JP2010008141A - Solid sample making apparatus, solid sample making method and sample observing method - Google Patents

Solid sample making apparatus, solid sample making method and sample observing method Download PDF

Info

Publication number
JP2010008141A
JP2010008141A JP2008165698A JP2008165698A JP2010008141A JP 2010008141 A JP2010008141 A JP 2010008141A JP 2008165698 A JP2008165698 A JP 2008165698A JP 2008165698 A JP2008165698 A JP 2008165698A JP 2010008141 A JP2010008141 A JP 2010008141A
Authority
JP
Japan
Prior art keywords
sample
chamber
stage
solid sample
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008165698A
Other languages
Japanese (ja)
Inventor
Takeshi Sankubo
毅 山久保
Hideto Yokoi
英人 横井
Yasuko Motoi
泰子 元井
Tomoko Suzuki
知子 鈴木
Kazuhiro Kamishiro
和浩 神代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008165698A priority Critical patent/JP2010008141A/en
Publication of JP2010008141A publication Critical patent/JP2010008141A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress a change in the composition or structure of a specimen in solidification by suppressing the evaporation of a liquid sample from a discharge port and to enable the stable discharge of the specimen. <P>SOLUTION: The solid sample making apparatus includes solid sample making chambers (1-3), a stage (14), a specimen supply device (16) equipped with a discharge port for discharging the specimen and supplying the specimen to the surface of the stage by discharge operation and a cooler (13) for cooling the stage. This solid sample making apparatus which supplies the specimen to the surface of the cooled stage in the solid sample making chamber to solidify it includes a suction device (18) sucking the specimen from the discharge port in the state that the discharge port of the specimen supply device is shielded from the atmosphere in the solid sample making chamber in standby of the discharge operation of the specimen supply device. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、固体試料の作製装置、固体試料の作製方法及び試料の観察方法に関する。より詳しくは、常温常圧で液相を呈する液体中に分散された物質の分散状態を、より正確に観察可能な固体試料の作製装置、作製方法及び観察方法に関する。   The present invention relates to a solid sample preparation apparatus, a solid sample preparation method, and a sample observation method. More specifically, the present invention relates to a solid sample manufacturing apparatus, a manufacturing method, and an observation method capable of more accurately observing the dispersion state of a substance dispersed in a liquid that exhibits a liquid phase at normal temperature and pressure.

近年における機能性デバイスの需要増加とともに、薬剤、エマルジョンなど、固体又は液体の分散物を液体中に分散した検体について、より正確な分散状態の評価や微細な構造解析が望まれている。   With the recent increase in demand for functional devices, more accurate evaluation of the dispersion state and fine structure analysis are desired for specimens in which solid or liquid dispersions such as drugs and emulsions are dispersed in liquid.

光学顕微鏡で観察可能な構造よりさらに微細な構造を観察するために、走査型電子顕微鏡(SEM:Scanning Electron Microscope)が一般的に用いられる。しかし、試料は真空中に置かれるので、通常の試料は液体状態で観察することはできない。したがって、検体としての液体試料を観察する場合には、試料を真空中でも変化しないように固定する必要がある。SEM観察に限らず、観察対象である液体試料を静止状態で観察する場合は、液状の試料を何らかの方法で固定しなければならない。   In order to observe a finer structure than a structure observable with an optical microscope, a scanning electron microscope (SEM) is generally used. However, since the sample is placed in a vacuum, a normal sample cannot be observed in a liquid state. Therefore, when observing a liquid sample as a specimen, it is necessary to fix the sample so that it does not change even in a vacuum. In addition to SEM observation, when a liquid sample to be observed is observed in a stationary state, the liquid sample must be fixed by some method.

液体試料中の分散物を、液体時の分布密度や凝集・分散の状態を保持した状態で観察する方法の一つとして、液体試料を凍結して固化させる方法がある。液体試料を凍結すると、試料中で結晶化面が移動しながら固化が進行する場合がある。この場合には、結晶面の移動に伴い分散物も液体媒質中を移動するため、固化した試料中の分散物の分散状態は凍結前の液体時の分散状態とは異なり、液体試料中の分散物の正確な観察を行うことができない。   One method for observing the dispersion in a liquid sample while maintaining the distribution density and aggregation / dispersion state in the liquid is a method in which the liquid sample is frozen and solidified. When a liquid sample is frozen, solidification may proceed while the crystallization surface moves in the sample. In this case, since the dispersion moves in the liquid medium as the crystal plane moves, the dispersion state of the dispersion in the solidified sample is different from the dispersion state in the liquid before freezing. The object cannot be observed accurately.

特許文献1には、試料ホルダに液体試料を入れ、該試料ホルダを冷却したメタルブロック上に押し付けて急速に冷却する方法が提案されている。しかし、試料観察の際、試料をホルダから取り外して加工・観察装置のステージに移す必要がある。また、試料が微小な場合、ホルダの熱容量を試料の熱容量より小さくするのは困難であるため、ホルダの熱容量によって試料の冷却条件がばらつき、観察すべき試料全体が均一な凍結試料を得ることができない。   Patent Document 1 proposes a method in which a liquid sample is put in a sample holder, and the sample holder is pressed onto a cooled metal block to rapidly cool the sample holder. However, when observing the sample, it is necessary to remove the sample from the holder and move it to the stage of the processing / observation apparatus. In addition, when the sample is very small, it is difficult to make the heat capacity of the holder smaller than the heat capacity of the sample. Therefore, the cooling condition of the sample varies depending on the heat capacity of the holder, and a frozen sample with a uniform entire sample to be observed can be obtained. Can not.

また、特許文献2には、試料にマイクロ波を照射した直後に該試料を急速に冷却し凍結固化させる方法が開示されている。従来の急速凍結装置においては、水が非晶質となって凍結される領域が銅ブロックと接触した表面からせいぜい20μm程のごく一部に限られるため、特許文献2では、マイクロ波を利用している。   Patent Document 2 discloses a method in which a sample is rapidly cooled and frozen and solidified immediately after the sample is irradiated with microwaves. In the conventional quick freezing apparatus, since the region where water becomes amorphous and is frozen is limited to a very small portion of about 20 μm from the surface in contact with the copper block, in Patent Document 2, a microwave is used. ing.

このように特許文献2には、マイクロ波の照射により、氷の結晶の成長が妨げられ、非晶質的に凍結される領域が大幅に拡大することが開示されている。   As described above, Patent Document 2 discloses that microwave irradiation prevents the growth of ice crystals and greatly expands the region that is frozen amorphous.

しかし、前記手法ではマイクロ波によりエネルギーが試料外から与えられ、人工的な分散状態が形成されてしまうため、得られる固体試料は本来の液体試料における分散状態とは異なる。また、試料全体をアモルファス状態の固体とするには至っていない。   However, in the above-described method, energy is given from outside the sample by the microwave and an artificial dispersion state is formed, so that the obtained solid sample is different from the dispersion state in the original liquid sample. In addition, the entire sample has not yet been made an amorphous solid.

いずれにしても、前述したとおり、試料観察の際、試料をホルダから取り外して加工・観察装置のステージに移す必要がある。また、試料が微小な場合、ホルダの熱容量を試料の熱容量より小さくするのは困難であるため、ホルダの熱容量によって試料の冷却条件がばらつき、観察すべき試料全体が均一な固体試料を得ることができない。   In any case, as described above, when observing the sample, it is necessary to remove the sample from the holder and move it to the stage of the processing / observation apparatus. In addition, when the sample is very small, it is difficult to make the heat capacity of the holder smaller than the heat capacity of the sample. Therefore, the cooling condition of the sample varies depending on the heat capacity of the holder, and a solid sample with a uniform entire sample to be observed can be obtained. Can not.

試料に関する情報を得る主な方法としては、光散乱法、小角X線散乱法等の電磁波散乱を利用して平均的情報を得る方法の他、凍結割断法、クライオミクロトーム法等による断面作成後、光学顕微鏡で観察する方法等が挙げられる。   The main method of obtaining information about the sample is to obtain average information using electromagnetic scattering such as light scattering method and small-angle X-ray scattering method, after creating a cross section by freezing cleaving method, cryomicrotome method, etc. The method etc. which observe with an optical microscope are mentioned.

最近では、SEM装置に集束イオンビーム(FIB:Focused Ion Beam)装置による加工機能を付加したFIB−SEM装置が開発されている。FIB装置は、イオン源からのイオンビームを細く集束して加工試料に照射し、エッチング等により加工を行う装置である。   Recently, a FIB-SEM apparatus has been developed in which a processing function using a focused ion beam (FIB) apparatus is added to the SEM apparatus. The FIB apparatus is an apparatus that performs processing by etching or the like by finely focusing an ion beam from an ion source and irradiating a processing sample.

特許文献3には、FIB加工中、SEM観察中に試料温度を調整して昇温による構造変化やビームダメージを防ぎ試料の断面構造を正確に解析することを可能にしたものが提案されている。   Patent Document 3 proposes a technique in which a sample temperature is adjusted during FIB processing and SEM observation to prevent structural change and beam damage due to temperature rise and to accurately analyze the cross-sectional structure of the sample. .

また、特許文献4には、断面作成後に温度制御された試料をカバーで覆い、他の装置へ移し所定部の評価を行うことを可能にしたものが提案されている。
実開昭57−75554号公報 特公平08−12136号公報 特許第3715956号公報 特開2005−148003号公報
Further, Patent Document 4 proposes a method in which a temperature-controlled sample is created with a cover after cross-section creation, and it is possible to transfer to another apparatus and evaluate a predetermined portion.
Japanese Utility Model Publication No. 57-75554 Japanese Patent Publication No. 08-12136 Japanese Patent No. 3715956 JP 2005-148003 A

図10は本発明者が先に提案した固体試料の作製装置の概略構成図である。   FIG. 10 is a schematic configuration diagram of a solid sample manufacturing apparatus previously proposed by the present inventor.

導入棒202aと操作部202bは、ステージを移動させる移動機構を構成し、ステージ201を、任意の位置まで動かして固定することができる。   The introduction rod 202a and the operation unit 202b constitute a moving mechanism for moving the stage, and the stage 201 can be moved and fixed to an arbitrary position.

第1チャンバー203aにはチャンバーハッチ203bが設けられ、第1チャンバーの空間を気密性を保って隔離することができる。   A chamber hatch 203b is provided in the first chamber 203a, and the space of the first chamber can be isolated while maintaining airtightness.

203dはパージ用ガス導入口、203cはパージ用ガス開閉バルブ、203eは、第2チャンバー204aと接触する部分を密閉するためのO−リングである。   203d is a purge gas inlet, 203c is a purge gas on-off valve, and 203e is an O-ring for sealing a portion in contact with the second chamber 204a.

第2チャンバー204aにはチャンバーハッチ204dが設けられ、更に、パージ用ガス導入口204cがパージ用ガス開閉バルブ204bを介して取り付けられている。第2チャンバー204aは切り替え弁204eを介してリーク口204fと真空ポンプ205に接続している。   A chamber hatch 204d is provided in the second chamber 204a, and a purge gas introduction port 204c is attached via a purge gas opening / closing valve 204b. The second chamber 204a is connected to the leak port 204f and the vacuum pump 205 via the switching valve 204e.

第2チャンバー204a内には試料ステージ201の冷却器206と検体供給器207が設けられている。検体供給器207は、液体状態の試料を液滴にし、所定の速度でステージ201に向けて噴射する液体噴射ヘッドである。   In the second chamber 204a, a cooler 206 for the sample stage 201 and a specimen supplier 207 are provided. The sample supply unit 207 is a liquid ejecting head that ejects a liquid sample into droplets and ejects the sample toward the stage 201 at a predetermined speed.

検体供給器207は、吐出制御装置208の制御により液体を吐出口から吐出して、飛翔的液滴を形成する。この液滴が冷却されたステージの表面で固化し、固体試料が作製される。   The specimen supplier 207 discharges liquid from the discharge port under the control of the discharge control device 208 to form flying droplets. The droplets are solidified on the cooled surface of the stage to produce a solid sample.

