JP6708327B2 - How to observe fine particles - Google Patents

How to observe fine particles Download PDF

Info

Publication number
JP6708327B2
JP6708327B2 JP2016083528A JP2016083528A JP6708327B2 JP 6708327 B2 JP6708327 B2 JP 6708327B2 JP 2016083528 A JP2016083528 A JP 2016083528A JP 2016083528 A JP2016083528 A JP 2016083528A JP 6708327 B2 JP6708327 B2 JP 6708327B2
Authority
JP
Japan
Prior art keywords
fine particles
dispersion
substrate
silicon substrate
dispersion liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016083528A
Other languages
Japanese (ja)
Other versions
JP2017194307A (en
Inventor
知夫 重藤
知夫 重藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2016083528A priority Critical patent/JP6708327B2/en
Publication of JP2017194307A publication Critical patent/JP2017194307A/en
Application granted granted Critical
Publication of JP6708327B2 publication Critical patent/JP6708327B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

本発明は、平滑基板上での微細サイズの粒子の観察方法に関し、特に、微細粒子の分散を維持させたままシリコン基板上に固定しこれを顕微鏡観察する方法に関する。 The present invention relates to a method for observing fine-sized particles on a smooth substrate, and more particularly to a method for fixing fine particles on a silicon substrate while maintaining dispersion of the fine particles and observing the particles under a microscope.

原子間力顕微鏡(AFM)や他の微細粒子の観察手法において、微細粒子を平滑な基板上に固定して観察を行うことがある。かかる基板はサブミクロンサイズ、そしてナノサイズといった微細粒子のサイズに合わせた高い平滑度を要求され、例えば、シリコンウェハやマイカのへき開面が利用され得る。また、液体中に分散された微細粒子同士を重ねることなく各粒子を単独で観察するには、キャピラリ管から分散液を上記したような平滑基板上に滴下し、液体を乾燥させて形成される同心円状の凝集組織、いわゆる「コーヒーリング」から微細粒子同士の重なりのない適所を選択して顕微鏡観察する方法なども提案されている(非特許文献1参照)。 In an atomic force microscope (AFM) and other observation methods for fine particles, fine particles may be fixed on a smooth substrate for observation. Such a substrate is required to have high smoothness according to the size of fine particles such as sub-micron size and nano size, and for example, a cleaved surface of a silicon wafer or mica can be used. Further, in order to observe each particle independently without overlapping the fine particles dispersed in the liquid, the dispersion liquid is dropped onto the smooth substrate as described above from the capillary tube, and the liquid is formed by drying. There has also been proposed a method of selecting a suitable place where fine particles do not overlap each other from a concentric agglomerate structure, a so-called "coffee ring", and performing microscopic observation (see Non-Patent Document 1).

ところで、例えば、粒子径の統計的分布を求めるような定量測定では、なるべく広い視野範囲に亘って分散した微細粒子の径を測定できることが好ましい。かかる場合、上記したような「コーヒーリング」による方法では分散の安定性に欠け、また粒子径を測定できるような視野を数多く選択することになり作業が煩雑である。 By the way, for example, in a quantitative measurement for obtaining a statistical distribution of particle diameters, it is preferable to be able to measure the diameter of fine particles dispersed over a wide visual field range as much as possible. In such a case, the method using the "coffee ring" as described above lacks stability of dispersion, and a large number of fields of view capable of measuring the particle size are selected, which complicates the work.

ここで、凍結させた分散液から分散媒を乾燥除去させて強固に凝集させることなく微細粒子を取り出す凍結乾燥法が知られている。一般に、分散液から分散媒を単に乾燥させてしまうと、分散媒の散逸によって微細粒子同士の間隔が狭くなり凝集を生じてしまう。そこで、分散液を凍結させてから分散媒を昇華させて乾燥除去させることで微細粒子の分散を維持したまま取り出すことができるのである。 Here, a freeze-drying method is known in which the dispersion medium is dried and removed from the frozen dispersion liquid, and the fine particles are taken out without being strongly aggregated. Generally, if the dispersion medium is simply dried from the dispersion liquid, the dispersion of the dispersion medium narrows the intervals between the fine particles and causes aggregation. Therefore, it is possible to take out while maintaining the dispersion of fine particles by freezing the dispersion liquid and then sublimating the dispersion medium and removing it by drying.

