く伸展するとともに温度が低下していく。最終的に液相の状態での膜厚は100μm以下となり、平坦基板5と同じ温度となって過冷却状態に至る。なお、この過冷却状態は10分以上安定して維持されることが確認されている。
When preparing a sample for evaluating nanoparticles mixed in the sample liquid S at a predetermined concentration, first, the sample is cooled in advance by a cooler 1 in a closed container 2 opened to the atmosphere, as will be described later. A predetermined amount of the sample liquid S is dropped onto the surface of the flat substrate 5 (-10 ° C. to -20 ° C.) by a pipette or a dropping device connected to the closed container 2. Then, the closed container 2 is sealed in an atmospheric pressure state.
Since the surface of the flat substrate 5 is superhydrophilicized, the sample liquid spreads widely on the surface immediately after dropping and the temperature drops. Finally, the film thickness in the liquid phase state becomes 100 μm or less, becomes the same temperature as the flat substrate 5, and reaches a supercooled state. It has been confirmed that this supercooled state is maintained stably for 10 minutes or more.

なお、滴下する試料液Sの量は、例えば1μLとして、伸展した時点で標本として好適な大きさとなるよう調整されている。また、ナノ粒子の濃度は、真空乾燥後の平坦基板5の表面で粒子どうしが重なることなく、個々の粒子の粒子径、粒子径分布、形状について、最適な評価が行えるよう選定されている。
なお、実験では、粒子直径50〜100nmのナノ粒子の場合、1ccあたり1x1010個前後が電子顕微鏡、原子間力顕微鏡での観察に適した濃度であった。
The amount of the sample liquid S to be dropped is set to, for example, 1 μL, and is adjusted to a size suitable for a sample when it is stretched. Further, the concentration of nanoparticles is selected so that the particle size, particle size distribution, and shape of individual particles can be optimally evaluated without overlapping the particles on the surface of the flat substrate 5 after vacuum drying.
In the experiment, in the case of nanoparticles with a particle diameter of 50 to 100 nm, about 1x10 10 particles per cc was a concentration suitable for observation with an electron microscope and an atomic force microscope.

また別の方法として、室温状態の平坦基板5に試料液Sを滴下して、平坦基板5の超親水性を利用して試料液を十分に伸展させたのちに、平坦基板5を予め冷却した密閉容器2内に収納して、試料液の薄膜と平坦基板を同時に冷却してもよい。この場合でも、上述と同様に薄く伸展した試料液の膜を得ることが可能である。
なお、冷却器1による冷却温度は、凍結速度を高める観点からは、低温にするほど好ましいが、過度に低温にすると、わずかな衝撃で過冷却状態から凝固状態に遷移してしまうため、-15℃付近が最適である。
As another method, the sample liquid S was dropped onto the flat substrate 5 at room temperature, the sample liquid was sufficiently extended by utilizing the superhydrophilicity of the flat substrate 5, and then the flat substrate 5 was cooled in advance. The thin film of the sample liquid and the flat substrate may be cooled at the same time by being housed in the closed container 2. Even in this case, it is possible to obtain a thinly stretched film of the sample solution as described above.
The cooling temperature by the cooler 1 is preferably lowered as it is lowered from the viewpoint of increasing the freezing rate, but if the cooling temperature is excessively low, the supercooled state is changed to the solidified state with a slight impact. The optimum temperature is around ° C.

平坦基板5の表面上に伸展し、過冷却状態となった試料液Sに対し、加振装置3により一定以上の大きさの振動を与えると、一瞬のうちに試料液Sに相転移が発生し、凝固あるいは凍結する。すなわち、加振装置3は、相転移装置として機能し、ナノ粒子が適度な密度で分散した状態を維持したまま、試料液Sの薄膜を瞬時に凍結させる。
この段階で、冷却器1を停止し、バルブ7を開いて真空ポンプ8を作動させ、密閉容器2内の圧力を急速に低下させると、試料液Sの凍結した薄膜中の水分が昇華されて乾燥する。これにより、ナノ粒子が適度な密度で分散した状態を維持したまま平坦基板5に固着した状態の標本が作製されることになる。
When the sample liquid S that extends on the surface of the flat substrate 5 and is in a supercooled state is vibrated by the vibrating device 3 with a certain magnitude or more, a phase transition occurs in the sample liquid S in an instant. And coagulate or freeze. That is, the vibrating device 3 functions as a phase transition device, and instantly freezes the thin film of the sample liquid S while maintaining the state in which the nanoparticles are dispersed at an appropriate density.
At this stage, when the cooler 1 is stopped, the valve 7 is opened, the vacuum pump 8 is operated, and the pressure in the closed container 2 is rapidly reduced, the water content in the frozen thin film of the sample liquid S is sublimated. dry. As a result, a specimen in a state in which the nanoparticles are fixed to the flat substrate 5 while maintaining a state in which the nanoparticles are dispersed at an appropriate density is produced.