しかし、検体の種類によっては検体供給器207から液体の少なくとも一部が蒸発することにより、検体本来の状態から変化することが判明した。これにより得られる固体試料の組成や構造が検体本来の組成や構造から変化することがある。   However, it has been found that depending on the type of the sample, at least a part of the liquid evaporates from the sample supply device 207, thereby changing from the original state of the sample. As a result, the composition and structure of the solid sample obtained may change from the original composition and structure of the specimen.

本発明の目的は、検体供給器の吐出口から液体試料が蒸発することを抑制して、固化する際の検体の組成や構造の変化を抑制し、かつ安定した検体の吐出を可能にすることにある。   An object of the present invention is to suppress the evaporation of a liquid sample from the discharge port of a sample supply device, to suppress changes in the composition and structure of the sample when solidified, and to enable stable sample discharge. It is in.

本発明の第1の骨子は、
固体試料の作製室と、
ステージと、
検体を吐出する吐出口を備え、吐出動作により、前記ステージの表面に前記検体を供給する検体供給器と、
前記ステージを冷却する冷却器と、
を有し、
前記作製室内において、冷却された前記ステージの表面に前記検体を供給して、前記検体を固化させる固体試料の作製装置において、
前記検体供給器の吐出動作の待機時に、前記検体供給器の吐出口を前記作製室内の雰囲気から遮蔽した状態で、前記吐出口から前記検体を吸引する吸引器を有することを特徴とする。
The first outline of the present invention is:
A solid sample preparation room;
Stage,
A sample supply device that includes a discharge port for discharging the sample, and supplies the sample to the surface of the stage by a discharge operation;
A cooler for cooling the stage;
Have
In the preparation chamber of the solid sample for supplying the specimen to the cooled surface of the stage and solidifying the specimen in the preparation chamber,
The sample supply device includes an aspirator that sucks the sample from the discharge port in a state where the discharge port of the sample supply device is shielded from the atmosphere in the manufacturing chamber when waiting for the discharge operation of the sample supply device.

本発明の第2の骨子は、固体試料の作製方法において、
上述した固体試料の作製装置を用意する工程、
前記作製室内に乾燥ガスを導入する導入工程と、
前記ステージを冷却する冷却工程と、
前記作製室内で前記検体供給器の吐出動作を実行する工程と、
前記検体供給器の吐出動作の待機時に、前記検体供給器の吐出口を前記作製室内の前記乾燥ガスからなる雰囲気から遮蔽した状態で、前記吐出口から前記検体を吸引する吸引工程と、
を有することを特徴とする。
The second gist of the present invention is a method for producing a solid sample,
A step of preparing the above-described solid sample manufacturing apparatus;
An introducing step of introducing a dry gas into the production chamber;
A cooling step for cooling the stage;
Performing a discharge operation of the specimen supply device in the fabrication chamber;
A suction step of sucking the sample from the discharge port in a state where the discharge port of the sample supply unit is shielded from the atmosphere made of the dry gas in the manufacturing chamber when waiting for the discharge operation of the sample supply unit;
It is characterized by having.

本発明の第3の骨子は、試料の観察方法において、
上述した固体試料の作製方法を用いて固体試料を作製する工程と、
前記固体試料のアモルファス状態を維持して該固体試料の断面観察を行う観察工程と、
を含むことを特徴とする。
The third aspect of the present invention is a sample observation method,
Producing a solid sample using the solid sample production method described above;
An observation step of observing a cross section of the solid sample while maintaining the amorphous state of the solid sample;
It is characterized by including.

本発明によれば、検体供給器の吐出口からの検体の蒸発を抑制して、検体の組成や構造の変化を抑制することができる。また、吐出口付近の検体に組成や構造の変化が生じても、その部分を吸引除去できるので、検体の液相における組成や構造を反映した固体試料を作製することができる。   According to the present invention, it is possible to suppress the evaporation of the sample from the discharge port of the sample supply device, and to suppress changes in the composition and structure of the sample. In addition, even if a change in composition or structure occurs in the specimen near the discharge port, the portion can be removed by suction, so that a solid sample reflecting the composition or structure in the liquid phase of the specimen can be produced.

(実施形態1)
(固体試料の作製装置)
図1は、本発明の一実施形態による固体試料の作製装置の概略構成図である。
(Embodiment 1)
(Solid sample preparation equipment)
FIG. 1 is a schematic configuration diagram of an apparatus for preparing a solid sample according to an embodiment of the present invention.

試料の作製室は大きく分けて第1チャンバー1、第2チャンバー2、第3チャンバー3を有する。そして作製室は、第1チャンバー内の雰囲気と第2チャンバー内の雰囲気とを隔離するとともに、第2チャンバー内の雰囲気と第3チャンバー内の雰囲気とを隔離する、少なくとも2つの開閉可能なシャッター4、5を有する。   The sample preparation chamber is roughly divided into a first chamber 1, a second chamber 2, and a third chamber 3. The manufacturing chamber isolates the atmosphere in the first chamber from the atmosphere in the second chamber, and at least two openable shutters 4 that isolate the atmosphere in the second chamber and the atmosphere in the third chamber. 5

ステージ14は導入棒15に取付けられ、冷却器13に不図示の板バネで押し付けられている。ステージ14の材質は比熱と熱伝導度の高い物質、詳しくはアルミニウム、銅などの金属製であることが望ましい。また、その表面には薄い酸化アルミニウム膜が形成されていてもよい。   The stage 14 is attached to the introduction rod 15 and pressed against the cooler 13 by a leaf spring (not shown). The material of the stage 14 is desirably made of a material having high specific heat and high thermal conductivity, specifically, a metal such as aluminum or copper. A thin aluminum oxide film may be formed on the surface.

ここで、ステージ14と導入棒15はネジにより互いに取り付けられており、導入棒15を回すことによりステージ14との分離、結合ができる。ステージ1には、必要に応じて不図示の温度センサーが組み込まれ、導入棒15内部を通じて外部に設置する不図示の温度表示部または温度制御装置に接続することができる。   Here, the stage 14 and the introduction rod 15 are attached to each other by screws, and the introduction rod 15 can be separated and coupled with the stage 14 by turning the introduction rod 15. A temperature sensor (not shown) is incorporated in the stage 1 as required, and can be connected to a temperature display unit or a temperature control device (not shown) installed outside through the introduction rod 15.

導入棒15は密閉可能な第3チャンバー3に設けられた不図示の貫通穴をO−リング(不図示)を介して貫通し、気密性を保った状態でスライドできる。導入棒15をスライドさせることで、ステージ14を第1チャンバー内の検体供給位置まで移動することができる。   The introduction rod 15 passes through a through hole (not shown) provided in the sealable third chamber 3 via an O-ring (not shown), and can be slid in an airtight state. By sliding the introduction rod 15, the stage 14 can be moved to the specimen supply position in the first chamber.

第3チャンバー3には開閉可能なシャッター5が設けられ、第3チャンバー3内の空間の気密性を保って隔離することができる。また、第3チャンバー3には第3チャンバー3に隣接する第2チャンバー2と接触する部分を密閉するための不図示のO−リングが設けられている。   The third chamber 3 is provided with a shutter 5 that can be opened and closed, and can be isolated while maintaining the airtightness of the space in the third chamber 3. Further, the third chamber 3 is provided with an O-ring (not shown) for sealing a portion in contact with the second chamber 2 adjacent to the third chamber 3.

試料の作製室は、ステージ14を収容するための第3チャンバー3を有しており、第3チャンバー3には、必要に応じてチャンバーの移動機構が設けられ、第2チャンバーに対して切り離し可能に構成されている。また、第2チャンバー2内と第3チャンバー3内とが、同じ雰囲気に設定されるよう構成されている。   The sample preparation chamber has a third chamber 3 for accommodating the stage 14, and the third chamber 3 is provided with a chamber moving mechanism if necessary, and can be separated from the second chamber. It is configured. The second chamber 2 and the third chamber 3 are configured to have the same atmosphere.

パージ用のガス導入弁10には不図示のガス配管が接続されおり、密閉可能な第2チャンバー2はガス導入弁10を介して第2チャンバー2内を窒素等の水分を含まない気体で満たすことができる。   A gas pipe (not shown) is connected to the purge gas introduction valve 10, and the second chamber 2 that can be sealed fills the second chamber 2 with a gas containing no moisture such as nitrogen through the gas introduction valve 10. be able to.

第1チャンバー1と第2チャンバー2の間には開閉可能なシャッター4が設けられ、第1チャンバー1と第2チャンバー2の空間を個別に雰囲気制御して隔離することができる。また、第2チャンバー2にはガス排出弁8を介して真空ポンプ6と大気に接続されており、これらの接続を切り換えることができる。   An openable / closable shutter 4 is provided between the first chamber 1 and the second chamber 2, and the space between the first chamber 1 and the second chamber 2 can be isolated by controlling the atmosphere individually. The second chamber 2 is connected to the vacuum pump 6 and the atmosphere via a gas discharge valve 8, and these connections can be switched.

ステージ14の温度調整手段である冷却器13には、冷媒を必要量注入したデュワー瓶11を温度伝達部12で接続しておく。温度伝達部12の材質は熱伝導度の高い物質、例えば、銅などの金属製であることが好ましい。デュワー瓶11は第2チャンバー2の外、中のどちらに設置しても構わない。冷媒としては液体窒素または液体ヘリウムを使用可能である。   A dewar bottle 11 into which a necessary amount of refrigerant has been injected is connected to a cooler 13 which is a temperature adjusting means of the stage 14 by a temperature transmission unit 12. The material of the temperature transfer part 12 is preferably a substance having a high thermal conductivity, for example, a metal such as copper. The Dewar bottle 11 may be installed either outside or inside the second chamber 2. Liquid nitrogen or liquid helium can be used as the refrigerant.

また、冷却器13には、必要に応じて、不図示のヒーターと温度センサーが組み込まれ、外部に設置する不図示の温度表示部又は温度制御装置に接続し、所望の温度を制御することができる。また、冷却器13は、ペルチェ素子やヘリウム冷凍機のような冷却機構を組み込んだものでもよい。   In addition, the cooler 13 incorporates a heater and a temperature sensor (not shown) as needed, and is connected to a temperature display unit or a temperature control device (not shown) installed outside to control a desired temperature. it can. Moreover, the cooler 13 may incorporate a cooling mechanism such as a Peltier element or a helium refrigerator.

パージ用のガス導入弁9には不図示のガス配管が接続されおり、密閉可能な第1チャンバー1にはガス導入弁9を介して第1チャンバー1内を窒素等の水分を含まない乾燥した気体で満たすことができる。また、第1チャンバー1内のガスはガス排出弁7を介してチャンバー外に放出可能となっている。   A gas pipe (not shown) is connected to the purge gas introduction valve 9, and the first chamber 1 that can be sealed is dried without containing moisture such as nitrogen through the gas introduction valve 9. Can be filled with gas. Further, the gas in the first chamber 1 can be discharged out of the chamber through the gas discharge valve 7.

第1チャンバー1内には検体供給器16として、例えば、液体噴射ヘッドが設けてある。   In the first chamber 1, for example, a liquid ejecting head is provided as the specimen supplier 16.

液体噴射ヘッドには、液体を吐出するための吐出口が少なくとも1つ設けられている。   The liquid ejecting head is provided with at least one ejection port for ejecting liquid.

検体供給器16は不図示の制御装置に接続され、任意の条件下における吐出動作により液滴を吐出する。   The sample supplier 16 is connected to a control device (not shown), and ejects droplets by an ejection operation under an arbitrary condition.

遮蔽部材としてのキャップ17は、検体供給器16の吐出動作の待機時に、検体供給器の吐出口を作製室内の雰囲気から遮蔽する。この吐出口を遮蔽した状態で、その吐出口から検体を吸引する吸引器18を有する。キャップ17はヘッドの待機状態において検体供給器16の吐出口近傍に配置される。キャップ17の機能は、検体の組成や構造変化の抑制だけでなく、吐出口の乾燥防止、チャンバー内の検体による汚染防止などである。   The cap 17 as a shielding member shields the discharge port of the sample supply device from the atmosphere in the production chamber when the sample supply device 16 is waiting for the discharge operation. An aspirator 18 for aspirating a sample from the discharge port in a state where the discharge port is shielded is provided. The cap 17 is disposed in the vicinity of the discharge port of the sample supply device 16 in the head standby state. The function of the cap 17 is not only to suppress changes in the composition and structure of the specimen, but also to prevent the discharge port from being dried and to prevent contamination by the specimen in the chamber.