例えば、特許文献1では、凍結乾燥法を用いた分散液からの微細粒子の取り出し方法が記載されている。分散媒として融点を−30〜30℃の範囲に有するt−ブタノールなどの蒸気圧の高い有機溶媒を用い、凍結乾燥時の昇華を容易としている。かかる分散液の凍結乾燥によって再分散性の高い微細粒子の乾燥体を得ることができる。このような凍結乾燥法によれば、分散液での微細粒子の分散状態を維持して分散媒とともに凍結でき、そのまま分散媒のみを除去できて、微細粒子の凝集を抑制できるとしている。 For example, Patent Document 1 describes a method of extracting fine particles from a dispersion liquid using a freeze-drying method. As a dispersion medium, an organic solvent having a high vapor pressure such as t-butanol having a melting point in the range of −30 to 30° C. is used to facilitate sublimation during freeze-drying. By freeze-drying such a dispersion liquid, a dried body of fine particles having high redispersibility can be obtained. According to such a freeze-drying method, the dispersion state of the fine particles in the dispersion liquid can be maintained and frozen together with the dispersion medium, and only the dispersion medium can be removed as it is, whereby aggregation of the fine particles can be suppressed.

また、特許文献2では、分散液を冷却基材に滴下して凝固させ、液滴を凝固状態としたままその溶媒を昇華させて、コーヒーリングの形成を抑制して微細粒子を顕微鏡観察する方法が開示されている。 Further, in Patent Document 2, a method in which a dispersion liquid is dropped onto a cooling base material to be solidified, and the solvent is sublimated while the liquid droplets are in a solidified state to suppress formation of a coffee ring and microscopically observe fine particles. Is disclosed.

国際公開第WO2014/057564号公報International Publication No. WO2014/057564 特開2015−141083号公報JP, 2005-141083, A

R.D.Deegan et al.; Nature; vol.389; 23 Oct. 1997R.D.Deegan et al.; Nature; vol.389; 23 Oct. 1997

凍結乾燥法によって再分散性の高い乾燥紛体を得られ、このような乾燥紛体を基板上に固定することで、広範囲に亘って微細粒子を分散させて個々の微細粒子の顕微鏡観察を可能とする観察基板を得られる。ここで、粒子径の統計的分布を求めるような定量測定では、再現性の良い、より一層の安定した観察基板の作成方法が求められる。 By freeze-drying method, a highly redispersible dry powder can be obtained, and by fixing such a dry powder on a substrate, it is possible to disperse fine particles over a wide range and to observe each individual fine particle under a microscope. An observation substrate can be obtained. Here, in the quantitative measurement for obtaining the statistical distribution of the particle size, a method for producing an observation substrate with good reproducibility and more stable is required.

本発明は、上記したような状況に鑑みてなされたものであって、その目的とするところは、微細粒子の分散を維持させたままシリコン基板上に固定しこれを顕微鏡観察する方法を提供することにある。 The present invention has been made in view of the above situation, and an object thereof is to provide a method of microscopically fixing the particles on a silicon substrate while maintaining the dispersion of fine particles. Especially.

本発明による微細粒子の観察方法は、微細粒子の分散を維持させたままシリコン基板上に固定しこれを顕微鏡観察する方法であって、前記微細粒子を水に分散させた分散液を対向配置した2枚の前記シリコン基板の間に挟み込み、前記シリコン基板を冷却して前記微細粒子の静電反発を維持させたまま急冷凍結させた後に前記シリコン基板の互いを分離させ、減圧して前記シリコン基板上の前記水を昇華させることを特徴とする。 The method for observing fine particles according to the present invention is a method of fixing the fine particles on a silicon substrate while observing the dispersion and observing the same under a microscope, and disposing the dispersion liquid in which the fine particles are dispersed in water. The silicon substrate is sandwiched between two silicon substrates, and the silicon substrate is cooled to be rapidly cooled and frozen while maintaining electrostatic repulsion of the fine particles, and then the silicon substrates are separated from each other and depressurized. It is characterized in that the above water is sublimated.

かかる発明によれば、分散液の厚さを薄くして冷却中の温度勾配を小さくすることで冷却中の氷の結晶の成長に伴う微細粒子の凝集を防止するとともに微細粒子の厚さ方向の重なりを抑制し、微細粒子の分散を維持させたままシリコン基板上に固定でき、再現性良く安定して分散した微細粒子を顕微鏡観察することができる。 According to such an invention, by reducing the thickness of the dispersion liquid to reduce the temperature gradient during cooling, it is possible to prevent the aggregation of fine particles accompanying the growth of ice crystals during cooling and to reduce the thickness direction of the fine particles. Overlapping can be suppressed, and the fine particles can be fixed on the silicon substrate while maintaining the dispersion of the fine particles, and the fine particles stably dispersed with good reproducibility can be observed under a microscope.