なお、この実施例では、相転移装置として蓄熱板4の下面に電動モータからなる加振装置3を設置したが、平坦基板5の上面側から振動を与える加振装置3を設けたり、密閉容器2内に設置したパルス圧力波発生装置、例えばスピーカにより、最大±2000Pa程度のパルス圧力を与えるものでもよい。
また、真空ポンプ8を用いて、バルブ7を急速に開放することで、密閉容器2内の圧力を急速に低下させることも相転移装置として機能する。冷却器1として一般的な冷凍装置を用いたが、スターリング冷凍機、ペルチェ冷凍機などを用いることもできる。特に、ペルチェ冷凍機は、振動が少なく、温度制御性にも優れているため、冷却器1として適したものである。
In this embodiment, a vibration device 3 composed of an electric motor is installed on the lower surface of the heat storage plate 4 as a phase transition device, but a vibration device 3 that gives vibration from the upper surface side of the flat substrate 5 may be provided or a closed container. A pulse pressure wave generator installed in 2, for example, a speaker may give a maximum pulse pressure of about ± 2000 Pa.
Further, by using the vacuum pump 8 to rapidly open the valve 7, the pressure in the closed container 2 can be rapidly reduced, which also functions as a phase transition device. A general refrigerator is used as the cooler 1, but a Stirling refrigerator, a Perche refrigerator, or the like can also be used. In particular, the Perche refrigerator is suitable as the cooler 1 because it has less vibration and is excellent in temperature controllability.

次に、実験結果について説明する。
試料液としては、氷膜の厚さ分布評価とナノ粒子分散試料としての品質を調べるために、過冷却する純水に対し、平均直径100nmの市販ポリスチレンラテックス球(Micromer、Micromod社製)を粒子濃度1×1010個/cm3の割合で混合したものを使用した。
Next, the experimental results will be described.
As the sample liquid, in order to evaluate the thickness distribution of the ice film and examine the quality as a nanoparticle dispersion sample, commercially available polystyrene latex spheres (Micromer, manufactured by Micromod) with an average diameter of 100 nm are used for supercooled pure water. A mixture of 1 × 10 10 particles / cm 3 in concentration was used.

平坦基板5として、アルコール等でよく清浄した熱酸化膜付きのシリコン平坦基板(電子デバイス用、厚さ0.5mm)を用い、市販のUVオゾン表面改質器(ASM401OZ、あすみ技研製)内に置き、10分間のUV光照射により基板表面を超親水化処理した。 As the flat substrate 5, a silicon flat substrate with a thermal oxide film (for electronic devices, thickness 0.5 mm) that has been thoroughly cleaned with alcohol or the like is used and placed in a commercially available UV ozone surface modifier (ASM401OZ, manufactured by Asumi Giken). , The surface of the substrate was superhydrophilicized by UV irradiation for 10 minutes.

平坦基板5は、蓄熱板4となる銅板2(直径25mm、厚さ2mm)に張り付けられ、市販の小型冷凍機1(CryoPorter、CS-80CP、サイニクス社製)を用いて-15℃に冷却した。
その後、マイクロピペットを用いて試料液1μLを分取して平坦基板5上に滴下した。
The flat substrate 5 was attached to a copper plate 2 (diameter 25 mm, thickness 2 mm) to be a heat storage plate 4, and cooled to -15 ° C. using a commercially available small refrigerator 1 (CryoPorter, CS-80CP, manufactured by Sinix). ..
Then, 1 μL of the sample solution was separated using a micropipette and dropped onto the flat substrate 5.

次に、相転移装置として、スピーカ(F100A123、東京コーン紙製作所製)を平坦基板5の上面に対向して冷却器1の上部に設置し、±2000Pa程度の最大音圧で、過冷却状態の試料液にパルス状の圧力波を与えた。 Next, as a phase transition device, a speaker (F100A123, manufactured by Tokyo Corn Paper Mfg. Co., Ltd.) was installed on the upper part of the cooler 1 facing the upper surface of the flat substrate 5, and was in a supercooled state with a maximum sound pressure of about ± 2000 Pa. A pulsed pressure wave was applied to the sample solution.