キャップ17には検体吸引部18が接続されており、キャップ17内を減圧し、検体供給器16から検体を吸引することにより、目詰まりを回復することができるだけでなく、変質した検体を取り除くことができる。   A sample aspirating unit 18 is connected to the cap 17, and not only can the clogging be recovered by reducing the pressure inside the cap 17 and aspirating the sample from the sample supply device 16, but also removing the altered sample. Can do.

本発明に用いられるキャップとしては、検体供給器としてのヘッドの吐出動作の待機時に、ヘッドの吐出口を作製室内の雰囲気から遮蔽できるものであればよく、各種形状のものが好適に用いられる。キャップの材質は、シリコーンゴムなどの弾性体からなるもの、ヘッドへの密着部のみが弾性体からなりキャップ本体は金属やセラミッスやプラスティックなどの非弾性体からなるものであってもよい。   The cap used in the present invention may be any cap as long as it can shield the ejection port of the head from the atmosphere in the production chamber during standby of the ejection operation of the head as the specimen supply device, and those having various shapes are preferably used. The material of the cap may be made of an elastic body such as silicone rubber, or only the contact portion to the head may be made of an elastic body, and the cap body may be made of an inelastic body such as metal, ceramics, or plastic.

上記弾性体としては、天然ゴム又は合成ゴムが用いられる。合成ゴムとしては、スチレンブタジエンゴム(SBR)、ポリブタジエンゴム(BR)、クロロプレンゴム(CR)、アクリロニトリルブタジエンゴム(NBR)、ブチルゴム(IIR)、エチレンプロピレンゴム(EPDM)、エピクロルヒドリンゴム(CHR)、クロロスルフォン化ポリエチレン(CSM)、アクリルゴム、シリコーンゴム、フッ素ゴム、ウレタンゴムなどが挙げられる。   Natural rubber or synthetic rubber is used as the elastic body. Synthetic rubbers include styrene butadiene rubber (SBR), polybutadiene rubber (BR), chloroprene rubber (CR), acrylonitrile butadiene rubber (NBR), butyl rubber (IIR), ethylene propylene rubber (EPDM), epichlorohydrin rubber (CHR), chloro Examples thereof include sulfonated polyethylene (CSM), acrylic rubber, silicone rubber, fluorine rubber, and urethane rubber.

又、吸引器としては、吐出口を作製室内の雰囲気から遮蔽した状態で、吐出口から検体を吸引することができるものであればよい。具体的には、ピストンポンプ、プランジャーポンプ、ダイヤフラムポンプなどの往復ポンプや、ギヤポンプ、ベーンポンプ、チューブポンプなどの回転ポンプであり得る。   Any aspirator may be used as long as the sample can be sucked from the discharge port while the discharge port is shielded from the atmosphere in the manufacturing chamber. Specifically, the pump may be a reciprocating pump such as a piston pump, a plunger pump, or a diaphragm pump, or a rotary pump such as a gear pump, a vane pump, or a tube pump.

第1チャンバー1と検体供給器16には、図中水平方向への移動機構20と図中上下方向への移動機構21を介して接続されている。移動機構20と移動機構21は不図示の移動機構制御部に接続されており、検体供給器16を予め設定された位置に移動可能である。
図中上下方向への移動機構21の代わりにキャップ17を上下に移動させることでも可能である。
The first chamber 1 and the sample supply device 16 are connected via a moving mechanism 20 in the horizontal direction in the drawing and a moving mechanism 21 in the vertical direction in the drawing. The moving mechanism 20 and the moving mechanism 21 are connected to a moving mechanism control unit (not shown) and can move the sample supply device 16 to a preset position.
It is also possible to move the cap 17 up and down instead of the vertical movement mechanism 21 in the figure.

移動機構21を動作させることで、検体供給器16をキャップ17から離すと同時に、ステージ14との適切な距離を制御することができる。また、移動機構20を動作させることで、検体供給器16を第1チャンバー1内から第2チャンバー2内のステージ近傍に移動させ、検体を吐出し、形成された飛翔的液滴をステージ表面に付着する。   By operating the moving mechanism 21, it is possible to control the appropriate distance from the stage 14 at the same time that the sample supplier 16 is separated from the cap 17. Further, by operating the moving mechanism 20, the specimen supply device 16 is moved from the first chamber 1 to the vicinity of the stage in the second chamber 2, the specimen is discharged, and the formed flying droplets are placed on the stage surface. Adhere to.

このように、検体供給器16の吐出動作を実行するために検体供給器16を第1のチャンバー1から第2のチャンバー2に移動させる検体供給器の移動機構20を有している。また、固体試料を取り出すために、ステージ14を第2のチャンバー2から前記第3のチャンバー3に移動させるステージの移動機構15を有している。   As described above, in order to execute the discharge operation of the sample supply device 16, the sample supply device moving mechanism 20 that moves the sample supply device 16 from the first chamber 1 to the second chamber 2 is provided. Further, in order to take out the solid sample, a stage moving mechanism 15 for moving the stage 14 from the second chamber 2 to the third chamber 3 is provided.

そして、固体試料の作製室は、吸引器が付設された第1チャンバー1と、冷却器13が付設された第2チャンバー2と、を有し、第2チャンバー2において、検体供給器の吐出動作が実行される。本発明においては、後述するように、第1チャンバー1内で吐出動作が実行されてもよい。   The solid sample preparation chamber includes a first chamber 1 provided with an aspirator and a second chamber 2 provided with a cooler 13. In the second chamber 2, a discharge operation of the specimen supply device is performed. Is executed. In the present invention, the discharge operation may be performed in the first chamber 1 as will be described later.

(固体試料)
本発明の固体試料の作製方法により作製される固体試料は、観察すべき領域全体がアモルファス(非晶質)状態で固化している。アモルファスの固体は、液体のランダムな分子配置をそのまま凍結した固体であり、液体試料からなる検体液滴を急速冷却して結晶成長を阻害することにより得ることができる。
(Solid sample)
In the solid sample produced by the solid sample production method of the present invention, the entire region to be observed is solidified in an amorphous state. An amorphous solid is a solid obtained by freezing a random molecular arrangement of a liquid as it is, and can be obtained by rapidly cooling a specimen droplet made of a liquid sample to inhibit crystal growth.

液体試料中に分散物が分散している場合、アモルファスの状態で固化させることにより結晶面成長が生じないため、結晶面成長に伴う分散物の移動が起きない。しかも、固化させる前にマイクロ波エネルギーを試料に照射したりしないため、得られる固体試料は液体時の分散物の分散状態を正しく反映しており、SEM等で該固体試料を観察する際に、液体状態における分散物の正確な分布観察を行うことができる。   When the dispersion is dispersed in the liquid sample, crystal plane growth does not occur by solidifying in an amorphous state, and therefore, the dispersion does not move along with the crystal plane growth. Moreover, since the sample is not irradiated with microwave energy before solidification, the obtained solid sample correctly reflects the dispersion state of the dispersion in the liquid state, and when observing the solid sample with SEM or the like, Accurate distribution observation of the dispersion in the liquid state can be performed.

固体試料がアモルファスであることは、光学顕微鏡、SEM、及びレーザー顕微鏡等による直接観察、並びに透過型電子顕微鏡、X線解析による回折パターンの測定などから判断することができる。結晶質部分が一部に存在する場合、走査型電子顕微鏡では一定の塊状の結晶を直接観測でき、透過型電子顕微鏡、X線解析では該結晶質部分由来の回折パターンが得られる。これ以外にもラマン分光法によりアモルファスか結晶かを同定することができる。   Whether the solid sample is amorphous can be determined from direct observation using an optical microscope, SEM, laser microscope, or the like, and measurement of a diffraction pattern using a transmission electron microscope or X-ray analysis. When a crystalline part is present in part, a certain block of crystals can be directly observed with a scanning electron microscope, and a diffraction pattern derived from the crystalline part can be obtained with a transmission electron microscope and X-ray analysis. Besides this, it is possible to identify amorphous or crystalline by Raman spectroscopy.

本発明の固体試料のアモルファス状態とは、例えばSEMにより10nm以上の粒径の結晶が観察されない状態をいう。   The amorphous state of the solid sample of the present invention refers to a state in which crystals having a particle size of 10 nm or more are not observed by SEM, for example.

本発明に用いられる、常温常圧で液相を呈する液体(A)としては、例えば、1気圧且つ20℃程度の室温状態で液相を呈する液体であり、代表的には水や水溶性溶剤や有機溶剤である。   The liquid (A) that exhibits a liquid phase at room temperature and normal pressure used in the present invention is, for example, a liquid that exhibits a liquid phase at room temperature of 1 atm and about 20 ° C., and is typically water or a water-soluble solvent. And organic solvents.

本発明に用いられる有機溶剤としては、エタノール、メタノール、イソプロパノールなどのアルコール;グリセリン、ポリエチレングリコールなどの多価アルコール;アセトン;エチルエーテル;キシレン;シクロヘキサン;トルエンなどである。   Examples of the organic solvent used in the present invention include alcohols such as ethanol, methanol, and isopropanol; polyhydric alcohols such as glycerin and polyethylene glycol; acetone; ethyl ether; xylene; cyclohexane;

本発明に用いられる、常温常圧で固相又は液相を呈する物質(B)としては、例えば、1気圧且つ20℃程度の室温状態で固相又は液相を呈する物質が用いられる。   As the substance (B) exhibiting a solid phase or a liquid phase at room temperature and normal pressure used in the present invention, for example, a substance exhibiting a solid phase or a liquid phase at room temperature of about 1 ° C. and about 20 ° C. is used.

常温常圧で固相を呈する物質(B1)としては、金、銀、銅のような純金属又は合金、シリコン、ゲルマニウムのような半導体、酸化シリコン、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化ジルコニウムのような酸化物、カーボンブラックなどの無機微粒子が挙げられる。或いはアントラキノン誘導体、ポリスチレン樹脂などの有機化合物;銅フタロシアニンなどの金属錯体、などの有機微粒子であってもよい。   Examples of the substance (B1) that exhibits a solid phase at normal temperature and pressure include pure metals or alloys such as gold, silver, and copper, semiconductors such as silicon and germanium, silicon oxide, titanium oxide, aluminum oxide, zinc oxide, and zirconium oxide. And inorganic fine particles such as carbon black and the like. Or organic particulates, such as organic compounds, such as anthraquinone derivative and a polystyrene resin; Metal complexes, such as copper phthalocyanine, may be sufficient.

上記物質(B1)の粒子径は、液体中の分散性が保たれていれば特に規定されないが、10nm以上1μm以下、より好ましくは、10nm以上100nm以下である。   The particle size of the substance (B1) is not particularly limited as long as the dispersibility in the liquid is maintained, but is 10 nm or more and 1 μm or less, more preferably 10 nm or more and 100 nm or less.

これらの粒子径は光散乱法、レーザー回折法などの手法で測定可能である。   These particle diameters can be measured by a method such as a light scattering method or a laser diffraction method.

常温常圧で液相を呈する物質(B2)としては、常温で液体を呈し、急冷により液体(A)とともに固体となる物質であれば特に規定されない。しかし、物質(B2)は、液体(A)中で分散状態が保たれることが可能な物質である必要がある。   The substance (B2) that exhibits a liquid phase at room temperature and normal pressure is not particularly limited as long as it is a substance that exhibits a liquid at room temperature and becomes a solid together with the liquid (A) by rapid cooling. However, the substance (B2) needs to be a substance that can be dispersed in the liquid (A).

具体的には、物質(B2)としては、エマルジョン状態の液体であり、例えば、たんぱく質分散液、未反応乳化重合液等が挙げられる。前記液体の物質(B2)の粒子径は、10nm以上1μm以下、より好ましくは、10nm以上100nm以下の範囲内から適宜選択できる。   Specifically, the substance (B2) is a liquid in an emulsion state, and examples thereof include a protein dispersion and an unreacted emulsion polymerization liquid. The particle diameter of the liquid substance (B2) can be appropriately selected from the range of 10 nm to 1 μm, more preferably 10 nm to 100 nm.