上記した発明において、前記シリコン基板の間に前記分散液を挟み込んで前記シリコン基板同士を平行に維持したまま互いに往復動させる工程を含むことを特徴としてもよい。また、上記した発明において、前記シリコン基板は親水化処理された表面を有していることを特徴としてもよい。かかる発明によれば、分散液の厚さをより薄くして冷却中の温度勾配をより小さくするとともに微細粒子同士の厚さ方向の重なりをさらに抑制し得て、微細粒子の分散を維持させたままシリコン基板上に固定し、再現性良く安定してこれを顕微鏡観察することができる。 The above invention may be characterized by including a step of sandwiching the dispersion liquid between the silicon substrates and reciprocating the silicon substrates while keeping the silicon substrates parallel to each other. Further, in the above invention, the silicon substrate may have a surface which has been subjected to a hydrophilic treatment. According to such an invention, the thickness of the dispersion liquid can be made thinner, the temperature gradient during cooling can be made smaller, and the overlapping of the fine particles in the thickness direction can be further suppressed, and the dispersion of the fine particles can be maintained. It can be fixed on a silicon substrate as it is, and can be stably observed with a microscope with good reproducibility.

上記した発明において、前記水を凍結させることなく前記シリコン基板を予冷することを特徴としてもよい。かかる発明によれば、急冷凍結をより速く進行させて、シリコン基板上で顕微鏡観察を再現性良く、安定して行うことができる。 In the above invention, the silicon substrate may be precooled without freezing the water. According to this invention, rapid cooling and freezing can proceed more rapidly, and microscopic observation on a silicon substrate can be performed with good reproducibility and stability.

上記した発明において、前記シリコン基板の外側面を冷媒に接触させて急冷凍結する工程を含むことを特徴としてもよい。かかる発明によれば、冷却中の温度勾配をより小さくし得て、微細粒子の分散を維持させたままシリコン基板上に固定し、再現性良く安定してこれを顕微鏡観察することができる。 The above invention may be characterized by including a step of bringing the outer side surface of the silicon substrate into contact with a cooling medium to perform rapid cooling and freezing. According to this invention, the temperature gradient during cooling can be made smaller, and the fine particles can be fixed on the silicon substrate while maintaining the dispersion, and can be microscopically observed with good reproducibility.

本発明による微細粒子の観察方法を示すフロー図である。It is a flowchart which shows the observation method of the fine particle by this invention. 本発明による微細粒子の観察方法の要部を示す工程図である。FIG. 3 is a process diagram showing a main part of a method for observing fine particles according to the present invention. 凍結乾燥瓶の(a)上面図及び(b)側面図である。It is (a) top view and (b) side view of a freeze-drying bottle. 実施例の光学顕微鏡による(a)反射像及び(b)斜上白色光照射像である。3A is a reflection image and FIG. 2B is an oblique white light irradiation image by an optical microscope of an example. 微細粒子の原子間力顕微鏡による形状像である。It is a shape image of fine particles by an atomic force microscope. 微細粒子の原子間力顕微鏡による形状像である。It is a shape image of fine particles by an atomic force microscope. 微細粒子の原子間力顕微鏡による形状像である。It is a shape image of fine particles by an atomic force microscope.

[実施例1]
以下に、本発明による1つの実施例である微細粒子の観察方法について図1に併せて図2及び図3を参照しつつ、説明する。
[Example 1]
Hereinafter, a method of observing fine particles, which is one embodiment of the present invention, will be described with reference to FIGS. 2 and 3 in addition to FIG.

図1に図2(a)及び(b)を併せて参照すると、まず、対向配置された2枚のシリコン基板1(以降、基板1と称する)で分散液の液滴を挟み込む(S1)。基板1は、例えば、1.1cm角で0.5mm厚の寸法を有し、洗浄し乾燥されたものを用意する。基板1の一方に、微細粒子の分散液3の0.2μLをマイクロピペット2で滴下し、基板1の他方を上からかぶせて挟み込む。 Referring to FIGS. 2A and 2B together with FIG. 1, first, a droplet of the dispersion liquid is sandwiched between two silicon substrates 1 (hereinafter, referred to as substrate 1) that are arranged to face each other (S1). The substrate 1 has a size of, for example, 1.1 cm square and 0.5 mm thickness, and is prepared by cleaning and drying. On one side of the substrate 1, 0.2 μL of the dispersion liquid 3 of fine particles is dropped by the micropipette 2, and the other side of the substrate 1 is covered from above and sandwiched.