上記のように滴下した試料液の薄膜、凍結後の氷薄膜を、冷凍機の上部に設置したカメラにより観察した。さらに、氷薄膜となった試料液の付いたシリコン平坦基板を真空槽に移送して、真空乾燥により氷を昇華した後に残留したナノ粒子の分散状況を光学顕微鏡にて観察した。 The thin film of the sample liquid dropped as described above and the ice thin film after freezing were observed with a camera installed on the upper part of the refrigerator. Further, the silicon flat substrate with the sample solution which became an ice thin film was transferred to a vacuum chamber, and the dispersion state of the nanoparticles remaining after the ice was sublimated by vacuum drying was observed with an optical microscope.

-15℃に冷却した平坦基板5上に試料液1μLを滴下すると、液滴が数秒で直径5mm程度まで広がって静止していることが目測で実測された。
なお、図2に示すカメラ画像では、試料液の屈折率および液面の平坦性のため、カメラでは液滴を通して透過された平坦基板5(シリコン基板)の表面が映し出され、液相の状態は必ずしも明確になっていない。
When 1 μL of the sample solution was dropped on the flat substrate 5 cooled to -15 ° C., it was visually measured that the droplets spread to a diameter of about 5 mm in a few seconds and were stationary.
In the camera image shown in FIG. 2, due to the refractive index of the sample liquid and the flatness of the liquid surface, the surface of the flat substrate 5 (silicon substrate) transmitted through the droplets is projected by the camera, and the state of the liquid phase is changed. Not always clear.

この状態で数分経過しても液滴の直径はほとんど変化しないため、過冷却状態は安定に存在しているといえる。
滴下から1分後に前述のスピーカをシリコン平坦基板上に近接させ、パルス電圧を印加して圧力波を発生させたところ、図3に示すように、氷薄膜と見られる干渉色を有するリング構造が観察された。
このリング構造の直径は約5mmで基板上に延伸した液滴と同程度であることからも、液滴が凍った構造であることが分かる。
この構造は、シリコン平坦基板が-15℃の状態で安定に存在し、試料液の体積1μLと氷膜の直径5mmから平均膜厚は51μmと推測される。
Since the diameter of the droplet hardly changes even after several minutes have passed in this state, it can be said that the supercooled state exists stably.
One minute after the dripping, the above-mentioned speaker was brought close to the silicon flat substrate, and a pulse voltage was applied to generate a pressure wave. It was observed.
The diameter of this ring structure is about 5 mm, which is about the same as the droplets stretched on the substrate, which indicates that the droplets have a frozen structure.
In this structure, a flat silicon substrate exists stably at -15 ° C, and the average film thickness is estimated to be 51 μm from the volume of the sample solution of 1 μL and the diameter of the ice film of 5 mm.

次に膜の均一性を確認するために、上記のように氷薄膜となった試料を真空乾燥した後、特許文献WO2018/070324に記載された方法に従って、斜め上方から白色光を照射し、直上から基板表面からの光散乱強度分布を顕微鏡観察した。
その結果、図4に示すように、散乱光強度分布はほぼ均一で中心部が強く、端部では弱くなっていることが確認された。
散乱光強度は粒子の濃度にほぼ比例していることから、氷薄膜の厚い液滴中心付近では多数の粒子が高濃度に堆積しており、一方、端部では膜厚が薄いために堆積した粒子数の濃度が低いことを示している。このように、この散乱光強度から氷膜の厚さ分布が推定できる。
Next, in order to confirm the uniformity of the film, after vacuum-drying the sample formed as an ice thin film as described above, white light is irradiated from diagonally above according to the method described in Patent Document WO2018 / 070324, and the sample is directly above. The light scattering intensity distribution from the substrate surface was observed under a microscope.
As a result, as shown in FIG. 4, it was confirmed that the scattered light intensity distribution was almost uniform, the central portion was strong, and the edge portion was weak.
Since the scattered light intensity is almost proportional to the concentration of the particles, a large number of particles are deposited at a high concentration near the center of the thick droplet of the ice thin film, while the thin film is deposited at the end. It indicates that the concentration of the number of particles is low. In this way, the thickness distribution of the ice film can be estimated from this scattered light intensity.