これらの粒子径は光散乱法などの手法で測定可能である。   These particle sizes can be measured by a method such as a light scattering method.

常温常圧で固相又は液相を呈する物質(B)の機能としては、顔料、色材、導電性物質、絶縁性物質、半導体、誘電体、磁性体、エマルジョン、界面活性剤などであり得る。   The function of the substance (B) that exhibits a solid phase or a liquid phase at room temperature and normal pressure may be a pigment, a color material, a conductive substance, an insulating substance, a semiconductor, a dielectric, a magnetic substance, an emulsion, a surfactant, and the like. .

また、物質(B)としては、例えば−40℃以上の凝固点を有する物質、例えば−40℃以上+20℃以下の範囲内から選択される凝固点を有する物質が好ましく用いられる。これらの具体例としては、植物性油脂、シクロヘキサン、などが挙げられる。   Moreover, as the substance (B), for example, a substance having a freezing point of −40 ° C. or higher, for example, a substance having a freezing point selected from the range of −40 ° C. or higher and + 20 ° C. or lower is preferably used. Specific examples of these include vegetable oil and fat, cyclohexane, and the like.

本発明に用いられる、検体としての液体試料(AB)は、例えば、顔料が分散された顔料インク組成物、銀粒子が熱硬化性樹脂を溶かした有機溶剤中に分散された導電性ペースト組成物、帯電可能な粒子を分散させた溶液などが挙げられる。   The liquid sample (AB) as a specimen used in the present invention includes, for example, a pigment ink composition in which a pigment is dispersed, and a conductive paste composition in which silver particles are dispersed in an organic solvent in which a thermosetting resin is dissolved. And a solution in which chargeable particles are dispersed.

(固体試料の作製方法)
本発明の固体試料作製方法は、予めステージを冷却し、アモルファス化できる範囲内の所定の体積の検体液滴を吐出装置から吐出させて、当該液滴を前記ステージの上に着弾させ当該液滴を急冷してアモルファスの状態で固化する。
(Preparation method of solid sample)
In the solid sample preparation method of the present invention, the stage is cooled in advance, and a specimen droplet having a predetermined volume within a range that can be made amorphous is ejected from the ejection device, and the droplet is landed on the stage. Is rapidly cooled and solidified in an amorphous state.

この固化するための固化工程は、乾燥ガス雰囲気下で行うことが望ましい。これにより、液滴を急却して凝結固化する際、試料表面での結露発生を抑制することができる。   The solidification step for solidification is desirably performed in a dry gas atmosphere. Thus, when the droplets are rapidly agglomerated and solidified, the occurrence of condensation on the sample surface can be suppressed.

好ましくは、露点が設定するステージ温度以下である−273〜−196℃の範囲内の乾燥ガス雰囲気が好ましい。   A dry gas atmosphere within a range of −273 to −196 ° C., which is lower than the stage temperature set by the dew point, is preferable.

前記乾燥ガスとしては、水分含量の低い気体であれば特に規定されず、ヘリウム、アルゴンなどの希ガス、或いは窒素から選択される不活性ガスの少なくとも1種を含むガスが好ましいが、水素等の反応性ガスであってもよい。   The dry gas is not particularly defined as long as it has a low moisture content, and is preferably a gas containing at least one of a rare gas such as helium and argon, or an inert gas selected from nitrogen. It may be a reactive gas.

以下、各工程について説明する。   Hereinafter, each step will be described.

まず、予め物質(B)を含む液体(A)、即ち検体としての、液体試料(AB)の液滴の着弾点となるステージを冷却する。   First, the stage which becomes the landing point of the liquid (A) containing the substance (B), that is, the droplet of the liquid sample (AB) as the specimen is cooled.

ステージは、液体試料(AB)を凝結固化する試料台であり、ステージを冷却可能な冷却器にて予め冷却される。   The stage is a sample stage for condensing and solidifying the liquid sample (AB), and is precooled by a cooler capable of cooling the stage.

本発明に用いられるステージとしては、液滴が短時間で凍結しアモルファスの固体試料になるのに十分な熱伝導率をもつものであればよく、例えば、アルミニウム、アルミニウム合金、銅、銅合金のような金属材料からなる表面を有する部材が挙げられる。あるいは、それらの金属材料の表面に金属酸化物のような薄い絶縁性被膜が形成されたものであってもよい。   The stage used in the present invention only needs to have a thermal conductivity sufficient for the droplets to freeze in a short time to become an amorphous solid sample. For example, aluminum, aluminum alloy, copper, copper alloy The member which has the surface which consists of such a metal material is mentioned. Alternatively, a thin insulating film such as a metal oxide may be formed on the surface of the metal material.

ステージを冷却するための冷却器は、例えば、液体窒素等の冷媒を入れたデュワー瓶や低温に保たれた冷却室であってもよい。また、低温に冷やされた金属塊、ペルチェ素子やヘリウム冷凍機のような冷却機構であってもよい。   The cooler for cooling the stage may be, for example, a Dewar bottle containing a refrigerant such as liquid nitrogen or a cooling chamber kept at a low temperature. Further, a cooling mechanism such as a metal block cooled to a low temperature, a Peltier element, or a helium refrigerator may be used.

ステージの冷却温度は、液体窒素温度(−196℃)であれば液体試料(AB)の液滴がステージ上に着弾した際、液滴が急速冷却され、観察すべき試料全体が結晶部分を形成することなくアモルファスとなる。   If the cooling temperature of the stage is liquid nitrogen temperature (-196 ° C), when the droplet of the liquid sample (AB) reaches the stage, the droplet is rapidly cooled, and the entire sample to be observed forms a crystal part. It becomes amorphous without doing.

冷却に液体窒素を用いない場合でも、例えば液体が水の場合、1気圧の水のガラス転移点がおよそ−130℃であるため、ステージ温度はおよそ−140℃以下であれば、アモルファスの固体試料が得られる。   Even when liquid nitrogen is not used for cooling, for example, when the liquid is water, the glass transition point of water at 1 atm is approximately −130 ° C., so that if the stage temperature is approximately −140 ° C. or less, an amorphous solid sample Is obtained.

次に、液体試料(AB)を観察すべき領域全体がアモルファス化できる範囲内の大きさの液滴として検体供給器から吐出し、冷却器で予め冷却したステージに着弾させる。   Next, the liquid sample (AB) is discharged from the specimen supply device as droplets having a size within a range where the entire region to be observed can be amorphized, and is landed on a stage cooled in advance by a cooler.

本発明に用いられるステージは、ステージの表面に複数の液滴が互いに離間して付着されるように、液滴の吐出方向と交差する方向に前記表面を移動させる移動機構が付設されたものが好ましいものである。こうして、アモルファス化した固体試料が複数得られる。   The stage used in the present invention is provided with a moving mechanism for moving the surface in a direction crossing the droplet discharge direction so that a plurality of droplets are attached to the surface of the stage separately from each other. It is preferable. In this way, a plurality of amorphized solid samples are obtained.

具体的には、ステージは液滴の吐出方向に交差する方向、より具体的には垂直な方向に移動可能であることが好ましい。液滴吐出時にステージを吐出方向に対して垂直な方向に移動することにより、ほぼ同じ形状で同じ大きさの固体試料が複数得られる。   Specifically, it is preferable that the stage is movable in a direction intersecting the droplet discharge direction, more specifically in a vertical direction. By moving the stage in a direction perpendicular to the discharge direction during droplet discharge, a plurality of solid samples having substantially the same shape and the same size can be obtained.

また、ステージを冷却器から分離可能に構成することで、予めステージを冷却器により冷却した後、ステージを自由に移動して複数の液滴を任意の位置に着弾させることができる。   In addition, since the stage is configured to be separable from the cooler, the stage can be cooled by the cooler in advance, and then the stage can be moved freely so that a plurality of droplets can land on any position.

液滴の粘度、飛翔速度、体積、飛翔距離を調整することにより、ステージ上に着弾した液滴全体をアモルファス化することもより好ましいものである。
なお、液滴から形成された薄膜の厚さは均一である必要はない。
It is more preferable to make the entire droplet landed on the stage amorphous by adjusting the viscosity, flight speed, volume, and flight distance of the droplet.
Note that the thickness of the thin film formed from the droplets need not be uniform.

液滴を高速でステージに向けて衝突させることにより、ステージ上で液滴が拡がって薄い被膜になり、その後冷却される。   By causing the droplets to collide toward the stage at a high speed, the droplets spread on the stage to form a thin film, and then cooled.

本発明においては、100pl(ピコリットル)以下の体積で、且つ5m/秒以上の飛翔速度で液滴をステージ上に着弾させることが好ましい。例えば、液滴の体積は、10pl(ピコリットル)、液滴の飛翔速度は7m/秒である。   In the present invention, it is preferable that droplets are landed on the stage at a volume of 100 pl (picoliter) or less and at a flight speed of 5 m / second or more. For example, the volume of the droplet is 10 pl (picoliter) and the flying speed of the droplet is 7 m / sec.

この被膜の厚さを十分に小さくすることにより、ステージへの熱の移動が短時間で起きる。このため液滴状の試料(AB)中の液体分子はほとんど瞬時に固化されるが、分子よりはるかに大きい分散物である物質(B)は液体(A)が固化する時間内では空間的に移動し難い。   By sufficiently reducing the thickness of the coating, heat transfer to the stage occurs in a short time. For this reason, the liquid molecules in the droplet-like sample (AB) are almost instantaneously solidified, but the substance (B) which is a dispersion much larger than the molecules is spatially within the time when the liquid (A) is solidified. It is difficult to move.

その結果、物質(B)の分散状態がそのまま維持されて固定される。水系液体の場合、液体試料(AB)の粘度としては、表面張力が70mN/m以下、粘度が1×10-2Pa・s以下であることがステージ上で薄膜を形成する上で好ましい。 As a result, the dispersed state of the substance (B) is maintained and fixed as it is. In the case of an aqueous liquid, the liquid sample (AB) preferably has a surface tension of 70 mN / m or less and a viscosity of 1 × 10 −2 Pa · s or less for forming a thin film on the stage.

なお、ステージ上に着弾した液滴の薄膜の膜厚は、1μm以上50μm以下、より好ましくは1μm乃至10μmの範囲内から選択しうる。この範囲内であれば、全体がアモルファス固体からなる固体試料を容易に形成できる。また、従来技術とは異なり、着弾面から20μmを超える、例えば、25μm以上50μm以下の範囲内の大きさの観察領域であっても全体をアモルファス化できる。   It should be noted that the thickness of the thin film of droplets landed on the stage can be selected from the range of 1 μm to 50 μm, more preferably 1 μm to 10 μm. Within this range, a solid sample consisting entirely of an amorphous solid can be easily formed. Further, unlike the prior art, the whole can be made amorphous even in an observation region having a size in the range of 25 μm or more and 50 μm or less exceeding 20 μm from the landing surface.

液滴の体積が大きい場合、ステージ上で薄い膜にならず、接触角の大きい盛り上がった液滴として付着する。このとき、ステージとの接触面積に比べて液体の体積が大きく、熱の移動に時間がかかるため、冷却過程で粒子が液中を移動して分散状態が変化してしまう。   When the volume of the droplet is large, it does not become a thin film on the stage, but adheres as a raised droplet with a large contact angle. At this time, since the volume of the liquid is larger than the contact area with the stage and it takes time to move the heat, the particles move in the liquid during the cooling process and the dispersion state changes.

また、体積の小さな液滴であっても、飛翔速度が小さい場合には、ステージ上で十分に薄い薄膜とならないことがある。このときは、たとえ液量が少なくても分散状態が変化しやすい。通常、液滴の体積は0.1pl以上1nl以下、飛翔速度は3m・s-1以上20m・s-1以下の範囲で適宜調整することが、均一な薄膜形成の観点から好ましい。 Further, even a droplet having a small volume may not be a sufficiently thin film on the stage if the flying speed is low. At this time, even if the amount of liquid is small, the dispersion state is likely to change. Usually, it is preferable from the viewpoint of uniform thin film formation that the droplet volume is suitably adjusted in the range of 0.1 pl to 1 nl and the flying speed in the range of 3 m · s −1 to 20 m · s −1 .