このとき、基板1の間に挟まれた分散液3はなるべく薄くさせることが好ましく、例えば基板1同士を互いに圧迫したり、基板1同士を平行に維持したまま互いに擦り合わせるように往復動を与えたりするなどするとよい。また、同様の理由で、基板1は親水化処理された表面を有していることが好ましい。親水化処理としては、例えば、オゾン表面改質を用い得る。 At this time, it is preferable to make the dispersion liquid 3 sandwiched between the substrates 1 as thin as possible. For example, the substrates 1 are pressed against each other, or reciprocated so as to rub each other while keeping the substrates 1 in parallel. It is good to do something. For the same reason, it is preferable that the substrate 1 has a surface that has been subjected to a hydrophilic treatment. As the hydrophilic treatment, for example, ozone surface modification can be used.

分散液3としては、例えばナノサイズの微細粒子を水に分散させたものを用いるが、後述する観察において観察しやすい濃度、すなわち厚さ方向に微細粒子が重ならず、基板1の表面に沿った方向に分散を維持しつつも適度な密度を有するように調整される。ここでは、ポリスチレンラテックスの50nm径粒子を0.5g/Lで含むとともに、100nm径粒子を1.25g/Lで含む分散媒を水とする分散液を用いた。 As the dispersion liquid 3, for example, nano-sized fine particles dispersed in water is used. However, the concentration is such that it can be easily observed in the observation described later, that is, the fine particles do not overlap in the thickness direction and It is adjusted so as to have an appropriate density while maintaining dispersion in the vertical direction. Here, a dispersion liquid containing polystyrene latex of 50 nm diameter particles at 0.5 g/L and containing 100 nm diameter particles of 1.25 g/L as water was used.

次いで、分散液3を挟み込んだ基板1を冷却し、微細粒子の静電反発を維持したまま急冷凍結させる(S2)。図2(c)を併せて参照すると、ここでは2枚の基板1より大きい寸法、例えば、直径25mm、厚さ3mmの円板形状の銅板4を冷媒として用いる。銅板4は、予め−80℃の冷凍機で冷却されており、その2枚を基板1の外側面に接触させるよう基板1を挟んで分散液3を急冷凍結させる。 Next, the substrate 1 in which the dispersion liquid 3 is sandwiched is cooled and rapidly cooled and frozen while maintaining the electrostatic repulsion of the fine particles (S2). Referring also to FIG. 2C, here, a disk-shaped copper plate 4 having a size larger than the two substrates 1, for example, a diameter of 25 mm and a thickness of 3 mm is used as a coolant. The copper plate 4 is cooled in advance in a refrigerator at −80° C., and the dispersion liquid 3 is rapidly frozen and frozen while sandwiching the substrate 1 so that the two plates come into contact with the outer surface of the substrate 1.

ここで、分散液3の内部に大きな温度勾配が生じてしまうと、冷却中の氷の結晶の成長により液相に排除された微細粒子同士の間隔が狭くなって凝集してしまう。しかし、本実施例においては、上記したように分散液3は薄くされているためその内部に温度勾配が生じづらく、冷却中に氷の結晶を成長させずに微細粒子の静電反発を維持したまま冷却され、その分散状態を維持したまま凍結される。また、基板1の両側から同じ温度の冷媒である銅板4によって冷却されるので、これによっても温度勾配を生じづらい。 Here, if a large temperature gradient is generated inside the dispersion liquid 3, the intervals between the fine particles excluded in the liquid phase due to the growth of ice crystals during cooling are narrowed and aggregated. However, in this example, since the dispersion liquid 3 is thin as described above, it is difficult for a temperature gradient to occur inside the dispersion liquid 3 and the electrostatic repulsion of the fine particles is maintained without growing ice crystals during cooling. It is cooled as it is and frozen while maintaining its dispersed state. Further, since the both sides of the substrate 1 are cooled by the copper plate 4 which is the coolant of the same temperature, the temperature gradient is hard to be generated also by this.

さらに、かかる冷却に先立って、分散液3を基板1ごと予冷しておくことが好ましい。例えば、水を凍結させないよう0℃付近の温度まで予冷しておくと、上記した冷却の冷却速度を高め得て、冷却中の分散液3の温度勾配を減じ得る。 Further, it is preferable to pre-cool the dispersion liquid 3 together with the substrate 1 prior to such cooling. For example, if the water is pre-cooled to a temperature around 0° C. so as not to be frozen, the cooling rate of the above-described cooling can be increased, and the temperature gradient of the dispersion liquid 3 during cooling can be reduced.