図4の液滴跡のほぼ中心を通る位置で散乱光強度の位置依存性を取得し、これを氷膜厚に換算したグラフを図5に示す。なお、図5におけるX方向グラフの横軸は、図4に矢印で示すとおり、水平方向左端を基準としたmm単位の距離であり、Y方向グラフの横軸は、垂直方向上端を基準としたmm単位の距離である。
氷膜厚への換算には、滴下した試料液の体積を1μLとして、上述の考え方に基づいて氷膜厚の分布を推定している。この結果から、中心付近の最大膜厚は92μmであり、粒子評価用標本として適切な厚さが得られていることが確認できた。
X方向グラフ、Y方向グラフともに同様の形状をしており、膜厚分布の対称性も高いことが分かる。とくに、中心付近の直径2mmの範囲内では、膜厚が一定になっている領域が形成されていることが分かる。
FIG. 5 shows a graph in which the position dependence of the scattered light intensity was acquired at a position almost passing through the center of the droplet trace in FIG. 4 and converted into the ice film thickness. As shown by the arrow in FIG. 4, the horizontal axis of the X-direction graph in FIG. 5 is the distance in mm units with respect to the left end in the horizontal direction, and the horizontal axis of the Y-direction graph is with reference to the upper end in the vertical direction. Distance in mm.
For conversion to ice film thickness, the volume of the dropped sample liquid is 1 μL, and the distribution of ice film thickness is estimated based on the above concept. From this result, it was confirmed that the maximum film thickness near the center was 92 μm, and an appropriate thickness was obtained as a sample for particle evaluation.
It can be seen that both the X-direction graph and the Y-direction graph have the same shape, and the symmetry of the film thickness distribution is high. In particular, it can be seen that a region having a constant film thickness is formed within a range of 2 mm in diameter near the center.

1:冷却器
2:密閉容器
3:加振装置
4:蓄熱板
5:平坦基板
6:断熱用キャップ
7:バルブ
8:真空ポンプ

1: Cooler 2: Sealed container 3: Vibration device 4: Heat storage plate 5: Flat substrate 6: Insulation cap 7: Valve 8: Vacuum pump

Claims (6)

評価対象の粒子が分散した状態で混入された試料液に対し、接触角が10°以下となるよう超親水化処理された平坦な基板と、
前記基板を収納し、外気から遮断する密閉容器と、
前記基板に滴下された試料液を凝固温度以下に冷却し、過冷却状態とする冷却装置と、
前記基板に対し衝撃を与えて過冷却状態から遷移させ、試料液を凍結あるいは凝固させる相転移装置と、
前記密閉容器内の外気を吸引し、相転移した試料液を昇華させて、試料液中の水分を乾燥させる真空乾燥装置からなる粒子評価用標本作製装置。
A flat substrate that has been superhydrophilized so that the contact angle is 10 ° or less with respect to the sample liquid mixed with the particles to be evaluated dispersed.
A closed container that stores the substrate and shuts it out from the outside air.
A cooling device that cools the sample liquid dropped on the substrate below the solidification temperature to bring it into a supercooled state.
A phase transition device that freezes or solidifies the sample liquid by giving an impact to the substrate to transition from the supercooled state.
A sample preparation device for particle evaluation, which comprises a vacuum drying device that sucks the outside air in the closed container, sublimates the sample liquid that has undergone a phase transition, and dries the water content in the sample liquid.
前記基板を蓄熱板を介して前記密閉容器の内部に載置したことを特徴とする請求項1に記載された粒子評価用標本作製装置。 The particle evaluation specimen preparation apparatus according to claim 1, wherein the substrate is placed inside the closed container via a heat storage plate. 前記相転移装置として、前記密閉容器の内部に設置した加振装置を用いたことを特徴とする請求項1または2に記載された粒子評価用標本作製装置。 The particle evaluation sample preparation device according to claim 1 or 2, wherein a vibration device installed inside the closed container is used as the phase transition device. 前記相転移装置として、前記密閉容器の内部に設置したパルス圧力波発生装置を用いたことを特徴とする請求項1または2に記載された粒子評価用標本作製装置。 The particle evaluation specimen preparation apparatus according to claim 1 or 2, wherein a pulse pressure wave generator installed inside the closed container is used as the phase transition apparatus. 前期相転移装置として、前期密閉容器内部の圧力を急激に低下させる真空ポンプ及びバルブを用いたことを特徴とする請求項1または2に記載された粒子評価用標本作製装置。 The particle evaluation sample preparation device according to claim 1 or 2, wherein as the early phase transition device, a vacuum pump and a valve that rapidly reduce the pressure inside the closed container in the previous period are used. 評価対象の粒子が分散した状態で混入された試料液に対し、接触角が10°以下となるよう超親水化処理された基板を準備する第1の工程と、
前記基板に対し、制限された量の試料液を滴下する第2の工程と、
前記基板を冷却し、滴下された試料液を凝固温度以下の過冷却状態に維持する第3の工程と、
前記基板に対し相転移装置により衝撃を与えて過冷却状態から遷移させ、試料液を凍結(凝固)させ相転移させる第4の工程と、
相転移して液相となった試料液を真空乾燥装置を用いて瞬時に乾燥させる第5の工程からなる粒子評価用標本の作製方法。