本発明に用いられる検体供給器としては、液体を吐出して飛翔的液滴を形成する液体噴射ヘッドが好ましく用いられる。この液体噴射ヘッドは、液滴をノズル(吐出口)から吐出させるものであり、所謂、インクジェットヘッドとよばれる。   As the sample supply device used in the present invention, a liquid ejecting head that discharges liquid and forms flying droplets is preferably used. This liquid ejecting head ejects droplets from nozzles (ejection ports), and is called a so-called inkjet head.

本発明においては、インクジェットと云えども吐出する液体は狭義のインクに限定されない。   In the present invention, the liquid to be ejected is not limited to ink in a narrow sense even though it is ink jet.

インクジェットヘッドは微小な液滴を形成するのに適しており、液滴の体積や飛翔速度を調整できるので、本発明の固体試料の作製に適している。インクジェットヘッドとしては、サーマル方式、ピエゾ方式、静電方式等、任意の方式のものが使用できる。   The ink jet head is suitable for forming minute droplets and can adjust the volume and flying speed of the droplets, and is therefore suitable for the production of the solid sample of the present invention. As the ink jet head, any system such as a thermal system, a piezo system, an electrostatic system, or the like can be used.

本発明に用いられる検体供給器としては、液体噴射ヘッド以外にも、マイクロピペットや、毛細管のような中空筒などを用いることができる。   As a sample supply device used in the present invention, a micropipette, a hollow tube such as a capillary tube, or the like can be used in addition to the liquid ejecting head.

さらに、ステージが冷却器に対して移動し、冷却器からステージが離れた後にステージに液滴が着弾してもよい。着弾した液滴が固化する時に発生する凝固熱は、ステージの熱容量に対して十分に小さいので、冷却器から金属製のステージが離れた後に、ステージに着弾しても液滴全体をアモルファス化できる。   Further, the stage may move with respect to the cooler, and the droplet may land on the stage after the stage leaves the cooler. The solidification heat generated when the landed droplets solidify is sufficiently small compared to the heat capacity of the stage, so that the entire droplet can be made amorphous even after landing on the stage after the metal stage leaves the cooler .

要するに、本発明の好適な実施形態における固体試料の作製方法は、
上述及び後述する固体試料の作製装置を用意する工程、
作製室内に乾燥ガスを導入する導入工程と、
ステージを冷却する冷却工程と、
作製室内で検体供給器の吐出動作を実行する工程と、
検体供給器の吐出動作の待機時に、検体供給器の吐出口を作製室内の乾燥ガスからなる雰囲気から遮蔽した状態で、吐出口から検体を吸引する吸引工程と、
を有することを特徴とする。
In short, a method for preparing a solid sample in a preferred embodiment of the present invention is as follows.
Preparing a solid sample preparation apparatus as described above and below;
An introduction step of introducing dry gas into the fabrication chamber;
A cooling process for cooling the stage;
A step of performing a discharge operation of the specimen supply device in the manufacturing chamber;
A suction step of sucking the sample from the discharge port in a state where the discharge port of the sample supply device is shielded from the atmosphere made of dry gas in the production chamber when waiting for the discharge operation of the sample supply device;
It is characterized by having.

より好ましくは、検体として、常温常圧で液相を呈する液体と、前記液体とは異なる物質であって常温常圧で固相又液相を呈する物質と、を含み、前記物質が前記液体中に分散された検体を用意し、検体を液滴として、冷却されたステージ表面に付着させ、観察すべき領域全体をアモルファス化すると良い。   More preferably, the specimen includes a liquid that exhibits a liquid phase at normal temperature and pressure, and a substance that is different from the liquid and exhibits a solid phase or a liquid phase at normal temperature and pressure, and the substance is contained in the liquid. It is advisable to prepare a sample dispersed in the sample, attach the sample as droplets to the cooled stage surface, and make the entire region to be observed amorphous.

(試料の観察方法)
本発明の一実施形態による試料の観察方法は、
上記試料の作製方法を用いて固体試料を作製する工程と、
前記固体試料の断面観察を行う観察工程と、
を含む。
(Sample observation method)
A sample observation method according to an embodiment of the present invention includes:
A step of producing a solid sample using the method of producing the sample;
An observation step of performing cross-sectional observation of the solid sample;
including.

本発明においては、ステージの移動の際に固体試料の温度が変化しないように、必要に応じてステージに温度維持機構が設けられていてもよい。   In the present invention, a temperature maintaining mechanism may be provided on the stage as necessary so that the temperature of the solid sample does not change during the movement of the stage.

また、加工・観察の際は、必要に応じて、固体試料を載せたステージをそのまま、固体試料作製装置から加工装置、或いは加工・観察装置内に移動し、加工及び/又は観察を行うことも好ましいものである。   When processing / observation, the stage on which the solid sample is placed may be moved from the solid sample preparation device to the processing device or the processing / observation device to perform processing and / or observation as necessary. It is preferable.

(固体試料の作製方法)
図2は、図1に示す作製装置を用いた固体試料作製方法の一手順を示すフローチャート図を示す。
(Preparation method of solid sample)
FIG. 2 is a flowchart showing one procedure of a solid sample manufacturing method using the manufacturing apparatus shown in FIG.

図3〜図6は図1に示す固体試料の作製装置による固体試料の作製方法における各部分の動作を説明するための概略図である。   3 to 6 are schematic diagrams for explaining the operation of each part in the solid sample preparation method by the solid sample preparation apparatus shown in FIG.

以下、図1乃至図6に基づいて固体試料の作製の手順を説明する。   Hereinafter, a procedure for preparing a solid sample will be described with reference to FIGS.

始めに、第1チャンバー1内の、外部から閉鎖された空間を窒素ガス置換する手順(ステップS1)を説明する。   First, a procedure (step S1) of replacing the space closed from the outside in the first chamber 1 with nitrogen gas will be described.

まず、第1チャンバー1と第2チャンバー2の間のシャッター4を閉鎖し、第1及び第2チャンバー内の雰囲気を互いに分離する。   First, the shutter 4 between the first chamber 1 and the second chamber 2 is closed, and the atmospheres in the first and second chambers are separated from each other.

そして、ガス排出弁7とガス導入弁9を開放しガス導入弁9から導入された乾燥窒素ガスで第1チャンバー1内のガスを置換する。ここでの乾燥ガスで置換する時間は限定しないが、第1チャンバー1内の水分が完全に除去できるまで、上述した露点を達成し得るに十分な時間をかけてガス置換をすることが必要である。こうすると、検体供給器、検体、更には固体試料への結露を防止できる。   Then, the gas discharge valve 7 and the gas introduction valve 9 are opened, and the gas in the first chamber 1 is replaced with the dry nitrogen gas introduced from the gas introduction valve 9. The time for replacement with the dry gas here is not limited, but it is necessary to perform gas replacement for a sufficient time to achieve the above dew point until the water in the first chamber 1 can be completely removed. is there. In this way, it is possible to prevent dew condensation on the sample supply device, the sample, and further the solid sample.

次に、デュワー瓶11に液体窒素を充填する(ステップS2)。   Next, the dewar bottle 11 is filled with liquid nitrogen (step S2).

そして、ステージ14を導入棒15に取付ける(ステップS3)。   Then, the stage 14 is attached to the introduction rod 15 (step S3).

さらに、導入棒15を操作して第3チャンバー3内にステージ14を移動し収容する(ステップS4)。そして、シャッター5を閉じる。   Further, the stage 14 is moved and accommodated in the third chamber 3 by operating the introduction rod 15 (step S4). Then, the shutter 5 is closed.

一体となったステージ14と第3チャンバー3の開口部を不図示のO−リングを介して第2チャンバー2の開口部を密閉する位置に設置、結合する(ステップS5)。そして、シャッター5を開けて、第2及び第3チャンバー内を互いに連通させる。   The integrated stage 14 and the opening of the third chamber 3 are installed and coupled to a position that seals the opening of the second chamber 2 via an O-ring (not shown) (step S5). Then, the shutter 5 is opened so that the second and third chambers communicate with each other.

以上の手順を完了した状態を図3に示す。   FIG. 3 shows a state where the above procedure is completed.

続いて第2チャンバー2、第3チャンバー3内の、外部から閉鎖された空間を乾燥窒素ガスで置換する手順(ステップS6)を説明する。   Next, a procedure (step S6) of replacing the space closed from the outside in the second chamber 2 and the third chamber 3 with dry nitrogen gas will be described.

最も簡単な手順はガス排出弁8を大気と導通するように開き、ガス導入弁10を開き窒素ガスを流入させる方法であるが、ガスのよどみ等により、十分な窒素ガス置換が行なわれないので、以下の方法が好ましい。   The simplest procedure is to open the gas discharge valve 8 so as to be connected to the atmosphere and open the gas introduction valve 10 to allow nitrogen gas to flow in. However, sufficient nitrogen gas replacement is not performed due to gas stagnation or the like. The following method is preferred.

まず、ガス導入弁10を閉鎖して、ガス排出弁8を真空ポンプ6に導通するように切換え、真空ポンプ6を作動させてチャンバー内のガスを排出させ、続いて、ガス排出弁8を閉鎖し、ガス導入弁10を開き窒素ガスを流入させる。上記、真空引きとガス導入を数回繰り返せばさらに好ましい。   First, the gas introduction valve 10 is closed, the gas discharge valve 8 is switched to conduct to the vacuum pump 6, the vacuum pump 6 is operated to discharge the gas in the chamber, and then the gas discharge valve 8 is closed. Then, the gas introduction valve 10 is opened and nitrogen gas is introduced. More preferably, the above-described evacuation and gas introduction are repeated several times.

第2チャンバー2と第3チャンバー3内が窒素で置換された後、導入棒15を操作してステージ14を冷却器13上に移動させる(ステップS7)。この状態を図4に示す。   After the inside of the second chamber 2 and the third chamber 3 is replaced with nitrogen, the introduction rod 15 is operated to move the stage 14 onto the cooler 13 (step S7). This state is shown in FIG.

なお、ステージ14の温度は、液体窒素温度(−196℃)であれば液体試料の液滴がステージ上に着弾した際、液滴が急速冷却され、結晶部分を形成することなく全体がアモルファスの固体試料を得ることができる。冷却に液体窒素を用いない場合でも、−140℃以下であれば、水系溶媒試料のアモルファスの固体試料を得ることができる。   If the temperature of the stage 14 is a liquid nitrogen temperature (−196 ° C.), when the droplet of the liquid sample lands on the stage, the droplet is rapidly cooled, and the whole is amorphous without forming a crystal part. A solid sample can be obtained. Even when liquid nitrogen is not used for cooling, an amorphous solid sample of an aqueous solvent sample can be obtained if it is −140 ° C. or lower.

そして、必要であれば冷却器13のヒーターを動作させ、ステージ14の温度を所定温度に安定させる(ステップS8)。例えば、水系溶媒を含む試料の場合、ステージ14の温度を、例えば、−100℃に設定する。この温度は、水のガラス転移点−130℃より高い温度であるので、試料は結晶化した固体試料となる。   Then, if necessary, the heater of the cooler 13 is operated to stabilize the temperature of the stage 14 at a predetermined temperature (step S8). For example, in the case of a sample containing an aqueous solvent, the temperature of the stage 14 is set to −100 ° C., for example. Since this temperature is higher than the glass transition point of water -130 ° C, the sample becomes a crystallized solid sample.

一方、前記液体窒素温度(−196℃)で凍結させた場合には、固体試料とを比較することで、結晶化状態とアモルファス状態での粒子の分散状態の差が確認ができる。   On the other hand, when it is frozen at the liquid nitrogen temperature (−196 ° C.), the difference between the dispersed state of the particles in the crystallized state and the amorphous state can be confirmed by comparing the solid sample.

次に、検体供給器16の回復手順(ステップS9)を説明する。   Next, the recovery procedure (step S9) of the sample supply device 16 will be described.