次いで、基板1の互いを分離させる(S3)。図2(d)を併せて参照すると、下側の銅板4の上で、ピンセットの先端等を基板1の間に差し込み、基板1の2枚を上下に分離させる。このとき、分散液3の凍結した凍結膜は厚さ方向に割れることなく、基板1の表面に沿った方向の各位置において、上下どちらかの基板1に付着している。凍結膜の付着は干渉色で判別できるため、後の顕微鏡観察のためにその位置を記録しておくことが好ましい。 Next, the substrates 1 are separated from each other (S3). Referring also to FIG. 2D, the tip of tweezers or the like is inserted between the substrates 1 on the lower copper plate 4, and the two substrates 1 are vertically separated. At this time, the frozen film of the dispersion liquid 3 adheres to the upper or lower substrate 1 at each position in the direction along the surface of the substrate 1 without cracking in the thickness direction. Since the adhesion of the frozen film can be identified by the interference color, it is preferable to record the position for later microscopic observation.

なお、凍結膜は、溶融を防ぐため、室温外気に曝されないようにする。例えば、図2(d)に示すように、分離後の基板1は凍結膜の付着した側を内側にするように重ねて、次の工程の直前まで銅板4に接触させておく。また、急冷凍結(S2)及び分離(S3)の作業は銅板4を冷却した冷凍機の内部で行うとよい。 The frozen film should not be exposed to the outside air at room temperature to prevent melting. For example, as shown in FIG. 2D, the separated substrates 1 are stacked so that the side to which the frozen film is attached is placed inside and kept in contact with the copper plate 4 until immediately before the next step. Further, the work of rapid cooling and freezing (S2) and separation (S3) may be performed inside the refrigerator in which the copper plate 4 is cooled.

次いで、基板1を減圧し凍結した分散液の分散媒である水を昇華させる。つまり、凍結膜を減圧乾燥させる(S4)。図3を併せて参照すると、減圧乾燥にはアルミ製の凍結乾燥瓶10を使用する。凍結乾燥瓶10は、略円筒形の外形を有し、上端11を開口部とする上方の内径に対して、下方において内径を小さくした段付き形状をなすよう小径部12が設けられ、その周囲の壁体13が厚く形成されている。また、凍結乾燥瓶10は、−20℃で予冷されており、その底部に−17℃の保冷剤9を接触させている。また、開口部の近傍を除く側面及び保冷剤9を含む底面は断熱材等でくるまれて外気に対して遮蔽されていることが好ましい。 Next, the substrate 1 is depressurized and water, which is a dispersion medium of the frozen dispersion liquid, is sublimated. That is, the frozen film is dried under reduced pressure (S4). Referring also to FIG. 3, an aluminum freeze-drying bottle 10 is used for vacuum drying. The freeze-drying bottle 10 has a substantially cylindrical outer shape, and is provided with a small-diameter portion 12 having a stepped shape in which the inner diameter is made smaller at the lower side with respect to the upper inner diameter having the upper end 11 as an opening, and the periphery thereof The wall 13 is formed thick. Further, the freeze-drying bottle 10 is pre-cooled at -20°C, and the cold insulating agent 9 at -17°C is brought into contact with the bottom thereof. Further, it is preferable that the side surface except the vicinity of the opening and the bottom surface containing the cold insulating agent 9 are wrapped with a heat insulating material or the like to be shielded from the outside air.

ここで、分離された基板1は手早く凍結乾燥瓶10内部に移動され、その小径部12の底に凍結膜を上に向けて載置される。凍結乾燥瓶10はその開口部を図示しない減圧器にゴム栓等を介して接続され、例えば、10Pa程度にその内部を減圧される。ここで、凍結乾燥瓶10では、周囲の壁体13が冷媒となって小径部12内部の基板1の温度を低く保つことができ、ゴム栓等からの輻射熱による温度上昇を防止し、−10℃程度以下に維持し、凍結膜の溶融を防ぐ。そのまま1時間程度保持して、減圧下で凍結膜から水を昇華させ乾燥させる。 Here, the separated substrate 1 is quickly moved into the freeze-drying bottle 10 and placed on the bottom of the small-diameter portion 12 with the frozen film facing upward. The freeze-drying bottle 10 has its opening connected to a decompressor (not shown) via a rubber stopper or the like, and the inside thereof is depressurized to about 10 Pa, for example. Here, in the freeze-drying bottle 10, the surrounding wall 13 serves as a refrigerant to keep the temperature of the substrate 1 inside the small-diameter portion 12 low, preventing the temperature rise due to radiant heat from a rubber stopper or the like, Keep the temperature below about ℃ to prevent the frozen film from melting. The temperature is maintained as it is for about 1 hour, and water is sublimated from the frozen film under reduced pressure and dried.