The first step of preparing a substrate that has been superhydrophilized so that the contact angle is 10 ° or less with respect to the sample liquid mixed with the particles to be evaluated dispersed.
A second step of dropping a limited amount of the sample liquid onto the substrate, and
A third step of cooling the substrate and maintaining the dropped sample liquid in a supercooled state below the solidification temperature.
A fourth step in which the substrate is impacted by a phase transition device to transition from the supercooled state, and the sample liquid is frozen (solidified) to undergo a phase transition.
A method for preparing a sample for particle evaluation, which comprises a fifth step of instantly drying a sample solution that has undergone a phase transition to become a liquid phase using a vacuum dryer.

JP2020030714A 2020-02-26 2020-02-26 Device and method of preparing particle evaluation specimen Pending JP2021135141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020030714A JP2021135141A (en) 2020-02-26 2020-02-26 Device and method of preparing particle evaluation specimen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020030714A JP2021135141A (en) 2020-02-26 2020-02-26 Device and method of preparing particle evaluation specimen

Publications (1)

Publication Number Publication Date
JP2021135141A true JP2021135141A (en) 2021-09-13

Family

ID=77660936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020030714A Pending JP2021135141A (en) 2020-02-26 2020-02-26 Device and method of preparing particle evaluation specimen

Country Status (1)

Country Link
JP (1) JP2021135141A (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02147U (en) * 1988-06-13 1990-01-05
JP2008070035A (en) * 2006-09-14 2008-03-27 Masato Kino Supercooling instantaneous refrigerating machine and refrigerating method therefor
JP2009031272A (en) * 2007-06-28 2009-02-12 Univ Soka Sample producing device for electron microscope
JP2010266086A (en) * 2009-05-12 2010-11-25 Soka Univ Freeze-drying device, freeze-drying method for sample, device for preparing sample for electron microscope including freeze-drying device and method of preparing sample for electron microscope
JP2011232299A (en) * 2010-04-30 2011-11-17 Katsuyoshi Tabuse Frozen thin-section manufacturing apparatus
CN103207108A (en) * 2013-04-08 2013-07-17 上海大学 Method for obtaining solidification structure of single microparticles at large cooling speed
JP2015141083A (en) * 2014-01-28 2015-08-03 国立研究開発法人産業技術総合研究所 Manufacturing method and device of specimen carrying piece for microscope
US20160011105A1 (en) * 2014-06-25 2016-01-14 Timothy J. Bencic Light Extinction Tomography for Measurement of Ice Crystals and Other Small Particles
JP2016506493A (en) * 2012-11-27 2016-03-03 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method for forming a liquid film on a substrate
CN106092840A (en) * 2016-05-31 2016-11-09 北京理工大学 A kind of large-scale waste gas of pollutant emission test method
JP2017194307A (en) * 2016-04-19 2017-10-26 国立研究開発法人産業技術総合研究所 Method for observing fine particles
WO2018020877A1 (en) * 2016-07-29 2018-02-01 国立研究開発法人産業技術総合研究所 Method for dispersion and immobilization of fine particles
WO2020017451A1 (en) * 2018-07-18 2020-01-23 国立研究開発法人産業技術総合研究所 Isolated cell specimen, production method for isolated cell specimen, and detection method for cell of interest
CN111220443A (en) * 2020-03-18 2020-06-02 上海理工大学 Weak contact sample concentration and purification method and application