吐出動作の待機時において、検体供給器16は試料の液体の蒸発を防止するためにキャップ17で覆われている。しかしながら、例えば微細構造をもつインクジェットヘッドの場合は長時間の放置により、ノズル部のわずかな液体の蒸発により正常な吐出ができないこともある。そこで、キャップ17にチューブを介して接続され、キャップ17の内部とチューブ内を介して連通している試料吸引部18を動作させることにより、検体供給器16の吐出口から試料を吸引する。これにより検体供給器16の吐出口を本来の正常な状態の試料で充満させる。   When waiting for the discharge operation, the specimen supply device 16 is covered with a cap 17 in order to prevent evaporation of the sample liquid. However, for example, in the case of an inkjet head having a fine structure, normal ejection may not be possible due to evaporation of a small amount of liquid in the nozzle portion when left for a long time. Therefore, the sample is sucked from the discharge port of the sample supply device 16 by operating the sample suction unit 18 connected to the cap 17 via a tube and communicating with the inside of the cap 17 via the inside of the tube. As a result, the discharge port of the specimen supply device 16 is filled with the original normal sample.

続いてシャッター4を開放し、移動機構21を動作させ、検体供給器16をキャップ17から離す。この際、試料の吐出方向に対し、検体供給器16とステージ14の距離が0.1mm〜3mmになるように移動機構21の移動量を制御する。   Subsequently, the shutter 4 is opened, the moving mechanism 21 is operated, and the sample supplier 16 is separated from the cap 17. At this time, the moving amount of the moving mechanism 21 is controlled so that the distance between the specimen supply device 16 and the stage 14 is 0.1 mm to 3 mm with respect to the sample discharge direction.

次に、移動機構20を動作させ、検体供給器16を試料受部19上に移動させ、検体供給器16から試料を吐出させる。試料受部19に試料を予備的に吐出させることにより、検体供給器16からの吐出を更に安定させることができる。   Next, the moving mechanism 20 is operated to move the sample supply unit 16 onto the sample receiving unit 19 and discharge the sample from the sample supply unit 16. By preliminarily discharging the sample to the sample receiving unit 19, the discharge from the specimen supply device 16 can be further stabilized.

さらに、移動機構20を動作させ、検体供給器16をステージ14上に移動させ、検体供給器16から試料を吐出させ(ステップS10)、試料の液滴をステージ14に付着させる。付着した試料の液滴はステージ14に熱を奪われ固化する(ステップS11)。   Further, the moving mechanism 20 is operated to move the sample supply device 16 onto the stage 14, discharge the sample from the sample supply device 16 (step S 10), and attach the droplet of the sample to the stage 14. The adhered sample droplets are deprived of heat by the stage 14 and solidified (step S11).

この状態を図5に示す。   This state is shown in FIG.

この時、検体供給器16を動かすことなく固定した状態で試料を付着させることもできる。また、検体供給器16を移動させながら試料(液滴)を付着させることにより、ステージ14上に任意の複数の液滴からなるパターンを描くこともできる。   At this time, the sample can be attached in a fixed state without moving the specimen supply device 16. In addition, by attaching a sample (droplet) while moving the specimen supply device 16, it is possible to draw a pattern composed of a plurality of arbitrary droplets on the stage 14.

また、検体供給器16を固定した状態で、導入棒15を操作してステージ14を移動させながら試料を付着させることもできる。さらに、検体供給器16、ステージ14の両者を移動させながら試料を付着させる方法でもよい。   In addition, in a state where the sample supply device 16 is fixed, the sample can be attached while operating the introduction rod 15 and moving the stage 14. Furthermore, a method of attaching the sample while moving both the specimen supply device 16 and the stage 14 may be used.

そして、移動機構20と移動機構21を動作させ、検体供給器16をキャップ17で覆い、検体供給器16からの液体の蒸発を防止する。   Then, the moving mechanism 20 and the moving mechanism 21 are operated, and the sample supply device 16 is covered with the cap 17 to prevent the liquid from the sample supply device 16 from evaporating.

尚、第1チャンバー1、第2チャンバー2、第3チャンバー3内は乾燥窒素ガスで雰囲気制御されているため、固化した試料に水分が結露することはない。   Since the atmosphere in the first chamber 1, the second chamber 2, and the third chamber 3 is controlled with dry nitrogen gas, moisture does not condense on the solidified sample.

試料が固定されたステージ14を分析装置に移送する手順を以下に説明する。   A procedure for transferring the stage 14 to which the sample is fixed to the analyzer will be described below.

まず、シャッター4を閉鎖し(ステップS12)、ガス導入弁10を閉鎖、ガス排出弁8を真空ポンプ6に切り換え、真空ポンプ6を動作させて、第1チャンバー1と第3チャンバー3内を真空排気する(ステップS13)。   First, the shutter 4 is closed (step S12), the gas introduction valve 10 is closed, the gas discharge valve 8 is switched to the vacuum pump 6, the vacuum pump 6 is operated, and the first chamber 1 and the third chamber 3 are evacuated. Exhaust is performed (step S13).

次に、第2チャンバー2と第3チャンバー3の内部が十分に排気された後、導入棒15を操作してステージ14を第3チャンバー3内に移動する(ステップS14)。   Next, after the insides of the second chamber 2 and the third chamber 3 are sufficiently evacuated, the stage 14 is moved into the third chamber 3 by operating the introduction rod 15 (step S14).

この状態は図3と同じである。   This state is the same as in FIG.

そして、シャッター5を閉鎖し(ステップS15)、ガス排出弁8を閉鎖、ガス導入弁10を開放して、第2チャンバー2の内部を大気圧まで窒素ガスでパージする(ステップS16)。そして、第2チャンバー2と第3チャンバー3を切り離す(ステップS17)。この状態を図6に示す。   Then, the shutter 5 is closed (step S15), the gas discharge valve 8 is closed, the gas introduction valve 10 is opened, and the inside of the second chamber 2 is purged with nitrogen gas to atmospheric pressure (step S16). Then, the second chamber 2 and the third chamber 3 are separated (step S17). This state is shown in FIG.

ステージ14上に付着した試料は十分に冷却されているので気化消失することはない。   Since the sample adhering to the stage 14 is sufficiently cooled, it does not vaporize and disappear.

切り離された第3チャンバー3の開口部を不図示のO−リングを介して、不図示の分析装置の試料導入機構に接続し、シャッター5を開いて導入棒15を操作してステージ14をその分析装置の真空容器内に移送する(ステップS18)。   The separated opening of the third chamber 3 is connected to a sample introduction mechanism of an analyzer (not shown) via an O-ring (not shown), the shutter 5 is opened, the introduction rod 15 is operated, and the stage 14 is It transfers in the vacuum container of an analyzer (step S18).

さらに、導入棒15を操作してステージ14と導入棒15を切り離すことにより、ステージ14のみを真空容器内に収容することができる。   Furthermore, only the stage 14 can be accommodated in the vacuum vessel by operating the introduction rod 15 to separate the stage 14 and the introduction rod 15.

以上の手順により検体供給器内の液体試料の蒸発を抑制して固化することにより試料の内部構造の変化を防止し、所望の分析装置で分析することができる。例えば、分析装置としてのFIB−SEM装置で固化した試料の断面を作成し、断面の状態を観察できる。   According to the above procedure, the evaporation of the liquid sample in the specimen supply device is suppressed and solidified, whereby the change in the internal structure of the sample can be prevented and analysis can be performed with a desired analyzer. For example, a cross section of a sample solidified with a FIB-SEM apparatus as an analysis apparatus can be created, and the state of the cross section can be observed.

また、検体供給器から試料を吐出する前に検体供給器を試料吸引部分により吸引して回復操作を行っているため、目詰まりすることなく安定した液体試料の吐出が可能であった。   In addition, since the recovery operation is performed by sucking the sample supply by the sample suction portion before discharging the sample from the sample supply, it is possible to discharge the liquid sample stably without clogging.

(実施形態2)
本発明の別の実施形態による固体試料の作製装置、固体試料の作製方法及び試料を観察する方法について説明する。
(Embodiment 2)
A solid sample preparation apparatus, a solid sample preparation method, and a sample observation method according to another embodiment of the present invention will be described.

(固体試料の作製装置)
図7は固体試料の作製装置の検体供給器をインクジェットヘッドとした場合の概略構成図である。
(Solid sample preparation equipment)
FIG. 7 is a schematic configuration diagram in the case where the specimen supply device of the solid sample preparation apparatus is an inkjet head.

以下に、実施形態1との相違点を中心に、図面を参照して説明する。   Below, it demonstrates with reference to drawings centering around difference with Embodiment 1. FIG.

検体供給器16は第1チャンバー1に固定されており、試料の吐出方向に対し、検体供給器16とステージ14の距離が0.1mm〜3mmになるように組付けられている。   The sample supply unit 16 is fixed to the first chamber 1 and is assembled so that the distance between the sample supply unit 16 and the stage 14 is 0.1 mm to 3 mm with respect to the discharge direction of the sample.

また、キャップ17には図中上下方向への移動機構31が接続されており、検体供給器16との接触状態と、非接触状態とを、外部から切り替えるように制御することができる。   Further, a moving mechanism 31 in the vertical direction in the drawing is connected to the cap 17 and can be controlled so as to switch between a contact state with the sample supply device 16 and a non-contact state from the outside.

さらに、導入棒15には図中水平方向への移動機構30が当接されており、不図示の移動制御手段により冷却器13上と検体供給器16の間を任意の速度で移動することができる。   Further, the introduction rod 15 is in contact with a moving mechanism 30 in the horizontal direction in the figure, and can be moved between the cooler 13 and the sample supply device 16 at an arbitrary speed by a movement control means (not shown). it can.

要するに、検体供給器16の吐出動作を実行すべく、ステージ14を第2チャンバー2から第1チャンバー1に移動させるとともに、固体試料を取り出すために、ステージ14を第1チャンバー1から第3チャンバー3に移動させるステージの移動機構を有する。   In short, the stage 14 is moved from the second chamber 2 to the first chamber 1 and the stage 14 is moved from the first chamber 1 to the third chamber 3 in order to take out the solid sample in order to execute the discharge operation of the specimen supplier 16. A stage moving mechanism for moving the stage.

尚、本実施形態では導入棒15を駆動してステージ14を移動する方法を説明したが、ステージ14を冷却器13に固定したまま、冷却器13を検体供給器16の下に移動させてもかまわない。   In the present embodiment, the method of moving the stage 14 by driving the introduction rod 15 has been described. However, the cooler 13 may be moved below the sample supply device 16 while the stage 14 is fixed to the cooler 13. It doesn't matter.

上記以外の本実施形態の固体試料の作製装置は実施形態1と同じであり、その詳細な説明は省略する。   Other than the above, the solid sample production apparatus of the present embodiment is the same as that of the first embodiment, and a detailed description thereof will be omitted.

(固体試料の作製方法)
図8は、図7に示す固体試料の作製装置を用いた固体試料の作製方法の一手順を示すフローチャート図、図9は図7に示す検体試料作製装置による検体試料作製方法のうち、試料をステージに付着固化する一手順を示す概略図である。
(Preparation method of solid sample)
FIG. 8 is a flowchart showing a procedure of a solid sample preparation method using the solid sample preparation apparatus shown in FIG. 7, and FIG. 9 shows a sample of the specimen sample preparation method by the specimen sample preparation apparatus shown in FIG. It is the schematic which shows one procedure which adheres to a stage and solidifies.

図8の第2チャンバー内の雰囲気制御(ステップS1)から検体供給器の回復動作(ステップS9)は図2の手順と同じであり、その詳細な説明は省略する。   The recovery operation (step S9) of the specimen supply from the atmosphere control (step S1) in the second chamber of FIG. 8 is the same as the procedure of FIG. 2, and detailed description thereof is omitted.

ステップS9の後、まず、シャッター4を開放し、移動機構31を動作させ、検体供給器16をキャップ17から離す。   After step S <b> 9, first, the shutter 4 is opened, the moving mechanism 31 is operated, and the sample supplier 16 is separated from the cap 17.

次に、必要に応じて、検体供給器16からキャップ17内に試料(液滴)を予備的に吐出させる。   Next, a sample (droplet) is preliminarily discharged from the specimen supply device 16 into the cap 17 as necessary.