凍結乾燥の後、基板1への結露を防ぐため、凍結乾燥瓶10はその内部を減圧されたまま保冷剤9を取り外され、底部を熱源に接触されて基板1を室温以上に昇温させる。その後、内部の圧力を常圧に戻されて基板1の取り出しを可能とされる。 After freeze-drying, in order to prevent dew condensation on the substrate 1, the freeze-drying bottle 10 is removed from the cold-retaining agent 9 while the inside thereof is depressurized, and the bottom is brought into contact with a heat source to raise the temperature of the substrate 1 to room temperature or higher. After that, the internal pressure is returned to normal pressure, and the substrate 1 can be taken out.

取り出された基板1は顕微鏡観察に供される(S5)。 The taken-out substrate 1 is subjected to microscopic observation (S5).

以上のように、基板1に挟み込むことで分散液3の厚さを薄くして冷却中の温度勾配を小さくできる。すなわち、熱伝導率や熱容量が比較的小さいシリコンによる基板1であっても、分散液を薄くしたことで熱容量の大きな水に対しても温度勾配を小さくして急冷凍結できる。このため、分散液の凍結において微氷晶を生じさせても氷の結晶の成長を抑制して微細粒子の凝集を防止できるのである。加えて、分散液3の厚さを薄くすることで、微細粒子同士の厚さ方向での重なりを抑制することもできる。つまり、微細粒子の静電反発を維持したまま急冷凍結できて、分散を維持した微細粒子を基板1上に固定でき、再現性良く安定してこの微細粒子を顕微鏡観察することができる。 As described above, by sandwiching the dispersion liquid 3 between the substrates 1, the thickness of the dispersion liquid 3 can be reduced and the temperature gradient during cooling can be reduced. That is, even if the substrate 1 is made of silicon having a relatively small thermal conductivity or heat capacity, the dispersion can be made thin so that it can be rapidly cooled and frozen even with respect to water having a large heat capacity by reducing the temperature gradient. Therefore, even if fine ice crystals are generated during freezing of the dispersion, the growth of ice crystals can be suppressed and the aggregation of fine particles can be prevented. In addition, by reducing the thickness of the dispersion liquid 3, it is possible to suppress overlapping of the fine particles in the thickness direction. That is, it is possible to rapidly freeze and freeze the fine particles while maintaining the electrostatic repulsion of the fine particles, to fix the fine particles having the dispersion maintained on the substrate 1, and to stably observe the fine particles with a microscope.

次に、上記の方法により調製された基板1により微細粒子の顕微鏡観察を行った結果について図4乃至図7を用いて説明する。 Next, the results of microscopic observation of fine particles using the substrate 1 prepared by the above method will be described with reference to FIGS. 4 to 7.

ここでは、まず、光学顕微鏡により観察し、その反射像を図4(a)に、斜上白色光照射像を図4(b)にそれぞれ示した。同図に示すように、微細粒子は基板1の表面に沿った方向にその分布を大きく変化させており、上記したように凍結膜が位置により上下の基板1のうち一方に付着することが判る。例えば、微細粒子のほとんど存在しない凍結膜不在部21と、白く光る微細粒子の凝集した凝集体22と、その周囲の微細粒子の分散された分散部23が観察される。すなわち、分散部23において微細粒子をより詳細に観察することができる。 Here, first, the image was observed with an optical microscope, and its reflection image is shown in FIG. 4(a) and the oblique white light irradiation image is shown in FIG. 4(b). As shown in the figure, the distribution of the fine particles is greatly changed in the direction along the surface of the substrate 1, and it is understood that the frozen film adheres to one of the upper and lower substrates 1 depending on the position as described above. .. For example, a frozen film absent portion 21 in which almost no fine particles are present, an aggregate 22 in which white fine particles are aggregated, and a dispersion portion 23 in which the fine particles are dispersed around the frozen body are observed. That is, the fine particles can be observed in more detail in the dispersion section 23.

次いで、原子間力顕微鏡(AFM)によって観察した微細粒子の形状像を図5に示した。同図に示すように、上記したポリスチレンラテックスの50nm径粒子及び100nm径粒子がそれぞれ分散して観察される。分散液における粒径分布も保持されていることが判る。 Next, a shape image of the fine particles observed by an atomic force microscope (AFM) is shown in FIG. As shown in the figure, the above-mentioned polystyrene latex particles of 50 nm diameter and 100 nm diameter are dispersed and observed. It can be seen that the particle size distribution in the dispersion is also maintained.