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02147U (en) * 1988-06-13 1990-01-05
JP2008070035A (en) * 2006-09-14 2008-03-27 Masato Kino Supercooling instantaneous refrigerating machine and refrigerating method therefor
JP2009031272A (en) * 2007-06-28 2009-02-12 Univ Soka Sample producing device for electron microscope
JP2010266086A (en) * 2009-05-12 2010-11-25 Soka Univ Freeze-drying device, freeze-drying method for sample, device for preparing sample for electron microscope including freeze-drying device and method of preparing sample for electron microscope
JP2011232299A (en) * 2010-04-30 2011-11-17 Katsuyoshi Tabuse Frozen thin-section manufacturing apparatus
JP2016506493A (en) * 2012-11-27 2016-03-03 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method for forming a liquid film on a substrate
CN103207108A (en) * 2013-04-08 2013-07-17 上海大学 Method for obtaining solidification structure of single microparticles at large cooling speed
JP2015141083A (en) * 2014-01-28 2015-08-03 国立研究開発法人産業技術総合研究所 Manufacturing method and device of specimen carrying piece for microscope
US20160011105A1 (en) * 2014-06-25 2016-01-14 Timothy J. Bencic Light Extinction Tomography for Measurement of Ice Crystals and Other Small Particles
JP2017194307A (en) * 2016-04-19 2017-10-26 国立研究開発法人産業技術総合研究所 Method for observing fine particles
CN106092840A (en) * 2016-05-31 2016-11-09 北京理工大学 A kind of large-scale waste gas of pollutant emission test method
WO2018020877A1 (en) * 2016-07-29 2018-02-01 国立研究開発法人産業技術総合研究所 Method for dispersion and immobilization of fine particles
WO2020017451A1 (en) * 2018-07-18 2020-01-23 国立研究開発法人産業技術総合研究所 Isolated cell specimen, production method for isolated cell specimen, and detection method for cell of interest
CN111220443A (en) * 2020-03-18 2020-06-02 上海理工大学 Weak contact sample concentration and purification method and application

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
TOMOO SIGEHUZI: "Depositing nanoparticles on a silicon substrate using a freeze drying technique", J. CHEM. PHYS., vol. 147, JPN6023020941, 28 August 2017 (2017-08-28), pages 084201, ISSN: 0005070394 *
重藤知夫: "サンドイッチ凍結乾燥法による基板上分散ナノ粒子の均一性検証", 応用物理学会春季学術講演会講演予稿集, vol. 65, JPN6023020943, 5 March 2018 (2018-03-05), pages 17 - 5, ISSN: 0005070393 *
重藤知夫: "光学顕微鏡等を用いた,基板上ナノ粒子分散状態の広域評価", 応用物理学会春季学術講演会講演予稿集, vol. 67, JPN6023020942, 28 February 2020 (2020-02-28), pages 14 - 519, ISSN: 0005070392 *

Similar Documents

Publication Publication Date Title
Vega‐Mayoral et al. Photoluminescence from liquid‐exfoliated WS2 monomers in poly (vinyl alcohol) polymer composites
JP6143487B2 (en) Method for making a vitrified sample for an electron microscope
Boyde et al. Preparation of animal tissues for surface‐scanning electron microscopy
JP2009008657A (en) Solid sample, and method and apparatus for manufacturing the same
CN110062880B (en) Preparation of non-destructive freezing grid by controlled sample evaporation
JP6338869B2 (en) Particle size distribution measurement method
Li et al. Viscosity of interfacial water regulates ice nucleation
Ziganshin et al. The effect of substrate and air humidity on morphology of films of L-leucyl-L-leucine dipeptide
US8884248B2 (en) Forming a vitrified sample for electron microscopy
Heitz et al. Characterization of particulates accompanying laser ablation of pressed polytetrafluorethylene (PTFE) targets
JP2004227842A (en) Probe holding device, sample acquiring device, sample working device, sample working method, and sample evaluation method
JP2010008141A (en) Solid sample making apparatus, solid sample making method and sample observing method
JP3715956B2 (en) Information acquisition device, sample evaluation device, and sample evaluation method
Stender et al. Status and direction of atom probe analysis of frozen liquids
US5437892A (en) Method for manufacturing a fine-particles two-dimensional aggregate from a liquid dispersion of fine particles
JP2021135141A (en) Device and method of preparing particle evaluation specimen
Li et al. Honeycomb porous films of pentablock copolymer on liquid substrates via breath figure method and their hydrophobic properties with static and dynamic behaviour
Fullam A closed wet cell for the electron microscope
JP6760614B2 (en) Dispersion and fixation method of fine particles
JP6708327B2 (en) How to observe fine particles
US20220381656A1 (en) Method and Apparatus for Preparing Samples Under Cryogenic Conditions for Imaging or Diffraction Experiments in an Electron Microscope
Thiel et al. The study of water in heterogeneous media using environmental scanning electron microscopy
JP2005148003A (en) Cross section working apparatus and cross section evaluating method
Schneir et al. Preparation of a low density polymer foam with dopants
Ladd et al. Modern role of the electron microscope in rubber research

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231128