さらに、移動機構30を動作させ、ステージ14を検体供給器16上に移動し(ステップS101)、検体供給器16に吐出動作を実行させて、検体供給器16から試料を吐出させ、試料の液滴をステージ14に付着させる。付着した試料はステージ14に熱を奪われ固化する(ステップS102)。   Further, the moving mechanism 30 is operated to move the stage 14 onto the sample supply device 16 (step S101), and the sample supply device 16 is caused to perform a discharge operation so that the sample is discharged from the sample supply device 16, and the sample liquid is discharged. Drops are deposited on the stage 14. The attached sample is deprived of heat by the stage 14 and is solidified (step S102).

この状態を図9に示す。   This state is shown in FIG.

この時、検体供給器16を固定した状態で試料をステージ14に付着させることもできるが、検体供給器16を移動させながら試料を付着させることにより、ステージ14上に複数の液滴からなるパターンを描くこともできる。   At this time, the sample can be attached to the stage 14 with the sample supply 16 fixed, but by attaching the sample while moving the sample supply 16, a pattern composed of a plurality of droplets on the stage 14. Can also be drawn.

そして、移動機構30を動作させ、ステージ14を冷却器13上に移動し、ステージ14の温度を−190℃に制御する。また、移動機構31を動作させ、検体供給器16をキャップ17で覆い、検体供給器16からの液体の蒸発を防止する。   And the moving mechanism 30 is operated, the stage 14 is moved on the cooler 13, and the temperature of the stage 14 is controlled to -190 degreeC. Further, the moving mechanism 31 is operated to cover the sample supply device 16 with the cap 17 to prevent evaporation of the liquid from the sample supply device 16.

尚、第1チャンバー1、第2チャンバー2、第3チャンバー3内は、結露防止のため、乾燥窒素ガス雰囲気となっている。   The first chamber 1, the second chamber 2, and the third chamber 3 are in a dry nitrogen gas atmosphere to prevent condensation.

図8のシャッター閉鎖(ステップS12)から第3チャンバーの分析装置への移送(ステップS18)は実施形態1と同じであり、その詳細な説明は省略する。   Transfer from the shutter closing (step S12) to the third chamber analyzer (step S18) in FIG. 8 is the same as in the first embodiment, and a detailed description thereof is omitted.

以上の手順により検体供給器内の液体試料の蒸発を抑制することにより、固化した試料の内部構造が検体本来の内部構造に対して変質することを防止できる。   By suppressing the evaporation of the liquid sample in the specimen supply device by the above procedure, it is possible to prevent the internal structure of the solidified sample from being altered with respect to the original internal structure of the specimen.

また、検体供給器から試料を吐出する前に検体供給器を試料吸引部分により吸引して回復操作を行っているため、目詰まりすることなく安定した液体試料の吐出が可能であった。   In addition, since the recovery operation is performed by sucking the sample supply by the sample suction portion before discharging the sample from the sample supply, it is possible to discharge the liquid sample stably without clogging.

(実施例1)
図1に示す装置を用意して、図2に示す手順で固体試料を作製した。ステップS18の後、FIB−SEMで固体試料の断面を作成し、その断面を分析した。その結果、固体試料は、固化した溶液中に粒径30〜80nmの顔料粒子が均一に分散しているアモルファス状態であることが観察できた。
Example 1
The apparatus shown in FIG. 1 was prepared, and a solid sample was prepared according to the procedure shown in FIG. After step S18, a cross section of the solid sample was created by FIB-SEM, and the cross section was analyzed. As a result, it was observed that the solid sample was in an amorphous state in which pigment particles having a particle size of 30 to 80 nm were uniformly dispersed in the solidified solution.

(実施例2)
図1に示す装置において検体供給器16として液体噴射ヘッドに代えて中空筒を取り付けた。
(Example 2)
In the apparatus shown in FIG. 1, a hollow cylinder is attached as the specimen supplier 16 instead of the liquid jet head.

この中空筒は、先端内径0.2mm、後端内径3mm、長さ25mmのテーバー状中空筒であった。   This hollow cylinder was a Taber-shaped hollow cylinder having a tip inner diameter of 0.2 mm, a rear end inner diameter of 3 mm, and a length of 25 mm.

中空筒内部を検体で満たした後、図1のステップS1からステップS8を実行した。ステップS9において、吸引部18を動作させ、キャップ17を介して中空筒の先端にある吐出口から検体を吸引した。そして、中空筒内部には約50μlの検体が残るようにした。   After filling the hollow cylinder with the sample, steps S1 to S8 in FIG. 1 were executed. In step S <b> 9, the aspirating unit 18 was operated, and the specimen was aspirated from the discharge port at the tip of the hollow cylinder via the cap 17. Then, about 50 μl of the sample was left inside the hollow cylinder.

ステップS10からS11を実行して、中空筒後端に圧力0.2MPaの乾燥窒素ガスの導入系を接続し、乾燥窒素ガスの導入系の途中に設けられた弁を開いて中空筒先端より検体を吐出させた。中空筒先端より吐出された検体は、飛翔的液滴となり、ステージ表面上に着弾し、冷却された。こうして、固体試料を得ることができた。   Steps S10 to S11 are executed, a dry nitrogen gas introduction system having a pressure of 0.2 MPa is connected to the rear end of the hollow cylinder, a valve provided in the middle of the dry nitrogen gas introduction system is opened, and the sample is introduced from the tip of the hollow cylinder. Was discharged. The specimen discharged from the tip of the hollow cylinder became a flying droplet, landed on the stage surface, and cooled. Thus, a solid sample could be obtained.

ステップS12からS18を実行した後、FIB−SEMで固体試料の断面を作成し、その断面を分析した。その結果、固体試料は、固化した溶液中に粒径30〜80nmの顔料粒子が均一に分散しているアモルファス状態であることが観察できた。   After executing Steps S12 to S18, a cross section of the solid sample was created by FIB-SEM, and the cross section was analyzed. As a result, it was observed that the solid sample was in an amorphous state in which pigment particles having a particle diameter of 30 to 80 nm were uniformly dispersed in the solidified solution.

(実施例3)
図7に示す装置を用意して、図8に示す手順で固体試料を作製した。
(Example 3)
The apparatus shown in FIG. 7 was prepared, and the solid sample was produced in the procedure shown in FIG.

ステップS18の後、FIB−SEMで固体試料の断面を作成し、その断面を分析した。その結果、固体試料は、固化した溶液中に粒径30〜80nmの顔料粒子が均一に分散しているアモルファス状態であることが観察できた。   After step S18, a cross section of the solid sample was created by FIB-SEM, and the cross section was analyzed. As a result, it was observed that the solid sample was in an amorphous state in which pigment particles having a particle diameter of 30 to 80 nm were uniformly dispersed in the solidified solution.

本発明の固体試料の作製装置の概略構成図である。It is a schematic block diagram of the preparation apparatus of the solid sample of this invention. 図1に示す固体試料の作製装置による固体試料の作製方法の一手順を示すフローチャート図である。It is a flowchart figure which shows one procedure of the preparation method of the solid sample by the preparation apparatus of the solid sample shown in FIG. 図1に示す装置において、ステージを第3チャンバーに収納した一手順を示す概略図である。In the apparatus shown in FIG. 1, it is the schematic which shows one procedure which accommodated the stage in the 3rd chamber. 図1に示す装置において、ステージの温度を制御する一手順を示す概略図である。FIG. 2 is a schematic diagram showing one procedure for controlling the temperature of the stage in the apparatus shown in FIG. 1. 図1に示す装置において、試料をステージに接触固化する一手順を示す概略図である。In the apparatus shown in FIG. 1, it is the schematic which shows one procedure which contacts and solidifies a sample to a stage. 図1に示す装置において、固化した試料を他の装置に移送する一手順を示す概略図である。In the apparatus shown in FIG. 1, it is the schematic which shows one procedure which transfers the solidified sample to another apparatus. 本発明に係る別形態の固体試料の作製装置の概略構成図である。It is a schematic block diagram of the preparation apparatus of the solid sample of another form which concerns on this invention. 本発明に係る別形態の固体試料の作製装置による固体試料の作製方法の一手順を示すフローチャート図である。It is a flowchart figure which shows one procedure of the manufacturing method of the solid sample by the solid sample preparation apparatus of another form which concerns on this invention. 図7に示す固体試料の作製装置において、試料をステージに接触固化する一手順を示す概略図である。FIG. 8 is a schematic diagram showing one procedure for contacting and solidifying a sample on a stage in the solid sample manufacturing apparatus shown in FIG. 7. 本発明者が先に発明した固体試料の作製装置の概略構成図である。It is a schematic block diagram of the preparation apparatus of the solid sample which this inventor invented previously.

符号の説明Explanation of symbols

1 第1チャンバー
2 第2チャンバー
3 第3チャンバー
4、5 シャッター
6 真空ポンプ
11 デュワー瓶
12 温度伝達部
13 冷却器
14 ステージ
15 導入棒
16 検体供給器
17 キャップ
18 吸引部
19 試料受部
201 ステージ
202a 導入棒
202b 操作部
203a 第1チャンバー
203b チャンバーハッチ
203c パージ用ガス開閉バルブ
203d パージ用ガス導入口
203e O−リング
204a 第2チャンバー
204b パージ用ガス開閉バルブ
204c パージ用ガス導入口
204d チャンバーハッチ
204e 切り替え弁
204f リーク口
205 真空ポンプ
206 冷却器
207 検体供給器
208 吐出制御装置
DESCRIPTION OF SYMBOLS 1 1st chamber 2 2nd chamber 3 3rd chamber 4, 5 Shutter 6 Vacuum pump 11 Dewar bottle 12 Temperature transmission part 13 Cooler 14 Stage 15 Introducing rod 16 Sample supply 17 Cap 18 Suction part 19 Sample receiving part 201 Stage 202a Introduction rod 202b Operation unit 203a First chamber 203b Chamber hatch 203c Purge gas opening / closing valve 203d Purge gas introduction port 203e O-ring 204a Second chamber 204b Purge gas opening / closing valve 204c Purge gas introduction port 204d Chamber hatch 204e Switching valve 204f Leak port 205 Vacuum pump 206 Cooler 207 Specimen feeder 208 Discharge control device

Claims (11)