[実施例2]
他の実施例として、粒径50nmのシリカ粒子を上記と同様の手順で基板1上に固定し、原子間力顕微鏡で観察し、その形状像を図6に示した。ここでもシリカ粒子が分散して観察されることが判る。
[Example 2]
As another example, silica particles having a particle diameter of 50 nm were fixed on the substrate 1 by the same procedure as above and observed by an atomic force microscope, and the shape image thereof is shown in FIG. It can be seen that the silica particles are also dispersed and observed here.

[比較例]
比較例として、粒径100nmのシリカ粒子を水に分散させた分散液を−80℃に冷却したシリコン基板上に滴下し、そのまま凍結乾燥させて得た試料について原子間力顕微鏡で観察した形状像を図7に示した。同図に示すように、分散して孤立した粒子は全く観察されず、微細粒子の凝集体と思われる粒径1μm程度の巨大な粒子が低密度で観察された。つまり、単に凍結乾燥させても、液滴が厚いとシリコン基板上において微細粒子の分散を維持することは困難なのである。
[Comparative example]
As a comparative example, a shape image of a sample obtained by dripping a dispersion liquid in which silica particles having a particle diameter of 100 nm are dispersed in water on a silicon substrate cooled to −80° C. and lyophilizing the dispersion liquid with an atomic force microscope. Is shown in FIG. As shown in the figure, dispersed and isolated particles were not observed at all, and huge particles having a particle size of about 1 μm, which were considered to be aggregates of fine particles, were observed at a low density. That is, it is difficult to maintain the dispersion of fine particles on the silicon substrate if the droplets are thick, even if they are simply freeze-dried.

以上、本発明による実施例及びこれに基づく変形例を説明したが、本発明は必ずしもこれに限定されるものではなく、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、様々な代替実施例及び改変例を見出すことができるであろう。 Although the embodiment according to the present invention and the modification based on the embodiment have been described above, the present invention is not necessarily limited to this, and a person skilled in the art deviates from the gist of the present invention or the scope of the appended claims. Without doing so, various alternatives and modifications could be found.

1 基板(シリコン基板)
3 分散液
4 銅板
10 凍結乾燥瓶
1 substrate (silicon substrate)
3 Dispersion 4 Copper Plate 10 Freeze Dry Bottle

Claims (5)

微細粒子の分散を維持させたままシリコン基板上に固定しこれを顕微鏡観察する方法であって、
前記微細粒子を水に分散させた分散液を対向配置した2枚の前記シリコン基板の間に挟み込み、前記シリコン基板を冷却して前記微細粒子の静電反発を維持させたまま急冷凍結させた後に前記シリコン基板の互いを分離させ、減圧して前記シリコン基板上の前記水を昇華させるにおいて、挟み込みの工程は、昇華後に前記シリコン基板上に前記微細粒子を分散して孤立して観察されるように前記分散液の厚さを薄く挟み込むことを特徴とする微細粒子の観察方法。
A method of observing with a microscope by fixing it on a silicon substrate while maintaining the dispersion of fine particles,
After the dispersion liquid in which the fine particles are dispersed in water is sandwiched between the two silicon substrates arranged opposite to each other, the silicon substrate is cooled and rapidly frozen while the electrostatic repulsion of the fine particles is maintained and then frozen. In separating the silicon substrates from each other and reducing the pressure to sublimate the water on the silicon substrate , the step of sandwiching the fine particles is dispersed and observed on the silicon substrate after the sublimation is observed independently. A method for observing fine particles, characterized in that the thickness of the dispersion is thinly sandwiched between .
前記シリコン基板の間に前記分散液を挟み込んで前記シリコン基板同士を平行に維持したまま互いに往復動させる工程を含むことを特徴とする請求項1記載の微細粒子の観察方法。 The method for observing fine particles according to claim 1, further comprising a step of sandwiching the dispersion liquid between the silicon substrates and reciprocating the silicon substrates while keeping the silicon substrates parallel to each other. 前記シリコン基板は親水化処理された表面を有していることを特徴とする請求項1又は2に記載の微細粒子の観察方法。 The method for observing fine particles according to claim 1 or 2, wherein the silicon substrate has a surface that has been subjected to a hydrophilic treatment. 前記水を凍結させることなく前記シリコン基板を予冷することを特徴とする請求項1乃至3のうちの1つに記載の微細粒子の観察方法。 4. The method for observing fine particles according to claim 1, wherein the silicon substrate is precooled without freezing the water. 前記シリコン基板の外側面を冷媒に接触させて急冷凍結する工程を含むことを特徴とする請求項1乃至4のうちの1つに記載の微細粒子の観察方法。 5. The method for observing fine particles according to claim 1, further comprising a step of bringing an outer surface of the silicon substrate into contact with a cooling medium to perform rapid cooling and freezing.
JP2016083528A 2016-04-19 2016-04-19 How to observe fine particles Active JP6708327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016083528A JP6708327B2 (en) 2016-04-19 2016-04-19 How to observe fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016083528A JP6708327B2 (en) 2016-04-19 2016-04-19 How to observe fine particles