固体試料の作製室と、
ステージと、
検体を吐出する吐出口を備え、吐出動作により、前記ステージの表面に前記検体を供給する検体供給器と、
前記ステージを冷却する冷却器と、
を有し、
前記作製室内において、冷却された前記ステージの表面に前記検体を供給して、前記検体を固化させる固体試料の作製装置において、
前記検体供給器の吐出動作の待機時に、前記検体供給器の吐出口を前記作製室内の雰囲気から遮蔽した状態で、前記吐出口から前記検体を吸引する吸引器を有することを特徴とする固体試料の作製装置。
A solid sample preparation room;
Stage,
A sample supply device including a discharge port for discharging the sample, and supplying the sample to the surface of the stage by a discharge operation;
A cooler for cooling the stage;
Have
In the preparation chamber of the solid sample for supplying the specimen to the cooled surface of the stage and solidifying the specimen in the preparation chamber,
A solid sample comprising: an aspirator that sucks the sample from the discharge port in a state where the discharge port of the sample supply unit is shielded from the atmosphere in the manufacturing chamber during standby of the discharge operation of the sample supply unit Manufacturing equipment.
前記作製室は、前記吸引器が付設された第1チャンバーと、前記冷却器が付設された第2チャンバーと、を有し、
前記第1チャンバー又は前記第2チャンバーの少なくともいずれか一方において、前記検体供給器の吐出動作が実行される請求項1に記載の固体試料の作製装置。
The production chamber has a first chamber to which the suction device is attached, and a second chamber to which the cooler is attached,
The solid sample preparation apparatus according to claim 1, wherein a discharge operation of the specimen supply unit is executed in at least one of the first chamber and the second chamber.
前記作製室は、前記ステージを収容するための第3チャンバーを有しており、
前記第2チャンバー内と前記第3チャンバー内とが、同じ雰囲気に設定される請求項2に記載の固体試料の作製装置。
The production room has a third chamber for accommodating the stage,
The solid sample preparation apparatus according to claim 2, wherein the inside of the second chamber and the inside of the third chamber are set to the same atmosphere.
前記検体供給器の吐出動作を実行するために、前記検体供給器を前記第1チャンバーから前記第2チャンバーに移動させる検体供給器の移動機構と、
前記固体試料を取り出すために、前記ステージを前記第2チャンバーから前記第3チャンバーに移動させるステージの移動機構と、
を有する請求項1乃至3のいずれか一項に記載の固体試料の作製装置。
A sample supply mechanism moving mechanism for moving the sample supply device from the first chamber to the second chamber in order to perform the discharge operation of the sample supply device;
A stage moving mechanism for moving the stage from the second chamber to the third chamber in order to take out the solid sample;
The solid sample preparation apparatus according to claim 1, comprising:
前記検体供給器の吐出動作を実行するために、前記ステージを前記第2チャンバーから前記第1チャンバーに移動させるとともに、前記固体試料を取り出すために、前記ステージを前記第1チャンバーから前記第3チャンバーに移動させるステージの移動機構を有する請求項1乃至3のいずれか一項に記載の固体試料の作製装置。   The stage is moved from the second chamber to the first chamber in order to execute the discharge operation of the sample supply device, and the stage is moved from the first chamber to the third chamber in order to take out the solid sample. The solid sample preparation apparatus according to any one of claims 1 to 3, further comprising a stage moving mechanism for moving the solid sample. 前記検体供給器は、液体噴射ヘッドである請求項1乃至5のいずれか一項に記載の固体試料の作製装置。   The solid sample preparation apparatus according to claim 1, wherein the sample supply device is a liquid ejecting head. 前記作製室は、前記第1チャンバー内の雰囲気と前記第2チャンバー内の雰囲気とを隔離するとともに、前記第2チャンバー内の雰囲気と前記第3チャンバー内の雰囲気とを隔離する、少なくとも2つの開閉可能なシャッターを有する請求項1乃至6のいずれか一項に記載の固体試料の作製装置。   The manufacturing chamber isolates the atmosphere in the first chamber from the atmosphere in the second chamber, and isolates the atmosphere in the second chamber from the atmosphere in the third chamber. The solid sample preparation apparatus according to any one of claims 1 to 6, further comprising a possible shutter. 前記作製室は、前記ステージを収容するための第3チャンバーを有しており、
前記第3チャンバーは、前記第2チャンバーに対して切り離し可能に構成されている請求項1乃至7のいずれか一項に記載の固体試料の作製装置。
The production room has a third chamber for accommodating the stage,
The solid sample preparation apparatus according to claim 1, wherein the third chamber is configured to be separable from the second chamber.
固体試料の作製方法において、
請求項1乃至8のいずれか一項に記載の固体試料の作製装置を用意する工程と、
前記作製室内に乾燥ガスを導入する導入工程と、
前記ステージを冷却する冷却工程と、
前記作製室内で前記検体供給器の吐出動作を実行する工程と、
前記検体供給器の吐出動作の待機時に、前記検体供給器の吐出口を前記作製室内の前記乾燥ガスからなる雰囲気から遮蔽した状態で、前記吐出口から前記検体を吸引する吸引工程と、
を有することを特徴とする固体試料の作製方法。
In the method for preparing a solid sample,
Preparing a solid sample manufacturing apparatus according to any one of claims 1 to 8,
An introducing step of introducing a dry gas into the production chamber;
A cooling step for cooling the stage;
Performing a discharge operation of the specimen supply device in the fabrication chamber;
A suction step of sucking the sample from the discharge port in a state in which the discharge port of the sample supply unit is shielded from the atmosphere made of the dry gas in the manufacturing chamber when waiting for the discharge operation of the sample supply unit;
A method for producing a solid sample, comprising:
前記検体として、常温常圧で液相を呈する液体と、前記液体とは異なる物質であって常温常圧で固相又は液相を呈する物質と、を含み、前記物質が前記液体中に分散された検体を用意し、
前記検体を液滴として、冷却されたステージ表面に付着させ、
観察すべき領域全体をアモルファス化する請求項9に記載の固体試料の作製方法。
The specimen includes a liquid that exhibits a liquid phase at normal temperature and pressure, and a substance that is different from the liquid and exhibits a solid phase or liquid phase at normal temperature and pressure, and the substance is dispersed in the liquid. Prepared specimens,
The specimen is attached as a droplet to the cooled stage surface,
The method for producing a solid sample according to claim 9, wherein the entire region to be observed is made amorphous.
試料の観察方法において、
請求項10に記載の固体試料の作製方法を用いて固体試料を作製する工程と、
前記固体試料のアモルファス状態を維持して該固体試料の断面観察を行う観察工程と、
を含むことを特徴とする試料の観察方法。
In the sample observation method,
Producing a solid sample using the method for producing a solid sample according to claim 10;
An observation step of observing a cross section of the solid sample while maintaining the amorphous state of the solid sample;
A method for observing a sample, comprising:
JP2008165698A 2008-06-25 2008-06-25 Solid sample making apparatus, solid sample making method and sample observing method Pending JP2010008141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008165698A JP2010008141A (en) 2008-06-25 2008-06-25 Solid sample making apparatus, solid sample making method and sample observing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008165698A JP2010008141A (en) 2008-06-25 2008-06-25 Solid sample making apparatus, solid sample making method and sample observing method

Publications (1)

Publication Number Publication Date
JP2010008141A true JP2010008141A (en) 2010-01-14

Family

ID=41588840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008165698A Pending JP2010008141A (en) 2008-06-25 2008-06-25 Solid sample making apparatus, solid sample making method and sample observing method

Country Status (1)

Country Link
JP (1) JP2010008141A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013164419A (en) * 2012-02-13 2013-08-22 Fei Co Method of forming vitrified sample for electron microscopy
WO2013191049A1 (en) * 2012-06-21 2013-12-27 日東電工株式会社 Droplet cutting method and droplet cross-section analysis method
WO2014079927A1 (en) * 2012-11-23 2014-05-30 Pamgene B.V. Method and system for snap freezing tissues
JP2015141083A (en) * 2014-01-28 2015-08-03 国立研究開発法人産業技術総合研究所 Manufacturing method and device of specimen carrying piece for microscope
WO2015152385A1 (en) * 2014-04-03 2015-10-08 株式会社日立ハイテクノロジーズ Cryostation system
JP2017053681A (en) * 2015-09-08 2017-03-16 国立研究開発法人海洋研究開発機構 Pretreatment device for gas analysis
WO2018020877A1 (en) * 2016-07-29 2018-02-01 国立研究開発法人産業技術総合研究所 Method for dispersion and immobilization of fine particles
JP2018116025A (en) * 2017-01-20 2018-07-26 日本電子株式会社 Sample preparation device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05155032A (en) * 1991-12-03 1993-06-22 Ricoh Co Ltd Ink jet head recording apparatus
JPH05256781A (en) * 1992-03-13 1993-10-05 Nikon Corp Measuring method of biological sample
JPH06293137A (en) * 1993-04-08 1994-10-21 Fuji Xerox Co Ltd Maintenance device for ink jet recording head
JPH11340199A (en) * 1998-05-21 1999-12-10 Mitsubishi Electric Corp Semiconductor producing device, scanning type electronic microscope and checking method for wafer
JP2004535764A (en) * 2000-11-29 2004-12-02 ピコリター インコーポレイテッド Ejection of spatially-directed cells from carrier fluid
JP2005345422A (en) * 2004-06-07 2005-12-15 Canon Inc Observing method and observing device for sample substance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05155032A (en) * 1991-12-03 1993-06-22 Ricoh Co Ltd Ink jet head recording apparatus
JPH05256781A (en) * 1992-03-13 1993-10-05 Nikon Corp Measuring method of biological sample
JPH06293137A (en) * 1993-04-08 1994-10-21 Fuji Xerox Co Ltd Maintenance device for ink jet recording head
JPH11340199A (en) * 1998-05-21 1999-12-10 Mitsubishi Electric Corp Semiconductor producing device, scanning type electronic microscope and checking method for wafer
JP2004535764A (en) * 2000-11-29 2004-12-02 ピコリター インコーポレイテッド Ejection of spatially-directed cells from carrier fluid
JP2005345422A (en) * 2004-06-07 2005-12-15 Canon Inc Observing method and observing device for sample substance

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013164419A (en) * 2012-02-13 2013-08-22 Fei Co Method of forming vitrified sample for electron microscopy
WO2013191049A1 (en) * 2012-06-21 2013-12-27 日東電工株式会社 Droplet cutting method and droplet cross-section analysis method
JP2014002123A (en) * 2012-06-21 2014-01-09 Nitto Denko Corp Method for cutting droplet and method for analyzing cross section of droplet
CN104412094A (en) * 2012-06-21 2015-03-11 日东电工株式会社 Droplet cutting method and droplet cross-section analysis method
WO2014079927A1 (en) * 2012-11-23 2014-05-30 Pamgene B.V. Method and system for snap freezing tissues
JP2015141083A (en) * 2014-01-28 2015-08-03 国立研究開発法人産業技術総合研究所 Manufacturing method and device of specimen carrying piece for microscope
WO2015152385A1 (en) * 2014-04-03 2015-10-08 株式会社日立ハイテクノロジーズ Cryostation system
CN106104250A (en) * 2014-04-03 2016-11-09 株式会社日立高新技术 Cryogenic storage system
JPWO2015152385A1 (en) * 2014-04-03 2017-04-13 株式会社日立ハイテクノロジーズ Cryo station system
CN106104250B (en) * 2014-04-03 2019-12-13 株式会社日立高新技术 Cryogenic storage system
US10658150B2 (en) 2014-04-03 2020-05-19 Hitachi High-Technologies Corporation Cryostation system
JP2017053681A (en) * 2015-09-08 2017-03-16 国立研究開発法人海洋研究開発機構 Pretreatment device for gas analysis
WO2018020877A1 (en) * 2016-07-29 2018-02-01 国立研究開発法人産業技術総合研究所 Method for dispersion and immobilization of fine particles
JP2018116025A (en) * 2017-01-20 2018-07-26 日本電子株式会社 Sample preparation device
US11231346B2 (en) 2017-01-20 2022-01-25 Jeol Ltd. Specimen preparation apparatus

Similar Documents

Publication Publication Date Title
JP2010008141A (en) Solid sample making apparatus, solid sample making method and sample observing method
JP2009008657A (en) Solid sample, and method and apparatus for manufacturing the same
JP5940621B2 (en) Method for investigating and correcting aberrations in charged particle lens systems
EP3260839B1 (en) Method for preparing samples for imaging or diffraction experiments under cryogenic conditions
US7531797B2 (en) Probe-holding apparatus, sample-obtaining apparatus, sample-processing apparatus, sample-processing method and sample-evaluating method
CN110062880B (en) Preparation of non-destructive freezing grid by controlled sample evaporation
JP6143487B2 (en) Method for making a vitrified sample for an electron microscope
JP5899377B2 (en) Charged particle beam apparatus and sample preparation method using the apparatus
JP5204592B2 (en) Thin film sample observation system, cooling sample holder, and thin film sample observation method
JP6338869B2 (en) Particle size distribution measurement method
JP2017106895A (en) Preparation of ultralow temperature sample for charged particle microscope
CN106537112A (en) Loading station for transferring frozen samples at low temperatures
WO2012138738A2 (en) Method for extracting frozen specimens and manufacture of specimen assemblies
JPS603555B2 (en) Material surface removal method
EP3351923B1 (en) Reduction in dew formation by preparing specimen for investigation
KR101690670B1 (en) Apparatus for preparing biological specimens of atomic force microscopy using mist-spray and quick freezing
EP4095508A1 (en) Method and apparatus for preparing samples under cryogenic conditions for imaging or diffraction experiments in an electron microscope
JP2021135141A (en) Device and method of preparing particle evaluation specimen
JPH09323072A (en) Washing method using gas and device therefor
JPH02144142A (en) Production of thin crystal or film
JP2015137918A (en) Production method of sample replica thin film for electron microscopy and production device thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130305