Publications (2)

Publication Number Publication Date
JP2017194307A JP2017194307A (en) 2017-10-26
JP6708327B2 true JP6708327B2 (en) 2020-06-10

Family

ID=60154832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016083528A Active JP6708327B2 (en) 2016-04-19 2016-04-19 How to observe fine particles

Country Status (1)

Country Link
JP (1) JP6708327B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021135141A (en) * 2020-02-26 2021-09-13 国立研究開発法人産業技術総合研究所 Device and method of preparing particle evaluation specimen

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121414A (en) * 2003-10-15 2005-05-12 Shimadzu Corp Grain size distribution measuring apparatus
CN101988874B (en) * 2009-07-31 2012-01-25 清华大学 Preparation method of transmission electron microscope specimen
US8969827B2 (en) * 2012-07-09 2015-03-03 Materials Analysis Technology (Us) Corp. Specimen preparation for transmission electron microscopy
JP6338869B2 (en) * 2014-01-28 2018-06-06 国立研究開発法人産業技術総合研究所 Particle size distribution measurement method

Also Published As

Publication number Publication date
JP2017194307A (en) 2017-10-26

Similar Documents

Publication Publication Date Title
Balzer et al. Dipole-assisted self-assembly of light-emitting p-nP needles on mica
Friedrich et al. Imaging of self‐assembled structures: interpretation of TEM and cryo‐TEM images
Luo et al. In Situ transmission electron microscopy characterization and manipulation of two‐dimensional layered materials beyond graphene
Ziganshin et al. The effect of substrate and air humidity on morphology of films of L-leucyl-L-leucine dipeptide
Dubochet et al. Electron microscopy of frozen water and aqueous solutions
JP6338869B2 (en) Particle size distribution measurement method
CN105951179B (en) A kind of method of alternative single side growth graphene in SiC substrate
JP2009008657A (en) Solid sample, and method and apparatus for manufacturing the same
Li et al. Anomalous lattice vibrations of CVD-grown monolayer MoS 2 probed using linear polarized excitation light
JP6708327B2 (en) How to observe fine particles
TWI774929B (en) Manufacturing method of silicon carbide single crystal
Kouchi et al. Matrix sublimation method for the formation of high-density amorphous ice
Kumar et al. Growth protocols and characterization of epitaxial graphene on SiC elaborated in a graphite enclosure
JP2004227842A (en) Probe holding device, sample acquiring device, sample working device, sample working method, and sample evaluation method
US10017393B2 (en) Method of fabricating array of nanoparticle clusters using thermal transformation of sublimable liquid crystal film
Ziganshin et al. Interaction of L-alanyl-L-valine and L-valyl-L-alanine with organic vapors: thermal stability of clathrates, sorption capacity and the change in the morphology of dipeptide films
JP2022183085A (en) Method and device for preparing samples for imaging under cryogenic conditions or diffraction experiments under cryogenic conditions in electron microscope
Meredith et al. Freeze-drying: in situ observations using cryoenvironmental scanning electron microscopy and differential scanning calorimetry
JP6760614B2 (en) Dispersion and fixation method of fine particles
Riekel et al. Microstructural metrology of tobacco mosaic virus nanorods during radial compression and heating
Rosa et al. Improving heat transfer at the bottom of vials for consistent freeze drying with unidirectional structured ice
WO2012063678A1 (en) Vacuum freeze dryer
JP4891830B2 (en) Sample holder for electron microscope and observation method
Thong et al. Non-close-packed pore arrays through one-step breath figure self-assembly and reversal
JP2021135141A (en) Device and method of preparing particle evaluation specimen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191106

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191220

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200507

R150 Certificate of patent or registration of utility model

Ref document number: 6708327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250